
A study of multiple behavior implementations in connection with the utility
manifold method for behavioral organization

Downloaded from: https://research.chalmers.se, 2024-05-06 04:42 UTC

Citation for the original published paper (version of record):
Sandholt, H., Wahde, M. (2004). A study of multiple behavior implementations in connection with
the utility manifold method for
behavioral organization. Robotics and Autonomous Systems

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

1

An investigation of the properties of the
utility manifold method for behavioral

organization
Hans Sandholt, Mattias Wahde

Department of Machine and Vehicle Systems
Chalmers University of Technology

412 96 Gteborg, Sweden
E-mail: {hans.sandholt, mattias.wahde}@me.chalmers.se

Abstract— In this paper, the performance of
the utility manifold (UM) method for behav-
ioral organization is investigated. The method is
applied to a case involving strongly non-trivial
selection between four different behaviors, in
order to generate an overall task of navigation
for a simulated wheeled robot. The results of
the investigation show that the UM method was
easily able to achieve the overall navigation task,
by generating appropriate selection between the
four constituent behaviors.

A desirable property of any method for be-
havioral organization is the ability to organize
different behaviors regardless of their specific
implementation. This property is investigated
for the UM method, by testing it against two
different versions for each of the four constituent
behaviors, i.e. a total of 16 different combina-
tions.

Index Terms— Behavior-based robotics, behav-
ioral organization, utility manifold method, evo-
lutionary algorithms

I. INTRODUCTION

Behavioral organization, i.e. the problem of
determining when behaviors should be active,
is one of the central problems in behavior-based
robotics. Several methods have been suggested
for solving this problem, starting with the pio-
neering subsumption method [1].

A drawback with most methods of behavioral
organization is that they rely heavily on the
ability of the user to set parameters by hand. In
all but the simplest cases, it is very difficult to
anticipate all situations that the robot may en-
counter, particularly if it is designed to move in
an unstructured environment. Recently, Wahde
[2] introduced an alternative method, the utility

manifold (UM) method, in which the behav-
ioral organization system is based on utility
functions that are evolved rather than designed
by hand. In the UM method, the user need
only specify fitness functions for so called task
behaviors, i.e. behaviors directly related to the
task of the robot. For auxiliary behaviors, such
as obstacle avoidance and battery charging, no
fitness functions need be assigned. The method
does have certain limitations: For example, it
does not, as yet, handle situations in which
an explicit memory is needed (as for example,
in cases where the robot is interrupted in a
behavior that can only be restarted successfully
if the state of the robot is stored (and thus
recoverable) at the time of exit. However, work
is presently underway to include such behaviors
as well. So far, the method has been tested in
abstract behavioral combination tasks where, in
some cases, the optimal behavioral organization
could be derived analytically [2], and in a task
involving locomotion of a simulated legged
robot [3].

The aim of this paper is to expose the method
to more stringent tests and analysis, involving
the organization of four behaviors for a wheeled
robot. In addition, the generality of the method,
i.e. its ability to organize behaviors regardless
of their specific implementation, will be inves-
tigated.

The outline of the paper is as follows: in
Sect. 2, the UM method is briefly reviewed.
In Sect. 3 the simulator is presented, and in
Sect. 4 are presented the results concerning
the generality of the method and its scaling
properties. The results are discussed in Sect.
5.

2

II. T HE UTILITY MANIFOLD METHOD

The utility manifold (UM) method [2] ad-
dresses the need for a general, i.e. widely
applicable, method for behavioral organization
that requires a minimum of parameter-tuning
by the user. In the UM method, each behavior
is assigned a utility function which contain the
desires and beliefs of the robot. The method is
an arbitration method, i.e. one in which only a
single behavior is active at any given time. The
active behavior is simply chosen as the behavior
with the highest utility value. Thus, the main
problem is to determine the exact shape of the
utility functions. In the UM method, whose
central concepts will not be outlined briefly, the
optimization of utility functions is performed
using an evolutionary algorithm. For a more
thorough introduction to the UM method, see
[2] and [4].

A. Biological background

In the development of the UM method, etho-
logical considerations played a central role. The
concept ofutility provides a common currency
for rational agents when they select which
behavior to perform [5]. Indeed, the concept
of utility maximization follows from the prop-
erty of transitivity of choice, which, in turn,
underlies all rational behavior. Thus animals,
who are highly adapted to their environment,
tend to behave as if they were maximizing
a quantity which we may call utility (even
though, in most cases, and especially in simpler
animals, it is likely that the maximization of
utility is something which is performed un-
wittingly and as a result of evolutionary de-
sign). Wahde [2] stresses the importance of
considering the highly optimized capacity for
behavioral selection in animals when trying to
emulate this ability in robotics. The problem
of behavioral selection has been studied in-
tensively in ethology [5] and a few authors
(e.g. McFarland and Spier [6], McFarland and
Bösser [7] have considered the use of utility
functions in robotics applications. However, the
UM method is the first approach in which
utility functions are constructed quantitatively
using evolutionary optimization.

B. Behaviors and fitness

The UM method is concerned with behav-
ioral organization, not with the generation of

individual behaviors. In fact, the method is
intended to be sufficiently general to be able
to organize behaviors no matter how they were
generated. In the UM method, behaviors are di-
vided into two categories,task behaviorswhich
are directly related to the task of the robot
and which give it a fitness increase if per-
formed successfully, andauxiliary behaviors
which may be useful or even essential (and thus
associated with high utility), but which give
no fitness increase. Thus, the designer of the
robot should only be required to provide fitness
functions for the behaviors that are related to
the task of the robot, and not to its auxil-
iary behaviors (such as e.g. obstacle avoidance
and battery charging), whose activation instead
should be determined indirectly through the
optimization of the utility functions.

C. State variables and utility functions

With each behavior is associated a utility
function (not to be confused with the fitness
functions provided for task behaviors, see the
example below), which depends on (some of)
the state variables. State variables, in turn, are
divided into three categories: external variables
(e.g. readings of IR or visual sensors) that
measure anything the robot can derive directly
from the environment, internal physical vari-
ables (e.g. battery levels) that measure physical
properties such as temperature or energy levels
within the robot itself, and, finally, internal
abstract variables, which are used in the be-
havioral selection (see Sect. VI below), and
which roughly correspond to signaling sub-
stances (e.g. hormones) in biological systems
[2].

D. Evolutionary optimization

In the UM method, the optimization of utility
functions is normally performed using evolu-
tionary algorithms (EAs). In general, the utility
functions depend on several state variables,
and should provide appropriate utility values
for any combination of the relevant inputs.
Thus, determining the exact shape of the utility
functions is a formidable task, and one for
which EAs are very well suited. In principle,
genetic programming (GP) can be used, in
which case any function of the state variables
can be evolved. However, it is often sufficient

3

to make an ansatz for the functional form of
each utility function, and then implement the
EA as a standard genetic algorithm (GA) for
the optimization of the parameters in the utility
function. The latter approach will be used in
the paper. The ansatz for each utility function
is given in Subsect. V-C.

Thus, once the state variables have been
identified, and an ansatz has been made for each
utility function, the EA can begin the process
of shaping the utility functions in such a way
that the choice of behaviors becomes as good
as possible.

E. A simple example

The UM method will now be illustrated by
means of a simple example. For a more thor-
ough introduction see [2]. Consider the simple
example of a cleaning robot equipped with two
behaviors: one task behaviorsweep floor(B1)
and one auxiliary behaviorcharge batteries1

(B2). Clearly, from a user’s or owner’s point of
view, the floor sweeping behavior is the relevant
one, i.e. the behavior one would wish the robot
to perform continuously if it were possible.
Thus, a fitness function (f1) is assigned to
this behavior. For example, the robot could
be given an additional fitness point for each
square meter of (dirty) floor that it cleans. B2
gives not fitness, i.e.f2 ≡ 0. Furthermore, each
behavior is associated with a utility function,
denoted U1 and U2 for B1 and B2, respec-
tively. The utility functions depend on the state
variables of the robot, which in the case of
the cleaning robot may include readings of
IR sensors (collision detectors), the battery en-
ergy level, some internal abstract variables2 etc.
When the behavioral organization system of
this robot is generated, the two utility functions
are evolved, either from completely random
functions of the state variables or from some
ansatz. The feedback signal to the optimization
procedure is the fitness, which, as described
above, only is given for B1. How, then, can
B2 be activated? Consider the case in which

1A battery charging behavior would normally also have
to include a sub-behavior forfinding a charging station.
However, for simplicity, such complications are neglected
in this example, which is only intended to describe the
basic concepts of the method.

2The use of internal abstract variables is described
further in Subsect. V-C.

B2 is not activated at all. In such a case, the
robot would sweep the floor until it ran out
of battery energy, and would then be unable
to continue (and also unable to gain additional
fitness). However, the activation of behaviors
is governed by the utility functions. Thus, if
instead the evolutionary algorithm designs the
utility functions such that U2 sometimes ex-
ceeds U1 (e.g. when the battery level is low
and the robot is near a charging station), the
robot would charge its batteries and thus be
able to resume its floor-sweeping activities after
some time. Thus, while the fitnessf1 is the
optimization measure, and B2 gives no fitness
increase, the evolutionary optimization method
will nevertheless design the utility functions so
that B2 is sometimes activated (at least if the
evaluation time exceeds the time that the robot
can operate on a single battery charge).

F. Procedure

The main step in the use of the UM method
is the generation of the behavioral organization
system through the definition of utility func-
tions for each behavior.

The constituent behaviors used by the UM
method can be generated by any means desired.
For example, behaviors can be either hand-
coded or evolved.

In this paper, both the generation of indi-
vidual behaviors and the subsequent evolution
of the behavioral organization system are done
in a simulated environment, which will now
be described in detail. Thereafter, the detailed
properties of the various constituent behaviors
are described, as well as the simulation proce-
dure used in connection with the UM method.

III. S IMULATOR

Mathematical models and simulations are
mostly a simplification of the real-world still
they gives a good indication of the expected
outcome of the simulated properties. Using
simulations instead of real-world tests lead to
lower cost and faster evaluations of the inves-
tigated properties.

When applying a solution from a simulation
to a real-world situation there is commonly a
problem with discrepancies between the models
and reality, called the reality gap [8]. However,
this problem will not be further investigated in
this paper.

4

SS

S

S

SS

S

S

1

2 3

4

0 5

67

Fig. 1. Sensor and motor layout of the modelled Khepera
robot. Sensors are shown as gray rectangles and motors
as black.

A good simulator should be based on ac-
curate descriptions of the used objects (e.g.
robots, sensors, motors) and proper descrip-
tion of the environment and interactions dur-
ing the simulation. These descriptions are now
addressed.

A. Simulated robot

A mathematical model of a Khepera robot3

shown in Fig. 1, equipped with two speed-
controlled wheels, and eight IR sensors, six in
the front and two in the rear is used. The IR
sensors are used as proximity sensors.

The motion of the differentially steered robot
is governed by the equations

Mv̇ + αv = A(τL + τR) (1)

Iϕ̈ + βϕ̇ = B(−τL + τR) (2)

wherev andϕ̇ are the curvilinear and rotational
speeds of the robot, respectively.τL andτR are
the torques acting on the left and right wheel,
respectively, andM and I are the mass and
moment of inertia of the robot, respectively.
A and B are scale factors depending on the
geometrical properties of the robot.

1) Motors: A simplified DC-motor model
(no induction modelled) was developed. The
torque acting on a wheel is modelled as

τi = km(
ui

R
− ωika) (3)

whereR, km, ka are the estimated resistance,
torque-, and the back-emk constants for the
motor, respectively andτi, ui, and ωi are the

3The Khepera robot is manufactured by K-team,
www.k-team.com

torque on the wheel, applied potential, and
angular speed of motori, respectively.

The model also includes two speed-
controllers (PI-type), one for each wheel. The
PI-controller is described as

ui = kpωi + kIIi (4)

Ii =

∫

(ωi − ri)δt,

in discrete form becomes

Ii(t + δt) = Ii(t) + (ωi(t) − ri(t))δt (5)

where kp and kI are the proportional and
integral constants of the controller, respectively
andIi andri are the integral state and motor-
speed reference value, respectively. The integral
stateIi is updated for each time-step.

The speed-controller parameters are set so
that the simulated step-response is similar to
the real step-response, as measured by Byung
et al. [9].

In the simulation the range of the wheel-
speeds are normalized to[−1, 1].

2) Sensors:For a relative simple but ac-
curate proximity sensor model is an obstacle
within the sensor range divided intoN parts.
The numberN depends on the complexity of
the obstacle. Contributions from each obstacle-
part is summed according to

Si =

N
∑

j=0

αi,j

Θi

(

1 −
di,j

Di

)2

(6)

where αi,j is the j:th part of an obstacle
angular coverage of sensori, Θi the aperture
of sensori, both in radians,di,j is the distance
from the sensor to the center of obstacle-partj,
andD is the sensor range. In Fig. 2 are these
variables visually described. The square-term in
the expression is due to a quadratic fall-off with
distance of the sensor reading for this sensor
type. Note that the far-end of the sensor range is
simplified to a straight line instead of a cordial
boundary.

The range of the sensor values are normal-
ized to [0, 1].

3) Battery: The range of the battery level
is normalized to[0, 1] and the level is updated
each time-step according to

E(t + δt) = E(t) − cEδt, E ∈ [0, 1] (7)

wherecE is the discharge-rate. This equation
apply when the battery is not charging.

5

d

Obstacle

D

1

2

3

i,2

Qi

a
i,2

i

Fig. 2. Proximity sensor variables. The sensor range is
a triangle, and the obstacle is divided into three parts due
to its complexity. The figure shows the parameter case for
obstacle part 2.

B. Simulated environment

In the simulation environment, shown in Fig.
3, robots as well as fixed and moving obstacles
are defined. The environment is equipped with
walls along each edge, i.e. periodic boundary
conditions arenot used. The moving obstacles
are equipped with front sensors, giving them
the possibility to avoid stationary obstacles.

In all simulations described below, the sta-
tionary obstacles were placed as in Fig. 3.

Usually, during simulations, several robots
were active simultaneously in the environment.
The exact simulation procedure will be de-
scribed in Sect. V below.

IV. CONSTITUENT BEHAVIORS

The UM method sets no restriction on the
implementation details and manner of gener-
ation of individual behaviors. Thus, in order
to illustrate the ability of the UM method
to organize many different sorts of behaviors,
different implementations of the behaviors will
be used.

The task for this evolved robotic brain is to
drive the robot as far as possible in the envi-
ronment without colliding with any obstacles or
running out of battery energy. Therefore four
different behaviors are identified and imple-
mented.

Fig. 3. Simulation arena with fixed and moving obstacles.
The robots are equipped with two rear sensors while the
moving obstacles are not.

The behaviors defined for the simulation are
wandering, obstacle avoidance, battery charg-
ing, and robot scouting. The wandering be-
havior is the task behavior while the others are
auxiliary behaviors.

No sensor input is used by any behaviors,
exceptobstacle avoidance, i.e. the motors are
set disregarding any sensor readings since the
behavior organizer selects appropriate behavior.

The description of the behaviors are as fol-
lows:

a) Wandering: The wandering behavior
is implemented in the simplest possible way,
simply moving the robot in piece-wise straight
paths. Two different implementations were
used, namelystraight-line wandering(denoted
B1.1), in which the motors are set to the same
speed making the robot move in a straight line,
and drunkard’s walk(denoted B1.2), in which
the robot moves in a straight line for a random
period of time, and then turns to a new random
direction starting a new straight-line motion etc.

b) Obstacle Avoidance:The behavior is
responsible for navigating the robot away from
any obstacle in the close vicinity that compro-
mises a safe passage.

Three implementations are provided for this
behavior, namelyrotate away and stop(denoted
B2.1) where the robot rotates away from an
obstacle and stops the motors when the front-
sensor values fall below a certain value,rotate

6

away and recede(denoted B2.2) is similar to
the rotate away and stopimplementation but
allows the robot to set full speed backward or
forward if an obstacle is present in front of
or behind the robot, respectively, andgrazing
robot behavior(denoted B2.3) a behavior used
in this paper by the moving obstacles. This last
behavior is a wander and obstacle avoidance
behavior where normally the left and right
motors at set to slow forward speeds resulting
in a slightly curved path. If an obstacle is close
the motors are set to mainly rotate away from
it resulting in a forward ”wiggling” motion.

c) Battery Charging:This behavior is re-
sponsible for recharging the batteries. The robot
is considered to be equipped with foldable
solar cells, thus is the robot standing still dur-
ing charging. Two implementations are used
for this behavior, namelyexponential charging
(denoted B3.1) where recharging is controlled
by E(t + δt) = E(t)(1 + ceδt), where ce is
the charge-rate for this implementation and,
delayed linear charging(denoted B3.2) where
recharging is delayed a few time-steps before
proceeding at a linear rate,E(t+ δt) = E(t)+
ceδt, wherecd charge-rate for this implemen-
tation.

d) Robot scouting:: This behavior makes
the robot search its closest vicinity for other
robots that might collide with it from a blind
angle. Two implementations are provided for
this behavior, namely,rotational scouting(de-
noted B4.1) where the motors are set to fixed
speed with opposite signs to make the robot
executing a pure clockwise rotation while scan-
ning for other robots, andseeking scouting
(denoted B4.2) using a hand-coded function
describing a simple search pattern where the
motor speeds are set according to{ω1, ω2} =
{sin cs1ti,− cos cs2ti}, whereti is the behavior
time, andcs1, cs2 are constants determining the
search pattern.

V. SIMULATION PROCEDURE

The main part of the simulation procedure
used in this paper consists of evolving be-
havioral organizers using the UM method. In
addition, the simulator allows evaluation of
evolved behavioral organizers. The UM method
is based on an EA (see e.g. [10] for a thorough
description of EAs), the basic flow of which is
shown in Fig. 4. As all EAs, the optimization

procedure acts on a population of individu-
als that are assigned fitness values based on
their performance during evalutions, the flow of
which are shown in Fig. 4. In the following sub-
sections, the EA and the evaluation procedure
for individuals will be described briefly. Next,
the specific form used for the utility functions
will be discussed, and the section is concluded
with a description of the fitness measure used
in the EA.

A. Evolutionary algorithm

The chromosomes appearing in an EA used
in connection with the UM method encode the
utility functions on which behavioral selection
is based. In the investigation reported here,
a specific ansatz for the utility functions, de-
scribed in Subsect. V-C, is used. Thus, when
decoded, the information contained in the genes
of a chromosome is used for determining the
exact shape of the utility functions for the
individual in question.

At the start of an EA run, a population
of N chromosomes in initialized randomly.
Once a chromosomes has been decoded, the
corresponding individual is tested and a as-
signed fitnes values (see below) based on its
performance. When all individuals have been
tested, the next generation is formed using the
procedures of tournament selection, crossover,
and mutation. Elitism is used, i.e. a single exact
copy is made of the best chromosome, and it is
transferred unchanged to the next generation.
The EA runs for a maximum ofG genera-
tions, unless a pre-specified fitness threshold
is reached, in which case the simulation is
terminated.

B. Evaluation of individuals

During evaluation, the chromosome is de-
coded, forming the brain of an individual (i.e. a
simulated robot) that is allowed to move in the
environment, performing various actions based
on the implemented behaviors.

While the stationary part of the environment
(e.g. the walls and the stationary obstacles)
remain the same in all runs, see Fig. 3, the
environment also contains moving obstacles.
At initialization, the moving obstacles are al-
ways placed at pre-specified initial positions,
and with a pre-specified heading. However,

7

Parameter Value used
N 100
G 500
Ne 5
T 2,000
δt 20 ms

TABLE I

THE SETTINGS USED FOR THE SIMULATION

PARAMETERS INTRODUCED INSUBSECTS. V-A AND

V-B.

the wandering behavior executed by moving
obstacles (B2.3) contains a random element,
meaning that their motion will never be the
same for different tests.

Thus, in order to reduce the effects
of stochastic noise caused by the non-
deterministic character of the motion of the
moving obstacles, the evaluation of an individ-
ual is made by using several (Ne) copies of the
individual. In principle, it would be possible
e.g. to run the same individualNe times, using
different starting conditions. Here, however, a
slightly different procedure has been used, in
which Ne exact copies of thesameindividual
are evaluated at once, in the same environment
but with different starting position and heading
for each copy. Both the starting position and
the heading are pre-specified and identical for
all individuals. Furthermore, theNe robots that
are evaluated simultaneously arenot able to see
each other, and collisions between robots are
also turned off, even though the robots can, of
course, collide with moving obstacles.

A given evaluation lasts forT time steps
of length δt, unless a robot collides with an
obstacle or a wall, or runs out of battery energy,
in which the evaluation of that particular robot
is terminated, while the otherNe−1 robots are
allowed to continue.

Robots consume energy according to Eq. 7
in all but the battery charging behaviors (B3.x).
The discharge rate is set so that the battery is
depleted inTB seconds.

The fitness of an individual is calculated
based on the distance travelled while executing
the task behavior (B1.1 or B1.2), as described
in Subsect. V-D below.

The settings of the various parameters intro-
duced above are given in Table V-B.

C. Utility function implementation

Once the individual behaviors have been de-
fined, the evolution of the behavioral organizer
can begin. The aim of the UM method is
to find correct utility functions, i.e. function
parameters such that the behavioral selection
provides the desired result. In principle, any
functional form can be allowed for the utility
functions. However, in practice (and as will be
shown below), it is often sufficient to make an
ansatzfor the utility functions and to limit the
search to parametric optimization.

In this study, the utility functions are defined
by polynomial functions of degreeP . As an
example, consider a utility functionUi that
depends on a sensor valueS, the battery energy
E, and an internal abstract variablex. For e.g.
P = 2, the ansatz becomes

Ui = ai,000 + ai,100S + ai,010E + ai,001x +

+ ai,200S
2 + ai,020E

2 + ai,002x
2 +

+ ai,110SE + ai,101Sx + ai,011Ex, (8)

where theai,jkl are constants that are to be
determined by the EA.

In this study the external physical variables
are taken as the readingsS0, S1, . . . , S7 of the
sensors, and the battery levelE is the only
internal physical variable.

One abstract variable is defined for all behav-
iors B1, B2, B4, and B4. The variation of the
internal abstract variable must also be specified.
In principle, the variable can be any function of
sensor variables and behavior-time. However,
for the purposes of this paper, the ansatz

xi =

{

bi,1 + bi,2e
−|bi,3|ti If Bi is active,

0 Otherwise
(9)

wherebi,j are constants will be used for each
abstract variablexi. The behavior-timeti in-
creases linearly with (global) time if behavior
i is active, and is zero otherwise. Furthermore
the abstract variablexi is exactly zero when the
associated behavior is inactive.

The constantsai,jkl and bi,j are encoded
in the chromosomes used by the EA, using
real-number encoding, i.e. with one gene per
variable.

Since the behavioral selection is based on the
highest utility value, it implies no significant
restriction to set the utility function for one
behavior identically equal to zero. In this case,

8

Start

All generations
processed?

All individuals
evaluated?

All time-steps done
or no active robots?

Decode next individual
and initialize simulation

Check for collisions
and read sensors

Calculate utility

Use behavior with
hightest utility and update
motor and battery settings

Move robot
one time-step

Calculate fitness
increment

End

Create new population using
elitism, tournament selection
and, mutation

Yes

Yes

Yes

No

No

No

Fig. 4. Evolution and simulation flow chart.

the battery charging behavior was chosen as the
behavior with zero utility (note that the utilities
of other behaviors can take both negative and
positive values), so that behaviors B3.1 and
B3.2 do not have an abstract variable defined.

The polynomials used in this paper are of
second degree, i.e.P = 2 leading to an ef-
fective genome length of 95 genes per utility
function, of which 92 genes determines the
polynomial coefficients, and 3 determine the
variation of the internal abstract variable.

In most runs described below, only a single
version of each behavior is available to the
behavioral organizer, resulting in an effective
genome length ofna − 1× 95, wherena is the
number of available behaviors, and the negative
term corresponds to behavior B3, for which no
utility function is defined.

D. Fitness calculation procedure

The fitness of an individual is based on a
combination of the fitness valuesfi obtained
for several (Ne) evaluated robots with identical
brains (see above). The combination can be
made in a variety of ways, of which two have
been tried in this paper, namely theaverage
fitness(fitness measure I), according to

f I =

Ne
∑

i=1

fi, (10)

and the minimum fitness (fitness measure II),
according to

f II = minifi. (11)

The motivation for the second fitness measure
[11] is that it forces the EA to avoid even
occasional failures.

Fig. 5. Snap shot of the arena where the simulation
and evaluation of a behavior coordinator is done. Small
dots indicates a trail a robots has taken. The square and
cross icons indicates a depleted battery and collision,
respectively.

VI. B EHAVIORAL ORGANIZATION

As described previously is the aim of the
robotic brain to select behaviors adequately
during its execution in such a way that the robot
completes the simulation with highest possible
fitness. When investigating the properties of
the UM method it is of great importance first
to ascertain the ability of the method to find
satisfactory solutions to the problem at hand.
Thus, the results from basic simulations, in-
volving a specific quartet of behaviors (namely
B1.1, B2.1, B3.1, and B4.1) are presented first,
followed by a detailed analysis of the evolved
behavioral organizer. Next, the generality of the
method is investigated, by evolving the same
overall task, using all 16 distinct combinations
of the four behaviors (for each of which two
different implementations are provided, as dis-
cussed in Sect. IV.

The simulations were carried out on
two standard DELL Dimension computers,
equipped with 2.25 GHZ and 2.53 GHz Pen-
tium 4 processors, respectively.

The overall goal for the robot is to execute
the task behavior in a relatively unstructured
environment with stationary and moving obsta-
cles. Collision with an obstacle or depletion of
a battery result in a premature termination of
the robot.

Striving towards this goal, four behaviors,

9

B1.1, B2.1, B3.1, and B4.1 are used in this first
investigation. Only the use of the task behavior,
B1.1, rewards the robot during the evaluation.
The auxiliary behaviors (B2.1, B3.1, and B4.1)
are instruments to help the robot execute the
task behavior in an efficient and continuous
manner.

Several runs were performed using this
configuration.

RESULTS SECTION TO BE COMPLETED
BY 20041115.

A. Generality properties

Here, all the remaining 15 combinations of
task and support behaviors were investigated.
The evolution setup is the same as the previous
investigation, and all runs lasted for a total of
200 generations.

RESULTS SECTION TO BE COMPLETED
BY 20041115.

B. Conclusion

CONCLUSION SECTION TO BE
COMPLETED BY 20041115.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for
a mobile robot,”Robotics and Autonomous Systems,
vol. 2, March 1986.

[2] M. Wahde, “A method for behavioural organization
for autonomous robots based on evolutionary opti-
mization of utility functions,”J. Systems and Con-
trol Engineering, vol. 217, pp. 249–258, september
2003. Part I.

[3] J. Pettersson and M. Wahde, “Application of the util-
ity manifold method for behavioral organization in a
locomotion task,”IEEE trans. Ev. Comp., Submitted,
2044.

[4] M. Wahde,An Introduction to Adaptive Algorithms
and Intelligent Machines, 2:nd ed.Chalmers, 2004.

[5] D. McFarland,Animal Behavior. Addison Wesley
Longman, 1993.

[6] D. McFarland and E. Spier, “Basic cycles, utility,
and opportunism in self-sufficient robots,”Robotics
and Autonomous Systems, vol. 20, pp. 179–190,
1997.

[7] D. McFarland and T. Bösser,Intelligent Behavior in
Aninals and Robots. MIT Press, 1993.

[8] N. Jakobi, P. Husbands, and I. Harvey, “Noise and
the reality gap: The use of simulation in evolution-
ary robotics,”Lecture Notes in Computer Science,
vol. 929, pp. 704–720, 1995.

[9] B. Kim and P. Tsiotras, “Controller for unicycle-type
wheeled robots: Theoretical results and experimen-
tal validation,” IEEE Tansactions on Robotics and
Automation, vol. 18, June 2003.

[10] T. Back, D. B. Fogel, and Z. Michalewicz, eds.,
Handbook of Evolutionary Computation. Institute
of Physics Publishing and Oxford University, 1997.

[11] J. Savage, E. Marquez, J. Pettersson, N. Trygg,
A. Petersson, and M. Wahde, “Optimization of
waypoint-guided potential field navigation using
evolutionary algorithms,” inProceedings of the 2004
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2004), 2004.

