
A Flexible Evolutionary Method for the Generation and Implementation of
Behaviors for Humanoid Robots

Downloaded from: https://research.chalmers.se, 2024-03-20 10:43 UTC

Citation for the original published paper (version of record):
Sandholt, H., Wahde, M., Pettersson, J. (2001). A Flexible Evolutionary Method for the Generation
and Implementation of Behaviors for Humanoid
Robots. IEEE-RAS International Conference on Humanoid Robots: 279-286

N.B. When citing this work, cite the original published paper.

© 2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

A flexible evolutionary method for the generation and
implementation of behaviors for humanoid robots

Jimmy Pettersson, Hans Sandholt, Mattias Wahde

Division of Mechatronics, Chalmers University of Technology,
412 96 Göteborg, Sweden�

jimmy.pettersson, hans.sandholt, mattias.wahde � @me.chalmers.se

Abstract

A flexible method for generating behaviors for
bipedal robots is presented and applied to the case
of motor behaviors. The method is biologically in-
spired and is based on evolutionary algorithms in
connection with generalized finite state machines
(FSMs). The evolutionary process acts directly on
the FSMs and optimizes both their parameters and
their structure.

In this method, only a rough indication of the de-
sired behavior needs to be specified as an initial con-
dition to the evolutionary algorithm, which then per-
forms further optimization of the behavior.

We apply the method to two test cases, namely
energy optimization and robust balancing. It is
found that the method performs very well in both
cases, and that its ability to modify the structure of
the FSMs is very useful. In the case of energy opti-
mization, the walking length for a given amount of
energy is improved by 134 %.

Keywords: bipedal robots, evolutionary robotics,
behavior–based robotics

1. Introduction

During the early decades of the 21st century, it is
expected that humanoid robots will come to play an
increasingly important role, both in industries and
as household robots. However, in order for this
to happen, the robots will need to become much
more complex than today, and the development of
such robots presents a formidable challenge to re-
searchers and engineers. As the complexity of hu-
manoid robots increases, there will be a strong need
for a flexible and versatile representation for motor
behaviors (and other behaviors) [9]. In addition to
a flexible representation, an efficient optimization
method for generating robust and energy-optimal
motor behaviors will also be needed.

The development of a representation and the

choice of an optimization method are difficult prob-
lems. However, the fact that the systems that are
being generated – humanoid robots – are modelled
on biological systems – humans – indicates that it
would be wise to consider optimization methods
inspired by biological considerations, such as e.g.
evolutionary algorithms.

The application of evolutionary computation to
robotics has given rise to the very active research
field of evolutionary robotics [12]. The use of evo-
lutionary methods to the case of bipedal robots has
mainly been restricted to parameteric optimization
within a pre-specified structure (see e.g. [1], [3],
[4], and [6]). Notable exceptions are provided by
Arakawa and Fukuda [1], who allowed a certain
flexibility in the representation of the control sys-
tem and Paul and Bongard [13], who allowed the
morphology of the bipedal robot to vary.

The aim of this paper is to introduce a flexible
and general method for the construction of robotic
behaviors. We will describe the representation of
the behaviors, and also show how evolutionary op-
timization can be applied successfully to this repre-
sentation, optimizing not only the parameters of the
system but also its structure. While the focus of the
paper is on the description of the method as such, we
will also present some early results obtained with
this method.

2. The robot

For our simulations, we have used a five-link robot,
constrained to move in the sagittal plane. The robot
has five degrees of freedom: torques can be applied
at both knee joints and at both hip joints. In addi-
tion, a fifth actuator controls the posture of the upper
body. The lengths of the leg links have been based
on the corresponding values for a 1.5 m tall human.

The structure of our robot, which is shown in Fig.
1 is similar to that earlier used by e.g. Cheng and Lin
[3] and Mitobe et al. [10]. While this robot model
is perhaps somewhat simplistic, it is still sufficient

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

PSfrag replacements

���
��� ���

���

���

	

Figure 1: Configuration of the bipedal walking
robot.

for the purposes of demonstrating the feasibility of
our method for representing behaviors for bipedal
robots. We have used a lagrangian formulation for
the equations of motion (see e.g. [11], Ch.4), which
take the form������������������������������������� ��!#" $�%'&(�

(1)

where
�

is the generalized inertia matrix,
�

con-
tains centrifugal and Coriolis terms,

�
contains

gravity terms,
!

is the constraint matrix and
$

the
corresponding Lagrange multipliers, and

&
contains

the generalized forces. The derivation of the vari-
ous matrices and vectors is straightforward, and thus
will not be given here. The generalized coordinate
vector

�
is given by�)%+* ,.-/�101010��2,435� 	 �
�6 " � (2)

where the angular variables
,7-/�101010��2,43

determine
the orientation of the limbs (see Fig.1), and 	 �
 are
the coordinates for one foot (i.e. the tip of a leg) of
the robot.

The vector of generalized forces
&

is related to
the torques T applied at the five joints through the
transformation

&8%'9;:
, where

9<%
=>>>>>>>>
?

1 0 0 0 0 0 0
-1 1 0 0 0 0 0
0 0 1 -1 0 0 0
0 0 0 1 0 0 0
0 -1 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

@1AAAAAAAA
B

(3)

The constraint matrix
!

varies in size and structure
depending on the number of feet (0, 1, or 2) that are
in contact with the ground [7].

Lagrange’s equation for impulsive motion is used
to model ground impacts and perturbations and is
stated as C�DC ��FEEEE G�HJI

C�DC ��FEEEE GLK
%NMO �

(4)

where PRQ and PTS denote the instants immediately
after and immediately before the impulse, respec-
tively,

MO
is the vector of generalized impulses, and

T is the kinetic energy of the system. Using the fact
that the generalized inertia matrix (M) is symmet-
ric, the generalized momenta can be expressed as:
C�DVU/C ��W%X�Y��

, which, when inserted into Eq. (4),
gives the generalized postimpact velocities as�� Q %'� S - MO �J�� S 0

(5)

3. The method

The implementation of motor behaviors (and other
behaviors) in robots consists of two parts which will
now be introduced: an architecture for storing the
behaviors of the robot, and a method for obtaining
the behaviors that are to be implemented.

3.1 The representation

While this paper will deal exclusively with bipedal
motor behaviors, the ultimate goal of this work is to
arrive at a method which is sufficiently general to be
able to accomodate not only bipedal gaits but also
other aspects of the behavior of a robot1, such as
the ability to avoid obstacles, grip objects etc. Thus,
an architecture which can only hold fully specified
reference trajectories for bipedal gaits will not be
sufficient.

Instead, we have chosen to use an architecture
based on (generalized) finite state machines (FSMs).
FSMs have the advantage of allowing combina-
tion of several behaviors into a complete behavioral
repertoire [14], and they have often been used in
connection with behavior-based robotics [2]. Fur-
thermore, a system based on FSMs is generally
transparent and easy to interpret.

A standard FSM consists, as the name implies, of
a finite number of states and conditional transitions
between those states. Furthermore, the allowed set
of actions is usually chosen from a finite alphabet.
The FSMs introduced in this paper are slightly dif-
ferent. First, each state in an FSM is here associated
with a set of variables specific to that state, whereas
in a standard FSM, the variables are associated with
the transitions between states. In addition, we use

1For this reason, we will use the term robotic brain for the
computer program that determines the actions of the robot, rather
than the term control system. The latter term would indicate a
more limited representation employing classical control theory.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

F

F

T

T

PSfrag replacements

	�� - � 	��� � 	���	��� � 	�� 3
	����- � 	����� � 	�����	����� � 	����3

���
	 � -

���
	 ���-

Figure 2: A simple two-state FSM, with five state
variables and one transition condition per state. The
arrows indicate the direction of signal flow. If
the condition under consideration is true, the cor-
responding arrow marked with a T is followed. If
instead the condition is false, the arrow marked with
an F is followed.

continuous variables rather than a discrete alphabet.
Each state has a number of conditional transitions,
each with a specified target state.

A simple, generic, example of a two-state FSM
is shown in Fig. 2. In this FSM both states contain
the values of five variables (which may, for example,
represent the reference angles for a given posture for
the five–link bipedal robot). From the first state, the
FSM can jump to the second state if the condition���	 � - is fulfilled. Note that the variables

�
(of

which only one was introduced in Fig. 2) defining
the transition conditions need not be the same as the
variables 	��� specified in the states � . In this case, the
condition variable

�
may, for instance, measure the

deviation between the actual posture of the robot,
and the posture specified in the active state. If the
deviation is sufficiently small, the robot may pro-
ceed to the second state etc.

If no condition is fulfilled, the FSM remains in
the same state, as indicated in Fig. 2 by the links
emanating on the right hand side of the transition
conditions. Note that, in subsequent figures, these
links are not explicitly shown.

The number of transition conditions, as well as
the number of variables defining the conditions, may
vary from state to state. In cases where there is more
than one transition condition associated with a state,
the conditions are checked in order from left to right,
so that the leftmost condition has the highest prior-
ity, since it is always checked.

3.2 The evolutionary algorithm

Evolutionary algorithms constitute, in our opinion, a
natural choice for the generation of motor behaviors
and other behaviors for autonomous robots in gen-

eral, and bipedal robots in particular. After all, it is
known that evolution is capable of generating highly
complex structures in nature, and that evolutionary
algorithms, which are based on natural evolution,
often prove to be highly efficient in problems involv-
ing large and complicated search spaces. Clearly,
the construction of robotic motor behaviors, which
is the subject of this paper, is indeed a problem in-
volving a very large search space.

The most commonly used type of evolutionary al-
gorithm is the genetic algorithm (GA) [8]. Most of
the work to date on evolutionary algorithms in con-
nection with bipedal robots has been based on GAs
([1], [3], [4], and [6]). However, standard genetic al-
gorithms may not the best choice from the point of
view of the construction of robotic brains. A stan-
dard GA is useful when carrying out parametric op-
timization, where the parameters of the system un-
der study easily can be coded into a string of digits.

However, we wish to go beyond parametric opti-
mization, and optimize not only the parameters but
also the structure of the robotic brain. Thus, a more
flexible scheme is required. The use of evolution-
ary algorithms in connection with FSMs, known as
evolutionary programming, was pioneered by Fo-
gel (see e.g. [5]). In evolutionary programming,
the evolutionary process acts directly on the FSMs,
by optimizing both the parameters of the FSMs and
their structure, e.g. the number of states and transi-
tion conditions.

Our method is an adaptation of evolutionary pro-
gramming to the case of generalized FSMs as de-
scribed above, and it includes both crossover and
mutation operators, by contrast with the original
form of evolutionary programming which only used
mutation operators.

Briefly, the process operates as follows: A fitness
measure is specified before the simulation. An ex-
ample of a fitness measure suitable for bipedal loco-
motion is given by the distance covered by the robot
as it uses up a pre-specified amount of energy. In the
beginning of a simulation, a population of random
FSMs is generated. Normally, the initial population
consists of rather simple FSMs. Then, all individu-
als in the population are evaluated, and each individ-
ual obtains a fitness value based on its performance.

The following sequence is then repeated until a
satisfactory solution has been found: two individ-
uals are selected from the population using tourna-
ment selection. Then, two offspring are formed by
the procedures of crossover and mutation outlined
below. The two new individuals are then inserted
into the population, replacing the two worst individ-
uals. Finally the two new individuals are evaluated,
and the procedure is repeated again.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

I II

III IV

V

Figure 3: Structural mutations: I) Insert state: inserts a state with one transition condition, whose variables
are defined as the average of the variables in the two adjacent states, II) Delete state: simply removes a state,
III) Add prioritized state: adds, to an already present state, a transition (with top priority) to a new state. The
variables of the new state are taken as slight mutations of the variables in the state to which the new transition was
added, IV) Add transition condition: adds a transition condition (with lowest priority) to a state, and, V) Delete
transition condition: deletes the transition condition with lowest priority for a given state. Note that, for clarity,
the transitions are not explicitly shown (except one transition in case III) in this figure.

3.2.1 Crossover

Combination of material from different individu-
als is an important part of evolutionary algorithms.
Crossover is easy to implement in a standard GA,
but somewhat more difficult in our case, in which
the structures to be crossed are more complicated
than the strings used in GAs. We have chosen to in-
troduce a crossover procedure which simply swaps
two selected states between two FSMs. The pro-
cedure begins by the selection of one state in each
of the FSMs that are to be crossed. Next, the
states with their transition conditions are swapped
between the FSMs, forming two new FSMs. As a
final step, it is checked that the targets for the con-
ditional jumps are consistent, i.e. that no condi-
tion generates a jump to a non-existent state (which
may occur if the FSMs contain different numbers of
states). If an inconsistent jump is detected, the target
is arbitrarily set to state 1. This does not imply a sig-
nificant restriction, since subsequent mutations can
change the transition target to any of the available
states.

3.2.2 Mutations

Two kinds of mutations are used: parametric muta-
tions, which modify the value of any parameter in
the FSM by a small, random amount, and structural
mutations which modify the structure of the FSMs.
The structural mutations, which are needed in order
to arrive at the desired flexibility, are illustrated in
Fig. 3.

3.3 The simulation program

The generalized FSM representation and the evo-
lutionary algorithm described above have been im-
plemented in a computer program written in Delphi
Object-oriented Pascal. The program is fully object-
oriented, so that the data structures, e.g. the FSMs,
are flexible and can be of arbitrary size and com-
plexity. Thus, the program permits an open-ended
evolutionary process that can lead to very complex
structures.

At the outset of a simulation, the user provides a
set of parameters, such as link lengths and masses
(for the robot), the fitness measure, initial structural
parameters for the FSMs (e.g. the number of states)
as well as ranges for the parameters (variables and
transition conditions) defining the states. Parame-
ters related to the simulation of a single individual,
such as e.g. the length of the time steps for the nu-
merical integration of the equations of motion, must
also be specified. Furthermore, it is possible to pro-
vide limits on the joint torques and their first deriva-
tive with respect to time.

The user may also choose between two different
types of initial FSMs, linear FSMs, in which each
state � has a single transition condition whose tar-
get is state �

���
, except for the last state, for which

the target of the transition condition is state 1, and
general FSMs, with a completely arbitrary structure.
The linear FSMs are useful for generating cyclic be-
haviors, such as a step sequence, whereas the more
flexible general FSMs are needed e.g. to cope with
perturbations during a step or other non-cyclic mo-
tor behaviors. Note that the specification of an FSM

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

5000 15000 25000 35000
Evaluated individuals

2

2.5

3

3.5

4

4.5
M
a
x
i
m
u
m

F
i
t
n
e
s
s

Figure 4: Fitness of the best individual as a function
of the number of individuals for test case 1 (energy
optimization).

type only relates to the initial population. The evo-
lutionary process has full freedom to add and delete
states, as outlined above, should the need arise.

In keeping with the aim of developing a suffi-
ciently flexible representation that can hold differ-
ent kinds of behaviors, great care has been taken
to make the data structures for the FSMs as gen-
eral as possible. Thus, an FSM can consist of states
of many different types (i.e.with different variables
defining the states), and with various transition con-
ditions of, in principle, any form.

However, here we are concerned with motor be-
haviors, and we have therefore used a specific kind
of FSM, the components of which will now briefly
be described.

FSM states In any state of the FSMs used here,
the requested torque at joint � is given by

�������� %	��
� ��, �
I
, ����� �������� �, � ������ (6)

where
�
� ,

, ����� ,
� �� , and

� �� are constants. Thus,
for the representation of motor behaviors, each FSM
state holds a set of 20 variables (4 for each link).
Since we, for realism, normally impose limits on
the torque derivatives, the actual torque delivered at
a joint is not always equal to the requested torque.
In most situations, however, the actual torque ap-
proaches the requested torque within a few time
steps.

Transition conditions For each state � , there are� � transition conditions which, in this case, take the
form

� � � � � * ��� 6 	�� �������! #"%$�&'�(��)#�+*-,�./�0�1� (7)

where
*
Op 6 denotes one of the operators

�
and

�
,	��

is a constant, specific to transition condition 1 ,
and the target is any state in the FSM (cf. Fig. 2).

Early FSM Best FSM
Energy used (J) 500 500
Length walked (m) 1.77 4.15
Total time (s) 2.56 4.11
Average speed (m/s) 0.69 1.01

Table 1: A comparison between the first individual
that managed to walk (left) and the best individual,
in test case 1.

1

2

3

4

56

7

8

Figure 5: Structure of the best FSM obtained in test
case 1 (energy optimization).

The variables
� � can be choosen freely. In this ap-

plication, we have chosen to use six condition vari-
ables, namely

� � %', �
I
, ����� � � % �5�101010��+2 � (8)

and

�43�% 5667 �2
38
� 9 - ��, � I

, ����� � � 0
(9)

4. Results

In order to test the efficiency of both the represen-
tation and the evolutionary algorithm, a number of
runs of the simulation program have been made.
Two specific applications have been used as test
cases, namely the generation of smooth and energy-
efficient bipedal gaits, and the construction of robust
balancing in the presence of perturbations.

4.1 Test case 1: Energy optimization

For any autonomous robot that carries its own en-
ergy source (e.g.batteries), it is clearly of paramount
importance to move with as little use of energy as
possible. In nature, evolution has optimized hu-
man walking (and, in general, animal locomotion),
to make it very energy efficient. While we do apply

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

1 2 3 4

−0.6

−0.4

−0.2

0
PSfrag replacements

, � � P �
A

ng
le

(r
ad

ia
ns

)

Time (s)Height (m) 1 2 3 4

−0.6

−0.4

−0.2

0PSfrag replacements

, � � P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m)

1 2 3 4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

PSfrag replacements

,435� P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m) 1 2 3 4
0

0.02

0.04

0.06

0.08

PSfrag replacements

 � P �

Angle (radians)

Time (s)

H
ei

gh
t(

m
)

Figure 6: Energy optimization. Each plot shows the variation with time of one generalized coordinate for the
first FSM that was able to make the robot walk (dashed) and the best FSM in the run (solid). Only some of the 7
generalized coordinates are shown in this figure.

artificial evolution to optimize the gait of our sim-
ulated robot, it should be pointed out that our opti-
mization problem differs from the optimization car-
ried out by natural evolution. In our case, the con-
figuration of the robot, i.e. its bipedal nature and its
structure with five links of given length and mass,
are given whereas in natural optimization both the
structure of the animal and its method of locomo-
tion are optimized. However we do, as described
above, allow a considerable freedom concerning the
structure of the brain of the robot.

For the energy optimization runs, the fitness mea-
sure was chosen as the length walked by the robot
until it had used an energy of 500 J. By using this fit-
ness measure, energy optimization is obtained with-
out explicitly having to include the energy usage in
the fitness measure in an ad hoc fashion. In order to
prevent the robot from walking very slowly, a time
limit of 6 simulated seconds was introduced as well.

The population size was set to 400, and the struc-
tural and parametric mutation rates were set to 0.02
and 0.03, respectively. The crossover probability
was equal to 0.10. The time step length was 0.005
seconds. Furthermore, limits were set on the max-
imum torque delivered at the joints (200 Nm), as
well as the maximum rate of change of the torques
(3000 Nm/s).

One of the main purposes with our method is

to allow for the possibility of specifying, in a very
loose sense, a sequence of motions, which will then
be further optimized by evolution. In the develop-
ment of energy-optimized gaits, we therefore spec-
ified only 8 reference states, 4 for the step with the
left foot, and 4 for the right step.

The reference angles were set so as to generate a
very rough representation of the two steps. The pro-
portional and derivative constants were given ran-
dom values centered on -250 Nm for the propor-
tional constants and -15 Nms for the derivative con-
stants. The

� �� parameters were given random val-
ues in the range

*
I
����� ��� 6 Nm. The initial popula-

tion consisted of linear FSMs (see Sect. 3.3).
In the beginning of the run, it was clear that the

initial specification of the motion was much to rough
to generate smooth walking: the few robots that
managed to walk at all, stumbled forward in a very
inefficient manner. Many robots used up their 500 J
without getting anywhere. However, the optimiza-
tion algorithm very quickly began to improve the
gait, and the length walked by the robot increased
considerably, from 1.77 m early in the run, to 4.15
m at the end, as shown in Fig. 4 and Table 1.

The total number of states of the best FSM at the
end of the run was also equal to 8. However, this was
in no way enforced. Indeed, during the run, several
of the best FSMs that appeared used more than 8

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

states. The 8 states of the final FSM were totally
different from the states specified in the beginning
of the run.

Furthermore, the evolutionary optimization
method was able to improve the structure of the
FSM. Clearly, a cyclic sequence of states is con-
venient when walking at full speed. However, the
robot starts from rest, and thus the very first part of
the motion differs from the rest. This was indeed
exploited: the structure of the best FSM at the end
of the run contained one state that was used only to
get the robot started, and 7 states that were used in
a cyclic fashion for the continued motion, as shown
in Fig. 5.

Finally, we note that the bipedal gait generated by
the best FSM in the run was very smooth (see Fig.
6) and symmetric compared to the FSMs obtained
early in the run, despite the fact that symmetry was
not explicitly required.

4.2 Test case 2: Robustness

A bipedal robot moving in an unstructured environ-
ment, such as e.g. a busy street or a hospital, will in-
variably find itself in situations where it cannot rely
on prespecified reference trajectories. For example,
the robot may encounter an unexpected moving ob-
stacle, or it may lose its balance due to an external
perturbation or simply a bump in the ground. Thus,
for such robots to be useful, they must be able to
cope with unexpected situations. As a simple ex-
ample, and as a test of our method, we have con-
sidered the following case: Assume that a bipedal
robot is about to begin climbing some stairs, and
as it lifts the front leg, it is perturbed. A sequence
of three point perturbations, modeled as impulsive
forces, are applied. The generalized velocities after
each perturbation are computed using Eq. (5). The
first perturbation is applied on the thigh of the sup-
porting leg, the second on the upper body, and the
third on the lower part of the lifted leg, as shown in
the right panel of Fig. 7.

At the start of each simulation, the robot was
placed with both feet on the ground, and the FSM
of the robot contained a single state which made it
lift the front leg. The fitness measure was defined
simply as the inverse of the integrated total devia-
tion between a desired position, with one leg lifted
as shown in Fig. 7, and the actual position of the
robot. The total deviation was computed as the root
mean square of the deviation of each generalized co-
ordinate. The fitness computation began after 0.6
s, giving the robot some time to reach the desired
position from its starting position. Each simulation
lasted for the equivalent of 3.6 s, and the three per-
turbations were applied after 0.8 s (perturbation � ,
see Fig. 7), 1.4 s (

�
), and 2.0 s (�), respectively. The

PSfrag replacements

b
a
c

PSfrag replacements

b

a

c

Figure 7: Starting posture (left) and desired posture
for the robot in test case 2. The arrows indicate the
magnitudes, directions, and points of application of
the perturbations.

2
1

1

Figure 8: Initial (left) and final structure of the
FSMs from test case 2. The added state helps the
robot cope with the perturbations.

simulated robots were given a maximum of 500 J of
energy to lift the leg and to handle the perturbations.
The parameters of the evolutionary algorithm were
the same as in test case 1 (see Sect. 4.1).

While the initial FSMs generally had severe dif-
ficulties in keeping the robot upright, FSMs capa-
ble of doing so appeared fairly quickly as a result of
the optimization. More interestingly, the final FSM
obtained from this run had undergone a structural
mutation in which an additional state was added to
cope with the perturbation. A schematic view of the
structure of the initial FSMs and the best FSM ob-
tained is shown in Fig. 8.

5. Discussion and Conclusion

In this paper, we have introduced a method for the
generation of motor behaviors in bipedal robots.
With our procedure, it is sufficient to provide the op-
timization algorithm with a rough indication of the
desired motor behavior (rather than a complete tra-
jectory specification), and then allow the algorithm
to optimize it.

Ideally, it should be possible to generate a bipedal
gait, or some other motor behavior, without specify-
ing even a rough set of reference values. However,
if no specification is made at all, it is not evident
that a human-like gait will result. For instance, the
evolutionary process may select a bird-like gait in-
stead. Thus, some guidance should be given to the
optimization algorithm, for instance in the form of a
few reference positions as in our method.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

It is obvious that for bipedal robots to be useful,
they must be able to cope with unstructured and un-
predictable environments. Our procedure may be
useful in the construction of such robots, chiefly be-
cause of the structural flexibility of the correspond-
ing robotic brains and the fact that the optimization
method proceeds with a minimum of bias.

We believe that the ability to optimize the struc-
ture of the robotic brain, in addition to its param-
eters, is of great importance, and allows a kind of
open-ended evolutionary process, which can pro-
duce structures that are much more complex than
those initially specified. A possible indication sup-
porting this hypothesis is the fact that the fitness
values continued to increase during the full extent
of the runs, rather than reaching a plateau quickly,
as is often the case in evolutionary algorithms. A
stronger indication is derived from the fact that the
possibility to modify the structure of the FSMs was
exploited in both of the test cases considered here.
Thus, even though it probably would be possible, at
least for simple gaits, to specify a useful FSM by
other means (or even by hand), it has been our pol-
icy to give the evolutionary optimization method as
much freedom as possible.

The two test cases also showed that consider-
able improvements could be obtained in a reason-
able amount of time. In the case of energy opti-
mization, a 134% improvement in walking length
was obtained in a run that lasted approximately 28
hours on an 800 MHz pentium III computer.

The results presented here are, to a great extent,
preliminary, and further experiments are underway
to test the procedure in more challenging situations.
The aim is to develop a full behavioral repertoire for
bipedal locomotion using the procedure described
in this paper, and to combine these behaviors us-
ing e.g. the method for evolutionary combination of
separate behaviors described by Wahde and Sand-
holt [14]. Furthermore, we plan to implement the re-
sulting robotic behaviors in the bipedal robot which
is currently under development in our group.

References

[1] T. Arakawa and T. Fukuda, Natural Motion
Trajectory Generation of Biped Locomotion
Robot using Genetic Algorithm through En-
ergy Optimization. In: Proc. of the 1996 IEEE
International Conference on Systems, Man
and Cybernetics, pp. 1495-1500, 1996

[2] R.C. Arkin, Behavior-based robotics, MIT
Press, Cambridge, MA, 1998

[3] M.-Y. Cheng and C.-S. Lin, Genetic Algorithm
for Control Design of Biped Locomotion. In:

Proc. of the 1995 IEEE International Confer-
ence on Systems, Man and Cybernetics, pp.
1315-1320, 1995

[4] S.-H. Choi, Y.-H. Choi, and J.-G. Kim, Op-
timal Walking Trajectory Generation for a
Biped Robot Using Genetic Algorithm. In:
Proc. of the 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
pp. 1456-1461, 1999

[5] L. Fogel, Intelligence through simulated evo-
lution, Wiley, NY, 1999

[6] T. Fukuda, Y. Komata, and T. Arakawa, Sta-
bilization Control of Biped Locomotion Robot
based Learning with GAs having Self-adaptive
Mutation and Recurrent Neural Networks. In:
Proc. of the 1997 IEEE International Confer-
ence on Robotics and Automation, pp. 217-
222, 1997

[7] J. Furusho et al., Realization of Bounce Gait in
a Quadruped Robot with Articular-Joint-Type
Legs. In: In: Proc. of the 1995 IEEE Inter-
national Conference on Robotics and Automa-
tion, pp. 697-702, 1995

[8] J.H. Holland, Adaptation in Natural and Arti-
ficial Systems, 1st ed. University of Michigan
Press, Ann Arbor; 2nd ed. MIT Press, Cam-
bridge, MA, 1992

[9] F. Kanehiro et al., Developmental Methodol-
ogy for Building Whole Body Humanoid Sys-
tem. In: Proc. of the 1999 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems, pp. 1210-1215, 1999

[10] K. Mitobe et al., Non-linear feedback control
of a biped walking robot. In: Proc. of the 1995
IEEE International Conference on Robotics
and Automation, pp. 2865-2870, 1995

[11] R.M. Murray, Z. Li, and S.S. Sastry, A Mathe-
matical Introduction to Robotic Manipulation,
CRC Press, 1994

[12] S. Nolfi and D. Floreano, Evolutionary
Robotics, MIT Press, Cambridge, MA, 2000

[13] C. Paul and J.C. Bongard, The Road Less
Travelled: Morphology in the Optimization
of Biped Robot Locomotion. In: Proc. of the
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS2001), in press

[14] M. Wahde and H. Sandholt, Evolution of
complex behaviors on autonomous robots.
In: Proc. of Mechatronics 2000, the 7 �

�

UK Mechatronics Forum International Con-
ference, Elsevier, 2000

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

