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Robert S. Jonsson
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Abstract
With increasingly sensitive measurements being made possible by technological
development, there arises situations where the effects of quantum mechanics have
to be taken into account. While quantum mechanics tells us that there are funda-
mental limits of measurement sensitivity, it also gives us the tools to constructively
push the same limits for experimental systems. The field of quantum metrology
investigates how sensitive a measurement can be made, and how to realize such a
setup.

Quantum metrology as a topic is well established for the field of quantum optics
in the visible light frequency range, and quantum enhanced measurement setups
have been experimentally realized. In the last couple of decades, similar types
of setups are starting to be possible at microwave frequencies, where a thermal
background can be significant.

In this thesis and the appended articles, we have studied various quantum probes
applied to radar-like scenarios where the task is to measure a weak signal in
the presence of thermal noise. Our focus has been two-fold. On the one hand,
we have studied the quantum illumination protocol which uses entanglement to
beat classical protocols in the task of binary discrimination. We have elucidated
the scenario where an advantage is realized and argued that it is difficult to
find useful applications for the protocol. On the other hand, we have studied
the task of estimating the attenuation coefficient in a lossy Bosonic channel, and
established the optimal Gaussian probe states based on maximization of quantum
Fisher information. These results serve to illustrate situations where a proper
understanding of quantum mechanics can be applied to enhance radar-like tasks,
or quantum radars.

Keywords: Quantum Radar, Quantum Sensing, Gaussian, Quantum Fisher In-
formation, Bosonic channel
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1
Introduction

I know the kings of England,
and I quote the fights historical;
From Marathon to Waterloo,
in order categorical;

Major-General Stanley in the opera
The Pirates of Penzance

by W.S. Gilbert and A. Sullivan

1.1 Background
The concept of actively using electromagnetic waves as a tool for surveying one’s
surroundings was demonstrated already in 1904 by Christian Hülsmeyer, when
he used his invention of the Telemobiloskop to detect passing ships on the river
Rhine [1, 2]. Famously, Hülsmeyer failed to interest the Navy in this invention, as
they did not see an immediate use case, and the ideas of lay dormant for a few
decades. It was during the 1930s and the lead-up to the second world war that
radar systems found widespread use. This time, rapid development was motivated
by the need to detect incoming aeroplanes at long ranges to increase the time
available to react. Since those early days, radars have come a long way, with
applications not only across many military disciplines, but also in civil sectors,
such as air traffic surveillance, ship navigation and weather measurement. In fact,
large parts of the electromagnetic spectrum have been realised for sensors, such
as lasers, X-rays, infrared, not to understate the use of visual light that our eyes
naturally use to survey our own surroundings.

A radar operates by transmitting electromagnectic waves into the environment
and ‘listening’ for echoes generated by the reflection off of objects. Its operation
is described directly in the name, as RADAR is an acronym for RAdio Detec-
tion and Ranging, referring to the use of radio waves to detect, and estimate
properties of, objects, or targets. Although many systems today use the higher
frequency microwaves in favour of radio waves, the term MIDAR, for MIcrowave
Detection and Ranging, would be more fitting, but we describe also these systems
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CHAPTER 1. INTRODUCTION

as radars. To perform well and be able to detect targets at long distances, the
radar must transmit a large amount of energy, because the fraction of energy re-
flected off of targets that is received back at the radar scales very unfavourably
with the distance. Small targets would be covered by noise without sufficiently
strong probing signals. A lot of signal processing techniques go into determining
whether a received signal consists of only noise, or additionally a reflected copy
of the transmitted signal, that is, a problem best approached with the statistical
theory of detection.

At the same time as Hülsmeyer performed his prototype radar experiment, the
first steps were taken in developing what would become known as modern physics,
where quantum mechanics plays an important part. Understanding that the elec-
tromagnetic field, as described by Maxwell [3], needs to consist of individual
quanta, was one of those insights. Today, we say that the quantized electromag-
netic field consists of photons.

As time progressed, theories were developed to understand not only how quan-
tum systems behave, but also their metrological properties [4]. Here, we refer
to a system’s ability to be used as a measurement probe in a sensor. This can
be understood as follows. An experimentalist prepares a known probe and al-
lows it to interact with an unknown system, and by measuring the outcome of
the interaction, the experimentalist learns something about the unknown system.
Fundamentally, these types of experiments are prone to some amount of error,
not only due to calibration errors and measurement noise, but even in the ideal
case, due to the uncertainties mandated by quantum mechanics. In many real-life
applications, noise and other errors overwhelm the quantum mechanical uncer-
tainties, but for specialized setups, proper understanding of these phenomena is
of central importance if a naïve application of purely classical physics would lead
to incorrect predictions. However, with careful analysis, adherence to quantum
mechanics and a well-tuned experimental setup one may tweak the conditions to
do better than any purely classical probe. These concepts may be collectively re-
ferred to as quantum enhanced sensing. Technical protocols enabled by quantum
enhanced sensing have been developed, e.g., to enhance the precision in detection
of gravitational waves in the next generation of LIGO [5, 6]. Systems achieving
this enhanced precision are said to beat the “standard quantum limit” (SQL) and
exhibit quantum advantage over classical probes [7].

For the modern practical radar applications of today, a classical (as in non-
quantum) description of electromagnetics is usually sufficient to understand the
underlying physics, because the relevant energies vastly overwhelm the scale of
individual photons. However, inspired by the potential benefits in harnessing the
underlying quantum phenomena, there have been research efforts applied towards
developing quantum radars. The recurring topic of this thesis and the appended
papers is the study of when and how the unique properties of quantum mechanics
can provide some benefit to radar-like scenarios and operation. In particular, the
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1.2. QUANTUM RADAR

setting studied is one where a probe state is transmitted into a noisy environment
to learn something from what comes back.

1.2 Quantum Radar
To say anything about quantum radar we need to acknowledge that there is no
widely accepted meaning as what it should entail, whether it refers to an ab-
stract theoretical protocol or a physical device, and the term can refer to different
things depending on the context [8–10]. Going by the patented device described
in Ref. [11], it can mean a radar system that uses “a signal including a plurality
of entangled particles” for the purpose of resolving targets better than a classical
system, by circumventing the Rayleigh diffraction limit. Another patented device,
described in Ref. [12], uses a pair of entangled signals to realise a quantum advan-
tage over a classical benchmark with the protocol of Quantum Illumination (QI).
These patents indicate an interest not only from researchers, but also from the
defence industry in these topics, and some of the patent authors were involved in
a DARPA project on quantum sensors [13]. While that application was focused
on LADAR1, the underlying theory of quantum electromagnetics is the same, re-
gardless of the frequency range. In the DARPA report, three types of quantum
sensor are defined: Type-1, using non-classical probes that are not entangled to
anything, Type-2, using classical probes, but a non-classical receiver, and Type-3,
using probes that are entangled with the receiver.

The aforementioned QI protocol was named so in Ref. [14], where, building on the
work of Sacchi [15, 16], Lloyd presented a method where an entangled signal-idler
pair could significantly outperform single-photon signals serving as a benchmark,
when the task is to discriminate whether a weakly reflecting target is present in
a noisy background. This means QI is a Type-3 protocol, as defined in Ref. [13].
The signal-to-noise ratio (SNR) advantage over a single-photon probe i of Lloyd’s
protocol is exponential in the amount of entanglement. Extensions of the analy-
sis to multi-photon signals showed that the performance of Lloyd’s QI could be
matched and even overtaken by a weak coherent state probe [17] . However, fur-
ther development of the theory of target detection for Gaussian states by Tan et
al. in Ref. [18] showed that, when comparing to the classical reference states, the
possible entanglement advantage achieved in the effective SNR is not exponential,
but a factor of 4, commonly referred to as “the 6 dB advantage”. Although this
result appears to restrict the situations where entangled signals are applicable
compared to the earlier results of Lloyd, the QI protocol is particularly interest-
ing from a purely theoretical point of view. This is because of the peculiar feature
that QI uses an initially entangled pair of signals, but a quantum advantage is
achieved over the classical benchmark even though the initial entanglement does
not survive the probing process. It thus calls into question what role entanglement

1LADAR: LAser Detection and Ranging
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CHAPTER 1. INTRODUCTION

has as a metrological resource. We will return to the QI protocol in Chapter 3,
where it is described in more technical detail and the nature of the quantum ad-
vantage is discussed. For now, we continue with an informal overview presenting
some of the related literature on QI and its interpretation as a quantum radar. It
is important to note that although QI performs the detection part of radar oper-
ation, it actually requires prior knowledge of the transmit-to-receive path length
to achieve any advantage. That is, the protocol does not measure time-of-flight,
and is thus not able to perform detections at an unknown distance, omitting the
Ranging part of radar. Nevertheless, the QI protocol has been understood as a
type of quantum radar [8]. There are other protocols claiming to be quantum
radars, where estimation of time-of-flight is incorporated [19].

A metrological protocol such as QI describes not only the probe state and measure-
ment scenario, but also the receiver setup that measures the optimal observable.
For the QI protocol, receiver structures based on Optical Parametric Amplification
(OPA) and Phase-Conjugation (PC), respectively, were described by Guha and
Erkmen [20] which lead to the patent of Ref. [12]. These receivers are sub-optimal
in the sense that they can realise a factor of 2 advantage in the effective SNR over
a coherent state probe, but not the full possible advantage. A theoretical receiver
structure realising the full advantage has been suggested, based on iteration of
sum-frequency generation, as presented in Ref. [21], but experimental realisation
of that concept is not yet possible.

A no-go result in the high-loss regime was shown by Nair, where no quantum ad-
vantage can be achieved over a coherent state if the discrimination is done against
a vacuum background [22]. This is a regime well approximated by visual light at
room temperature, exhibiting negligible ambient thermal noise. One consequence
of this no-go result is that, for the quantum advantage to be realised, it requires
the discrimination to be against a noisy background. At ambient room tempera-
ture conditions the visible light spectrum does not satisfy this requirement. This
indicates that a natural application at visible light frequencies is illusive. How-
ever, one can imagine an adversarial scenario with a strong thermal light source
blinding the receiver sensor, where the QI protocol could outperform a coherent
state probe.

On the other hand, in the microwave regime (approximately 300 MHz to 30 GHz)
noise is naturally present at room temperature, but the necessary technology,
e.g., number resolving photon detectors, is not developed as of yet. This conun-
drum was approached in Ref. [23], with the proposed solution of using an opto-
mechanical interface to coherently convert photons between visual light frequen-
cies and microwaves. The idea is to prepare the entangled signal-idler pair at
optical wavelengths, downconvert the signal to microwaves and transmit it, with
the receiver doing the same operations in reverse. This scheme allows for the gener-
ation and detection of entangled photons to be done at optical frequencies, where
the necessary technology is available, while the probing is done with microwaves,
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1.2. QUANTUM RADAR

where the background is noisy.

Around this point in time, it became popular among media, primarily those cov-
ering defence development, to write about quantum radar applications and real-
isations, see, e.g., Refs. [24, 25]. These reports, targeting a non-expert audience,
tended towards creative interpretations of the quantum properties, such as the role
of quantum entanglement, and overstated the maturity of the technology. For ex-
ample, the dubious statement that quantum radar could beat stealth optimised
aircraft was picked up as a revolutionary new technological achievement [24]. Nev-
ertheless, reports like these increased awareness of the ideas and likely influenced
decisions leading to further research funding.

On the academic side, there have been several publications claiming experimen-
tal demonstration of the QI protocol, e.g., Ref. [26]. These results have been
challenged as to whether they fully realised the QI protocol [27] on the grounds
that coincidence-counting setups do not fully exploit the initial entanglement, and
the ideal measurement is difficult to realise. In 2015, the QI protocol was demon-
strated with a sub-optimal OPA receiver [28]. More recently, another experimental
demonstration was performed with optics and coincidence counting by England
et al. [29], where a jamming laser was used to artificially add background photons
to the detector, albeit not a thermal background. Similarly, Blakely et al. [30]
presented results of performing a similar QI-like task for LIDAR2 applications.

A variation on the QI protocol was put forward in Refs. [31, 32] with experimental
results in the microwave regime with free-space propagation, showing how entan-
gled signals could outperform correlated thermal noise signals, at the same probe
energies. These results garnered some attention because the experiments showed
a quantum advantage with a simple heterodyne detection scheme and the demon-
strated protocols were described as a type of quantum noise radar. While the
initial pre-print of Ref. [33], published as arXiv:1908.03058 in 2019, presented
similar results at that point in time, the final published version clarifies that ideal
photon number detection is required to realise the advantage. The pre-print re-
sult was also reported as a quantum radar [34]. Criticism as to the correctness
of these results in the microwave regime as implementations of QI were raised
by Shapiro in Ref. [27], where one of the main arguments is that the correlated
thermal noise used as a classical reference system is not optimal and that, with
minor modifications, the classical reference system would perform equivalently to
the quantum enhanced system, and that measuring the signal and idler separately
should destroy the QI advantage. Recently, a microwave experiment was reported,
where also the joint measurement could be realised and a quantum advantage
claimed [35]. Recently, alternative receiver structures have also been developed,
utilising a transformation from signal-idler correlations to idler displacement [36,
37], which may be easier to implement as a sequential protocol [38].

2LIDAR: LIght Detection And Ranging
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CHAPTER 1. INTRODUCTION

There are protocols other than QI that seek to exploit quantum properties in
radar-like tasks [39], such as increasing measurement accuracies of distance with
pulse compression [40] and velocity with Doppler shift [41], in addition to exten-
sions to the target model, such as a target cloaking by phase-shifting the illu-
minating radiation [42] or when the target signal fluctuates over the observation
interval [43]. There have also been some investigations into QI with three-mode
entangled Gaussian states [44].

Within this thesis, we understand the term quantum radar as any device that uses
features unique to quantum mechanics to gain an advantage over a classical or
semi-classical counterpart, when transmitting the same total energy. However, the
QI protocol and associated theory serves as the primary incarnation of quantum
radar. The classical radars used as benchmarks are not to be confused with con-
ventional radar systems, but rather as abstract devices that achieve the limit of
what is possible with a non-quantum device. The prospects of real-life application
of these quantum radars tend to lean towards close-range probing, such as a non-
invasive scanning of sensitive samples, rather than competing with conventional
radars that can find targets at ranges of up to hundreds of kilometres.

1.3 Thesis overview
The rest of the thesis is organized as follows. Chapter 2 presents a brief introduc-
tion to the essentials of quantum mechanics, and then moves on to describe the
quantisation of the electromagnetic field, where Bosonic creation and annihilation
operators are introduced. A particular set of relevant quantum states, referred to
as ‘Gaussian’ are then presented, with focus on the single- and two-mode states
that have been studied extensively for quantum radar. Then, a description of the
dynamics of these states is summarized for the case where the interaction takes
place with thermal systems. After this, Chapter 3 describes the setting of metrol-
ogy and the task of inference and the methods one can apply to systematically
learn something from statistical outcomes. Chapters 2 and 3 collectively present
the theory toolbox that is central to the appended papers. For this text, the the-
ory is kept at a somewhat simplified and informal description to efficiently convey
the main ideas, rather than all the details. Conversely, the appended publications,
and especially the third paper, follow a higher level of mathematical rigour. Chap-
ter 4 quickly summarizes the main results and motivation of the appended papers.
Two of the papers address questions about the use of correlated thermal noise
as a classical reference, the applicability of QI for conventional radar operation
and technological possibilities of QI. The third paper shifts focus to the task of
estimation rather than discrimination, within a scenario that is similar to that of
QI. Finally, an Outlook is presented in Chapter 5.
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2
Quantum Theory

I’m very well acquainted, too,
with matters mathematical;
I understand equations,
both the simple and quadratical;

Major-General Stanley in the opera
The Pirates of Penzance

by W.S. Gilbert and A. Sullivan

2.1 Introduction to quantum

Simply described, a radar operates by transmitting electromagnetic waves, and
finds objects in the environment by picking up reflected waves. To understand how
this can be described in a setting where quantum effects are relevant, we thus need
to describe the electromagnetic field in a manner that is compatible with quantum
mechanics. This field of quantum electromagnetics is well established since many
decades, and the overview presented here can be skipped by the reader familiar
with the topic.

Before we go into detail on how the electromagnetic field is quantised and how
we can study photons in radar-like scenarios, we need to set some ground rules by
introducing the agents and the playing field of quantum mechanics. Shortly put,
quantum mechanics is the framework that governs physical dynamics at small
scales, such as for atoms and molecules. In quantum mechanics, the quantities
are described mathematically in terms of states and operators that evolve under
a dynamical relation – the Schrödinger equation. Our focus will mainly be on
mixed states, described by the density operator ρ, which describe statistical en-
sembles. All the dynamics of a quantum mechanical system is described by the
time evolution of the density operator.

An important axiom of quantum mechanics tells us how to get classical statistics
out of the density operator. Without going into details, a ‘measurement’ that gives

7



CHAPTER 2. QUANTUM THEORY

rise to an observation ω is described by the operator1 Πω. A classical probability
distribution is recovered from a quantum state as p(ω) = tr Π̂ωρ, known as the
Born rule. The set of all measurements must resolve the identity, ∑ω Π̂ω = Î,
which is simply a statement of conservation of probability. Importantly, one can
imagine the task of an optimised experimental setup, where the measurement
procedure is constructed to minimise the variance of the result. We return to this
concept in the next chapter.

2.2 Quantising the electromagnetic field
Now, we sketch in an informal manner how electromagnetics can be made com-
patible with quantum mechanics as it is treated in quantum optics. This follows
closely how the material is presented in textbooks, e.g., Refs. [45, 46]. For a more
rigorous derivation, see, e.g., Ref. [47]. Throughout this thesis, we use natural
units such as the reduced Planck constant (ℏ = 1) and the speed of light (c = 1),
unless stated otherwise. In short, our goal is to promote the electric field E to a
quantum mechanical operator Ê, and to understand some of the implications.

2.2.1 Classical electromagnetics
We start by recalling Maxwell’s equation in terms of the scalar potential ϕ and
the vector potential A such that the free-space electric field is determined by
E = −∇ϕ − ∂tA and the magnetic field is determined by B = ∇ × A. Then, the
Maxwell equations for the potentials are

∇2ϕ + ∇ · ∂tA = −σ, (2.1)
∇(∇ · A) − ∇2A + ∂t∇ϕ + ∂2

t A = J, (2.2)

where σ and J are the charge and current density, respectively. The non-relativistic
quantisation is more easily approached in the Coulomb gauge, with ∇ · A = 0,
which simplifies the equations. Finally, by separating the current density into
transverse and longitudinal components, J = JT + JL, with ∇ · JT = 0 and
∇ × JL = 0, we get, in this gauge, that

∇2ϕ = −σ, (2.3)
∂t∇ϕ = JL, (2.4)

−∇2A + ∂2
t A = JT. (2.5)

Thus, we have a separation where electrostatics are determined by σ and JL
through the scalar potential, while the electromagnetic waves are given by JT
through the vector potential.

Now, we continue with the transverse Eq. (2.5) alone, and consider the free field
where JT = 0. This results in the wave equation for A, as −∇2A + ∂2

t A =
1Most generally, a positive operator-valued measure.

8



2.2. QUANTISING THE ELECTROMAGNETIC FIELD

0, which we subject to periodic boundary conditions of a ‘big box’ with side
length L. Now, expand the vector potential at position R and time t in modes of
wavevectors k and polarization π = ±1 such that A(R, t) =

∑
k,π e⃗kπAkπ(R, t),

where Akπ(R, t) = akπ(t)eik·R +a∗
kπ(t)e−ik·R and where e⃗kπ are the basis vectors.

The boundary conditions require that k = 2π
L (nx, ny, nz)⊤, with nx, ny, nz ∈ Z.

This results in the harmonic oscillator equation

∂2
t akπ(t) + ω2

kakπ(t) = 0, (2.6)

with frequency ωk = |k|, for each field amplitude. The quantised frequencies are
strictly a consequence of the periodic boundary conditions and are purely classi-
cal. The central step of quantising the field is to impose the quantum harmonic
oscillator to Eq. (2.6) and to promote the mode fields to operators. Whenever
possible, we drop the mode subscript kπ from now on, since the later analysis in
the appended papers is not concerned with the exact nature of the modes.

2.2.2 The harmonic oscillator
The harmonic oscillator is the linear theory of oscillation. As a quick orientation,
we quickly look at the classical harmonic oscillator. Assume a particle with mass m
is affected by forces linear in generalized displacement q with some spring constant
κ. The Hamiltonian of this classical harmonic oscillator is

H = p2

2m
+ κq2

2
, (2.7)

where the canonical conjugate momentum is p = mq̇. Applying the Hamilton
equations of motion [48], q̇ = ∂pH and ṗ = −∂qH gives the equation of motion as
q̈ + ω2q = 0, where ω2 = κ/m. The general solution for q is

q(t) = c−e−iωt + c+eiωt, (2.8)

where the constants c+, c− ∈ C are determined by initial conditions. This solution
describes harmonic periodic motion with the radial frequency ω.

The quantum harmonic oscillator can be introduced with the Hamiltonian opera-
tor

Ĥ = 1
2

(
q̂2 + p̂2

)
, (2.9)

where q̂ and p̂ are now Hermitian quantum operators in suitable units. Pro-
moted to operators, the position and momentum satisfy the commutation relation
[q̂, p̂] = Îi. The non-commuting nature of these conjugate operators implies that
the respective variances jointly satisfy the Heisenberg uncertainty relation

(∆q)2 (∆p)2 ≥ 1
4

. (2.10)

The quantum harmonic oscillator algebra is given with the Bosonic annihilation
and creation operators â and â†, satisfying the commutation relation [â, â†] = Î.

9



CHAPTER 2. QUANTUM THEORY

The quantum harmonic oscillator is naturally represented in a Fock space with
state vectors |n⟩, where the index n = 0, 1, 2, . . . labels the occupation number.
The operators â and â† are also referred to as ladder operators, for their action on
the Fock state |n⟩, as â |n⟩ =

√
n |n − 1⟩ and â† |n⟩ =

√
n + 1 |n + 1⟩, ‘stepping’ up

and down between states with different occupation numbers. This also invites the
use of the number operator N̂ = â†â, for which |n⟩ is an eigenstate: N̂ |n⟩ = n |n⟩.
The ladder operators are related to the position and momentum operators of the
oscillator by the relations

q̂ = 1√
2

[
â† + â

]
, (2.11)

p̂ = i√
2

[
â† − â

]
, (2.12)

Rewriting the Hamiltonian operator of Eq. (2.9) in terms of the ladder operators
and simplifying yields

Ĥ = N̂ + 1
2

. (2.13)

That is, for the Fock state |n⟩, the expectation value of the Hamiltonian reads
⟨Ĥ⟩ = n+ 1

2 . This additional term of 1
2 tells us that even the state with occupation

number zero has finite energy. This special minimum energy state, |0⟩, exhibits
vacuum fluctuations.

2.2.3 Quantised electromagnetics
Now that we are familiar with the harmonic oscillator, we can go back to Eq. (2.6)
and take the solution akπ(t) = akπe−iωkt. The field coefficient is now promoted
to a quantum operator, as akπ → âkπ, where âkπ takes the role of a Bosonic
annihilation operator and the occupation number n of the Fock state |n⟩ refers to
the number of photons that are contained in the mode. Now, we introduce a new
phase γ = ωt + k · R and again drop the subscript kπ. Then, as an operator, the
electric field is

Ê(γ) = Eω√
2

(
âe−iγ + â†eiγ

)
(2.14)

where Eω is the electric field amplitude of one photon with frequency ω. If the
field is measured in units of Eω = 1, all relations are simplified. Rewriting the
electric field operator in terms of the generalized position and momentum with
the relations of Eq. (2.11) and Eq. (2.12) yields

Ê(γ) = q̂ cos γ + p̂ sin γ. (2.15)

That is, the operators q̂ and q̂ take the role of quadratures. For the purposes of
this thesis, we take q̂ to be the in-phase component and p̂ to be the orthogonal
component, and refer them jointly as quadratures.
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2.2. QUANTISING THE ELECTROMAGNETIC FIELD

2.2.4 Multimode light
Even though we omit the explicit operator subscript that labels the wavenum-
ber and polarization, it is nevertheless important to introduce a joint notation
for states that consists of several modes, e.g., |n1⟩ ⊗ |n2⟩ ⊗ . . . ⊗ |nN ⟩. If such
multimode-states are considered, we collect the quadratures in the vector2 r̂ =
(q̂1, p̂1, q̂2, p̂2, . . . , q̂N , p̂N )⊤, such that the commutation reads [r̂i, r̂j ] = iΩi,j , for
Ω =

⊕N
j=1
( 0 1

−1 0
)

= IN ⊗
( 0 1

−1 0
)
. The matrix Ω is the symplectic form and will

appear again later in this chapter.

By expanding the quantisation to the continuum by taking the limit of L → ∞,
we can label the operators by the continuous frequency ω, as âk → â(ω). Then it
makes sense to introduce time domain operators as Fourier transforms of frequency
space operators

â(t) = 1√
2π

∫ ∞

−∞
dω eiωtâ(ω). (2.16)

For some applications, such as light pulses, it is useful to use the formalism with
photon-wavepacket operators

âξ =
∫ ∞

−∞
dt ξ(t)â(t) (2.17)

for a pulse shape ξ. If we consider an orthonormal set of pulses3 {ξi(t)}i=1,2,..., we
retain a commutation relation as

[
âξi

, â†
ξj

]
= Îδi,j . The frequency space operators

are similarly related by inserting the expression of Eq. (2.16) and exchanging the
order of integration, we get

âξ = 1√
2π

∫ ∞

−∞
dt ξ(t)

∫ ∞

−∞
dω eiωtâ(ω)

= 1√
2π

∫ ∞

−∞
dω â(ω)

∫ ∞

−∞
dt eiωtξ(t)

=
∫ ∞

−∞
dω â(ω)ζ(ω), (2.18)

where
ζ(ω) = 1√

2π

∫ ∞

−∞
dt eiωtξ(t). (2.19)

That is, a mode defined for a timed pulse with shape ξ(t) can be expressed with
the spectrum ζ(ω), which is the Fourier transform of the pulse. When discussing
radar-like applications, these are the types of modes that are understood to be
used, even though a simplified notation is maintained.

2Another common ordering is ŝ = (q̂1, q̂2, . . . , q̂N , p̂1, . . . , p̂N )⊤. For this convention the sym-
plectic form is Ω =

(
0 1

−1 0
)

⊗ IN .
3A set of pulse shapes such that

∫∞
−∞ dt ξi(t)ξ∗

j (t) = δi,j .
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CHAPTER 2. QUANTUM THEORY

2.3 Gaussian quantum states
Gaussian states are a particular set quantum mechanical states that find large
use in quantum optics, both because of the convenient structure that allows for
analytical treatment, and also because they can be readily prepared in the labora-
tory. There are many areas of applications for Gaussian states, beyond the scope
of this thesis, see, e.g., Ref. [49]. The theory presented here is primarily based on
the review of Ref. [50] and the book of Ref. [51].

Similarly to random variables distributed according to the multivariate normal
distribution, the Gaussian states are completely characterized by first order mo-
ment (or mean, µ) and second order moment (or covariance matrix, Σ). The mean
vector has elements µi = ⟨r̂i⟩ and the covariance matrix has elements

Σkl = 1
2

⟨r̂kr̂†
l + r̂†

l r̂k⟩ − ⟨r̂k⟩ ⟨r̂†
l ⟩ . (2.20)

In many places of the literature, e.g., Ref. [51], one finds the rescaled covariance
matrix σ = 2Σ, which simplifies some expressions. In Paper I, we encounter a
normalised version of the covariance matrix, denoted as the matrix correlation
coefficients, which can be computed as

r = [diag(Σ)]−1/2 Σ [diag(Σ)]−1/2. (2.21)

While the correlation coefficients by themselves are insufficient to characterize
the state, they appear as the relevant quantity in one of the discrimination tasks
studied in Paper I.

For Gaussian states, the non-commuting property of conjugate quadratures gives
rise to an uncertainty relation that can be cast as a criterion on the covariance
matrix

Σ + iΩ/2 ⪰ 0, (2.22)

where Ω is the symplectic form. This is known as the Robertson-Schrödinger
uncertainty relation.

2.3.1 Single-mode states
The single-mode Gaussian states can be parametrized in terms of a 2 × 1 mean
vector and a 2 × 2 covariance matrix. In this section, we present some particular
states as well as the canonical generic Gaussian single-mode state. Here, without
loss of any generality, we use a reference phase such that the covariance matrix
is diagonal. A special state is the minimum energy vacuum state denoted by |0⟩,
with zero mean and covariance matrix diag

(
1
2 , 1

2

)
. The vacuum contains zero

photons on average, but non-zero variance, which can be understood in terms of
quantumness as consequence of the uncertainty principle applied to the quadra-
tures. That is, the state containing zero photons has a minimum variance of 1

2 for
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2.3. GAUSSIAN QUANTUM STATES

both quadratures and this defines the standard quantum limit (SQL). If a state
can achieve a measurement variance lower than 1

2 , it is said to ‘beat’ the SQL and
that it exhibits some quantum advantage.

Coherent State

If we take the vacuum state and change the mean to be non-zero, we find the
coherent state, which is the eigenstate of the annihilation operator. That is, for a
coherent state |α⟩ labelled by the complex parameter α ∈ C, the state satisfies
â |α⟩ = α |α⟩. The average number of photons of the coherent state is ⟨N̂⟩ =
|α|2 = Ncoh. This means that the coherent state can also parametrized with
α =

√
Ncoheiϕ, for a phase ϕ ∈ [0, 2π), as

µ =
√

2
(
Re (α)
Im (α)

)
, (2.23)

Σ = 1
2

(
1 0
0 1

)
. (2.24)

In some sense, the coherent state behaves as a classical state, describing the state
produced by a monochromatic laser. For this reason it often serves as the classical
benchmark to beat in a quantum enhanced protocol.

Thermal state

The thermal state is a zero-mean state with covariance matrix

Σ =
(

Nth + 1
2 0

0 Nth + 1
2

)
. (2.25)

This state is understood as the thermal equilibrium state at temperature T , where
the number of photons Nth is given by the Bose-Einstein distribution at zero
chemical potential, or Nth =

(
ehf/kBT − 1

)−1
, where f is the frequency, h is the

Planck constant and kB the Boltzmann constant. As an example, for a system op-
erating with microwave frequencies at room temperature the thermal background
is strong, with Nth ≃ 1000, while for visible light Nth ≃ 0, explaining why our
eyes are not blinded by the environment. To have negligible thermal background
at microwave frequencies, the ambient temperature has to be reduced to a few
milliKelvin, and this can be achieved with dilution refrigerators.

Single-mode squeezed vacuum

As we have noted, even the semi-classical coherent state exhibits the quantum
feature of a finite variance. For the coherent state and the vacuum state, this
variance is symmetrically shared between the two quadratures. However, states
can be prepared where this uncertainty is asymmetrically distributed. This is most
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easily understood as a transformation of the vacuum state, where the variance in
one quadrature is reduced, while the orthogonal quadrature sees an increase in
variance. In the covariance matrix, this can be parametrised as

Σ = 1
2

(
s 0
0 s−1

)
, (2.26)

with the squeezing parameter s ∈ (0, ∞). Squeezing is an active process, adding
Nsq = 1

4
(
s + s−1)− 1

2 average photons to the vacuum.

Displaced squeezed thermal state

Finally, the generic single-mode Gaussian state consists of first squeezing a thermal
state, and then displacing the mean. Applying squeezing to a state with non-zero
displacement results in a non-Gaussian state, which we do not consider here. That
is, we can characterize the canonical Gaussian state with mean and covariance
matrix as

µ =
(

q̄
p̄

)
, (2.27)

Σ =

(Nth + 1
2

)
s 0

0
(
Nth + 1

2

)
s−1

 , (2.28)

where Nth ≥ 0 is the number of thermal photons, s ∈ (0, ∞) is again the squeezing
and q̄, p̄ ∈ R are the displacements. The total number of photons in this generic
state is N = Ncoh +Nsq.th +Nth (2Nsq.th + 1). As can be seen, increasing the mean
adds ’coherent’ photons linearly, while the squeezing or changing the temperature
of the thermal state adds photons non-linearly, with Nsq.th = 2Nth+1

4
(
s + s−1)− 1

2 .

2.3.2 Two-mode states
By introducing a second mode to the Gaussian states, the mean vector is now of
size 4×1 and the covariance matrix is of size 4×4. This means that a generic two-
mode Gaussian system has 14 free parameters. The appended Paper III considers
various symmetries and constraints to reduce the number of free parameters for
a certain type of problem. Here, we neglect to state explicitly the fully generic
two-mode state, and describe instead two special two-mode states in some detail.

Two-mode squeezed vacuum

An important non-classical feature that is introduced with two-mode states is that
we can have entanglement between the modes. A state that exhibits entanglement
is the two-mode squeezed vacuum state (TMSV). Actually, it is the maximally
entangled two-mode state on a per-photon basis [49].

14
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The TMSV state can be generated with parametric amplification of the vacuum,
generating pairs of photons in two entangled modes denoted as signal and idler,
respectively. If the two modes are separated, and the signal is used as probe
in a metrological protocol, one can achieve entanglement-enhanced performance,
which may surpass that of a purely classical probe on a per-photon basis. Because
of the generation process of the TMSV state, the average number of photons in
the signal and idler are equal, denoted NS . Further, we can easily parametrise the
TMSV state with zero mean and a covariance matrix

ΣTMSV =


NS + 1/2 0

√
NS(NS + 1) 0

0 NS + 1/2 0 −
√

NS(NS + 1)√
NS(NS + 1) 0 NS + 1/2 0

0 −
√

NS(NS + 1) 0 NS + 1/2

 . (2.29)

The statistics of each mode individually is indistinguishable from thermal noise,
but the inter-mode covariance

√
NS(NS + 1) – being larger than the classical

limit of NS – reveals that the state exhibits non-classical correlations. These non-
classical correlations are apparent in the regime with few photons per mode, NS ≪
1, where

√
NS(NS + 1) ≫ NS , while, in the strong signal regime, with NS ≫ 1,

we have
√

NS(NS + 1) ≃ NS .

Correlated thermal noise

As a classical counterpart to the TMSV state, we can study the two-mode state
consisting of correlated thermal modes, that we denote as classically correlated
noise (CCN). This state has not been widely studied in literature, so we spend
some time describing it. The CCN state is generated by mixing the noise from
two independent thermal sources at temperatures TH and TC , described by the
operators âH and âC . Here, the subscripts H and C refer to ‘hot’ and ‘cold’,
respectively, indicating that we take TH ≥ TC . Each thermal source is in a state
of single-mode thermal noise, with average number of thermal photons denoted
by NH and NC , respectively.

The procedure of preparing the CCN state is illustrated in Fig. 2.1, where the two
thermal sources are allowed to interact over a beamsplitter labelled by the variable
reflection coefficient β ∈ [0, 1]. The output modes, also designated as signal and
idler, are

âCCN
S =

√
βâH +

√
1 − βâC , (2.30)

âCCN
I = −

√
1 − βâH +

√
βâC . (2.31)

Being a Gaussian state, the CCN state is characterized by having a zero first order
moment and the covariance matrix

ΣCCN =

NS + 1/2 0 γSI 0
0 NS + 1/2 0 γSI

γSI 0 NI + 1/2 0
0 γSI 0 NI + 1/2

 , (2.32)
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TC

TH

β

âH

âC

âCCN
S

âCCN
I

Figure 2.1: Overview of how two correlated thermal modes can be generated by
mixing two independent thermal modes on a β-parametric beamsplitter. If the
two thermal sources have different average number of photons NH ̸= NC , the
output modes will be correlated. [Reproduced from Fig. 1 of Paper I.]

where NS = βNC+(1−β)NH , NI = (1−β)NC+βNH , and γSI =
√

β(1 − β)(NH−
NC). As long as the input modes have different number of photons on average,
corresponding to different temperature, the output modes âCCN

S and âCCN
I are

correlated.

2.4 Interacting with a noisy environment
Central to this thesis is the use of Gaussian states as signals to probe dynamical
systems and learn something about their parameters. We restrict the dynamics to
Gaussian-preserving interactions, where Gaussian states are mapped to Gaussian
states.

2.4.1 Attenuation
While the discussion is quite general, we are particularly interested in radar-like
scenarios, where the signal is transmitted into a noisy environment with NB num-
ber of photons per mode, and there may be a small part of the signal coming back
to the receiver.

For Gaussian states, these dynamics can be cast as a beamsplitter mixing the
signal mode âS with an environmental thermal noise mode âB. Then, the return
mode that arrives at the receiver is given by

âR = ηâS +
√

1 − η2 âB (2.33)

for a transmission coefficient given by η ∈ (0, 1), while the complementary mode
is lost to the environment. A derivation of how this model represents the transmit-
to-receive dynamics is given in Ref. [52]. The introduction of a thermal mode âB

is unavoidable for any η < 1 since the transformation needs to be unitary. The
central problem in all of the appended papers is that the attenuation is unknown
and the signal mode is used to measure it. To specify the problem of interest, we

16



2.4. INTERACTING WITH A NOISY ENVIRONMENT

take the unknown transmission coefficient η to be identical over many repeated
copies of probe state.

For a two-mode state, partitioned into signal and idler, this channel can be cast
as a map of the mean and covariance matrix as

q̄S

p̄S

q̄I

p̄I

 →


ηq̄S

ηp̄S

q̄I

p̄I

 , (2.34)

(
ΣS ΣSI

Σ†
SI ΣI

)
→
(

η2ΣS +
(
1 − η2) (NB + 1

2

)
I ηΣSI

ηΣ†
SI ΣI

)
. (2.35)

It is common to introduce a normalisation of the background noise, as NB →
NB/(1−η2). The normalisation removes the effect where measuring a background
gives information of η, regardless of the signal mode, referred to as the ‘shadow
effect’ [53]. This is done ad hoc to eliminate any metrological power of the back-
ground and isolate the effect of the signal. Intuitively, the normalised channel
models a scenario where the target, if present, emits an average number of ther-
mal photons that equals that of the background environment were the target
absent.

2.4.2 Amplification
As an alternative to attenuation, one can study amplification of a mode. In the
simplest possible model [54], a phase-insensitive amplifier transformation of the
signal âS can be written

â′ =
√

GâS +
√

G − 1â†
B, (2.36)

where the amplifier power gain is G ≥ 1. Just as for the attenuator channel, there
is always a thermal mode âB involved, to ensure that the transformation is unitary.
Note that amplification, being an active process introduces a conjugation of the
thermal noise mode, as compared to the passive attenuator channel above.
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3
Metrology and Inference

About binomial theorem
I’m teeming with a lot o’ news;
With many cheerful facts
about the square of the hypotenuse;

Major-General Stanley in the opera
The Pirates of Penzance

by W.S. Gilbert and A. Sullivan

3.1 Detection theory
As a subset of metrology, hypothesis testing forms the basis for most of quan-
titative science by systematically deciding which of a prescribed set of descrip-
tions best fit observed data. Quantum mechanics sets the fundamental limits on
how well any such method can be implemented for physical systems. While many
quantitative fields can perform these inferences perfectly well without an in-depth
understanding of quantum mechanics, there are fields where quantum features be-
come relevant, see, e.g., the relatively recent reviews of Refs. [7, 55] on quantum
metrology.

3.1.1 Binary hypothesis testing
Assume that a measurement is made to register the signal level x, e.g., a voltage.
The question is whether x originates from ambient noise, or from a known signal
plus the ambient noise. That is, we can state the problem as a binary decision
where the two hypotheses are

H0 : x = noise,

H1 : x = η · signal + noise.

Here, η takes the role of a transmission coefficient, and η = 0 implies the null
hypothesis H0. A detector can be defined as an abstract function that takes as
input a set of observations and outputs a declaration as to which hypothesis best
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corresponds to the observed data. In the binary case, this can be understood as a
threshold, where weak observations are declared for the null hypothesis and strong
signals are declared for the alternate hypothesis. Regardless of what the thresh-
old is tuned to, the detector will unavoidably be subject to statistical error. For
any given problem, the detector can be characterized in terms of the conditional
probabilities that it declares the correct (or false) result. In the context of radar,
it is conventional to use the events of True Positive and False Positive outcomes,
quantified as the probability of detection PD and false alarm PFA, respectively.
Here, both detection and false alarm refers to the event of the detector declaring
in favour of target presence, conditioned on whether the target is actually present
or not. Equivalently, one can also study the complementary quantities of False
negative and True negative. In the terminology of decision making, the false alarm
is a Type-I error and the false negative is a Type-II error. A quantity familiar to
any radar engineer is the relation between probability of detection and probabil-
ity of false alarm, given a certain signal-to-noise ratio. This relation is known as
a Receiver Operating Characteristic and captures how enforcing a low probabil-
ity of false alarms by raising the threshold necessarily lowers the probability of
detection.

As an alternative to studying the trade-off between the Type-I and Type-II errors,
one can can minimise the related quantity of the total error probability, defined
as

PE = π0PFA + π1 (1 − PD) , (3.1)

where π0 and π1 are the a priori probabilities of the events associated with H0
and H1, respectively. The total error is commonly used in the communication
scenario, where the priors are known and usually symmetric (π0 = 1

2 = π1). In
radar, on the other hand, the prior probabilities are unknown and the total error
probability is undefined.

3.1.2 Likelihood ratio test

One common and useful way to define a binary detector function when the priors
are unknown is as a likelihood ratio test [56] (LRT). The LRT takes as input a
set of observations X = {x1, x2, . . . , xM } and computes the test statistic LG as
the likelihood ratio and compares its value to a threshold. As a relation, this can
be understood as

LG = p1(X | H1)
p0(X | H0)

> τ, (3.2)

where τ is the threshold. Here, pi denotes the probability density function of X
under hypothesis Hi. For practical purposes, the log-likelihood test statistic, ΛG =
2 log LG, is often more useful than the direct ratio. For example, it is known that,
for many repeated independent and identically distributed measurements, such
that the central limit theorem applies, any log-likelihood test is asymptotically
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Preparation DetectionâI

âS âR

âB

Eη

Figure 3.1: Schematic overview of the QI protocol. An entangled signal-idler
pair is prepared. The signal mode âS is sent to interact with an unknown channel
Eη, modelled as a lossy Bosonic channel. From the channel the return mode âR

is jointly measured with the retained idler âI , and a detection is declared if the
detector finds sufficient statistical evidence that η > 0. Otherwise the detector
stays silent. [Reproduced from Fig. 2 of Paper I.]

distributed as a chi-squared random variable. This result is known as Wilks’s
theorem [57].

For a simple binary hypothesis test, for example η = η0 vs η = η1, the likelihood
ratio test is optimal by the Neyman-Pearson Lemma [56]. In a radar scenario,
the simple hypothesis is usually not encountered, because the value of η is not
known, and the discrimination is between hypotheses η = 0 and η > 0. In this
case optimality of the likelihood ratio test is not guaranteed since η > 0 is not a
simple hypothesis, but a composite hypothesis consisting in a continuous family of
hypotheses. In the general case, is it impossible to find a globally optimal detector
function for these problems, and one might have to resort to a locally optimised
test.

3.1.3 Quantum Illumination

We now move on to the world of quantum detection theory, with a focus on the QI
protocol, since it serves as the recurring foundation of quantum radar. As outlined
here and in the Introduction, quantum illumination fundamentally fails to perform
some of the tasks of a conventional radar protocol. It can be argued that QI is at
best radar-like. As a protocol, QI performs the task of discriminating between two
possible states in the following way: A probe ρPr consisting of an entangled signal-
idler pair in a TMSV state is generated. The signal, consisting of NS number of
photons on average, is passed through one of two possible channels. The channels
are Bosonic lossy thermal noise channels injecting NB noise photons on average,
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Figure 3.2: Illustration of M probes with respective entangled ancilla idlers are
passed through the channel Eη and then measured separately. The most general
protocol would jointly measure all 2M modes. [Reproduced from Fig. 1 of Pa-
per III.]

see Section 2.4, with either no transmission η = 0 (the Null hypothesis, H0) or
small, finite transmission η = η1 with 0 < η1 ≪ 1 (the Alternative Hypothesis,
H1). Thus, both H0 and H1 are simple hypotheses. Back at the receiver we get
either the state ρ0 or the state ρ1, corresponding to the respective hypotheses, see
Figure 3.1. This test can be repeated independently for M modes, for example
by frequency multiplexing, or by repetition over time. The final task is thus to
discriminate between ρ⊗M

0 and ρ⊗M
1 , and decide which channel was in effect during

the measurement. This task is illustrated in Figure 3.2, for a receiver setup where
each signal-idler pair is measured jointly, but the different pairs are measured
separately. Since a sufficiently strong signal will outperform any weaker signal, a
constraint imposed on the problem is that the average number of photons in the
signal mode NS is fixed.

As QI was developed for a symmetric binary hypothesis test, the priors are as-
sumed equal and the protocol seeks to minimise the total error probability. The
quantum Chernoff bound [58, 59] is the central result that enables this analysis.
It says, informally, that, as the number of repeated trials M grows, the total error
probability will asymptotically enter a regime where it is bounded from above by
an exponentially decaying function, as PE ≤ 1

2e−MξC , where

ξC = − log
(

min
0≤s≤1

tr
[
ρs

0ρ1−s
1

])
(3.3)

is the quantum Chernoff coefficient that determines the decay rate. It is in this
situation that we can identify the Chernoff coefficient as the error exponent. Com-
putation of ξC can be difficult and a more simpler approach is found by relaxing
the inequality and computing instead the less tight Bhattacharrya bound with
coefficient ξB ≤ ξC. The Bhattacharrya coefficient1 ξB is found from Eq. (3.3) by

1In the literature, one encounters the term of Bhattacharrya distance [60], favouring a geo-
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neglecting the minimisation procedure and requiring instead s = 1
2 . It is in this

context that Tan et al. [18] established that the Chernoff coefficient for a coher-
ent state probe is ξcoh.

C = η1NS
4NB

and the Bhattacharrya coefficient for a TMSV
probe with an entangled idler is ξTMSV

B = η1NS
NB

, i.e., a factor of four advantage,
or approximately 6 dB, in the regime where NS ≪ 1, NB ≫ 1 and η1 ≪ 1.

One might ask as to what extent the coherent state serves as a relevant classical
benchmark. Maybe there are other classical states that perform better? The an-
swer can be understood quite simply. Fundamentally, there are limits to how well
the discrimination task can be performed for any probe state, see Ref. [61] which
states that, for the noise-free regime, NB ≃ 0, the coherent state saturates the
fundamental limit. Conversely, for the noisy regime NB ≫ 1 the TMSV saturates
the limit. This can further be understood as a no-go for any quantum advantage
in the low-noise regime because no probe can do better than to match the coherent
state performance.

The final aspect of any discrimination protocol is the description of a receiver
structure that, ideally, realises the theoretical performance. That is, the measure-
ment operator should be constructed. For example, the optimal strategy is not
possible with local measurements [62] and a joint measurement strategy between
the return mode and the idler is required. The OPA receiver with photon-counting
and the PC receiver with balanced detection, both described in Ref. [20], realise
only a sub-optimal factor of two in the error exponent. A receiver structure that
does achieves the full factor of four advantage was described in Ref. [21], although
building a device according to this scheme is technologically unfeasible. However,
the existence of an optimal scheme, albeit as a theoretical concept, is still impor-
tant for the understanding of the QI protocol. As a complement to working with
asymptotic results and somewhat abstract tools, important work has also been
done with the task of practical implementations and comparison with classical
protocols, see Ref. [63].

An important feature of quantum illumination is that entangled state protocol
presents a discrimination advantage over a non-entangled state, even though the
entanglement itself does not survive through the channel. That is, the advantage
should not be understood as a residual entanglement, but the interpretation is
rather that the signal-idler correlations of the probe state are stronger than those
of any possible separable state [18]. It has also been suggested that quantum
discord is the relevant quantity underlying any advantage [64].

3.1.4 QI with Asymmetric priors
As noted earlier, in conventional radar it is customary to avoid introducing as-
sumptions about any prior probabilities of the respective hypotheses. While the
original development of the QI protocol was for symmetric priors, it has also been

metrical interpretation. Here, we use instead coefficient to keep the terminology consistent.
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extended to the general case of unknown, possibly asymmetric priors, more in line
with conventional radar operation [65, 66]. In this variation, the task is typically
to maximise the probability of detection, while ensuring that the probability of
false alarm is bounded by some prescribed rate ε, or finding the optimal probe
state ρ∗ such that

ρ∗ = argmax
ρ

PFA≤ε

PD(ρ). (3.4)

In this situation we can not rely on the Chernoff bound, but instead turn to the
similar asymptotic result of Stein’s Lemma [67, 68], which states that, for any ε,
the probability of a missed detection is bounded as the number of repeated trials
tends to infinity. Informally, we understand this mathematically as

1 − PD ≤ e−MD(ρ1||ρ0), (3.5)

where D(ρ1||ρ0) = tr ρ1 (ln ρ1 − ln ρ0) is the quantum relative entropy between
the two possible output states. It has been shown that also in this scenario, the
TMSV state is optimal [69], but the nature of the advantage is slightly more
complicated than a single number, as it depends non-trivially on the scenario. In
fact, as NS → 0, the advantage of a TMSV state probe over a coherent state grows
without bound. While this would appear incredibly useful at first glance, due to
the fact that the absolute discrimination strength goes to zero in the same limit,
it is simply a result of the relative entropy tending to zero faster for the coherent
state than for the TMSV state.

As Stein’s Lemma is asymptotic, it does not depend on the choice of ε. Higher order
asymptotic terms for the quantum Stein’s Lemma have been developed by Li [70]
and used to analyse the transition to asymptotic behaviour of QI in Ref. [65]. If
we stick with the informal mathematical description, the semi-asymptotic Stein’s
Lemma takes the form

1 − PD ≤ e−MD(ρ1||ρ0)−
√

MV (ρ1||ρ0)Φ−1(ε), (3.6)

where V (ρ1||ρ0) = tr ρ1 [ln ρ1 − ln ρ0 − D(ρ1||ρ0)]2 is the relative entropy variance,
and where Φ−1 is the inverse standard normal distribution. Note that Φ−1(ε) < 0
for ε < 1

2 , which means a smaller relative entropy variance is beneficial to the
discrimination strength.

3.2 Estimation theory
As an alternative to the discrete decision problem, one can study the problem of
estimation. Consider again the previous example of a voltage, where the task is
now to estimate an unknown DC level subject to fluctuations from thermal noise.
If the DC level is small with respect to the noise fluctuations, it is more difficult
to determine its value with certainty.
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For the case we have studied so far – a lossy Bosonic channel with an unknown
transmission coefficient – this would correspond to the question “What is the value
of the unknown parameter η?”. Explicitly, we want to construct an estimator, i.e.,
a function2 η̃ that takes as input observations and outputs a numerical value that
is the best guess of the true value of η. Since the estimator is a function of random
data, it is itself a random variable. Therefore, it is important to characterize the
statistics of the estimator in order to quantify its performance. A full character-
ization can be understood as all the statistical moments being known. However,
for practical reasons it is often sufficient to determine only the first two moments,
or, equivalently the average and variance. A particularly important example is
when the estimation is done with a Gaussian noise background, where the first
and second moments are sufficient to determine all the higher order moments.
In our case of the thermal lossy Bosonic channel, the estimation is indeed done
against Gaussian noise generated by a thermal state. We again imagine that the
measurement of η can be performed for M independent trials, as indicated in
Figure 3.2.

Central to the performance of any estimator is thus its variance, which should
be minimal. However, one may inquire how small the variance could be for any
estimator and define an a criterion of optimality if this minimum is saturated. The
tool of this analysis is the Cramér-Rao lower bound (CRLB) [71] . For a classical
estimation problem, CRLB is a result given in terms of a random variable X that
is distributed according to the parametric probability density function pX(x; η).
If we wish to estimate the value of η based on observations of X, the CRLB tells
us that the minimum achievable variance of any (unbiased) estimator of η is given
by

Var η̃ ≥ (MIη)−1 , (3.7)

where
Iη = EX [(∂η log pX(x; η))2] (3.8)

is the Fisher information of η with respect to the random variable X. A large
Fisher information indicates that the unknown parameter can be estimated with
small variance.

3.2.1 Quantum Fisher Information
When moving from classical statistics to quantum mechanics, the task of esti-
mation is further complicated by the introduction of different possible projective
measurements, giving rise to different classical statistics.

The quantum Fisher information (QFI) [4] is defined, given the density operator
ρη labelled by the continuous parameter η to be estimated, as the classical Fisher

2It is traditional notation to use hats (̂·) for estimators, but we refrain from it here to avoid
confusion with quantum mechanical operators.
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Information maximised over all possible measurements Π̂µ, or

J(ρη) = maxΠ̂µ
Iη. (3.9)

Thus, the QFI is manifestly the maximally achievable classical Fisher information,
when the optimal measurement is implemented. Mathematically, the QFI can be
computed as J(ρη) = tr

[
ρηL̂2

η

]
, where L̂η is the symmetric logarithmic derivative

(SLD), implicitly defined by the condition 2∂ηρη = {L̂η, ρη}. An implementation
of calculating the SLD of Gaussian states, suitable for use with computer algebra
systems, is presented in Appendix A.

Given this definition of the QFI, the CRLB generalises to the quantum case in
the obvious manner. Stated together with the classical version, it says that

Var η̃ ≥ (MIη)−1 ≥ (MJ(ρη))−1 , (3.10)

or, that the variance of any unbiased estimator is lower bounded by the reciprocal
QFI. Thus, the quantum CRLB presents the ultimate limit of the precision of any
estimation task. Importantly, the quantum Cramér-Rao lower bound is achiev-
able, but the optimal measurement may, of course, be difficult to implement for
technical reasons.
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4
Publications

I’m very good at integral
and differential calculus;
I know the scientific names
of beings animalculous;

Major-General Stanley in the opera
The Pirates of Penzance

by W.S. Gilbert and A. Sullivan

All of the appended papers study the use of Gaussian probe states that are allowed
to interact with a noisy attenuator channel, where the transmission is unknown.
The questions that motivated this research are related to the question of how
much of an advantage can be gained in probing the transmission coefficient when
using a quantum state over a semi-classical coherent state. In all three papers, the
TMSV state is used to prepare an entangled signal-idler pair, where the signal is
allowed to interact with the lossy channel while the entangled idler is ideally stored.
The returns from the lossy channel are then measured together with the retained
idler, with the purpose of learning something from the interactions. The material
presented in this chapter is somewhat simplified and non-comprehensive, skipping
the mathematical details while the full results can be found in the appended
papers.

4.1 Paper I
The material in this paper was developed primarily to discuss quantum radar
in regard to two experiments that had recently been put forward at the time of
publication, see Refs. [31, 32] and [33]1, claiming to realise a quantum advantage in
microwaves with QI-like protocols. There were some differences in the experiments
with respect to the QI protocol of Tan et al. [18]. First, the experiments used
separate heterodyne measurements of the signal and idler pairs. Secondly, the

1In the initial pre-print version of this paper, it was claimed that an advantage was observed.
However, the published version clarifies that the advantage is simulated from experimental data
based on the assumption of ideal photon detection.
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experiments used two-mode correlated thermal noise as a classical benchmark,
rather than a coherent state, something that was criticised for being non-optimal
as a classical probe in Ref. [27].

The principal goal of this paper is to further the understanding of Classically
Correlated Noise (CCN) as probe state, see Section 2.3.2, and its metrological
properties as a radar protocol. The discussion is approached with several different
tools in this paper. First, we roughly follow the analysis of Ref. [32] and compute
the Pearson’s correlation coefficient between the idler and return mode, based on
the cross-mode terms of the covariance matrix before measurement. The Pearson’s
correlation coefficient is the normalised covariance between the modes. Thus, a
larger amount of correlation implies that it is easier to determine whether the
return mode contains a part of the transmitted signal or not. We further quantify
this benefit by producing the Receiver Operating Characteristics (ROC) under
the assumption that the receiver structure performs ideal heterodyne detection
of both the return- and idler quadratures. As our main method for this analysis,
we compute the likelihood ratio test and apply the result of Wilks’s theorem to
compute the asymptotic detector performance of this test. The square correlation
coefficient appears as the non-centrality parameter of the chi-squared distribution,
illustrating the importance of return-idler correlations in discrimination strength.

As an example of the ROC, we compute it with parameter values that could
possibly be realised with microwave technology in a laboratory environment, see
Fig. 4.1. For this setup, we compare the TMSV state with two versions of the CCN
state, one prepared with equal number of photons in the signal and idler modes
and another with many more photons in the idler. The ratio of signal photons NS

to signal and idler photons NS + NI is parametrised by the balance parameter
β, with β = 0.5 and β = 0.001 studied, respectively. As can be seen in Fig. 4.1,
the TMSV state probe and the asymmetric CCN state probe with a strong idler
perform equivalently given heterodyne detection of the return and idler modes.
More recently [37], it was shown that it is indeed possible to retain a quantum
advantage with heterodyne detection of the return mode, if the idler is measured
homodynely, conditioned on the outcome of the heterodyne measurement.

We also give an intuition to how heterodyne detection is non-ideal, because the
correlation strength before measurement is a factor of

√
2 stronger with a TMSV

state probe over the best CCN state probe. This is because heterodyne detection,
even ideally, imposes an increase in variance of the outcome. This extra variance is
sufficient to suppress any advantage due to stronger correlations. The discrimina-
tion strength before detection is further analysed with the semi-asymptotic result
of the Quantum Stein’s Lemma, see Eq. (3.6), using the formulas for Gaussian
states from Ref. [65]. The results show that the TMSV state has an unbounded
advantage ∼ ln(1 + N−1

S ) over the asymmetric CCN state in terms of error ex-
ponent in the limit of vanishing probe strength, NS → 0, and infinite number
of trials, M → ∞. While an unbounded advantage may seem enticing, it must
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Figure 4.1: Receiver Operating Characteristic for the TMSV state probe and
CCN state probe given ideal heterodyne detection of the return- and idler mode.
Here, ξ refers to the balance parameter β in the text. [Reproduced from Fig. 4 of
Paper I.]

be observed that the relative entropy tends to zero in the same limit, meaning
that for NS = 0 it is impossible to discriminate between the two hypotheses. The
convergence to asymptotic behaviour of the error exponent is plotted in Fig. 4.2,
for a finite probe strength of NS = 0.5, where the TMSV state probe shows an
advantage over the asymmetric CCN state probe.

Indirectly, these results also show that the asymmetric CCN state can match the
performance of a coherent state probe, in the limit of a strong idler strength.
That is, the classical optimality of the coherent state probe is not unique, which
is interesting because the CCN state is a mixed state probe, while the TMSV and
coherent state probes are pure.

Finally, since the experiments that inspired this paper used amplifiers in their
setup, we analyse the impact of ideal phase-invariant amplification at various
points of the protocol. While amplifying either the signal mode before transmission
or the return mode at reception can be understood to impact both the TMSV and
CCN probe equivalently, amplification of the idler is actually detrimental to the
quantum advantage. In terms of correlations, we compute a simple criterion for
when amplification of the idler suppresses any chance of a quantum advantage.
For the case of minimal-noise strong idler amplification, a no-go for quantum
advantage is β(1 − β)−1 ≪ NS , where β is the CCN asymmetry parameter.
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Figure 4.2: Semi-asymptotic behaviour of the error exponent with increasing
number of repeated trials. The TMSV state probe outperforms the optimized CCN
probe, illustrating together with Fig. 4.1 how double heterodyne measurement is
non-ideal. Here, ξ refers to the balance parameter β in the text. [Reproduced from
Fig. 5 of Paper I.]
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Since the publication of Paper I, there has been some further study of how phase-
sensitive amplification may still be applied in the QI protocol, see Ref. [72] but
the results are, again, not in favour of any amplification. It would seem that the
benefits of quantum enhanced signals like to stay in the regime where quantum
effects are relevant.

4.2 Paper II
This paper was prepared for the specific purpose of bridging a perceived gap
in terminology and assumptions between radar engineers and quantum optics
researchers with respect to quantum radar, targeting the former as audience. For
this reason, the paper is organized as two relatively separate parts, addressing in
order the questions “Without worrying about technological challenges, what is the
advantage of using the quantum illumination protocol for radar?”, and “Without
worrying about the applications, what technologies are available to implement a
full quantum illumination experiment?”. In some sense, this work complements
that of Daum [73] where an estimate as to the cost of a working quantum radar
was analysed and the main observation was that it would be considerably more
expensive than conventional radar. A high cost, however, could be acceptable if
sufficient benefit was offered. Our analysis in this paper actually indicates the
opposite: the advantage is so situational and technically complicated that it is
difficult to even imagine an operational scenario where its implementation would
provide a crucial benefit.

The first of our questions is approached in a relatively straightforward manner,
where the ‘radar equation’ is used to quantify performance. The radar equation,
while it has many forms, is a tool used by radar engineers to determine, given
system parameters, at what distance the radar can detect targets of a particular
size. Central to the analysis is the restrictions imposed by the regime in which QI
exhibits its advantage, i.e., where the signal photons are few (NS ≪ 1) and the
background is bright (NB ≫ 1). Inherently, this is a setting where discrimination
is difficult for any device, because the receiver has to find a signal of size ∼
ηNS against noise of size NB. That is, the SNR per mode is proportional to
ηNS
NB

≪ 1. To compensate for this low SNR and achieve an acceptable performance
of discrimination, a large number of independent trials M must be performed,
and this number scales directly with the time-bandwidth product of coherent
integration. In other words, a wide-band signal must be integrated for a long time
for the inherently low SNR per mode to be useful. In this paper we assume, quite
generously, that M = 109 may be achievable with a microwave system, given a
bandwidth of 1 GHz and integration time of 1 s. Even larger time-bandwidth
products would start to approach unfeasibility for moving targets. With a strong
background of NB = 1000, which approximately holds true for room-temperature
thermal radiation in the microwave regime, this time-bandwidth product would
allow for ηNS ∼ 10−5 if the integrated SNR is required to exceed a threshold of

31



CHAPTER 4. PUBLICATIONS

100 101 102 103
100

101

102

Figure 4.3: Example of maximum operating range of a quantum enhanced radar
system with a fixed antenna size footprint of A = 0.7 m2, a detection threshold
of τ = 10 and a target RCS of σ = 1 m2. The benefit of operating at higher
frequencies is explained by larger antenna directivity. The losses at frequencies
larger than 300 GHz are due to significant atmospheric attenuation. [Reproduced
from Fig. 1 of Paper II]

τ = 10 before a detection is declared. For a typical radar scenario, operating at
tens of kilometres, the transmit-to-receive ratio of power easily falls in the range
of 10−15, and may even be smaller than that. Thus, by restricting the system
to operate in the regime with a quantum advantage, with NS < 1, there is a
discrepancy of at least ten orders of magnitude in η between what is technically
realistic and what is required to approach the performance of conventional radar.
We illustrated this simple calculation with the metric of maximum operating range,
see Fig. 4.3, showing that, if a quantum radar is built to operate in a regime where
it shows any advantage over a coherent state, it is limited to tens of metres even
if all technological challenges are disregarded.

To answer the second question of technical realisability of a microwave quantum
radar experiment, we look at the state-of-the-art research in the fields of entan-
glement sources and photon-resolving detectors at different frequency bands. We
purposefully do not include infrared and visible light technologies in this study,
because the ambient background is non-bright and quantum advantage scenario
would be hinging on the existence of jamming. While there are promising tech-
nological candidates in the frequency ranges of tens to hundreds of gigahertz, we
rule them out in favour of the more well developed microwave regime – with su-
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perconductive elements based on Josephson junction technology – for quantum
illumination-like experiments.

4.3 Paper III
In this paper, we move from the quantum illumination task of channel discrimi-
nation to the task of quantum estimation. That is, instead of trying to determine
if the transmission is zero or finite, the task is to estimate the value of the trans-
mission coefficient. We restrict the space of probe states to the Gaussian states,
expanding on previous work on the topic [74–76]. The thermal lossy Bosonic chan-
nel has the property that, for these input states, the output will also be Gaussian.
Computing QFI for generic states can be complicated, and one may be have to
resort to numerics. Luckily, computing the QFI is relatively accessible analytically
for Gaussian states. Our tool of this study is the QFI and the quantum CLRB,
in the sense that we investigate which input state, restricted to a certain power,
maximises the QFI of the channel transmission. A maximum QFI implies that the
estimator variance can be minimised.

Our work in this paper consists of a full characterisation of the optimal Gaussian
probe state per mode, when the probes are single-mode or two-mode, with a signal
and signal-idler pair, respectively. We consider also the case when these probes are
repeatedly used for M independent measurements, as illustrated in Fig. 3.2, and
study the total energy-constrained QFI. Even though this is a single-parameter
estimation problem, there are several degrees of freedom in the generic Gaussian
state, and the optimal state depends on the value of the three scenario parameters,
meaning the average number of signal photons NS , the average number of thermal
background photons NB and the true value of the transmission η. It may seem
counter-intuitive to establish an optimal probe state for measuring an unknown
η if that state depends explicitly on the value of η. One may resolve this by
considering adaptive strategies, where the estimate and probe state are refined
with repeated measurements, in an iterative procedure.

Crucial for this analysis to be approachable and to establish analytical results
was to find canonical forms of the probe states with few degrees of freedom. The
most significant simplification is simply the observation that the optimal probe
state can be taken as a pure state, reducing the number of free parameters. Further
reductions to the parameter space is achieved by finding symmetries in the Bosonic
channel, and in simplifications of the resulting QFI, done with computer algebra
software.

First, when the analysis is restricted to single-mode states with no ancillary idler
mode, we show that the canonical form of the probe state has only one free
parameter that describes the trade-off between local squeezing and displacement,
if the total number of photons is kept fixed. The final scalar optimisation was
done with exhaustive search. See Fig. 4.4 for the optimal amount of squeezing
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Figure 4.4: Optimal trade-off of between squeezing (ξ = 1) and displacement
(ξ = 0) for the single-mode QFI for three different average numbers of background
photons. For finite background (NB > 0) and few probe photons (NS ≲ 1), a sharp
transition between coherent state and squeezed vacuum being the optimal state
is observed at low signal brightness. [Reproduced from Fig. 2 of Paper III.]

with vacuum (NB = 0), moderate (NB = 1) and strong (NB = 10) background.

Interestingly, in the vacuum background where NB = 0, we have that, for any
finite η, the optimal state is a displaced squeezed state, indicating that squeezing
is always resourceful. In fact, the optimised single-mode QFI grows without bound
in the limit of η → 1, showing a (1 − η2)−1-divergent advantage over the classical
coherent state probe, which has a QFI of 4NS . Away from this limit the optimal
state is generally a non-trivial trade-off between squeezing and displacement, with
finite squeezing for all η > 0.

When the analysis is extended to optimising the total energy-constrained QFI
Jη = MJ(ρη), we study the case where we fix the total number of photons NS =
MNS and optimise the probe state also over the number of modes. We establish
that, in the vacuum case, the optimal allocation is either to use one single mode
with all energy M = 1, or to use as many modes as possible, equally distributing
the available energy over all modes, depending on the scenario. The boundary
between these extremes has the overall structure that is similar to Fig. 4.4, see
Fig. 6 in Paper III.

Outside of the vacuum case, we find that the probe that maximises the total
QFI always uses the maximum number of available modes. This is because of
the ‘shadow effect’ that gives the receiver information about η based on the back-
ground photons alone, independently of the probe.

We do also briefly study the variant of the channel where the number of back-
ground photons is normalised to be independent of the transmission coefficient,
known as the “no passive signature assumption” [7]. We show that, in this setting,
the optimal state is the infinite number of trials (M → ∞) TMSV probe state
with vanishing photons per mode. We prove this result by computing the QFI for
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this state and showing that it actually saturates the fundamental upper bound
proved in Ref. [61]. The result that TMSV is universally optimal when the shadow
effect is removed was first reported without proof at the 2021 International Sym-
posium on Information Theory [77]. After our publication of Paper III, a longer
version of Ref. [77] was published as Ref. [78].
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Conclusion and Outlook

In short, in matters vegetable,
animal, and mineral;
I am the very model
of a modern Major-Gineral;

Major-General Stanley in the opera
The Pirates of Penzance

by W.S. Gilbert and A. Sullivan

The material covered in this thesis is based on a project that has been mainly
concerned with the metrological power of quantum Gaussian states with focus
on quantum radar. We have studied both the setting of symmetric and asym-
metric binary discrimination, mimicking the scenario of radar-like operation. To
complement this, we have also comprehensively studied the task of estimating the
loss parameter with generic Gaussian states and established results of optimality.
These types of problems illustrate some fascinating features of nature at the quan-
tum scale, and it is no surprise that there is that hope significant technological
benefits are possible by the exploitation of these features. Nevertheless, we have
found that metrological quantum advantages can be elusive when one tries to
apply them to practical tasks.

In our work with the appended publications, we strived to maintain a high level of
mathematical rigour and correctness in the material with regard to the quantum
description, while still making the material available to readers with different
theoretical backgrounds. Importantly, our two conference papers target primarily
an audience more familiar with radar technology and signal processing, rather
than the experts on quantum metrology.

For the particular case of quantum radar in terms of the quantum illumination
protocol, we claim that it fails to be useful for conventional radar operation. There
are several fundamental reasons for this conclusion even when the technological
challenge itself is disregarded. We need to discuss these reasons in some detail
to understand why we would discard the quantum radar concept. For one, if
the quantum illumination advantage is to be realised, the quantum enhanced
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setup has to be compared to a conventional radar operating with a coherent state
with few average photons – essentially only slightly different from the vacuum
state. Comparing this type of setup with one of a conventional radar operating
with signals in power range of kilowatts can simply not be considered fair, since
using a signal that can be 20 orders of magnitude stronger trivially outperforms
a system using only a few photons. We emphasize that increasing the number of
photons in the quantum enhanced state probe does in no way fail the protocol.
Indeed, as can be understood intuitively, a stronger signal will be able to perform
the discrimination task better. The crux of the matter is that a strong quantum
enhanced signal will be no better than a coherent state probe operating with a
signal consisting of the same number of photons. Thus, without other constraints
there is no reason not to use as strong a coherent state probe as possible, since
it’s preparation is comparatively simple, and the performance is optimal. Next,
there have been proposals to prepare the quantum state with few photons per
mode, and then increase the signal strength to useful levels with amplification.
Our analysis have shown, both with general arguments and analytical results,
that an amplified quantum enhanced signal will, again, not perform any better
than a coherent state operating at that power level.

Does this mean that quantum illumination is not useful? the answer of course
depends on what is required for something to be useful. The scheme itself is highly
relevant as an example in the ongoing work to push the limits of metrology, and it
maintains its peculiar feature that entanglement appears resourceful, even though
the lossy channel breaks entanglement before measurement. Thus, the protocol
itself is highly relevant for this field of physics. Outside of the strictly theoretical
interest of the relation between quantum advantage and entanglement, quantum
illumination and variants of the protocol may still find practical applications to
certain tasks with sensitive samples, where it is beneficial to use as weak a signal as
possible. For example, there may be other binary tests, such as quantum reading
or imaging, that can be enhanced with such a probe. Our shift from discrimination
to quantum estimation in Paper III was made with the purpose of broadening
the scope of the project and increase the knowledge of other aspects of quantum
metrology.

Looking forward, this broader scope can hopefully be maintained. An interest-
ing question is whether there are other quantum enhanced benefits of extending
the analyses of these problems to non-Gaussian probe states. As we have shown,
Gaussian probes can be shown to be ideal for some problems, and in these cases
there is definitely no further advantage to be found with a larger set of possible
states. However, there may be situations where extending the analysis to consider
also classes of non-Gaussian probe states allows for finding further quantum advan-
tages, or advantages in other regimes. An interesting challenge with this extension
would be in the loss of the possibility of analytical calculations, as one often has
to resort to numerical techniques in computing, for example, the quantum Fisher
information for non-Gaussian states. Another topic that has seen research efforts
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lately is the study of simpler receiver structures that allow for the implementa-
tion of quantum enhanced protocols such as quantum illumination and it will be
interesting to follow the experimental development of those technologies.
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A
Appendix

A.1 Computing Gaussian Quantum Fisher Informa-
tion

In this section, we show how the computation of the quantum Fisher information of
an unknown parameter θ can be computed for a Gaussian state with mean vector
d⃗θ and covariance matrix Σθ. Since the density operators of Gaussian states live in
infinite dimensional Hilbert spaces, direct computation is not applicable. Following
the book by Serafini [51], we make an Ansatz that, for the Gaussian states, the
SLD is at most quadratic in the quadrature operators r̂ = (q̂1, p̂1, . . . , q̂n, p̂n)⊤.
That is, we assume the SLD takes the form

L̂ = L0 + L⃗⊤
1 r̂ + r̂⊤L2r̂, (A.1)

where L0 is a scalar, L⃗1 is a vector, and L2 is a quadratic form. By application of
some further relations, the Gaussian quantum Fisher information can be computed
as

J(ρθ) = tr [L2 (∂θΣθ)] + (∂θd⃗θ)⊤Σ−1
θ (∂θd⃗θ), (A.2)

where the quadratic form L2 is determined by the equation

2∂θΣ = 4ΣL2Σ + ΩL2Ω. (A.3)

For the single- and two-mode states studied here, the covariance matrix is at most
of size 4 × 4 such that Eq. (A.3) can be solved by vectorization, where solving the
16 × 16 system of equations(

4Σ⊤ ⊗ Σ + Ω⊤ ⊗ Ω
)

vec (L2) = 2 vec (∂θΣ) , (A.4)

is equivalent [79].

Let M ∈ RM×N be a matrix. Vectorization is the map ‘vec’ transforming the
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M × N matrix to the MN × 1 vector by stacking the matrix columns. That is, for

M =


m1,1 m1,2 . . . m1,N

m2,1 m2,2
. . . ...

... . . . . . . ...
mM,1 . . . . . . mM,N

 (A.5)

the vectorization is

vec (M) =
(
m1,1 m2,1 . . . mM,1 m1,2 . . . mM,N

)⊤
. (A.6)

An important identity, referred to as Roth’s Relationship [80], is vec(ABC) =
(C⊤ ⊗ A) vec (B). This allows us to solve the equation AXA + BXB = C for X
by inverting the matrix A⊤ ⊗ A + B⊤ ⊗ B.
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