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Abstract

Magnetic confinement fusion is a field of research that strives to develop
an environmental friendly energy source to assist in powering our society.
By confining a plasma with magnetic fields, conditions that enable nuclear
fusion can be achieved. However, gaining a high efficiency has proven to be
a challenging task. In the 1980s, it was discovered that steep temperature
and density gradients are formed near the plasma edge when the external
heating passes a certain threshold leading to an increased energy and particle
confinement. The region with steep gradients at the edge is referred to as
the pedestal. As of today the formation and behaviour of the pedestal is still
not fully understood from a theoretical standpoint. However, the enhanced
performance of plasmas with a developed pedestal is routinely exploited in
current fusion experiments, and is a key element in extrapolating to future
devices.

The purpose of this thesis is to explore machine learning methodologies
to help improve the understanding and predictive capabilities of the pedestal.
Specifically, a neural network for predicting pedestal characteristics has been
developed and integrated with core transport models. Additionally, another
neural network has been developed to enhance the temporal resolution of
the main diagnostics used to analyse the pedestal. The thesis incorporates
additional machine learning applications for plasma physics that extend beyond
a specific focus on the pedestal.
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Chapter 1

Introduction

In the ever-evolving saga of human progress, both the narratives of energy
and artificial intelligence (AI) currently stand at the forefront. The dream of
emulating the energy from the stars, coupled with the ascent of AI, has lead to
the rapid development of an interdisciplinary field: the application of machine
learning in fusion technology.

1.1 Fusion

Fusion energy is the energy released in the process when two atomic nuclei
are merged into a heavier element. This is the counterpart of fission, where
heavy nuclei are split into lighter elements. For instance, the hydrogen isotopes
deuterium (D) and tritium (T) can fuse into a helium-4 (He4) nucleus, producing
an additional neutron (n) in the process

D + T −→ He4 + n+ energy. (1.1)

Although the helium-4 nucleus is heavier than the deuterium and tritium nuclei
respectively, the sum of the mass of the deuterium and tritium nuclei is larger
than the sum of the mass of the helium-4 nucleus and the neutron [1]. This is
due to the difference in binding energies of the different nuclei [2], and the loss
of mass m is converted to kinetic energy E according to Einstein’s equation

E = mc2, (1.2)

where c is the speed of light in vacuum (299 792 458 m/s) [1]. Since c is a
large number, even a small change of mass leads to a large amount of energy.
The energy release in chemical reactions is also due to this principle. However,
chemical reactions are associated with the rearrangement of bonds between
outer shell electrons and nuclei. These bonds are carried by the electromagnetic
force, which is significantly weaker than the strong nuclear force binding nuclei
[3]. Therefore, a smaller change in binding energy in chemical reactions leads
to a smaller change in mass and energy in (1.2). As an illustrative example, a
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4 CHAPTER 1. INTRODUCTION

kilogram of fusion fuel can yield nearly four million times more energy compared
to the combustion of a kilogram of coal or oil [4].

Nuclear reactions are based on probability rooted in quantum theory [2],
which means that we can never be certain if two individual nuclei will fuse.
However, when considering a macroscopic scale involving numerous nuclei,
the cumulative probability manifests itself in an observable reaction rate [3].
Fundamentally, the probability of a fusion reaction occurring is increased when
two nuclei are in a close proximity for an extended duration. Nevertheless, two
positively charged nuclei repel each other according to the Coulomb repulsion
[5], and to overcome this barrier, the nuclei must have sufficient kinetic energy.
However, too high kinetic energy will also lower the probability of a fusion
reaction occurring [3], since the nuclei will pass each other more rapidly, which
reduces the time that the nuclei are in a close proximity.

On a macroscopic scale, temperature acts as a measurable quantity for
the average kinetic energy of the particles in a system [6]. Therefore, there
is an optimal temperature that maximizes the rate of fusion reactions. Due
to properties derived from quantum theory, the optimal temperature varies
between different pairs of nuclei [3]. This is illustrated in Figure 1.1, where the
cross-section σ [3], which is proportional to the reaction probability, is plotted
as a function of temperature for different fusion reactions. It is also shown how
much energy is converted to kinetic energy in each reaction in mega electron
volts (MeV).

It is however not only the temperature that affects the rate of fusion
reactions in a system. The density plays a vital part since a more densely
populated volume means that a nucleus will cross paths with more nuclei along
its trajectory, which increases the probability of a reaction.

In the sun, and other stars, the tremendous gravitational pull leads to
sufficiently high temperatures and densities in the core to enable fusion, which
powers our solar system and illuminates the universe. At these high energy
conditions, atoms are in a plasma state, where electrons have been stripped
from their nuclei, resulting in a mixture of positively charged ions and free
negatively charged electrons. On Earth, it is unrealistic to use gravity to confine
particles and achieve fusion. Therefore, we need to find other ways if we wish
to exploit this feature of nature in a controlled manner.

1.1.1 Fusion on Earth

The two main branches of fusion power on Earth are magnetic confinement
fusion (MCF) [4] and inertial confinement fusion (ICF) [8]. In MCF, the
confinement is achieved by utilizing magnetic fields that pass through a chamber,
leveraging the principles of the Lorentz force [5], which dictates that charged
particles are confined in a gyrating motion along the magnetic field lines. As
in the sun, the particles in a MCF device are heated to a plasma state to
enable the conditions for fusion. This technology has been developed since the
1950s, including configurations such as the mirror machine, the tokamak, and
the stellarator. As of today, the two latter are the leading candidates. For
example, ITER [9] is currently under construction as the largest tokamak to



1.1. FUSION 5

106 107 108 109 1010

T [Kelvin]

10 32

10 31

10 30

10 29

10 28

10 27

[m
2 ]

D + T  He4 + n + 17.58 MeV
D + D  T + H + 4.05 MeV
D + D  He3 + H + 3.27 MeV

Figure 1.1: The cross section σ of different reactions, which is related to fusion
rate, or reaction probability, versus temperature. To achieve a significant rate,
temperatures exceeding tens of millions of degrees Kelvin are necessary. The
DT reaction provides two advantages compared to the DD reaction as its
cross-section peaks at a lower temperature, which would be easier to achieve
on Earth, and more energy is converted per reaction. Additionally, out of the
two DD reactions, the graph indicates that if a DD reaction occurs, there is
approximately a 50% chance to produce a T nucleus, and approximately a 50%
chance to produce a He3 nucleus. Here, H refers to a hydrogen nucleus without
neutrons, which is simply a proton. It is noteworthy to mention that there are
other possible reactions for fusion. The reactions shown here are the ones that
require the least amount of energy. The data in this graph was gathered from
the International Atomic Energy Agency (IAEA) Nuclear Data Section [7].

date in Cadarache, France. This project is a collaborative effort involving the
European Union, the United States, China, the Russian Federation, Japan,
South Korea, India. As all of the work presented in this thesis is related to the
tokamak, no further description of mirror machines and stellarators is presented
in the context of MCF in this thesis. More information about these concepts
can be found in [4].

In ICF, a pellet containing the fusion fuel is placed in a chamber. The
pellet is compressed and heated by external laser beams to provide sufficient
conditions for fusion. This technology has been developed since the 1970s, and
the largest operational ICF experiment to date is the National Ignition Facility
(NIF) [10] in the United States.

Both of these technologies are still at the experimental stage, and several
challenges must be solved before fusion power can provide more electricity
to the grid compared to the electricity needed to operate the devices. An
important aspect of this research is performing simulations, such as those for
the plasma in a MCF device. Simulations play a crucial role in minimizing the
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overall cost and time of fusion research, and there is a need to explore innovative
approaches that enhance the speed and accuracy of these simulations.

Both MCF and ICF are expected to use deuterium and tritium as the main
fuel in a commercial power plant [4], [10]. This is due to accessibility and
reaction properties compared to other possible fusion reactions. Deuterium [11]
is not radioactive, and easily accessible and abundant since it can be extracted
from water. For instance, relying solely on deuterium-deuterium (DD) fusion
reactions to meet the current annual energy demand could potentially provide
a supply lasting for billions of years [11]. Tritium however, is radioactive with a
half-life of 12.32 years. For this reason, it is not abundant in nature, although it
can be produced by irradiation of lithium (Li) with fast neutrons [4]. Lithium
is a relatively abundant element in the Earth’s crust, but as the demand
for lithium for use in batteries for electric vehicles and portable electronics
continues to rise, efforts to explore and develop new lithium deposits are also
ongoing [12]. In principle, it is possible to only use deuterium as the fuel for
fusion, which is a long-term goal. However as illustrated in Figure 1.1, this
puts a higher demand on the technology to achieve appropriate conditions for
fusion. Nevertheless, Figure 1.1 also illustrates a 50% probability of generating
a tritium nucleus in a DD reaction. This tritium nucleus can later fuse with
deuterium nuclei which increases the efficiency compered to if only DD reactions
occur. The enhanced efficiency is however dependent on the burn-up fraction,
which is the percentage of fuel that undergoes fusion. In tokamaks, this is
usually a few percent [13], and a key challenge for future machines is to increase
this rate.

1.1.2 Potential benefits with fusion

The process of fusion as an energy source is intrinsically environmental friendly
and sustainable, since no greenhouse gasses are produced in the reaction, and
the fuel is accessible as discussed in the previous subsection. This of course
assumes environmental friendly transport of fuel and construction of facilities.
Nevertheless, since each fusion reaction converts significantly more energy
than chemical reactions in coal, oil, and biogas facilities, less fuel needs to be
transported for the same amount of converted energy.

A fusion reactor will produce some radioactive byproducts through neut-
ron activation of reactor materials, although the hazard differs significantly
compared to fission facilities. The most common fission fuels, uranium-235
and plutonium-239, produce highly radioactive products that remain hazard-
ous for thousands of years, which is not the case for fusion [1], [11]. Future
fusion reactor designs will include a lithium based blanket for tritium breeding
in the reactor chamber [4], which eliminates the need to transport or store
any radioactive material. The risk of a nuclear meltdown, for instance due
to a natural disaster, is also not a concern in fusion since fusion reactions
are highly dependent on specific conditions that are challenging to maintain
consistently. In practice, any major disturbance will immediately terminate
the process in relevant designs [4]. At any given time, a reactor contains only
a minimal quantity of active materials, such as tritium, ensuring that any
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potential environmental impact remains localized to the reactor.

Fusion, much like fission and combustion, holds the advantage of not being
contingent on specific weather conditions or location for its operation—unlike
solar, wind, and hydropower. It is however crucial to emphasize that the goal
of fusion is not necessarily to replace other renewables like solar and wind
power. Instead, fusion aims to complement existing sustainable energy efforts
to contribute to a more diverse and resilient energy landscape.

1.2 Machine learning

On another scientific front, machine learning and AI are advancing with a
tremendous momentum. From pioneering handwritten digit recognition in the
1990s [14], [15] to surpassing the world champion in Go during the 2010s [16]
and creating imaginative images and texts with models like ChatGPT in the
2020s [17], [18], AI researchers have achieved remarkable milestones. Although
AI is often mentioned in the context of these popular applications, it has also
proven to assist in other research disciplines, such as detection of diseases [19],
[20], environmental modelling [21], [22], but also fusion [23], [24].

AI and machine learning are terms that often are used to describe the same
thing. However, machine learning is a subset of AI that involves the development
of algorithms that allow systems to learn from data, identify patterns, and
make decisions or predictions without being explicitly programmed for each
scenario. A neural network is an example of a machine learning model which
we will explore in detail in Chapter 4.

However, there are not only benefits associated with the development of ma-
chine learning algorithms. As with many inventions and technologies, machine
learning can be utilized in harmful and unethical ways, and can potentially
pose a threat to human civilisation as we know it. Most machine learning
models also pose challenges in terms of interpretability, lacking transparency
in explaining the rationale behind a decision or prediction, which is a topic
that is becoming more relevant as AI technology progresses [25], [26]. Nev-
ertheless, there is a big difference in the ethical risk between, for instance,
making AI-based judgements in court, and assisting in the development of a
clean energy source. There is also a big difference between the current models
and Artificial General Intelligence (AGI), which is a hypothetical system with
general cognitive abilities comparable to those of humans, which is one of the
main concerns related to the future of AI [27].

In essence, the application of current machine learning algorithms in fusion
present minimal risks in relation to the primary concerns associated with
artificial intelligence [28]. While interpretability remains a challenge, it is
noteworthy that models lacking complete transparency can still offer valuable
applications.
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1.3 Objectives of thesis

This thesis delves into the applications of machine learning in the field of fusion.
Specifically, the goal is to examine various applications related to a specific
region in the plasma in a tokamak referred to as the pedestal. The appended
papers encompasses ways in which machine learning applications related to the
pedestal can accelerate simulations and contribute to the analysis of reactor
diagnostics.

In the next chapter, an overview of the theoretical descriptions of plasmas is
presented. Chapter 3 delves into the key aspects of the tokamak that hold the
most relevance to the context of the scientific papers appended in this thesis.
In the end of Chapter 3, an introduction of the pedestal is outlined. Moving
to Chapter 4, the fundamentals of machine learning are presented. Chapter 5
summarizes the appended papers, and finally in Chapter 6, avenues for future
research are discussed.



Chapter 2

An overview of plasma
physics

As mentioned in the introduction, to create conditions suitable for fusion,
it is necessary to heat the particles enough, resulting in the formation of
a plasma. Therefore, almost all aspects of fusion research, in particular for
magnetic confinement fusion, are related to how plasma behaves for the relevant
conditions. In this section, an overview of plasma physics based on the contents
in [4] is presented.

2.1 Definition of a plasma

A simple description of a plasma is that, due to high energy in a system of
particles, the electrons are no longer bounded to the nuclei, which results in
a collection of free electrons and ions. A more thorough definition is that
plasma is a quasi-neutral gas consisting of charged and neutral particles that
show collective behaviour. Quasi-neutrality means that the plasma is neutral
in charge on a macroscopic scale but occasionally deviate from neutrality on
the microscopic level. However, while these microscopic deviations produce
electrical fields that operate on a relatively small spatial scale, they remain
long-range compared to the collisional forces between two neutral particles in a
conventional gas. Therefore, in contrast to pair-wise collisions in a conventional
gas, a particle in a plasma interacts with many particles simultaneously, hence
the term ’collective behaviour’.

One of the main properties of a plasma is the ability to quickly screen out
changes in electric potential, which is why deviations in quasi-neutrality occur
on a microscopic scale. For instance, if a positive charge q was to be placed in
an otherwise neutral plasma, electrons will rapidly move towards the charge,
since they are much lighter than ions and can accelerate faster. They will then
arrange such that outside a sphere with the charge q in the center, which is
called the Debye sphere, the influence from the charge q becomes negligible.
For fusion plasmas, the radius of this sphere, which is called the Debye length

9
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λD, is on the order of 7× 10−6 m. The calculation of the Debye length is based
on the assumption that the electron density follows a Boltzmann distribution
with respect to the electric potential. Since this is a statistical assumption,
the number of particles in the Debye sphere must be large for the assumption
to hold. In a bigger picture, since the screening ability is a key property of a
plasma, we can now formulate conditions for the plasma definition to hold

• The macroscopic spatial dimension of the plasma must be much larger
than the Debye-sphere.

• The particle density must be sufficiently high such that many particles
populate the Debye sphere.

• Additionally, the frequency of collisions between plasma particles and
neutral particles cannot be too high, such that it disrupts the plasma
dynamics governed by the electromagnetic force.

2.2 Theoretical descriptions of plasmas

Although the fusion process itself is a quantum mechanical phenomenon, plasma
physics is governed by classical mechanics. In principle, a plasma can be
accurately described with the equation of motion for each individual particle
in the plasma, together with a self-consistent set of Maxwell’s equations for
the electromagnetic fields. In practice however, finding a solution to this is
not possible, even with supercomputers, due to the large number of particles
and the inherent complexity. Additionally, the inability to determine the
initial conditions for every individual particle further complicates the challenge.
This has led to the development of different statistical approaches to describe
a plasma, for which we will summarize in the following sections. However,
we will start by considering the motion of charged particles in electric and
magnetic fields, that are assumed to be known, since this can provide valuable
information in addition to the approaches we will discuss later.

2.2.1 Particle motion in electric and magnetic fields

Consider a particle with the charge q in an electric field E⃗ and a magnetic field
B⃗. The acceleration a⃗ of the particle is governed by the Lorentz force

ma⃗ = F⃗ = q(E⃗ + v⃗ × B⃗), (2.1)

where m is the mass of the particle, and where v⃗ is the velocity of the particle.
Now assume a scenario where E⃗ = 0 such that

a⃗ =
q

m
(v⃗ × B⃗). (2.2)

If B⃗ is uniform and constant, then the solution to (2.2) is a combination of a
circular particle motion, which is referred to as the gyro-motion, perpendicular
to B⃗, and a constant velocity parallel to B⃗. This is illustrated in Figure 2.1,
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where the center of the gyro-motion is referred to as the guiding center, or the
gyro-center.

XY

Z

Particle motion
Guiding center
Magnetic field

Figure 2.1: The motion of a charged particle in a uniform magnetic field
(arrows). X, Y and Z represent spatial coordinates. The particle follows a
circular motion around and along the guiding center, which is in the same
direction as the magnetic field (Y-direction). Therefore, the particle is confined
to gyrate around the field lines.

The solution of (2.2) also provides the gyro-radius, which is called the
Larmor radius

rL =
mv⊥

|q||B⃗|
, (2.3)

where v⊥ is the perpendicular velocity of the particle with respect to B⃗. Equa-
tion (2.3) indicates that ions have a larger Larmor radius compared to electrons
since their mass is larger. The gyro-frequency ω, in units radians/seconds, can
also be obtained through

ω =
v⊥
rL

=
|q||B⃗|
m

. (2.4)

Now consider a scenario where we add an arbitrary force F⃗ to the equation of
motion (2.2), such that
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a⃗ =
q

m
(v⃗ × B⃗) +

F⃗

m
. (2.5)

If F⃗ has a parallel component with respect to B⃗, this will lead to acceleration
of the particle along the magnetic field lines. The orthogonal component of
the force F⃗⊥ will lead to a drift away from the magnetic field lines, where
this particle drift is orthogonal to both F⃗⊥ and B⃗. This can be derived by
introducing a constant drift velocity v⃗D such that

v⃗⊥ = v⃗D + u⃗. (2.6)

By inserting (2.6) into the orthogonal part of (2.5), the solution will show that
u⃗ represents the gyro-motion, or Larmor motion, and that

v⃗D =
1

q

F⃗⊥ × B⃗

B2
. (2.7)

For instance, an electrical field E⃗ orthogonal to B⃗ will generate a force F⃗ = qE⃗,
which will lead to the drift

v⃗D =
E⃗ × B⃗

B2
= v⃗E×B . (2.8)

Note that this E⃗ × B⃗ drift is independent of mass and charge, which means
that ions and electrons will drift in the same direction with the same velocity.
The E⃗ × B⃗ drift is illustrated in Figure 2.2.

The E⃗ × B⃗ drift is not the only possible drift. By replacing the arbitrary
force F⃗ in (2.5) with, for instance, the centripetal force in a curved magnetic
field, we obtain the curvature drift

v⃗c =
mv2∥
qB2

R⃗c × B⃗

R2
c

, (2.9)

where v∥ is the particle velocity parallel to the magnetic field, and where R⃗c

is the curvature radius vector. Additionally, a curved magnetic field will not
satisfy Maxwell’s equations if B⃗ is homogeneous, which implies that there is a
nonzero gradient ∇B. Therefore, over the course of one gyration, a simplified
description is that the particle will experience a stronger magnetic field for
one half of the gyration compared to the other half of the gyration. Since the
strength of the magnetic field affects the Larmor radius (2.3), the radius of one
half of the gyration will be smaller compared to the other half of the gyration,
which unfolds as a drift. This drift, which is called the ∇B drift, or grad B
drift, is illustrated in Figure 2.3.

A derivation of the ∇B drift, which is more complicated compared to the
other mentioned drifts, can be found in [4], which yields the result

v⃗∇B =
µ

q

B⃗ ×∇B
B2

, (2.10)
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XY

Z

Particle motion
Guiding center
Magnetic field
Electric field

Figure 2.2: The motion of a charged particle in an uniform magnetic field
(green arrows in Y-direction) and an uniform electric field (magenta arrows in
X-direction) orthogonal to the magnetic field. The particle follows a circular
motion, but in contrast to the case illustrated in Figure 2.1, the guiding center,
which travels in the Y-direction, now also drifts in an orthogonal direction
(Z-direction) compared to both the electric field and the magnetic field as a

consequence of the E⃗ × B⃗ drift.

where µ is the magnetic moment of the charged particle

µ =
mv2⊥
2|B⃗|

, (2.11)

which is a conserved quantity. In summary, understanding these drifts is
essential for magnetic confinement fusion, which we will further explore in the
chapter about tokamaks.

2.2.2 Kinetic description of plasmas

We will now look at statistical approaches to describe a plasma instead of
describing the exact position and velocity of every single particle. In the
kinetic description, this is done by defining a distribution function f(r⃗, v⃗, t)
that describes the probability of finding a particle at the position (r⃗) with
the velocity (v⃗) at some time t. For instance, particle density in real space
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X

Y

Particle drift 

grad B

Particle motion
Magnetic Field Vector

Figure 2.3: Illustration of the grad B drift. The magnetic field lines that are
orthogonal to the XY-plane, illustrated by crosses, are closer to each other in
the upper part of the figure to illustrate that the magnetic field is stronger
for higher Y. This leads to a larger Larmor radius for lower Y according to
(2.3), resulting in a drift in the X-direction. The direction of the particle drift
depends on the sign of the charge of the particle, as indicated by (2.10), which
means that ions and electrons drift in opposite directions for this drift.

n(r⃗, t), which is a measurable quantity, can be obtained by integrating f over
the velocity space

n(r⃗, t) =

∫
d3vf(r⃗, v⃗, t). (2.12)

Similarly, the mean velocity of the particles u⃗(r⃗, t) can be defined as

u⃗(r⃗, t) =
1

n

∫
d3vv⃗f(r⃗, v⃗, t). (2.13)

Both n and u⃗ are called velocity moments of f , where n is the zeroth-order
moment (f is multiplied with 1, and where u⃗ is a first-order moment (f is
multiplied with v⃗1). Similarly to the equation of motion for individual particles,
the kinetic equation determines the distribution function f . A derivation if the
kinetic equation can be seen in [4]. If collisions between particles are neglected,
the kinetic equation is described by the Vlasov equation

∂f

∂t
+ v⃗ · ∂f

∂r⃗
+

q

m
(E⃗ + v⃗ × B⃗) · ∂f

∂v⃗
= 0, (2.14)

which applies separately for different species of particles. Here, the acceleration
a⃗ of the particles have been assumed to only be dependent on the Lorentz force.
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To include collisional effects, a collision operator is added to the right-hand-side
of (2.14), which yields the Boltzmann equation

∂f

∂t
+ v⃗ · ∂f

∂r⃗
+ a⃗ · ∂f

∂v⃗
= (

∂f

∂t
)c. (2.15)

The collision operator describes how f changes due to collisions, and there
is no exact version of it. In summary, the research related to kinetic theory
in a plasma is related to modelling the Vlasov and Boltzmann equation with
different collision operators, and solving them with numerical methods to
obtain f , which then can be used to quantify measurable quantities such as
the particle density. Kinetic models are the highest fidelity programming codes
that can be implemented in practice to make predictions of the plasma in
a reactor. However, due to the high dimensionality of the theory, they are
generally computationally heavy, since both the velocity space and real space
need to be solved for.

2.2.3 Two-fluid theory

One approach to reduce the dimensionality of kinetic theory is to treat the
plasma as a composite of fluids. Instead of solving equations for the distribu-
tion function f as in the previous case, fluid theory strives to solve for the
macroscopic quantities directly, such as the particle density n (2.12) and mean
velocity u⃗ (2.13). Therefore, it is not necessary to solve for the velocity space,
which reduces the dimensionality by 3.

As mentioned previously, the macroscopic quantities are related to moments
of the distribution function, and a moment ⟨ψ⟩ is defined as the velocity average
of the function ψ(v⃗)

⟨ψ⟩ = 1

n

∫
d3vψ(v⃗)f, (2.16)

where the zeroth-order moment is obtained by setting ψ = 1, and where
the first-order and second-order moments correspond to ψ = v⃗ and ψ = v⃗v⃗
respectively. The general moment equation is obtained by integrating the
Boltzmann equation from kinetic theory with respect to velocity, which yields

∂

∂t
(n⟨ψ⟩) +∇ · (n⟨v⃗ψ⟩)− nq

m

〈
(E⃗ + v⃗ × B⃗) · ∂ψ

∂v⃗

〉
=

∂

∂t
(n⟨ψ⟩)c. (2.17)

For instance, the zeroth order (ψ = 1) moment equation is the continuity
equation [4]

∂n

∂t
+∇ · (nu⃗) = 0, (2.18)

which includes the particle density n and the mean velocity u⃗. Other macro-
scopic quantities, such as kinetic pressure (temperature) and heat flux, can be
obtained through higher order moment equations. However, a challenge with
solving moment equations is that each equation includes the next higher-order
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moment, which can be seen in the second term in both (2.17) and (2.18). For
instance, the continuity equation, which is the zeroth-order moment equation,
includes the mean velocity u⃗, which is a first-order moment. This creates an
infinite chain of dependent equations, which must be broken through assump-
tions and approximations, such that at some point a moment equation is not
dependent on the next-order moment. Such approximations are referred to
as moment closure since they lead to a finite set of equations to solve. It is
also important to note that each particle species has their own set of moment
equations since they are treated as separate fluids.

Similarly to the kinetic theory case, researchers model plasmas on computers
with fluid theory and experiment with different closures and numerical methods
to solve the moment equations. Fluid theory is not of equally high fidelity
compared to kinetic theory, since it introduces more assumptions. However, it
is less computationally expensive due to the dimensionality reduction.

2.2.4 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a theoretical description that modifies fluid
theory such that the plasma can be treated as one fluid. For instance, the
plasma can be characterized by parameters like the mass density ρm and the
centre-of-mass velocity V⃗ , which are defined as

ρm :=
∑

α

nαmα, (2.19)

V⃗ :=
1

ρm

∑

α

nαmαu⃗α, (2.20)

where the summation over α refers to the sum over the different particle species,
and where u⃗α again is the mean velocity, in this case for species α. The MHD
equations can be obtained by adjusting the moment equations from two-fluid
theory according to these new MHD parameters. For instance, the first MHD
equation can be derived by multiplying the continuity equation with the mass,
and by adding the equations for the different species

∂ρm
∂t

+∇ · (ρmV⃗ ) = 0, (2.21)

which reflects the conservation of mass. Other MHD equations can be obtained
by modifying higher order moment equations with MHD parameters and
combining them with Maxwell’s laws. Inherently, the equations in a specific
MHD model depend on the closure that is used in the two-fluid model that
the MHD model is based on. Moreover, two distinct formulations of MHD
exist: ideal MHD and resistive MHD. The former treats the plasma as a perfect
conductor, while the latter accounts for resistive effects, which affects the MHD
equations.

As with the previous cases, MHD equations can be solved with numerical
methods for different scenarios. These models are generally computationally
cheaper compared to their two-fluid model counterparts, since fewer parameters
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are needed to be solved for. Additionally, resistive MHD models are generally
more computationally expensive compared to their ideal MHD model counter-
parts, due to added complexity in the equations. Of course, the computational
requirements of models vary based on several factors. For example, a ’linear’
fluid model may entail lower computational costs compared to a ’nonlinear’
MHD model. In other words, the general statements about computational
demand are not universally applicable to all scenarios. In the next section, we
will explore what is meant by a linear model and a nonlinear model.

2.3 Perturbations, linear models, nonlinear mod-
els, and plasma instabilities

The theoretical descriptions of plasmas discussed so far can be used, for instance,
to calculate the steady state of a plasma. In practice, this means setting
∂/∂t = 0 in the equations employed to characterize the plasma. However,
small perturbations from the steady state can lead to waves and instabilities.
These can be simulated by introducing perturbations in the plasma parameters
when solving a chosen set of plasma equations numerically. Another approach
is to analyse the effect of perturbations analytically. For instance, a plasma
parameter X⃗ can be expanded by assuming that it is a sum of the steady
state/background solution X⃗0 and a series of perturbations such that

X⃗ = X⃗0 + ϵX⃗1 + ϵ2X⃗2 + · · · , (2.22)

where ϵ is a small parameter. Let us now consider the continuity equation
(2.18) and insert (2.22) with first order perturbations (only X⃗0 and X⃗1), such
that the continuity equation becomes

∂n0
∂t

+ ϵ
∂n1
∂t

+∇ · (n0u⃗0 + ϵn0u⃗1 + ϵn1u⃗0 + ϵ2n1u⃗1) = 0. (2.23)

Here, the terms that are not multiplied with ϵ represent the steady state
solution. We now wish to solve the ϵ1 equation, where we discard higher order
ϵ-terms. We also use that u⃗0 = 0 since the average velocity vector of the
particles is zero in steady state. This gives the result

∂n1
∂t

+∇ · (n0u⃗1) = 0, (2.24)

where we see that the perturbations of the first order, n1 and u⃗1, have been
linearized due to the exclusion of higher order ϵ-terms. Let us now, for
example, look at monochromatic wave solutions of n1 and u⃗1 such that X⃗1 ∼
exp[i(k⃗ · r⃗ − ωt)], where ω is the angular frequency of the wave, and where k⃗

is the wave vector. We may then use that ∇ ∼ ik⃗ and ∂/∂t ∼ −iω, such that
(2.24) becomes

−iωn1 + in0k⃗ · u⃗1 = 0, (2.25)
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which is called a dispersion relation. The same principle is applied to all
equations in a coupled system, which leads to a set of linear equations that can
be solved analytically or numerically. Specifically, we can solve for relations
between ω and k⃗ that provide non-trivial solutions to X⃗1. In other words, we
seek to find the eigenvalues

ω(k⃗) = ωr(k⃗) + iγ(k⃗). (2.26)

The real part of ω is called the real frequency ωr and the imaginary part of ω
is called the growth rate γ. If γ is negative, the amplitude of the perturbation
we assumed to be a wave attenuate, and if γ is positive, the amplitude of the
wave grows over time. The latter case can be problematic as it may lead to
growing instabilities in the plasma that are detrimental for the confinement.
Therefore, researchers perform simulations of equations with perturbations to
find the growth rate of instabilities as a function of the spatial scale dictated
by k⃗ for different cases.

The difference between linear models and nonlinear models is that nonlinear
terms, such as the ϵ2-term in (2.24), are neglected in linear models. This
works well when the associated perturbations are small. However, if there is
a positive growth rate, the perturbation will eventually become large enough
such that nonlinear terms can no longer be neglected. In reality this will lead
to a saturation of the the amplitude of the perturbations. Nonlinear models
are thus more accurate for such cases, but also more costly to solve numerically
since the equations can no longer be solved using linear algebra.

2.4 Gyro-average models

As discussed in Section 2.2.1, a charged particle gyrates along a guiding center
in the presence of a magnetic field. The gyro motion, dictated by the gyro
frequency (2.4) and Larmor radius (2.3), occur on a much shorter timescale
and spatial scale compared to other dynamics in the plasma for reactor relevant
conditions. By gyro-averaging, a model can capture the average behavior of
particles, which is of higher interest compared to the detailed gyro motion,
while significantly reducing the computational complexity. This is commonly
utilized in kinetic theory, and it can be used in the derivation of fluid equations.

2.5 Collisions

The concluding topic in this brief plasma overview is a description of collisions.
As mentioned in the beginning of this chapter, charged particles in a plasma
do not collide in a pair-wise manner as in a gas. They are rather deflected
by the combined interaction with many particles due to the electromagnetic
force, which typically occur on a length scale similar to the Debye sphere,
since electric fields are screened out outside this sphere. The collision time is
defined as the average time it takes for a particle to be deflected 90o, and it is
proportional to T 3/2, where T is temperature, which means that collisions in a
plasma occur less frequently at high temperatures.
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In a plasma where particles are confined to applied magnetic field lines,
collisions play a part in how energy and particles diffuse and are transported
perpendicularly to the field lines, which we will discuss more in the next chapter.
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Chapter 3

The tokamak

The tokamak [29] is the most developed reactor design for magnetic confinement
fusion research, and given that the work presented in this thesis is linked to this
reactor type, we will now delve into its key components and inherent features.
Additionally, since the work in this thesis is specifically linked to the Joint
European Torus (JET) tokamak in Culham, UK, most examples will be based
on this device.

3.1 Power plant concept

The goal of a future power plan based on the tokamak is to create plasma
conditions such that fusion reactions occur at a high rate, and to confine
those conditions for sufficiently long times. This is often expressed in terms
of obtaining a high engineering Q-value, which is the ratio between the total
electrical power output and the power required to operate the reactor. In the
fusion reactions, neutrons with high kinetic energy are produced. These escape
the plasma due to their charge neutrality, and pass through the plasma facing
wall. In a future power plant, the neutrons will be captured in the breeding
blanket and will simultaneously heat a coolant that will drive a turbine, which
in turn will generate electricity [29].

3.2 Plasma geometry

As discussed previously, the main concept of magnetic confinement is that
charged particles approximately follow the magnetic field lines if we do not
consider drifts, waves, and collisions. The idea of the tokamak is to create a
closed magnetic field geometry, such that charged particles in a plasma are
confined in a torus-like shape, which is also more informally referred to as a
donut shape. The geometry of a torus is illustrated in Figure 3.1.

Note that in Figure 3.1, the cross section of the torus is circular to simplify
the explanation of the coordinates. In real tokamaks, the shape of the cross

21
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Figure 3.1: The geometry of a torus, which is described by toroidal angle
Φ, poloidal angle θ, major radius R, and minor radius r. Here, x, y, and z
represent Cartesian spatial coordinates.

section of the plasma can be varied. Therefore, in this thesis the plasma
configuration is referred to as ’torus-like’.

Nevertheless, to obtain a torus-like shaped plasma, the first requirement is
a magnetic field in the toroidal direction BΦ. This can be achieved by placing
several toroidal field coils in a circle, as illustrated in Figure 3.2. In the JET
tokamak, a toroidal field on the order of BΦ = 3.5 T can be achieved, which is
approximately 100 000 times stronger than the magnetic field of Earth at the
equator [1].

As discussed in the previous chapter, curved magnetic field lines lead to a
nonzero magnetic field gradient, in this case in the R-direction in Figure 3.1.
This will lead to a ∇B drift of the particles in the z-direction. Specifically,
the toroidal field in a tokamak varies as BΦ ∝ 1/R. Since the ∇B drift moves
electrons and ions in opposite directions, this will lead to an electric field in the
z-direction, which in turn leads to an E⃗ × B⃗ drift in the R-direction. There are
also other drifts, such as the curvature drift, that negatively affects confinement
in this design. In other words, a tokamak with only a toroidal field cannot
confine particles well since they drift out from the center of the plasma.

To solve this issue, a poloidal magnetic field componentBθ can be introduced.
In this setup, particles do not only travel around the toroidal axis, but also
around the poloidal axis such that the resulting motion parallel to the field
lines has a helical pattern. For instance, if there is a drift in the z-direction
upwards in Figure 3.1, then for the upper half of the poloidal orbit, the particle
will drift away from the plasma (r increasing), and for the lower part of the
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Figure 3.2: An illustration of the toroidal field coils in a tokamak. By running
current through the coils, a toroidal magnetic field BΦ can be generated.

poloidal orbit, the particle will drift towards the plasma (r decreasing). In
total, the drift approximately cancels out over the course of one full poloidal
turn, which leads to improved confinement.

There are different alternatives for creating a poloidal magnetic field com-
ponent. In tokamaks, this is done by generating a plasma current IP in the
toroidal direction. For instance, one of the methods is to induce a toroidal
electric field, which drives a toroidal current, by gradually increasing a current
in a solenoid placed in the middle of the tokamak. Since the solenoid current
must keep increasing in order to uphold induction, there is an intrinsic limit for
how long a tokamak with induced plasma current can contain a plasma before
the solenoid current becomes too high. Therefore, tokamak operations that
rely only on an induced plasma current are run in pulses. There are however
other non-inductive mechanisms that can contribute to the plasma current,
such as the plasma self generating ’bootstrap current’ [4] and currents driven
by the heating systems which we explore later in this chapter. In Figure 3.3,
an illustration of the helical field lines and particle paths are shown, in this
case due to a plasma current.

Although a poloidal field is necessary for good confinement, it is important
to emphasise that the strength of the poloidal field should not be too high
in relation to the toroidal field, as this can lead to the growth of instabilities
[4], [29]. The safety factor q is used in tokamaks and other MCF devices to
monitor the relation between the poloidal field and the toroidal field
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Figure 3.3: A segment of a tokamak plasma (shown as a straight cylinder
although it is curved in a tokamak). A toroidal plasma current IP leads to a
poloidal magnetic field Bθ, which together with the toroidal field BΦ results in
helical fields lines. In this illustration, the Larmor motion of the particles are
not drawn.

q =
r ·BΦ

R ·Bθ
, (3.1)

where different conditions of q are important for different regions and instabil-
ities in the plasma.

3.3 Reactor chamber and gas fueling

A tokamak contains a plasma in a chamber. Much like the torus-shaped
plasma within a tokamak, the chamber itself adopts a toroidal structure. This
configuration is necessary to allocate space in the central region of the torus,
beyond the plasma-facing reactor wall. This designated space accommodates
the solenoid and segments of the toroidal field coils since these are situated
outside the chamber.

Prior to initiating a pulse, vacuum pumps are employed to evacuate the
chamber of gasses. Thereafter, gasses of the desired particle species are injected
to create the initial plasma. Additional gas can be injected periodically or
continuously to replenish the fuel lost during fusion reactions and due to
particle transport, which will be discussed later in this chapter. Injection of
gasses can also be used to intentionally cool the plasma. For instance, in
the case of disruptions [30], wherein the plasma loses its confinement and
stability, it is desirable to cool the plasma to mitigate potential heat damage
to the reactor components. Impurities, which are elements with higher atomic
numbers than the main fuel ions, can also be injected to the plasma for cooling
and stabilization purposes. A useful parameter for quantifying the ion species
content in the plasma is the effective atomic number
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Zeff =
∑

α

nα
ne
Z2
α, (3.2)

where nα and Zα are the number density and atomic number of the ion species
α respectively, and ne is the electron number density.

The choice of material for the plasma facing wall is also an important
consideration due to the extreme conditions inside the chamber, but also since
particles from the wall can contaminate the plasma, where the impact depends
on the particle species. In the JET tokamak, the wall consists of tungsten and
beryllium due to properties such as high melting points, heat conductivity, and
resistance to erosion. As mentioned in the introduction, future power plants
will also include a lithium blanket on the wall in the reactor chamber to enable
continuous breeding of tritium during a pulse.

In Figure 3.4, the reactor chamber of the JET tokamak is shown.

Figure 3.4: The inside of the reactor chamber of the Joint European Torus
(JET) tokamak at Culham, UK, with a superimposed image of the hot plasma
to the left; credit UKAEA; courtesy of EUROfusion.

3.4 Plasma heating

Optimally, in future power plants the high kinetic energy of the charged fusion
products will be sufficient to heat the plasma and trigger new fusion reactions
without external heating, resulting in ’ignition’ of a burning plasma. The
conditions needed to achieve ignition is dictated by the Lawson criterion [4],
which can be expressed as

nTτE ≥ 12

Ech

T 2

⟨σv⟩ , (3.3)

where n is the particle density, and where T is the temperature. τE is the
confinement time, which measures the rate at which the plasma loses energy.
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Ech is the average kinetic energy of the charged fusion products in a given
reaction, for instance, the He4-ions (α-particles) in D-T reactions. ⟨σv⟩ is the
velocity average of the product between the reaction cross section and the
particle velocity. The left-hand side of (3.3) is called the ’triple product’, which
fusion researchers strive to increase to achieve an efficient reactor.

Nevertheless, a burning plasma has not been achieved yet in magnetic
confinement fusion, and a reactor that operate below the Lawson criterion with
external heating can still be sufficiently efficient if it provides a high Q-value.
Additionally, external heating will still be necessary in any device for control
and for heating at the startup stage of a pulse.

3.4.1 Ohmic heating

When currents run through the plasma, heat is generated due to resistivity,
which is called ohmic heating. However, the plasma resistivity η is dependent on
the temperature as η ∝ T−3/2 [29], such that when the temperature increases,
the resistivity drops, reducing the effect of ohmic heating. This puts an upper
bound on the temperature that can be achieved with ohmic heating alone,
and this temperature is not high enough for a sufficiently high rate of fusion
reactions. Nevertheless, ohmic heating is a useful heating mechanism, especially,
in the initial stages of a pulse.

3.4.2 Neutral beam injection (NBI)

One of the external heating systems in a tokamak is the Neutral Beam Injection
(NBI) system. The concept of NBI is that fast neutral particles are shot into
the plasma and ionized through collisions with plasma particles. The injected
particles need to be neutral to not be shielded by the magnetic field lines in
the tokamak before reaching the plasma. An important aspect of NBI heating,
which needs careful consideration, is where the beam deposits its energy in the
plasma. For instance, too low energy will lead to collisions and energy deposits
only at the plasma edge, and too high energetic beams will shine through the
plasma and hit, and potentially damage, the reactor walls [29].

If a NBI source is not aimed towards the center of the tokamak, but rather
along the toroidal axis, it can generate a toroidal plasma rotation. Additionally,
when the fast neutral particles are ionized, the ions from the neutral beam have
higher momentum in the toroidal direction compared to the electrons from the
neutral beam due to their larger mass. This contributes to the plasma current
since the electrons will lose their toroidal velocity more rapidly.

In JET, the NBI system can shoot fast beams into the plasma up to a
power of approximately 34 MW [31].

3.4.3 Radio frequency (RF) heating

The other main external heating method used in tokamaks is the application of
Radio Frequency (RF) waves. It is based on launching electromagnetic waves
into the plasma, which are tuned to be effectively absorbed by a resonance
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mechanism associated with the motion of the plasma particles. Collisional
absorption also occurs to some extent, but tends to be weak in a hot fusion
plasma since it scales like T−3/2). The two principal resonance mechanisms are
cyclotron absorption and Landau damping [4]. In the former the wave frequency
is tuned to resonate with the cyclotron motion of one or several particle species
in the plasma, while Landau damping occurs for particles travelling with a
parallel velocity matching the parallel phase velocity of the waves. In fact,
the two most important heating methods employed in tokamaks today are ion
cyclotron resonance heating (ICRH) and electron cyclotron resonance heating
(ECRH) [29]. Because the magnetic field in a tokamak varies roughly as 1/R,
and the cyclotron frequency is proportional to the magnetic field, resonant
interaction occurs around a major radius where the wave frequency matches
the fundamental cyclotron frequency of a species or a harmonic of it. This
allows one, at least to some extent, to tailor where the power is absorbed
in the plasma. Schemes based Landau damping are used for current drive
applications, e.g. Lower Hybrid Current Drive (LHCD) and Fast Wave Current
Drive (FWCD) [32].

3.5 Plasma diagnostics

Diagnostic tools play a crucial role in tokamak research by facilitating measure-
ments and analysis of the plasma. In this thesis, we focus on the two diagnostics
that are the most relevant in the appended papers.

3.5.1 High resolution thomson scattering (HRTS)

In this technique, laser beams are directed into the plasma, where electrons
scatter the light, causing a frequency shift. This shift is directly linked to
the temperature of the electrons. The intensity of the scattered light yields
information about the electron density. Consequently, through detailed ana-
lysis of the scattered light’s spectrum, researchers can pinpoint the electron
temperature and density at the specific location where scattering occurs. ’High
resolution’ refers to the spatial accuracy of the diagnostics, reaching an order
of 1 cm at JET [33], [34], which is relatively accurate considering that JET has
a minor radius of 1.25 m. However, one drawback of HRTS is the relatively
low sampling rate of approximately 20 Hz at JET, which makes it difficult to
study phenomena that occur on faster timescales.

3.5.2 Reflectometry

This method similarly relies on the interaction of light with the electrons in a
plasma. However, in contrast to HRTS, where the frequency is in the visible
light / near-infrared range, reflectometry systems [35] send out microwaves
with lower frequencies. The frequency of a wave dictates at which electron
density it will be reflected, and the total travel time of a microwave can reveal
the position of a specific density. In other words, reflectometry is therefore
another method to obtain the spatial distribution of the electron density in the
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plasma. The reflectometry system at JET [35], which is referred to as KG10,
can provide the spatial distribution of the electron density at a rate up to 10
kHz, which greatly exceeds the sampling rate of HRTS. However, reflectometry
is also associated with uncertainties that occasionally propagate to large errors
during the data processing to obtain the density distribution.

3.6 Plasma profiles

3.6.1 Two-dimensional profiles

To study tokamak diagnostics, such as the spatial distribution of the plasma
temperature and density, obtaining a detailed interpretation from the complete
three-dimensional representation of the toroidal geometry may prove overly
comprehensive. Fortunately, due to the toroidal symmetry in a tokamak, we
can instead study the two-dimensional (2D) cross section of the plasma.

One can for instance study the 2D projection of ’flux surfaces’ [4], [29],
which are surfaces where the magnetic flux remains constant. An illustration
of flux surfaces is shown in Figure 3.5. Here, the field lines are arranged such
that the flux surfaces are closed in the core, but open in the outer edge of the
plasma. It may seem counter-intuitive to generate open flux surfaces such that
particles can escape the plasma and hit ’divertor plates’. However this allows
for controlled exhaust of particles and energy, which is important both for
maintaining the desired conditions in the plasma, as well as for reducing the
damage of other plasma facing components. The divertor plates are specifically
designed to handle larger heat loads compared to other components. The
contour where the flux surfaces go from closed to open is referred to as the
Last Closed Flux Surface (LCFS), or the separatrix, and the region outside
the LCFS with open flux surfaces is referred to as the Scrape-Off layer (SOL).

As illustrated in Figure 3.5, the plasma does not have to be perfectly circular.
In this case, the plasma height b is larger than the minor radius a, which leads
to an elongated plasma, where plasma elongation is defined as

κ =
b

a
. (3.4)

The plasma shape is also characterized by triangularity. For instance, the upper
triangularity δup is defined as

δup =
Rgeo −Rupper

a
, (3.5)

where Rupper is the major radius at the highest vertical point of the LCFS.
Rgeo is the major radius at the geometric axis, which is defined as

Rgeo =
Rmax +Rmin

2
, (3.6)

where Rmax and Rmin correspond to the maximum and minimum major radius
of the LCFS. In the example illustrated in Figure 3.5, the upper triangularity
is 0 since Rgeo ≈ Rupper. A triangulated plasma at JET is more D-shaped
compared to the elongated cylinder in Figure 3.5.
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Figure 3.5: Illustration of the flux surfaces in a 2D cross section of a tokamak
plasma. In the core of the plasma, the surfaces are closed. At the edge of the
plasma, the field lines are configured such that the flux surfaces are open. This
allows particles to be exhausted to divertor plates. The parameters a and b
represent the minor radius and height of the plasma respectively. Z and R are
the same spatial coordinates as in Figure 3.1.

3.6.2 One-dimensional profiles

Due to the fast motion of particles along the field lines in a tokamak, and due to
derivations in MHD, many properties in a plasma are approximately constant
on the flux surfaces described in the previous section [4], [29]. Therefore, it is
often sufficient to further simplify the analysis to one spatial dimension (1D)
by looking at flux surface averages. For instance, Figure 3.6 illustrates the 1D
profile of the flux surface average electron temperature Te. In such profiles, it
is common to have a flux label ψ on the x-axis, and it is normalized to be 1 at
the LCFS / separatrix. A simplified description of ψ is that it acts as a proxy
for how far we are away from the center of the plasma.

It is common to study different quantities in such 1D profiles, such as the
safety factor q, ion temperature Ti, electron and ion density ne and ni, current
density j, electron and ion pressure pe and pi, and also the ratio of the plasma
pressure to the magnetic pressure, which is defined as

β =
p

B2/2µ0
, (3.7)

where µ0 is the magnetic permeability in vacuum. β is an important parameter
for both stability and confinement, and it is also often expressed in terms of its



30 CHAPTER 3. THE TOKAMAK

Figure 3.6: An illustration of an 1D flux surface average electron temperature
profile. Here, the temperature Te is drawn to be highest in the core of the
plasma, and it decreases towards the SOL region. The flux label ψ indicates
how far out we are in the plasma.

normalized version

βN = β
aBT

Ip
. (3.8)

In simulations, it is often of interest to find steady state solutions, or the
evolution of 1D profiles since their characteristics reveal dynamics of the
plasma.

3.7 Heat and particle transport in a tokamak

For most of this thesis, it has been discussed how particles are confined to
magnetic field lines if we neglect drifts. In this section, other mechanisms that
lead to heat and particle transport perpendicular to the magnetic field lines,
and how they pose challenges for confinement, are summarized.

3.7.1 Classical transport

This type of transport is based on collisions between charged particles in
the plasma. By calculating average collision times and treating the particle
movement as a random walk process [6], the total travel distance of heat and
particles after a certain time can be calculated if the spatial step size is known.
Since particles gyrate in tokamak plasmas, the spatial step size is on the same
order as the Larmor radius. Classical transport typically contributes a minor
fraction to the overall transport in a tokamak plasma, which corresponds to a
long confinement time τE [29].
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3.7.2 Neoclassical transport

Classical transport can be extended to neoclassical transport by including
effects from the toroidal geometry, such as BΦ ∝ 1/R. When particles travel
from a lower magnetic field to a larger field, their perpendicular velocity must
increase as the magnetic moment (2.11) of a particle is a conserved quantity.
For energy to also be conserved, the parallel velocity must decrease. Some
particles with too low initial parallel velocity on the low field side will at some
point at higher field strength reach v∥ = 0, and then bounce back in the
opposite direction. This leads to a fraction of particles that are trapped and
travel back and fourth on the low field side in orbits referred to as banana
orbits due to how they look in a 2D projection at fixed Φ. The width of these
banana orbits, due to drifts, leads to a larger spatial step size due to collisions
compared to classical transport, which makes confinement more difficult since
particles escape more rapidly.

3.7.3 Turbulent transport

Turbulent transport [36] is conceptually different from the previous transport
processes as it is not rooted in collisions, but rather arises from the complex
and chaotic behavior of plasma fluctuations. There are different mechanisms
that can contribute to turbulent transport. For instance, micro instabilities can
lead to a large heat and particle flux that almost always exceeds the transport
contribution from classical and neoclassical transport in current machines.
Understanding and controlling turbulence in tokamaks is therefore a prioritized
research topic in MCF to improve confinement.

The turbulent transport from micro instabilities can be calculated by solving
differential equations describing perturbations as discussed in Section 2.3. In
simulations, this is done numerically, either through solving the nonlinear
equations or by discarding the nonlinear terms, although the previous is far
more computationally costly. Certain models, such as EDWM [37], TGLF [38],
and QuaLiKiz [39] are quasi-linear models. These calculate the growth rate
of instabilities with the linear approach, and then applies a saturation rule
to account for the nonlinear interactions resulting in a transport estimation
without having to explicitly solve nonlinear equations. The most common
turbulent transport contributing instabilities, which are also referred to as drift
waves, are

• Ion Temperature Gradient (ITG) mode - As the name suggests, this
instability is driven by gradients in the ion temperature.

• Electron Temperature Gradient (ETG) mode - Similar to the previous
but due to gradients in the electron temperature.

• Trapped Electron Mode (TEM) - Arises from the fact that some electrons
are trapped in banana orbits and therefore cannot cancel out fluctuations
in the electric field to the same extent as if there were no trapped electrons.
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A typical feature of drift waves is that they result in stiff profiles [36]. This
means that the shape of the temperature profile is roughly the same above a
certain threshold of the normalized gradient ∇T/T , regardless of the applied
heating and fueling profiles. Additionally, the heat flux of drift waves is
sensitively dependent on the normalized gradient ∇T/T above this threshold
[36]. These two features implies than an overall increase in temperature greatly
impacts the heat flux of drift waves. As we will see later in this chapter, a
pedestal can form near the edge in the temperature profile given the right
circumstances. This leads to an overall elevation in the entire temperature
profile due to the stiffness, which implies that the pedestal at the edge impacts
the turbulent transport, even in the core.

3.8 Integrated modelling

Due to the many phenomena and engineering aspects that are involved in a
tokamak plasma, several models that explain different processes are often used
together in simulations. This is called integrated modelling, and is by itself a
complicated and essential research topic in magnetic confinement fusion. In
integrated modelling, modules are configured in a numerical flowchart, where
the outgoing information of a model can be forwarded to other models. This
enables flexibility as different models that aim to calculate the same thing can
be exchanged based on the preference of the user. Individual models can be
specialized to, for instance, account for the NBI heating, or to estimate the
turbulent transport from a chosen theoretical description.

However, integrated modelling frameworks can be limited by slow, com-
putationally expensive models. The models used are often employed as a
compromise between accuracy and computational demand, and ongoing re-
search, in particular in the machine learning domain as we will discuss in the
next chapter, strives to reduce the computational requirement of expensive
models [40].

An example of an integrated modelling framework is the European Transport
Simulator (ETS) [41], which integrates a catalog of modules to simulate, for
instance, the different transport mechanisms in a tokamak plasma.

3.9 The pedestal

In the 1980s, it was discovered that confinement suddenly increased at high
applied heating power in the ASDEX tokamak, at Garching, Germany [42]. It
turns out that transport had been suppressed near the LCFS, which resulted
in steep temperature and density gradients in the profiles, as illustrated in
Figure 3.7. This operational regime was named the High-confinement mode
(H-mode), and the elevated temperature and density near the LCFS was named
the pedestal due to its visual shape.

The characteristics of the pedestal are to this day still not fully understood.
Essentially, the forming of the pedestal consists of two parts; 1) local transport
suppression which leads to its build-up; 2) rapid drops in the pedestal top
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Figure 3.7: An illustration of the pedestal in tokamaks. In the pedestal region,
which is sometimes referred to as the plasma edge, transport is suppressed
such that steep gradients are formed. The values at the top of the pedestal are
highlighted as stars.

temperature and density due to instabilities called edge localized modes (ELMs)
that can be triggered by different mechanisms [43]. This results in a cyclic
pattern of the pedestal called the ELM-cycle [44], which is illustrated in Figure
3.8.

The ELMs impose an upper limit on the temperature and density at the top
of the plasma pedestal, a limit influenced by machine parameters such as total
plasma current and plasma shape [45]. For integrated modelling applications,
these pedestal top values are important as they act as boundary conditions
when simulating phenomena in the core. For instance, turbulent transport in
the core is affected by the profile shift induced by the pedestal as discussed
previously. Consequently, there is a demand for a model capable of predicting
these pedestal top values from machine parameters. In a more general sense,
the enhanced confinement due to the pedestal is a key element in the operation
of current machines as well as for extrapolating to future machines, further
motivating the improvement of predictive capabilities.

Considering the characteristics of the pedestal is additionally important for
heat load management. Certain types of ELMs, when triggered, can release
a considerable amount of energy in a brief duration [45]. This poses a threat
to plasma-facing components, including divertor plates. In the context of
larger future machines, such as ITER, more energy is going to be stored
in the plasma. Therefore, mitigating ELM types associated with excessive
energy release becomes paramount. Optimally, further understanding of the
pedestal may help design operational scenarios where a balance in transport is
achieved before ELMs are triggered or where less disruptive types of ELMs are
intentionally induced [46]. For this purpose, improved understanding of both
the build-up of the pedestal as well as the ELMs will be important.
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Figure 3.8: Illustration of the cyclic dynamics of the pedestal, in this case the
pedestal top density. Due to local transport suppression, the pedestal density
increases before an instability referred to as an ELM is triggered, which rapidly
lowers the pedestal density. The increase of the pedestal is drawn as linear in
this illustration, however this is not necessarily always the case.

3.9.1 Edge localized mode types

The physics that trigger ELMs are not fully understood and they are generally
categorized by characteristics from experiments [47]. Two of the ELM types
that have been observed at JET are

• Type I ELMs - These are characterised by a positive correlation between
the ELM-cycle frequency fELM and heating power. They are usually
found when the heating power is well above the H-mode threshold. Type
I ELMs can lead to large energy deposits which makes them dangerous
for future machines.

• Type III ELMs - These are characterised by a decreasing fELM when
increasing the heating power, and are found near the H-mode power
threshold. Compared to Type I ELMs, Type III ELMs are associated with
lower energy deposits, posing less threat to plasma facing components.

3.9.2 Pedestal modelling

One approach to model the pedestal is through ideal MHD. Essentially, ideal
MHD describes that large currents at the edge can destabilize ’peeling’ modes,
and that large pressure gradients can destabilize ’ballooning’ modes. The
Peeling-Ballooning (PB) [48] model incorporates these effects and calculates
a stability boundary in j − α phase space where j is the current density at
the edge, and α is the normalized pressure gradient. This phase space has a
stable region and an unstable region, separated by the boundary which shifts
depending on machine parameters and plasma conditions. According to this
model, an ELM is triggered when the pedestal has grown such that the stability
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boundary is reached. The pressure gradient in the steep region of the pedestal
depends on the pedestal top pressure and the pedestal width in the pressure
profile. Hence, the PB model calculates a relation between the pedestal height
and width. However, since the width is unknown prior to an experiment, the
PB model alone cannot make a prediction for the pedestal top.

In the EPED model [49], the PB model is combined with another dependence
between the pedestal top and width that together enable predictions based on
where the dependencies intersect. The other dependence is based on kinetic
theory and called the kinetic ballooning mode (KBM) criterion [49]. This
framework has shown to provide accurate predictions for the pedestal pressure
for many Type I ELM plasmas at JET. However, there is also a non-negligible
subset of Type I ELM plasmas at JET that do not agree with the PB model
[45]. Additionally, to obtain the pedestal temperature, which is the output
of EPED, one has to assume the pedestal density since p ∝ nT where p is
the pressure. Recent work [50] has shown promising results in alleviating this
obstacle by predicting the pedestal density through an extended version of the
neutral ionisation model [51].

Machine learning based surrogate models, which are described in the next
chapter, are currently being developed to emulate EPED. These will provide a
useful application in integrated modelling frameworks as surrogate models can
provide fast predictions of the pedestal compared to the original EPED model.
However, as these surrogate models are trained to emulate EPED, they will
also fail to represent pedestals that do not agree with the PB model.

3.9.3 Empirical pedestal scalings

Extensive empirical studies have previously been performed to improve the
understanding of the characteristics of the pedestal [45], [52]–[55]. It is of interest
to study how pedestal properties, such as top values and width, correlate with
machine parameters, such as the plasma current and heating power. It is
additionally interesting to examine for which operational scenarios the critical
pressure gradient deviates from the one predicted by the PB model. More
recently, it has been investigated for how the pedestal changes when going from
a deuterium and/or hydrogen plasma to a deuterium-tritium plasma [56].

Empirical analysis can be done in multiple ways. It is common to select a
small set of pulses where most machine and plasma parameters are approxim-
ately constant. By only varying one machine parameter, its dependency with
different pedestal properties can be investigated. However, a caveat with this
approach is that the dependency is found for a specific operational scenario. It
is not guaranteed that such dependencies remain constant when changing the
parameters that were constant in this sub set of pulses. An optional approach
is to investigate the dependency between a machine parameter and the pedestal
across a large data set, as in [45]. This method is useful for visualizing general
trends that hold for large operational domains. However, as other parameters
are not constant across these large data sets, it becomes challenging to isolate
dependencies. To counter this issue, multi-variate analysis can be performed
by curve fitting. By assuming a functional mapping between several machine
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parameters and pedestal properties, it is possible to separate the contribution
from different parameters to the pedestal. For instance, in [45], the pedestal
is empirically modelled at JET by assuming a power scaling law, which has
yielded the results

Te,ped = (0.05± 0.03)I0.00±0.2P 0.74±0.12δ−0.23±0.15Γ−0.16±0.05M0.3±0.4, (3.9)

ne,ped = (9.9± 0.3)I1.24±0.19P−0.34±0.11δ0.62±0.14Γ0.08±0.04M0.2±0.2, (3.10)

where Te,ped is the pedestal top temperature in keV, ne,ped the pedestal top
density in m−3(1019), I the plasma current in MA, P the total heating power
in MW, δ the triangularity which is unitless, Γ the fueling rate in charge per
second (1022), and M the effective mass which is unitless.

The scaling law for ne,ped is rather accurate, where it has achieved a R2-
value of 0.80. The R2-value is the coefficient of determination [57], which is
1 when a model perfectly describes all data points, and 0 when the model
is equally insufficient as a model that always outputs the mean value of the
output variable as its prediction. The R2-value for Te,ped is lower (0.70), which
implies that there are either input parameters missing, or that the functional
mapping between machine parameters and Te,ped is more complicated than
what can be described with a power scaling law.

In summary, general dependencies related to the pedestal are relatively
mapped. However, there is still a discrepancy between these relatively simple
models and experimental data which motivates further investigation and devel-
opment of more expressive empirical models.



Chapter 4

Machine learning
fundamentals

The purpose of this chapter is to provide an additional background for the
machine learning methodology used for the plasma physics applications in
the appended papers. Given that the models developed in these papers are
specifically grounded in neural networks, we will focus on this approach, and
gradually introduce their components. The concepts in this chapter are based
on [57], which provides more thorough explanations.

4.1 The neural network node

The node is the fundamental building block in neural networks. As illustrated
in Figure 4.1, it takes a set of input parameters, in this example [x1, x2, x3],
and predicts an output ŷ.

Figure 4.1: An illustration of a node in a neural network.

The calculation of ŷ is done in two steps. First, input parameters are
multiplied with the weights, in this example [w1, w2, w3], and a bias b is added

37
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such that

z =
∑

i

wixi + b, (4.1)

where z is an intermediate parameter called the pre-activation value. The
output of the node is then obtained by applying a suitable activation function
g where

ŷ = g(z). (4.2)

4.2 Example: Linear single-node model

To simplify the explanation for how a machine learning model ’learns from
experience’, let us now consider an example where we employ one node as a
model. Assume that we want our model to accurately estimate a quantity
y by predicting it from one input parameter x, where the true underlying
relationship that describe the data is

y = 0.8x− 0.5. (4.3)

In a real scenario, we are often not aware of the true relationship between the
input and output parameters. We might however have access to a data set
with tabular values of y and x that can be used to train our model.

If we assume the simplest possible activation function, which is the identity
mapping g(z) = z, the functional map of our model becomes

ŷ = wx+ b. (4.4)

This type of activation is occasionally referred to as a linear activation, as the
output now is a straightforward linear function of the input parameter.

4.2.1 The loss and cost function

In machine learning, an initial guess is made for the weight and bias parameters.
For instance, let the initial guess be w = 0.6 and b = 0.6 in our example. If the
first row in a tabular data set is [x = 1, y = 0.3], then our model will predict
ŷ = 1.2, which clearly is wrong since the correct answer is y = 0.3 according to
the underlying function that describes the data (4.3).

A loss function L provides a method to quantify the error of individual
predictions. For instance, a common loss function is the squared error

L = (y − ŷ)2, (4.5)

which also can be expressed as a function of the weight and bias parameters by
inserting (4.4) into (4.5)

L = (y − wx− b)2. (4.6)
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The derivative of the loss L with respect to w and b can now be obtained,
which we will make use of in the next subsection

∂L

∂w
= 2(y − wx− b) · (−x), (4.7)

∂L

∂b
= −2(y − wx− b). (4.8)

In total, we have defined a method to estimate the error of our model using a
loss function, and we have analytically derived how this loss function depends
on the weight and bias parameters of the model.

The difference between a loss function and a cost function is that the latter
is the average loss across several data entries, although the two terms are often
used interchangeably. The cost function in our example is the mean squared
error (MSE)

MSE =
1

N

N∑

k=0

(yk − ŷk)
2, (4.9)

where N is the total number of data entries being evaluated. The derivative of
the MSE cost function with respect to, for instance w, can be obtained for our
example by expanding (4.7)

∂

∂w
MSE =

1

N

N∑

k=0

2(yk − xkw − b) · (−xk). (4.10)

4.2.2 Optimization

The next step in achieving an accurate model is to adjust the weight and bias
parameters iteratively, which are referred to as trainable parameters. The
specific strategy is to iteratively adjust the trainable parameters to gradually
minimize the loss and cost functions. Fortunately, the analytical expression
for the loss as a function of the trainable parameters is known. For instance,
a data entry that gives ∂L/∂w > 0 indicates that if w is increased, the loss
is also increases. Since the goal is to minimize the loss and cost function, w
should instead be decreased. In general, optimization algorithms in machine
learning are based on the concept that the trainable parameters should be
shifted in the opposite direction as the sign of the partial derivative of the
loss/cost. Stochastic Gradient Descent (SGD) is an optimization algorithm
that follows this concept, and it defines the update of an arbitrary trainable
parameter, that is, a weight or bias parameter θ

θl+1 = θl − η
∂L

∂θ
, (4.11)

where η is called the learning rate, which controls the step size of the parameter
update. The superscript l refers to the iteration number.



40 CHAPTER 4. MACHINE LEARNING FUNDAMENTALS

4.2.3 Training procedure and result

To train our model, we use a data set with 100 data entries generated with
the underlying function (4.3) in this example. We use the same parameter
initialization as was mentioned before (w = 0.6 and b = 0.6), and we use SGD
with η = 0.05 as the optimization algorithm. Instead of the weight and bias
update for each data entry individually, we calculate the full MSE cost function
on the entire data. This is called full-batch training, where the batch size,
which is defined as the number of data entries being evaluated in a parameter
update, is equal to the number of rows in the data set.

The training result is shown in Figure 4.2, which shows the evolution of w,
b, and the cost function in the iterative training process. After approximately
200 parameter updates, which also is referred to as training iterations, the
model has successfully been able to find w = 0.8 and b = −0.5, which has
yielded a low cost function value.

Figure 4.2: The result of the iterative training process. Even though the
parameter w decreases at the initial iterations, the algorithm later finds that
w needs to increase and saturate at 0.8 to minimize the cost function.

4.3 Dense neural networks

The one-node model in the previous example was able to find the true underlying
relationship between the input and output parameter due to the simplicity
of the problem. However, there are many problems, in particular in plasma
physics, that are much more complicated.

To create a models that can approximate a larger family of functions,
multiple nodes can be arranged in several layers to form a dense neural network,
as illustrated in Figure 4.3.
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Figure 4.3: The architecture of a dense neural network. Here, the output of a
node is forwarded as an input to each node in the next layer (left to right). This
particular network consists of 3 input parameters in the input layer (white), 4
hidden layers (blue) with the layer size 5 (5 nodes each), and an output layer
with one output node (black). This is a relatively small network, and many
real application use networks with a significantly larger number of nodes. The
input and output dimensions of a network does not either need to be small.
For instance, networks that either process or predict image data have many
input or output nodes to represent pixel values. The inputs of a model are also
usually referred to as features, and the outputs are also referred to as labels.

In neural networks, the final output prediction ŷ is based on the cumulative
calculation of all individual nodes, and its functional mapping can be represented
as

ŷ = f(x⃗, θ⃗), (4.12)

where x⃗ represents all of the input parameters, and where θ⃗ represents all of
the trainable parameters in all of the nodes. The training procedure of a neural
network follows the same principle as for the case with the single node; a cost
function is differentiated with respect to all of the trainable parameters θ⃗, which
can be done analytically through automatic differentiation in a programming
script. The trainable parameters are then iteratively updated through an
optimization algorithm to minimize the cost function.

4.4 Nonlinear activation functions

When the activation function for all nodes in a neural network is set as
the identity function, the overall functional mapping is effectively reduced
to a linear function. Therefore, to allow for learning of more complicated
relationships, nonlinear activation functions are needed. Common nonlinear
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activation functions include the Rectified linear unit (ReLU), and the sigmoid
function σ, which are defined as

gReLU(z) = max[0, z], (4.13)

σ(z) =
1

1 + e−z
, (4.14)

where z again is the pre-activation value in the nodes (4.1). Both of these
activation functions are visualized in Figure 4.4.
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Figure 4.4: The sigmoid activation function (left) is characterized by being
bounded to 0 and 1. The ReLU function (right) is characterized as a piece-wise
linear function where g(z) = 0 when z < 0, and where g(z) = z when z ≥ 0.

Although nonlinear activation functions are essential for enabling com-
plicated functional mappings, the output layer of a model that predicts a
non-discrete value is usually set to be linear to avoid a bounded output.

Previously, we discussed how the loss function can be expressed as a function
of the trainable parameters. This is also true when nonlinear activation
functions are implemented, however, the differentiation of the loss function
with respect to the trainable parameters must be adjusted based on which
activation function is used.

4.5 Hyperparameters

In machine learning, hyperparameters refer to configurations that are set before
the training procedure starts. For neural networks, hyperparameters include:
the number of hidden layers, the number of nodes in each layer, choice of
optimization algorithm, learning rate, batch size, choice of loss/cost function,
choice of activation function. The number of training iterations is also a
hyperparameter, and the number of ’epochs’ refers how many times the full
data set is parsed through the model during the training.
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4.6 Training, validation, and testing

Large neural networks with many trainable parameters are desired for certain
problems in the sense that it allows for highly complicated functional mappings
to be learned. However, there is usually a degree of noise in the data in real
problems. As the sole goal of a model is to minimize the cost function during
training, a model with many trainable parameters pose the risk of learning
noise, or to memorize specific data entries if it is trained for too many iterations.
This phenomenon is referred to as overfitting, which is important to mitigate
to improve generalization capabilities.

Due to the risk of overfitting, it is often meaningless to only evaluate the
cost function on the data that has been used in the training. Therefore, a data
set is usually split into three parts:

• Training set - As the name suggests, this data set is used for the training
of the model.

• Validation set - This set is held out during training and allows for a
more unbiased evaluation when comparing different combinations of
hyperparameters to find the most suitable configuration. This set is also
used to monitor when a model shows signs of overfitting, as illustrated in
Figure 4.5.

• Test set - To enable a fully unbiased evaluation of the model, a test
set is held out both during the training and the search for the optimal
hyperparameters.

Figure 4.5: An illustration of a cost curve. For the early training iterations,
both the validation and training cost decrease. However, at a certain point,
which is marked by the dashed line, the validation cost begins to increase while
the training cost keeps decreasing. This is an indication that past this point,
the model is overfitting to a high degree.

A conventional data split often involves allocating approximately 70-80%
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for training, 10-15% for validation, and another 10-15% for testing, although it
can vary depending on the application.

4.7 Classification models

The introductory example in this chapter illustrated a regression task since the
model was trained to predict a non-discrete output. However, neural networks
and other machine learning models can also be used for classification tasks by
using a sigmoid activation function in the output layer. As the sigmoid function
is bounded between 0 and 1, data sets can be curated to represent classes with
ones or zeroes. Although traditional loss functions, such as squared error, can
be used in classification tasks, it is more common to use loss functions that
consider probability distribution of predictions and labels, such as the binary
cross-entropy loss function

L = −(y · log(ŷ) + (1− y) · log(1− ŷ)). (4.15)

4.8 Ensemble learning

Once a neural network has been trained, it can be used to make predictions in
a desired field of application. However, when tasked with making predictions
far beyond the scope of its training, the model is prone to generating inaccurate
or unreliable results. This is often referred to as the extrapolation problem, or
the domain adaptation problem. Additionally, it might not be obvious for the
user that predictions are made far beyond the training domain.

Ensemble learning is a strategy, not necessarily to enable domain adaptation,
but to identify when the model is making predictions outside its training
domain. For this purpose, several models are trained separately to perform the
same task. The models have to vary to some extent, either through different
hyperparameters, different sets of initial weights, or that the models are based
on different machine learning models. A small subset of the training data can
also be excluded for each model such that no pair of models are trained on the
exact same data. Post training, the idea is that the models should agree to a
higher degree when they make prediction in the training domain compared to
when they make predictions far from the training domain. As the models have
not been encouraged to follow the same trends in the data outside the training
domain, predictions are assumed to be more spread out. This can, for instance,
be quantified with the standard deviation from the mean of the predictions,
which serves as a proxy for estimating the confidence of the ensemble of models
in a given prediction.

4.9 Surrogate models

As discussed, machine learning models can be trained on empirical data to
represent highly complicated functional mappings, which is particularly useful
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when the underlying dynamics of a system are unknown. However, neural
networks can also be trained on data generated by other models where the
underlying theory is known. This is called surrogate modelling. In plasma
physics, it is common to solve differential equations numerically, which some-
times requires a lot of computational power. This can be particularly limiting
in integrated modelling frameworks, where the entire simulation might be
significantly slowed down by one model in the pipeline. For instance, if we
use integrated modelling as a tool to study model A, but the computational
demand of another model B inhibits fast simulations, it may be beneficial to
replace model B with a surrogate model that has been trained to emulate
model B. The rationale behind this replacement lies in the efficiency of a single
forward pass through a classical neural network, making it a swift process.
This of course requires that there exists a data set that has been generated by
standalone simulations of model B, which should cover the relevant domains
for the integrated modelling cases. Since the entire premise of using surrogate
models is that the underlying model is computationally costly, ongoing research
on a topic referred to as ’active learning’ strives to optimize the data generation
process, such that as few data entries as possible are required to cover a wide
representative domain [58].

4.10 Interpretability and the black-box problem

Although neural networks, and machine learning models in general, have been
shown to be useful in solving many complicated tasks, one of the fundamental
challenges is interpretability. Interpretability, or explainability, refers to how
transparent a model is in its decision making process when predicting an output.
In theory, a neural network is transparent, as the calculation process for the
output of each node is fully defined. However, in practice, the interpretation of
a model becomes challenging for humans when dealing with thousands, and
at times millions, of parameters. For this reason, neural networks are often
referred to as black boxes. As machine learning becomes more prominent
in different applications, interpretability will incrementally become a greater
concern, which ongoing research strives to address [25], [26].
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Chapter 5

Summary of Appended
Papers

5.1 Enabling adaptive pedestals in predictive
transport simulations using neural networks

In this paper we present a neural network model that predicts the electron
temperature and electron density at the top of the pedestal in tokamaks,
which was named PEdestal Neural Network (PENN). The purpose of this work
was to create a model that can be used in integrated modelling frameworks.
Specifically, transport simulations of the core of the plasma are dependent on
boundary conditions near the plasma edge that are determined by the top
values of the pedestal. By enabling an adaptive pedestal through predictions,
simulations are not limited to static boundary conditions. Although there
exists other, first-principle based, models (EPED [49]) that predicts the top of
the pedestal, they are computationally costly, and not accurate for all scenarios
[45]. Recent work has shown that some of these inaccuracies can be mitigated
by including resistive effects [59], although it is not certain when a surrogate
based on such a model will be available, due to the computational demand of
generating data when considering resistive effects.

The model proposed in this work was trained as an ensemble of networks
using approximately 1500 data entries from the JET tokamak for a wide range
of the machine parameters in the H-mode regime. The 12 input parameters
were: βN , plasma current, toroidal field, minor radius, elongation, NBI power,
total power, upper triangularity, lower triangularity, plasma volume, the safety
factor, and the effective atomic number of the plasma. Evaluation on a test set
showed that an R2-value of 0.93 could be achieved for the pedestal temperature,
and that a R2-value of 0.91 could be achieved for the pedestal density.

As a demonstration, PENN was applied in the integrated modelling frame-
work ETS [41]. Two pulses with different NBI power were simulated, where
results showed that PENN was able to replicate the difference in the pedestal
region due to the variation in NBI power.
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The main conclusion of the paper is that indeed, it is possible to get accurate
predictions of the pedestal at JET from a set of machine parameters using
neural networks.

5.2 A fast neural network surrogate model for
the eigenvalues of QuaLiKiz

QuaLiKiz [39] is a quasi-linear model that calculates turbulent transport in a
plasma in two steps; 1) calculation of eigenvalues of micro instabilities using
linear theory; 2) a saturation rule is applied for the eigenvalues to obtain the
transport fluxes. QuaLiKiz can be used in integrated modelling frameworks,
although it can be time consuming during long simulations or extensive analysis.
Therefore, a surrogate model for QuaLiKiz (QLKNN [60]) was previously
developed. However, a caveat with QuaLiKiz is that the saturation rule is
calibrated using experimental data, which makes it challenging to predict for
future machines since there is no guarantee that the saturation rule translates
well.

In this paper we present a neural network based surrogate model for the
part of QuaLiKiz that is robust and translate between machines, which is the
calculation of the linear theory to obtain the eigenvalues of the instabilities.
This is also the most computationally costly part of QuaLiKiz. Specifically,
our objective is to explore the key considerations that must be taken into
account from a machine learning perspective when solving this problem. A
data set with over 8 million entries was available for the training and evaluation
of the model. The output in this problem consists of the growth rate and
real frequency of instabilities at 18 different spatial scales, where the shortest
scales generally correspond to the ETG-mode, and where the longer scales
generally correspond to the ITG-mode and the TEM-mode. In the data set, the
growth rate (one of the outputs) at each spatial scale is either positive (growing
instability / unstable mode), or zero (stable or damped mode). Results showed
that splitting the model into a stable/unstable classifier and a regression model
for the unstable entries, yielded an accurate surrogate model as a whole. The
accuracy could be further improved by using a weighted loss function for the
classifier due to class imbalance between the stable/unstable classes.

The main conclusion of this paper is that task splitting helped improve
the accuracy of the surrogate model, and that this may also apply for future
surrogate model applications related to eigenvalues of quasi-linear models.

5.3 High temporal resolution of pedestal dy-
namics via machine learning

For most H-mode plasmas, the pedestal follows a cyclic pattern [44], where it
builds up due to transport suppression and then suddenly drops as instabilities
(ELMs) are triggered. This dynamical process is of interest to study to better
understand the pedestal. However, the cyclic pattern usually occurs on much
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faster timescales than what can be captured with the HRTS diagnostics at
JET (sampling rate: 20 Hz) [33], [34]. Reflectometry [35] provides an alternat-
ive diagnostics for high temporally resolved density measurements (10 kHz),
although it is not as consistently accurate as HRTS.

In this paper we present a neural network model that predicts the HRTS
1D electron density profile from the reflectometry 1D electron density profile.
A data set was created by pairing HRTS profiles with the corresponding
reflectometry profiles that were closest in time, which yielded 62140 entries
from approximately 200 pulses. As the spatial grid varies from example to
example in reflectometry, the model takes as input both 100 density values
and the 100 corresponding position values. The model predicts 63 values: the
density at 63 fixed spatial grid points corresponding to the HRTS density
measurements. Post training, the model can predict what the HRTS profile
would have looked like at all time points where reflectometry data exists between
the actual HRTS measurements.

Results showed that the model was able to produce accurate predictions
on a test set (pulses that were not included in the training). To demonstrate
the applicability of the model, the dynamics of the pedestal was visualized for
the record-breaking pulse 99869 at JET in terms of energy production. The
predicted HRTS profiles showed reasonable and consistent pedestal dynamics
signals, that additionally were less noisy compared to the pedestal dynamics
signals obtained via reflectometry alone.

The main conclusion of this paper is that with machine learning, we can
obtain a predicted diagnostics that combines the high temporal resolution of
reflectometry with the high spatial accuracy of HRTS.
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Chapter 6

Future Work

The appended papers in this thesis encompass strategies for predicting the
pedestal in the JET tokamak with neural networks. Although results have
shown that accurate predictions can be made, the models lack transparency
for why a certain prediction is made. There are two aspects to this problem in
fusion research; 1) The main goal of magnetic confinement fusion is to create
an environmental friendly and sustainable energy source. If machine learning
models can assist in reaching this goal, they should not be neglected solely
because they are not fully transparent; 2) On the other hand, reaching this goal
requires an improved understanding of how plasmas behave for reactor relevant
conditions. If machine learning models can be made more interpretable, they
may assist in increasing the knowledge.

A specific example of future work would be to try other, more interpretable
models to predict the pedestal from machine parameters. The goal would be
to fully understand the functional mapping from input parameters to output
parameters. This is important, not only for understanding the pedestal, but also
for enabling traceability when using pedestal prediction models in integrated
modelling. In addition, if comprehensive pedestal data sets were to be available
from other tokamaks, the functional mapping of different machines could be
compared. Improved understanding of how the behaviour of the pedestal differs
between machines will be useful for the speculation of how the pedestal will
behave in future machines.

Another example of future work is to use machine learning to find low-
dimensional representations of 1D plasma profiles. Specifically, it would be
of interest to find low-dimensional representations of the edge of the plasma
profiles where the pedestal is located. The concept of compressing high dimen-
sional tokamak data to lower dimensional representations using, for instance,
autoencoders [57], is not new [61]. However, it remains a challenge for how to
interpret this low-dimensional representation. Autoencoders combined with
interpretable machine learning could potentially assist in finding interesting
features related to the pedestal. Discoveries that improve the understanding of
the plasma core-pedestal interaction may also be valuable for optimizing how
pedestal models are implemented in integrated modelling frameworks.
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As these topics are oriented towards finding relationships in data, future
work is inherently associated with a more extensive experimental analysis
compared to the research done so far in this PhD project.
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