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DELIGNE–RIEMANN–ROCH AND

INTERSECTION BUNDLES

by Dennis Eriksson & Gerard Freixas i Montplet

Abstract. — This article is part of a series of works by the authors with the goal of completing a
far-reaching program propounded by Deligne, aiming to extend the codimension one part of the
Grothendieck–Riemann–Roch theorem from isomorphism classes of line bundles to canonical
isomorphisms thereof. The paper develops a relative functorial intersection theory with values
in line bundles, together with a formalism that generalizes previous constructions by Deligne
and Elkik, related to the right-hand side of the theorem.

Résumé (Deligne-Riemann-Roch et fibrés d’intersection). — Cet article fait partie d’une série de
travaux des auteurs ayant pour objectif de compléter un vaste programme énoncé par Deligne,
visant à relever la partie de codimension 1 du théorème de Grothendieck-Riemann-Roch des
classes d’isomorphisme de fibrés en droites à des isomorphismes canoniques. L’article développe
une théorie d’intersection fonctorielle relative à valeurs dans les fibrés en droites, avec un for-
malisme qui généralise les constructions précédentes de Deligne et Elkik, liées au côté droit du
théorème.
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1. Introduction

This is the first of a series of papers with the purpose of completing a far-reaching
program propounded by Deligne in the foundational article Le déterminant de la
cohomologie [10], aiming to lift the Grothendieck–Riemann–Roch theorem to the level
of line bundles. The current article generalizes previous constructions by Elkik [12]
and others related to the right-hand side of the theorem, and develops a formalism
that is suitable for adapting to this setting the standard proof of factoring a projective
morphism in terms of a closed immersion and a projective bundle. It can be recast as
a relative functorial intersection theory, with values in line bundles, which addresses
Problem 1 below and is of independent interest.

1.1. The program of Deligne. — Recall that, for a vector bundle E on a projective
variety X, the determinant of the cohomology is the line

detH
•
(X,E) =

⊗
detHi(X,E)(−1)i .

More generally, the Knudsen–Mumford determinant extends the above construction
to the families setting [34]. For a flat projective morphism of schemes(1) f : X → S

and a vector bundle E on X, it furnishes a line bundle λf (E) on S, with fibers
detH•(Xs, E|Xs

). If the family X → S is moreover a local complete intersection, the
isomorphism class of λf (E), as a Q-line bundle, is determined by the Grothendieck–
Riemann–Roch theorem [31], which expresses the first Chern class as

(1.1) c1(λf (E)) = f∗ (ch(E) · td∗(Ωf ))
(1)
.

Here, the right-hand side is given by products of characteristic classes in the Chow
ring, and the codimension one part of the direct image.

With this in mind, the program in [10] takes the form of several problems.

Problem 1 (Integrals of Chern classes). — Develop a theory of integrals of Chern
classes in terms of line bundles, with properties analogous to the corresponding ones
from Chow theory.

In particular, this should allow one to represent the right-hand side of the
Grothendieck–Riemann–Roch theorem in (1.1) in terms of line bundles. Since the
left-hand side is represented by λf (E), given a positive solution to this first problem,
one can pose the following:

Problem 2 (Deligne–Riemann–Roch isomorphism). — Construct and characterize a
canonical isomorphism between the Q-line bundles representing the two sides of (1.1),
and determine the denominator of the isomorphism.

(1)For the clarity of exposition, in the introduction we may oversimplify some geometric
requirements.
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Deligne–Riemann–Roch and intersection bundles 249

Finally, with a view toward a refined formulation of the Riemann–Roch theorem in
Arakelov geometry, one can consider the complex geometric situation with hermitian
metrics. In this setting, the bundle λf (E) is equipped with the Quillen metric. Then,
Deligne proposes:

Problem 3 (Analytification and metrics). — Extend the integrals of Chern classes to
the hermitian setting, and compute the norm of the Deligne–Riemann–Roch isomor-
phism.

Berkovich analogs of the last problem have also proved to be interesting, for in-
stance in [8, 9], where these circles of ideas are applied to non-Archimedean pluripo-
tential theory. One should hence seek extensions of this program to these spaces and
situations.

1.2. Formulation of the main theorem. — All the problems were solved, in an essen-
tially unique way, for families of smooth curves, by Deligne himself in [10], who for
the analytical part relied on the work of Bismut and collaborators [2, 3, 4, 5, 6]. These
results were also germinal for higher dimensional developments in Arakelov theory,
and actually the arithmetic Riemann–Roch theorem of Gillet–Soulé [23] should follow
from Problem 3 by passing to isometry classes. In this sense, Deligne’s program is a
refinement of the work of Gillet–Soulé.

The program has attracted the attention of several authors, from which we highlight
two of historical importance. Elkik, in a series of papers [12, 13], introduced a theory
of integrals of Chern classes that she called intersection bundles, and also equipped
them with metrics. On a related note, also see the references [8, 11, 22], where these
problems are considered in various generalities. Independently, in another series of
papers [16, 17, 18], Franke studied the first two problems within a Chow homology-
type formalism. The last paper gives, in this setting, a proof of the second problem,
but remains unpublished.

Notwithstanding these contributions, the Deligne program, in the whole general-
ity, is still open. For example, the approach by Franke demands certain regularity
assumptions on the base schemes which are not satisfied for most moduli spaces, such
as Hilbert schemes. The approach by Elkik makes Noetherian assumptions on the
base, which are not fulfilled in many situations in non-Archimedean geometry. Most
importantly, neither of these works nor their sequels, develop a formalism that faces
the interaction between various properties of intersection bundles.

In practical terms, this means in particular that one lacks functoriality proper-
ties which are fundamental to tackle a Deligne–Riemann–Roch isomorphism along
the lines of the classical proof by deformation to the normal cone. To this end, our
objective in the present article is to expand upon Elkik’s perspective and ultimately
solve Problem 1. To accomplish this, we further draw inspiration from Franke’s Chow
formalism and introduce a category of Chern classes that encodes the fundamental
functorial properties of Elkik’s intersection bundles. Unlike Franke’s categories, our
approach is more manageable and specifically designed to address the limitations
mentioned earlier.

J.É.P. — M., 2024, tome 11



250 D. Eriksson & G. Freixas i Montplet

To this effect, the main result of our article can be expressed as follows:

Main theorem (Informal). — For projective and flat morphisms over general base
schemes, there is a relative functorial intersection theory, recovering Elkik’s intersec-
tion bundles in terms of direct images.

In the rest of the introduction, we summarize the main lines of our work and the
meaning of this statement.

1.3. Virtual categories and Chern categories. — Let f : X → Y be a projective
local complete intersection morphism. The classical formulation of the Grothendieck–
Riemann–Roch theorem [31] states that, under appropriate assumptions, there is a
commutative diagram

(1.2)

K0(X)
ch(−) td∗(Ωf )

//

f!

��

CH∗(X)Q

f∗

��

K0(Y )
ch(−)

// CH∗(Y )Q,

where CH∗, here and elsewhere, stands for Grothendieck’s Chow groups defined in
terms of the γ-filtration of K-theory.

Virtual categories. — Recall that, according to the homotopical tradition initiated by
Quillen [44], the K0-group is the π0 of a K-theory spectrum. Hence, if we would
be willing to categorify the Grothendieck–Riemann–Roch theorem in all degrees, we
would undoubtedly be led to work with the entire K-theory spectrum and the recent
developments on the so-called ∞-categories.

Following Deligne [10], for the categorification of the codimension one part of the
Grothendieck–Riemann–Roch theorem (1.1), it is enough to work with the simpler
[0, 1]-truncation of the K-theory spectrum of the exact category of vector bundles
on a scheme X. Namely, the virtual category of the scheme, denoted by V (X). The
group of isomorphism classes π0 and the automorphism group π1 of V (X) are hence
related to K-theory as follows:

π0(V (X)) = K0(X), π1(V (X)) = K1(X).

The virtual category of a general exact category C admits a universal property,
similar to that of K0(C) as a universal group for multiplicative maps from C to the
category of abelian groups. Briefly, abelian groups are replaced by categorical groups,
known as commutative Picard categories and multiplicative maps are replaced by
multiplicative functors. We refer to Theorem 4.3 for a precise formulation. If we
denote by Pic(S) the Picard category of line bundles on S, the main multiplicative
functor we have in mind is (VectX , iso)→ Pic(S) given by E 7→ λf (E) in the left-hand
side of (1.1). Similarly, the right-hand side should lift to a multiplicative functor.

It is natural to consider the various functoriality properties of the virtual cate-
gories of schemes. In particular, given (1.2), it is desirable to have a formalism of
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Deligne–Riemann–Roch and intersection bundles 251

direct images. At the level of K-theory, a technical problem and central point in [31],
is that derived direct images of vector bundles are at best perfect complexes, and not
bounded complexes of vector bundles. This motivates an extension of the theory of
virtual categories from exact categories to categories of complexes. The proper frame-
work for these is complicial biWaldhausen categories, whose homotopy categories are
usually thought of as derived categories. The sought extension is achieved by the work
of Muro–Tonks–Witte [40]. We prove that the virtual categories themselves admit de-
scriptions similar to the usual K-theory. For example, two complicial biWaldhausen
categories with the same derived categories give rise to the same virtual categories
(cf. Proposition 4.6).

Following Thomason’s work on K-theory and derived categories [54], we introduce
the virtual category of perfect complexes (cf. Definition 4.9). For divisorial schemes,
this construction recovers the usual virtual category (cf. Definition 4.10). We then in
particular address the problem of refining, from the K-theory to the virtual category,
the direct image functor f! appearing in (1.2). We summarize the main conclusions,
including functoriality properties involving pullback functors (cf. Proposition 4.12):

Proposition A. — Let f : X → Y be a morphism of divisorial schemes.
(1) If f is projective, of local complete intersection, then, the derived functor Rf∗

induces a functor of commutative Picard categories f! : V (X)→ V (Y ).
(2) For arbitrary morphisms, there are pullback functors f∗ : V (Y )→ V (X).
(3) These functors exhibit natural Tor-independent base change isomorphisms and

projection formulas.

The proofs of these and related properties follow from adaptions from the corre-
sponding arguments on the level of K-theory spectra. This necessitates some back-
ground on Picard categories, which is developed in Section 2.

Chern categories. — Suppose, for simplicity, that X is a connected scheme. While it
would be natural to develop a categorification of Grothendieck’s Chow groups CH∗(X)

or CH∗(X)Q, by introducing a γ-type filtration on the virtual category, it is also de-
sirable to have a flexible categorification with a handy universal property. Along these
lines, we introduce a category of formal sums and products of Chern classes, viewed as
objects in their own right. The morphisms in this category reflect a minimal set of fun-
damental properties of Chern classes, the most important ones being isomorphisms
induced from isomorphisms of vector bundles, and Whitney-type isomorphisms as-
sociated with exact sequences. This category CH(X) comes equipped with a grading
induced by the degrees of the Chern classes and a graded ring category structure. The
morphisms in the category CH(X) are tailored so that the total Chern class induces
a natural multiplicative functor

(1.3) c : V (X) −→ CH(X).

The piece of degree k of this functor is denoted by ck. We call similar functors
V (X)→ R, into graded ring categories, Chern functors. By a procedure reminiscent
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of the Bousfield localization of spectra, we also obtain a rational counterpart of this
category, denoted by CH(X)Q. Here, rationality means that multiplication by n in-
duces an equivalence of categories on each graded piece. For the purposes of the
introduction, we focus on CH(X)Q.

Theorem B. — The category CH(X)Q, together with the functor induced by (1.3),
is universal with respect to Chern functors into rational graded ring categories.

We refer to CH(X)Q as the rational Chern category of X. By a direct limit proce-
dure à la Grothendieck, the construction can be extended to non-connected schemes.

The proof of Theorem B and its consequences occupies Sections 5.1–5.2. The inter-
mediate steps require some more background on commutative Picard categories, as
well as ring categories, contained in Section 2 and Section 3. In particular, we treat the
problem of turning a symmetric monoidal category into a Picard category, a procedure
that we call Picardification. We apply this to extending Laplaza’s rig categories [35]
into ring categories. A finer related result is due to Baas–Dundas–Richter–Rognes [1],
and a comparison with ours is briefly discussed in Remark 3.4.

An advantage of our approach is that we can formally realize characteristic classes
on the level of the Chern categories. As an excerpt of the formalism, developed in
Section 5.2.2, we reproduce the following proposition regarding the Chern character
and the Todd class appearing in (1.1).

Proposition C. — For any scheme X, there is a natural additive functor

ch : V (X) −→ CH(X)Q,

given on objects by the Chern formal power series, and a natural multiplicative functor

td∗ : V (X) −→ CH(X)Q,

given on objects by the dual Todd formal power series.(2) Both functors commute with
natural pullback functors.

The above categorical Chern and Todd functors are likewise defined on the bounded
derived category of vector bundles on X, and additive (resp. multiplicative) on the
level of true triangles. This is suitable to treat functorialities for td∗ evaluated on the
relative cotangent complex, which is most naturally considered on this level.

Line distributions. — The preceding theory lacks a formalism of direct images fulfilling
the role of the right vertical morphism in (1.2). In this direction, we first interpret
Problem 1 as a theory taking formal power series in Chern classes and functorially
associating line bundles. As such, it is expected to be a line bundle-valued distribution,
where the role of test forms is being played by Chern classes. While we have one
particular line distribution in mind, discussed in the next subsection, this general

(2)The dual Todd power series is obtained by changing the Todd power series by the sign (−1)k

in degree k.
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Deligne–Riemann–Roch and intersection bundles 253

interpretation permits us to highlight and systematize some key categorical points of
the construction.

Precisely, in Section 5.3, we define a line distribution for a morphism X → S,
as follows.

Definition. — A line distribution T for X → S consists in associating, to every
base change h : S′ → S, a multiplicative functor from the rational Chern category of
X ′ = X ×S S

′ to the category of Q-line bundles on S′:

TS′ : (CH(X ′)Q,+) −→ Pic(S′)Q.

We require:
– There is a natural identification h∗ ◦ TS ≃ TS′ ◦ h∗.
– It is trivial on Chern classes of degree > N , for some N independent of S′.
– There is an integer m ̸= 0 such that T⊗m is induced by functors without rational

coefficients.
If P is an object of the Chern category CH(X)Q, the line distribution for X → S

defined by
P ′ 7−→ TS′(P ′ · h∗P )

is denoted by P · T or [P ]X/S.

The structure of commutative Picard category of Pic(S)Q induces such a structure
on the line distributions for X → S. We denote this category by D(X/S). In analogy
with usual distributions, one can define direct images of line distributions in terms
of pullbacks of Chern classes. In particular, given a line distribution, if f : X → Y

is a local complete intersection morphism of schemes over S, in this formalism the
following expression has a meaning:

(1.4) f∗[ch(E) · td∗(Ωf )]X/S .

We think of these line distributions as a relative intersection theory valued in line
bundles. The functorial condition in the definition implies that they are of local nature,
and that, for most constructions, one can assume that all the bases are in fact affine.

As is per usual in intersection theory, one expects several helpful natural properties
to hold, such as the multiplicativity of the Chern character in (1.4) with respect to the
tensor product. This can not be realized within our Chern categories alone. However,
based on our previous work with Wentworth [15], we do prove in Section 5.4.2 that,
on the level of line distributions, there are splitting principles that allow us to reduce
Chern class identities for general vector bundles to the cases of direct sums of line
bundles, and often ultimately to the case of line bundles.

1.4. Intersection bundles and intersection distributions. — The theory of Chern
categories and line distributions provide tools to finally show that intersection bundles
can be organized into an actual relative intersection theory. We now elaborate on this
and present the contents of Section 6 to Section 8.

J.É.P. — M., 2024, tome 11
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Intersection bundles. — Suppose that f : X → S is a faithfully flat, locally projective
morphism of finite presentation, whose fibers have pure dimension n. We summarize
all these properties by saying that f satisfies the condition (Cn). Suppose also that
we are given vector bundles E1, . . . , Em on X and non-negative integers k1, . . . , km,
whose sum is n+ 1. In this case, we associate in Section 7.1 a natural line bundle

(1.5) ⟨ck1
(E1) · · · · · ckm

(Em)⟩X/S

on S, whose formation commutes with base change. We can extend the definition
by multilinearity to general polynomials or even rational power series in the Chern
classes, by taking the component of degree n+1. If S is divisorial, for example, quasi-
projective over a regular scheme, we prove in Proposition 7.1 that there is an equality
in the Picard group of S

(1.6) c1
(
⟨ck1

(E1) · · · · · ckm
(Em)⟩X/S

)
= f∗ (ck1

(E1) · · · · · ckm
(Em)) ,

so that the bundles indeed provide a theory of integrals of Chern classes as in Prob-
lem 1. The line bundles of the form (1.5) are thus called intersection bundles.

Building on Elkik’s approach [12], the intersection bundles are developed first in
the case of line bundles, in terms of generators and relations. These are the so-called
Deligne pairings, that we recall and elaborate on in Section 6. The general case follows,
by a method analogous to Segre’s construction of Chern classes. In contrast with
Elkik’s work, where schemes are supposed to be Noetherian and morphisms to be
Cohen–Macaulay, we take care of stating our results over general base schemes and
replacing the Cohen–Macaulay hypothesis with having fibers of pure dimension n.
The latter point was already studied by Muñoz García [22], but functorial properties
such as base change were not established in the generality we need. We also notice
that the relationship (1.6) was not considered in [12, 22].

The fundamental property (1.6) suggests that typical features of characteristic
classes should have intersection bundle counterparts. A key such property is the
Whitney product formula for the Chern classes of an exact sequence of vector bun-
dles. In this article, we establish several natural isomorphisms between intersection
bundles, corresponding to this and other properties. This is accomplished by system-
atically applying the splitting-type principles proved in [15]. While for Chow rings one
can perform these operations in any order, there is no reason why a composition of
two natural isomorphisms should commute. One of our new contributions, which was
not accounted for by Elkik, is the establishment of the compatibility between these
natural isomorphisms. As a result, we can formally manipulate intersection bundles
and such properties as if we were really in a Chow ring.

Theorem D. — All classical identities of Chern classes lift to isomorphisms of inter-
section bundles. Moreover, these isomorphisms commute with each other.

This statement refers to the results proved in Section 7.2 and Section 7.3. A more
concrete formulation in the language of line distributions is given in Theorem F below.
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Intersection distributions. — The previous paragraph on intersection bundles and their
properties was developed with the perspective of treating the Chern classes as indi-
vidual objects, being composed with a functor that is producing line bundles. The
functor formally acts as pairing with a fundamental class and then taking a direct
image. This leads us to the following definition of a line distribution, which is the
main subject of Section 8.2.

Definition / Theorem E. — For X → S satisfying the condition (Cn), there is a line
distribution, given on objects by

(1.7) ck1
(E1) · · · · · ckm

(Em) 7−→ ⟨ck1
(E1) · · · · · ckm

(Em)⟩X/S .

We call it the intersection distribution for X → S. We equally call intersection distri-
butions the following related constructions:

(1) If we fix an object P of CH(X)Q, we denote by [P ]X/S the distribution induced
by

P ′ 7−→ ⟨P ′ · P ⟩X/S .

(2) If i : Y → X is a closed subscheme of X also satisfying the condition (Cm) for
some m, we denote by δY/S the line distribution for X → S given by i∗[1]Y/S .

We refer to Theorem 8.2 for the statement of the theorem. The key to show that
the intersection bundles define multiplicative functors from CH(X)Q to Pic(S)Q is
to combine Theorem D with a study of the Whitney isomorphism for split exact
sequences and its interaction with the action of permutations on the right-hand side
of (1.7) (cf. Lemma 8.1). The latter is the reason for the introduction of rational
coefficients, which has the effect of identifying several natural isomorphisms which
differ at most by a sign. While it is, in theory, possible to develop an integral formalism
that accounts for all such signs, working rationally is of no harm for future applications
to the Deligne–Riemann–Roch problem.

When X is equal to S itself, via a first Chern class isomorphism (cf. Theorem F
below), the intersection distributions are equivalent to the category of Q-line bundles.
With this understood, we have an identification of Q-line bundles

⟨ck1(E1) · · · · · ckm(Em)⟩X/S = f∗[ck1(E1) · · · · · ckm(Em)]X/S ,

hence lifting all the individual members of the equality (1.6).
Using the language of intersection distributions, the bulk of Theorem D above can

be recast as follows. We refer the reader to Corollary 8.6 for a detailed formulation.

Theorem F. — Assume, in properties (1)–(5) below, that all the morphisms satisfy
the condition (Cm), for some m. We let E denote a vector bundle on X, of rank r.

(1) (Projection formulas) Let h : X ′ → X be a morphism of relative dimension n′,
and take P in CH(X)Q and P ′ in CH(X ′)Q. Then, there is a canonical isomorphism

h∗(h
∗P · [P ′]X′/S) ≃ P · h∗[P ′]X′/S .

J.É.P. — M., 2024, tome 11



256 D. Eriksson & G. Freixas i Montplet

Furthermore, there are canonical isomorphisms:

h∗[P
′]X′/S ≃


[
c1(⟨P ′⟩X′/X)

]
X/S

, if degP ′ = n′ + 1.[∫
X′/X

P ′
]
X/S

, if degP ′ = n′.

0, if degP ′ < n′.

(2) (Whitney isomorphism) For a short exact sequence 0→ E′ → E → E′′ → 0 of
vector bundles, there is a canonical isomorphism

[ck(E)]X/S ≃
k∑

i=0

[ci(E
′) · ck−i(E

′′)]X/S ,

in a way that is compatible with admissible filtrations.
(3) (First Chern class isomorphism) There is a canonical isomorphism

[c1(E)]X/S ≃ [c1(detE)]X/S

in a way that is compatible with the Whitney isomorphism.
(4) (Rank triviality) If q > r, there is a canonical isomorphism

[cq(E)]X/S ≃ 0.

(5) (Restriction isomorphism) Suppose that σ is a regular section of E, whose zero
locus Y is flat over S. Then, there is a canonical isomorphism

[cr(E)]X/S ≃ δY/S .

(6) (Birational invariance) Suppose h : X ′ → X is birational. Then, there is a
canonical isomorphism

h∗δX′/S ≃ δX/S .

In particular, h∗[h∗P ]X′/S ≃ [P ]X/S.
These operations can be composed with each other in a natural way, and commute
with each other.

In Section 8.2, we also establish further expected intersection theoretical properties
of the intersection distributions, for instance a canonical isomorphism of the form
[ck(E

∨)]X/S ≃ (−1)k[ck(E)]X/S , proved in Proposition 8.11.

The Riemann–Roch distribution. — We now explain how the above formalism provides
a framework in which we can study the Deligne–Riemann–Roch problem. As an ap-
plication, we construct an isomorphism in the setting of closed immersions realized
as zeros of regular sections of a vector bundle.

Let X → S and Y → S be morphisms of divisorial schemes, satisfying the con-
ditions (Cn) and (Cm). Suppose that f : X → Y is a S-morphism of local complete
intersection. Denote the cotangent complex in Db(VectX) of f by LX/Y . In this case,
by Proposition C and the surrounding discussion, for any vector bundle E we can
consider the following object in CH(X)Q

ch(E) · td∗(LX/Y ),
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and the associated intersection distribution

[ch(E) · td∗(LX/Y )]X/S .

In this language, given (1.2) and (1.6), Problem 2 can be generalized as the quest for
a natural isomorphism of line distributions:

Problem 2’. — With the notation as above, there is a canonical isomorphism:

(1.8) [ch(f! E)]Y/S −→ f∗[ch(E) · td∗(LX/Y )]X/S .

Moreover, in the variable E, it is an isomorphism of functors of commutative Picard
categories V (X)→ D(Y/S).

We notice that the left-hand side of (1.8) is defined by Proposition A. When one
specializes to the case Y = S, the left-hand side identifies with the determinant of the
cohomology λf (E), and we hence understand this to solve Problem 2 as a particular
case. We refer the reader to Section 9.4 for a discussion of expected additional features
of the isomorphism of distributions (1.8).

As an application of our techniques, in Corollary 9.6 in Section 9.3, we prove the
following instance of Problem 2’, which, on the level of Chern classes, follows from
the Borel–Serre identity [7, Lem. 18]. We expect it to play the role of a prototype for
the Deligne–Riemann–Roch problem in the case of regular immersions.

Theorem G. — When f = i is a closed immersion, determined by the zeros of a
regular section of a vector bundle, there is a natural isomorphism

[ch(i! OY )]X/S −→ i∗[td
∗(N∨

X/Y )
−1]Y/S

of line distributions.

When the immersion admits a retraction, this statement readily leads to a so-
lution of Problem 2’ for i : Y → X. This situation arises in the approach to the
Grothendieck–Riemann–Roch theorem by the deformation to the normal cone. We re-
fer to Corollary 9.7 for the proof.

We finish this introduction with a discussion of parallel contributions to the
Deligne–Riemann–Roch problem. The first author studied the Deligne–Riemann–
Roch program in various contexts. We refer to [14] for an announcement, although
the integrality of this work remains unpublished. A running hypothesis is a regularity
assumption on the involved schemes, which is unwieldy in many applications, and
the current work is supposed to supersede this. Concerning Problem 2, more re-
cently, in [46] Rössler considered the Adams–Riemann–Roch counterpart of the above
program for the second Adams operation, for line bundles and projective smooth mor-
phisms in the Noetherian setting, satisfying some additional assumptions. It would
be interesting to understand the relationship between our work and his.
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1.5. Conventions and notation. — We gather some conventions that will prevail
throughout this article.

The subject of study of this article is intersection bundles, which depend on an
S-scheme and a number of vector bundles. In this article, when we refer to these and
similar constructions to be functorial, we mean that the formation is compatible with
base change, and with isomorphisms of S-schemes and vector bundles. This type of
functoriality being trivially true in all of our constructions, it will not be addressed
in the proofs.

By a vector bundle (resp. vector bundle of constant rank r) on a scheme X

we will mean a locally free sheaf of OX -modules of finite type (resp. constant finite
rank r). A vector bundle of constant rank 1 will equivalently be called a line bun-
dle. Given a vector bundle E on X, our convention for the associated projective
bundle π : P(E)→ X is P(E) = Proj (SymE). In particular, there is a universal,
or tautological, exact sequence on P(E)

(1.9) 0 −→ Q −→ π∗E −→ O(1) −→ 0.

From Section 7 onwards, most constructions will be trivial for the zero vector bundles.
In such case, for ease of exposition, we will tacitly assume that our vector bundles are
non-trivial.

In the theory of intersection bundles, we will deal with morphisms satisfying a
number of good properties. In order to simplify the discussions, it is convenient to
introduce some terminology, already anticipated in the introduction.

Definition 1.1. — Let f : X → S be a morphism of schemes. Let n ⩾ 0 be an integer.
The following properties define the condition (Cn) for f :

f is locally projective, faithfully flat of finite presentation (fppf ),
and of pure relative dimension n.

(Cn)

We recall that locally projective means that, locally with respect to S, it factors
through a closed embedding into some PN

S , where N is not fixed. The condition on the
dimension means that all the fibers are equidimensional of dimension n. The condi-
tion (Cn) is stable under base change. We notice that, in the Noetherian case, a mor-
phism satisfying the condition (Cn) is universally equidimensional, see [49, Def. 2.1.2
& Prop. 2.1.7 (2)].

We will encounter regular immersions of schemes. There are several variants of this
notion, which are in general not equivalent. We follow [50, 0638] and [50, 067M]. Let
Y ↪→ X be a closed immersion of schemes. It is said to be regular if it is locally given
by a regular ideal sheaf (f1, . . . , fr) ⊆ OX . That is, for every i, multiplication by fi is
injective on OX/(f1, . . . , fi−1). Similarly, it is said to be Koszul-regular if the Koszul
complex associated with the sequence (f1, . . . , fr) is a resolution of OY . A regular
closed immersion is automatically Koszul-regular. Suppose now that Y and X are flat
and locally of finite presentation over a base scheme S. In this case, Koszul-regularity
entails regularity. Furthermore, these conditions can be checked on fibers, and hold
after any base change. Indeed, this follows from [50, 063K] and [30, Prop. 19.2.4].
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In this article, we will always be in this relative situation, and hence regularity and
Koszul-regularity will be equivalent notions.

If E is a vector bundle on a scheme X, and σ is a global section of E, let Y be the
zero-locus scheme of σ. We denote by K(σ) the associated Koszul complex. We say
that σ is a regular section of E if K(σ) is a resolution of OY . If X and Y are flat over
a base scheme S, and X is locally of finite presentation over S, then by the previous
paragraph Y ↪→ X is a regular closed immersion. Furthermore, in this situation, σ
remains regular after any base change S′ → S.

A morphism of schemes f : X → Y is a local complete intersection if, locally on X,
it factors as a Koszul-regular immersion X ↪→ P followed by a smooth morphism
P→Y . If X and Y are flat and locally of finite presentation over a base scheme S, then
the closed immersion is necessarily regular. Furthermore, in this situation, f remains
a local complete intersection after any base change S′ → S.

In dealing with general schemes, we will sometimes use the so-called Noetherian
approximation. Our use of this technique is standard, and we rather refer [50, 01YT]
for a compendium of results supporting our arguments.

In categorical considerations, it will be convenient, albeit not strictly necessary,
to fix a Grothendieck universe. Scheme theoretic constructions will be assumed to
take place within this universe. The categories we need or build will all be small with
respect to a possibly larger universe. Up to equivalence of categories, the constructions
of Chern categories below do not depend on the choice of universe, see [54, App. F].
The use of universes allows us to avoid some set-theoretic technicalities and to conform
with references such as [54], on which we rely.

If S is a scheme, we denote by Pic(S) the category of line bundles on S with
isomorphisms. Together with the tensor product, it has a natural structure of a com-
mutative Picard category. Similarly, we denote by Pic(S)gr the Picard category of
graded line bundles. Its objects are pairs (n,L), where n is a locally constant function
S → Z, and L is a line bundle on S. A morphism between two objects (n,L) and
(m,M) consists in an identity n = m and an isomorphism L → M . Componentwise
addition defines a monoidal structure, which is symmetric if taken with the Koszul
rule of signs. With this understood, Pic(S)gr is a commutative Picard category.

Finally, Pic(S)Q is the Picard category of Q-line bundles. Morphisms of Q-line
bundles are isomorphisms of sufficiently high powers of them.

Acknowledgments. — We thank Alexander Berglund, Christian Johansson, Dan Pe-
tersen, and David Rydh for discussions related to the present article. We warmly
thank the referee, whose criticism led to an improved exposition of the article, and in
particular of the construction of the Chern categories. The second author thanks the
Department of Mathematics at Chalmers University of Technology and the University
of Gothenburg, for the hospitality.
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2. Monoidal and Picard categories

The purpose of this section is twofold. The first purpose is to review basic facts and
elaborate on some properties of symmetric monoidal categories and Picard categories.
The second one, which is the main one, is to introduce and discuss the notion of
Picardification. This consists in a functorial procedure to turn a symmetric monoidal
category into a Picard category. The construction of the Picardification is not entirely
new, but it has not been much studied per se in the literature. Our treatment is in
the spirit of Thomason’s work on the K-theory of spectra of symmetric monoidal
categories [52]. We also provide an equivalent presentation that is close to Sinh’s
Picard envelope [48].(3) We recall from Section 1.5 that all the categories we consider
are implicitly assumed to be small.

2.1. Generalities. — We recall some basics on monoidal and Picard categories. The
reader is referred to [10, §4], [34, App. A], [37], [45], [47], and [48] for further details
and references.

2.1.1. Monoidal categories. — A monoidal category is a category A equipped with a
bifunctor ⊕ : A×A→ A, here called addition, together with a functorial associativity
isomorphism A⊕ (B⊕C)→ (A⊕B)⊕C, which is supposed to satisfy the pentagonal
axiom for sums of four objects and studied in detail in [37, p. 33]. Any potentially
commutative diagram, involving only the associativity isomorphism (or its inverse),
does commute. This is the content of the coherence theorem proved in [37, Th. 3.1],
allowing one to consider finite ordered sums

⊕n
i=1Ai, also denoted

∑n
i=1Ai, without

necessarily specifying the bracketing. In concrete constructions, though, we will fix
the following convention for ordered sums:

∑n
i=1Ai is defined inductively by

(2.1)
n∑

i=1

Ai = A1 ⊕
( n∑

i=2

Ai

)
.

The monoidal category A is said to be symmetric if there is a functorial isomor-
phism, called symmetry or commutativity,

cA,B : A⊕B −→ B ⊕A,

such that cB,AcA,B = idA⊕B and satisfying the hexagonal axiom relating it to the
associativity, explained in detail in [37, p. 38]. Any potentially commutative diagram,
built out of the associativity and the commutativity transformations, does commute,
by another coherence theorem also proved in [37, Th. 4.2]. In particular, it makes
sense to consider not necessarily ordered finite sums

⊕
i∈I Ai, or

∑
i∈I Ai. A strictly

symmetric monoidal category is one for which the commutativity isomorphisms satisfy
cA,A = idA.

A monoidal category A is said to be unital if there is a zero object 0A, or simply 0,
meaning there are natural contraction isomorphisms A⊕0A → A← 0A⊕A. These are

(3)To the best of our knowledge, Sinh was the first in addressing this question, attributed to
Grothendieck.
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supposed to be compatible with the associativity isomorphisms, and the symmetry
in the presence of it. In this article, all the monoidal categories will be supposed to
be unital. Henceforth, by a monoidal category we always mean a unital one. One fre-
quently encounters equivalent terminology for the zero object, such as neutral object
or unit object, depending on the context. The coherence theorem for the associativity
and commutativity rules extends to include the contraction isomorphism with the
zero object [37, Th. 5.1].

Remark 2.1. — In [37], Mac Lane states the coherence theorems in terms of isomor-
phisms of functors. An alternative formulation, albeit not equivalent, can be given in
terms of regular objects, i.e., which are sums of pairwise distinct objects or several
zeroes. An instance of the coherence theorems in this form says that in a symmet-
ric monoidal category, between two regular objects, there is at most one morphism
involving associativity, commutativity, and contraction against zero. It follows that
any diagram involving such morphisms between regular objects must commute. The
regularity condition can be removed only in the strictly symmetric case. The formula-
tion in terms of objects is then equivalent to Mac Lane’s one. These subtleties will be
relevant when we study rig categories in Section 3.1, for which the coherence theorems
in the literature are stated in terms of regular objects.

If A,B are monoidal categories, a functor F : A→ B is said to be monoidal(4) if it
is also equipped with a natural transformation

(2.2) F (A)
⊕
B

F (B) −→ F (A
⊕
A

B),

which is compatible with the respective associativity isomorphisms. We further require
that there is the choice of a morphism

(2.3) 0B −→ F (0A)

satisfying natural coherence conditions for the zero object. We say that F is a strong
monoidal functor if both (2.2)–(2.3) are isomorphisms. This condition is automati-
cally fulfilled if all the morphisms in B are isomorphisms, i.e., B is a groupoid. If A,B
are symmetric, then F is said to be symmetric if (2.2) is compatible with the respec-
tive commutativity constraints. A natural transformation of (symmetric) monoidal
functors is a natural transformation compatible with the monoidal structure of the
functors, that is the data (2.2) and (2.3).

An equivalence of monoidal categories is a monoidal functor F : A → B which is
a weak equivalence of the underlying categories. For the purposes of this article, a
quasi-inverse functor G : B → A consists additionally in choosing, for any object B
of B, an object A of A and an isomorphism F (A) → B. It corresponds to a natural
transformation F ◦G→ idB, and composing with F one deduces a unique associated
adjoint transformation G ◦ F → idA. Furthermore, if F is a strong monoidal functor,
then there is a uniquely defined monoidal structure of G such that F ◦G→ idB and

(4)It is also called a lax monoidal functor.
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G◦F → idA are natural transformations of monoidal functors. Applied to two inverses
G and G′, we see that the deduced transformation G→ G′ is automatically a natural
transformation of monoidal functors. In conclusion, associated with an equivalence
F : A → B which is strong monoidal, we can always consider an inverse monoidal
functor G : B→ A, unique up to canonical natural transformation of monoidal func-
tors. This construction associated with a quasi-inverse G is often assumed implicitly
in the rest of the text where we often need to invert equivalences. The discussion
extends to the symmetric monoidal case.

More generally, we will also consider multisymmetric and multimonoidal functors.
This consists in giving, for symmetric monoidal categories A1, . . . ,An,B, a functor of
the form F : A1 × . . .An → B which is symmetric and monoidal in every entry sepa-
rately. The notion of natural transformation of symmetric monoidal functors extends
to the multi-setting, by requiring compatibility with the monoidal structure in each
component.

Given a symmetric monoidal category A, we will have the need for the Grayson–
Quillen completion A−1A [25, pp. 218–220], sometimes also denoted by (−A)A. This is
a symmetric monoidal category, whose objects are pairs (A,B) of objects of A, which
informally represent differences B−A. A morphism (A,B)→ (C,D) is an equivalence
class of tuples (X, f, g), where X is an object of A and f : A⊕X → C, g : B⊕X → D

are morphisms in A. Two tuples (X, f, g) and (X ′, f ′, g′) are equivalent if there exists
an isomorphism σ : X → X ′ which renders the following diagrams commutative:

A⊕X

idA ⊕σ

��

f

$$

B ⊕X

idB ⊕σ

��

g

%%
C D

A⊕X ′ f ′

::

B ⊕X ′.
g′

::

The symmetric monoidal structure is induced by componentwise addition. The con-
struction of A−1A is functorial with respect to symmetric, monoidal functors, and
natural transformations between those. Finally, we notice that even if A is a groupoid,
A−1A does not need not to be so.

2.1.2. Picard categories. — A Picard category is a monoidal category (P,⊕), which
is also a groupoid and such that for any object X of P, the corresponding translation
functors X ⊕ • : P→ P and •⊕X : P→ P are autoequivalences. In a Picard category,
the unital axiom is automatically satisfied and is hence superfluous. By analogy with
Picard categories of line bundles, one frequently encounters the notation ⊗ for the
monoidal structure and refers to this functor as product or tensor product. In this
case, zero objects are rather called unit objects.

In a Picard category P, the fact that the translation functors by an object X are
essentially surjective, provides the existence of left and right opposites, or inverses,
of X. Precisely, a left (resp. right) inverse for X consists in the choice of an object
−X endowed with an isomorphism (−X) ⊕ X ≃ 0P (resp. X ⊕ (−X) ≃ 0P). Such
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isomorphism is called a contraction. From the fact that the translation functors are
fully faithful, we deduce that an inverse is unique up to unique isomorphism. The
choice of the contraction isomorphism is usually not specified in the discussions.

Given a Picard category P, we can consider its group of objects up to isomor-
phism, π0(P), and the group of automorphisms of the zero object, π1(P) = AutP(0P).
Since the functor • ⊕ X is an autoequivalence, for any object X, we have a natural
identification AutP(X) = π1(P).

A Picard category which is also a symmetric (resp. strictly symmetric) monoidal
category is rather called a commutative (resp. strictly commutative) Picard category.
Any left inverse object −X to X is canonically equipped with the structure of a right
inverse, by applying the commutativity isomorphism. In particular, there are two ways
of constructing an isomorphism

X ⊕ (−X)⊕X −→ X,

either by contracting on the left or the right. The two different choices differ by the
automorphism cX,X , which can be thought of as an automorphism of the zero object,
necessarily of order 2. The construction of cX,X defines a homomorphism

(2.4) ε : π0(P) −→ π1(P),

whose images are referred to as signs. Hence, P is strictly commutative if the subgroup
of signs is trivial. In this case, we can consider finite unordered products and can
unambiguously contract elements against their inverses.

We notice that in a commutative Picard category P, the choice of an inverse for
every object defines a functor X 7→ −X. It is an equivalence of categories and its own
quasi-inverse: it is involutive. In particular, it can naturally be given the structure of
a symmetric monoidal functor.

A functor between Picard categories F : P → P′ is a monoidal functor. For com-
mutative Picard categories, F is said to be commutative if it is symmetric. A natu-
ral transformation of (commutative) functors between Picard categories is a natural
transformation of (symmetric) monoidal functors.

An equivalence of Picard categories F : P→ P′ is an equivalence of the underlying
monoidal categories. We notice that since P′ is a groupoid, F is automatically a strong
monoidal functor, that is the morphisms of the type (2.2)–(2.3) are isomorphisms. In
particular, by the discussion in Section 2.1.1 on equivalences of monoidal categories,
there exists an inverse equivalence P′ → P, which is unique up to canonical natural
transformation of monoidal functors.

An equivalence of Picard categories induces an isomorphism on π0 and π1. For a
functor of Picard categories, the converse is also true.(5) Since this is used in various
contexts in the text, we state it and recall the classical proof, together with a remark
on natural transformations of functors between Picard categories.

(5)This in the spirit of Whitehead’s theorem relating weak equivalences and homotopy equiva-
lences for CW complexes.
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Lemma 2.2. — Let F,G : P→ P′ be functors between Picard categories.
(1) If F induces isomorphisms π0(P) → π0(P

′) and π1(P) → π1(P
′), then F is a

weak equivalence of categories.
(2) The set of natural transformations between F and G is either empty or a torsor

under HomGrp(π0(P), π1(P
′)).

Proof. — For the first point, since F is an isomorphism on π0, it is essentially surjec-
tive on objects. We need to show that F is also fully faithful. Since F is injective on π0,
there is an isomorphism F (X) ≃ F (X ′) in P′ if and only if there is an isomorphism
X → X ′ in P. It follows that the Hom-sets HomP(X,X

′) and HomP′(F (X), F (X ′))

are either both empty or non-empty. If they are non-empty, choose an isomorphism
X → X ′ to reduce the statement about full faithfulness to X = X ′. Since X ⊕ • is
fully faithful, one reduces to the case when X = 0P. Then, the full faithfulness of F
becomes equivalent to F inducing an isomorphism on the level of automorphisms of
the unit object, i.e., on the level of π1.

For the second point, we can reduce to the case F = G. A natural transformation
of functors is the same thing as providing an isomorphism F (X) → F (X) for any
object X, compatible with morphisms X → Y . Since these morphisms X → Y are all
isomorphisms, it passes to π0. The automorphism of F (X) is identified with an object
in π1(P

′) and hence we obtain a map of sets π0(P) → π1(P
′). Since F is a functor

of Picard categories, the map π0(P) → π1(P
′) is seen to be a group homomorphism.

The construction can be reversed, and it uniquely assigns an endomorphism of F to
a group homomorphism π0(P)→ π1(P

′). The details are left to the reader. □

2.1.3. Rationalization of Picard categories. — Let (D,⊕) be a commutative Picard
category. Let n ⩾ 1 be an integer. Following the convention (2.1), we can define a
multiplication by n functor [n] : D → D. By Mac Lane’s coherence theorems, it has
a natural structure of symmetric monoidal functor. For an object D of D, we will
rather write n ·D or nD, instead of [n]D. We say that D is divisible if [n] : D→ D is
an equivalence of categories for every n ⩾ 1. By Lemma 2.2, this is exactly the case
when π0(D) and π1(D) are divisible groups.

Let now (P,⊕) be a commutative Picard category. We will introduce a commutative
Picard category (PQ,⊕), called the rationalization of P, which is divisible and endowed
with a natural functor of commutative Picard categories P→ PQ. The objects of PQ
are simply objects of the form (m,P ), where P is an object of P and m ⩾ 1 is an
integer. The set of morphisms (m,P )→ (m′, P ′) is

lim
k→∞

Hom(k ·m′ · P, k ·m · P ′),

where the limit is taken with respect to the natural transition morphisms between the
Hom sets. The resulting category PQ naturally inherits the structure of a commutative
Picard category from P, by setting

(m,P )⊕ (m′, P ′) = (m ·m′,m′ · P ⊕m · P ′).
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An application of Mac Lane’s coherence theorems shows that this indeed defines a
symmetric monoidal structure on P, with zero object (1, 0P). The functor determined
on objects by P 7→ (1, P ) is clearly a functor of commutative Picard categories. The
fundamental groups of P and PQ are related as in the following lemma.

Lemma 2.3. — Let the notation be as above. Then, there are natural isomorphisms of
groups πk(PQ) = πk(P)⊗Q. In particular, P→ PQ is an equivalence of categories if,
and only if, P is divisible.

Proof. — For π0, this is clear. For π1, the proof of this is based on the fact that, if
one is given the composition of two automorphisms X f→ X

g→ X, then under the
isomorphism of groups HomP(X,X) ≃ HomP(2·X, 2·X), the composition corresponds
to the automorphism f ⊕ g. This, in turn, follows from a simple rewriting

f ⊕ g = (f ⊕ id) ◦ (id⊕g) = (f ⊕ id) ◦ ε ◦ (g ⊕ id) ◦ ε,

where ε is the sign morphism (2.4), and noting that for any φ ∈ π1(P), φ ◦ f = f ◦φ.
A similar argument applies to the composition of several isomorphisms. The last
assertion is an application of Lemma 2.2. □

The proposition asserts that the construction above is characterized by a universal
property.

Proposition 2.4. — Let P be a commutative Picard category and suppose we are
given a divisible commutative Picard category D. Then the functor P → PQ induces
an equivalence of categories

Hom(PQ,D) −→ Hom(P,D).

Here, the Hom-categories refer to functors of commutative Picard categories.

Proof. — We first prove the functor is essentially surjective. Since D → DQ is an
equivalence of categories, we can fix a quasi-inverse DQ → D which is a functor of
commutative Picard categories. Now, given a functor of Picard categories F : P→ D,

there is an induced functor of commutative Picard categories FQ : PQ → DQ, given on
objects by FQ((m,P )) = (m,F (P )). Composing with DQ → D, we obtain a functor
of commutative Picard categories PQ → D, which is isomorphic to F : P→ D.

Since the Hom-categories are commutative Picard categories, to prove the functor
is fully faithful, it is enough to look at the induced functor on the groups of auto-
morphisms. The automorphisms in the first (resp. the second) Hom-category are, by
Lemma 2.2, Hom(π0(PQ), π1(D)) = Hom(π0(P)Q, π1(D)) (resp. Hom(π0(P), π1(D)).
Because π1(D) is divisible, these are naturally identified by the above functor between
Hom-categories. □

Remark 2.5
(1) Since π1(PQ) = π1(P)⊗Q, the sign homomorphism in (2.4) is necessarily the

trivial map, and PQ is hence strictly commutative.
(2) The above is a version of the Bousfield localization at Q in the context of Picard

categories.
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Corollary 2.6. — Let P1, . . . ,Pn be commutative Picard categories, and D a divis-
ible, commutative Picard category. Let F : P1 × · · · × Pn → D be a multisymmetric
and multimonoidal functor. Then there is an extension of F into a multisymmetric
and multimonoidal functor

F̃ : P1,Q × · · · × Pn,Q −→ D.

The construction is functorial with respect to natural transformations. Hence, there
is an equivalence of categories of multisymmetric and multimonoidal functors

Hom(P1,Q × · · · × Pn,Q,D) −→ Hom(P1 × · · · × Pn,D).

Proof. — If n = 1, this is the content of Proposition 2.4. In general, we interpret F
as a multimonoidal and multisymmetric functor

P1 × · · · × Pn−1 −→ Hom(Pn,D) ≃ Hom(Pn,Q,D).

The Hom-category has a natural structure of a commutative Picard category. Fur-
thermore, because D is divisible, the Hom-category is divisible too. We conclude by
induction. □

Remark 2.7. — In the proof of the corollary, in the induction step, there is a choice
of order of the Picard categories. It is an exercise to check that any other order would
yield an isomorphic extension of the functor. We will later encounter a similar, albeit
more subtle, phenomenon in the Picardification theory. We refer to Remark 2.14(2)
for the details.

2.2. Picardification of symmetric monoidal categories. — In this subsection, we let
(A,⊕) be a symmetric monoidal category, which is also a groupoid. For example,
A could be a commutative Picard category.

Definition 2.8. — A Picardification of (A,⊕) is a commutative Picard category
(V (A),⊕) together with a symmetric monoidal functor i : A→ V (A), universal with
respect to symmetric monoidal functors A → P, where P is a commutative Picard
category. That is, composition with the functor i : A→ V (A) induces an equivalence
of categories

(2.5) Hom(V (A),P) −→ Hom(A,P).

Here, the Hom refer to categories of functors of symmetric monoidal categories, to-
gether with the natural transformations.

Let us assume, for the time being, that a Picardification V (A) exists. For the
sake of clarity, and in order to fix some conventions, we elaborate on the practical
use of the equivalence of categories (2.5). Let F : A → P be a functor of symmetric
monoidal categories as in the definition. That (2.5) is essentially surjective means that
there exists a pair (F̃ , µ), where F̃ : V (A) → P is a functor of commutative Picard
categories, and µ : F̃ ◦ i→ F is a natural transformation of functors of commutative
Picard categories. From the fact that (2.5) is fully faithful, we infer that the pair
(F̃ , µ) is unique up to unique isomorphism. Explicitly, if (F̃ ′, µ′) is another such pair,
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then we have an isomorphism (µ′)−1◦µ : F̃ ◦i→ F̃ ′◦i. By full faithfulness, there exists
a unique isomorphism of η : F̃ → F̃ ′ with (µ′)−1 ◦ µ = η ◦ i. It is customary to refer
to F without specifying the natural transformation µ, which is therefore implicit.

The discussion of the previous paragraph shows that if V (A)′ is another Picardi-
fication, then there exists an equivalence V (A) → V (A)′ of commutative Picard
categories, which is determined up to unique isomorphism. Therefore, from now on,
we will refer to the, rather than a, Picardification.

Theorem 2.9. — Let (A,⊕) be a symmetric monoidal category, which is also a
groupoid. Then:

(1) The Picardification of A exists.
(2) The assignment A 7→ V (A) is functorial with respect to symmetric monoidal

functors, and natural transformations between those.

Proof. — We begin with the existence property. Without loss of generality, we may
assume that the right, or equivalently left, translation functors of A are faithful.
For this, we observe that there is a universal quotient category Ã of A, where this
condition is satisfied. To see this, introduce a relation on morphisms of A as follows:
two morphisms f, f ′ : A → B are related if there exists an object X such that the
equality f ⊕ idX = f ′ ⊕ idX holds. This is an equivalence relation. For the proof, one
uses that for any such morphism f and objects X,Y , we have by bifunctoriality of ⊕
that

(idB ⊕cX,Y ) ◦ (f ⊕ idX⊕Y ) = (f ⊕ idY⊕X) ◦ (idA⊕cY,X),

and that all the morphisms in A are isomorphisms. In the same vein, it is seen that if
f, f ′ : A→ B, resp. g, g′ : B → C are related, then so are g◦f and g′ ◦f ′. We can thus
form the quotient category Ã, which inherits from A the structure of a symmetric
monoidal category, whose morphisms are still isomorphisms. The quotient A → Ã

is naturally a symmetric monoidal functor. If P is a Picard category, consider the
induced functor between Hom categories of symmetric monoidal functors, namely
Hom(Ã,P) → Hom(A,P). Using that the translation functors of P are equivalences
of categories, we see that the functor Hom(Ã,P)→ Hom(A,P) induces an equivalence
of categories. Therefore, it is enough to show the virtual category of Ã exists. Hence,
for the rest of the proof, we suppose that A is a unital symmetric monoidal category,
whose morphisms are isomorphisms and whose translation functors are faithful.

Consider the Grayson–Quillen completion A−1A of A, recalled in Section 2.1.1
above. For a category C, let B(C) be its classifying space, that is the geometric real-
ization of its nerve. In these terms, we define V (A) to be the fundamental groupoid
of B(A−1A), denoted by πfB(A−1A). We first prove that V (A) is a Picard category
and that there is a natural symmetric monoidal functor i : A→ V (A).

It follows by functoriality of the involved constructions that the fundamental
groupoid of B(A−1A) is a symmetric monoidal groupoid. For this, it is enough to
notice that the construction C 7→ πfB(C) induces a functor from the 2-category (small
categories, functors, natural transformations) to the 2-category (small groupoids,
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functors, natural transformations). The statement on 2-morphisms is only true up
to homotopy on the level of classifying spaces, and after applying the fundamental
groupoid this homotopy is collapsed.

We next prove that for any object A of V (A), addition A⊕ (or ⊕A) is essentially
surjective and fully faithful. The path component set π0(V (A)) is the set of isomor-
phism classes of V (A), which in turn equals π0(A−1A). By construction, it is the group
completion of the abelian monoid π0(A), see [45, Lem. 13.3.4]. It follows that addition
is essentially surjective on V (A). Finally, we prove that A⊕ is fully faithful. Since it
induces a bijection on the level of π0, there is hence an isomorphism A⊕B → A⊕B′

if and only if there is an isomorphism B → B′. Thus, we can reduce to the case of
B = B′ and automorphisms of objects. The group of automorphisms of an object x
in V (A) is π1(V (A), x), which is abelian since B(A−1A) is an H-space. This in turn
is a component of the homology

H1(V (A)) = H1(A
−1A) ≃

∏
x∈π0(V (A))

π1(V (A), x).

Now, the monoid π0(A) acts invertibly on H1(V (A)) (cf. [25, p. 221]). Therefore, this
action extends to an action of its group completion π0(V (A)). As a result, we deduce
that there are induced bijections π1(V (A), B)→ π1(V (A), A+B).

The functor i : A → V (A) is the composition of the natural functors A → A−1A

and A−1A→ V (A), which are both symmetric monoidal by construction.
Finally, to prove the universal property, composing a symmetric monoidal functor

V (A)→ P with i : A→ V (A) provides a functor in one direction. Conversely, given a
symmetric monoidal functor A→ P, there is an induced symmetric monoidal functor
A−1A→ P−1P, and hence V (A)→ V (P). The below diagram commutes

A //

��

P

��

A−1A

��

// P−1P

��

V (A) // V (P).

The composition P→ V (P) is an equivalence of categories, as follows from Lemma 2.2,
the computation of the homology of V (P) in [25, p. 221], and the fact that π0(P) is a
group. The fact that the diagram induces the equivalence promised in the theorem is
a diagram chase, which we leave to the reader.

The second point of the theorem is a direct consequence of the construction, since
the Grayson–Quillen completion is itself functorial. It is also a standard consequence
of the universal property, as follows. Let F : A→ B be a symmetric monoidal functor
between symmetric monoidal groupoids. The natural functor B → V (B) induces a
functor of categories of symmetric monoidal functors

Hom(A,B) −→ Hom(A, V (B)).
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By the universal property of V (A), the rightmost term is equivalent to the category
of functors Hom(V (A), V (B)). Hence, to F there is associated a functor V (F ), and an
isomorphism of functors F → F ′ induces an isomorphism of functors V (F )→ V (F ′),
compatibly with compositions of natural transformations. In a similar vein, it is proved
that if F and G are two composable functors of symmetric monoidal groupoids, then
there is an isomorphism V (F ◦ G) ≃ V (F ) ◦ V (G), which is unique up to unique
isomorphism. This concludes the proof. □

Remark 2.10. — The astute reader will be familiar with a well-known issue of uni-
versal property of the construction A−1A, exposed by Thomason in [51]. This is
related to (A,B) 7→ (B,A) failing to functorially provide an inverse on the level of
A−1A. However, it does induce a homotopy inverse on the H-space B(A−1A) after
[52, Prop. 5.3], which is reminiscent of the fact that V (A) is a Picard category. This in
turn is a reflection of the fact that B(A−1A) naturally has the structure of an infinite
loop space, which is a well-known construction going back at least to Thomason, see
[53, §4].

In the proof of Theorem 2.9, the effect of taking the classifying space and then
the fundamental groupoid amounts to inverting all the morphisms of A−1A. We now
render this precise, and discuss an equivalent description of the Picardification, which
is reminiscent of Sinh’s treatment in [48, Chap. III]. This will later simplify some ver-
ifications in Section 3.2.3 and Section 5.1.5. Let Σ denote the set of all the morphisms
of A−1A, and introduce the localization A−1A[Σ−1] where all the morphisms become
invertible [21, Chap. I].

Lemma 2.11. — Les A be a symmetric monoidal category, which is also a groupoid.
Then, the natural symmetric monoidal functor A → V (A) extends to an equivalence
of symmetric monoidal categories A−1A[Σ−1]→ V (A).

Proof. — Assume first that the translation functors of A are faithful. The natural
symmetric monoidal functor A−1A→ V (A) extends to a symmetric monoidal functor
A−1A[Σ−1] since V (A) is a groupoid. This functor is an equivalence of categories,
by [24, III, Cor. 1.2].

In general, let Ã be the quotient category of A, where the translation functors be-
come faithful. This was constructed at the beginning of the proof of Theorem 2.9.
By definition, V (A) = V (Ã). The quotient morphism A → Ã is a symmetric,
strong monoidal functor. Hence, it extends to a natural symmetric monoidal func-
tor j : A−1A[Σ−1]→ Ã−1Ã [Σ̃−1], where Σ̃ is the set of morphisms of Ã−1Ã. Thus, it
is enough to see that j is an equivalence of categories. To this end, we will construct
an inverse functor.

We construct a functor Ã−1Ã → A−1A[Σ−1]. On objects, we take the identity
correspondence. Let now h̃ : (A,B) → (C,D) be a morphism in Ã−1Ã. This is the
equivalence class of a triple (X, f̃ , g̃), determined by an object X in A and morphisms
f̃ : A ⊕X → C and g̃ : B ⊕X → D in Ã. In turn, f̃ and g̃ are given by equivalence

J.É.P. — M., 2024, tome 11



270 D. Eriksson & G. Freixas i Montplet

classes of morphisms f : A⊕X → C, g : B ⊕X → D in A. We take the morphism in
A−1A[Σ−1] induced by (f, g), and denoted by h : (A,B)→ (C,D). We need to show
that h depends only on h̃, and not the chosen representatives.

Let (X ′, f̃ ′, g̃′) be another representative of h̃. From this, we construct (f ′, g′) sim-
ilarly to (f, g). We have to justify that (f ′, g′) also induces the morphism h in the
category A−1A[Σ−1]. Unraveling the definitions, we see that there exists an isomor-
phism σ : X → X ′ in A, an object Y , and commutative diagrams in A

(2.6)

A⊕X ⊕ Y

idA ⊕σ⊕idY

��

f⊕idY

''

B ⊕X ⊕ Y

idB ⊕σ⊕idY

��

g⊕idY

''

C ⊕ Y D ⊕ Y

A⊕X ′ ⊕ Y
f ′⊕idY

77

B ⊕X ′ ⊕ Y.
g′⊕idY

77

We notice that the following diagram commutes in A−1A:

(2.7)

(A,B)
h //

��

(C,D)

��

(A⊕X ⊕ Y,B ⊕X ⊕ Y )
(f⊕idY ,g⊕idY )

// (C ⊕ Y,D ⊕ Y ),

where the vertical arrows are the natural ones induced by the identity maps of the
objects A ⊕X ⊕ Y , B ⊕X ⊕ Y , etc. From (2.6), we build yet another commutative
diagram

(A⊕X ⊕ Y,B ⊕X ⊕ Y )

��

++

(A,B)

44

**

(C ⊕ Y,D ⊕ Y )

(A⊕X ′ ⊕ Y,B ⊕X ′ ⊕ Y ).

33

Combining the last two diagrams, we deduce that the analog of (2.7) for (X ′, f ′, g′)

also commutes in A−1A. This implies that (f ′, g′) induces the morphism h in
A−1A[Σ−1], as required.

It is clear that Ã−1Ã→ A−1A[Σ−1] thus defined is a functor, which by the universal
property of the localization extends to a functor Ã−1Ã [Σ̃−1]→ A−1A[Σ−1]. It follows
directly from the construction that this is indeed an inverse functor to j. It also has
an obvious structure of symmetric monoidal functor. This concludes the proof. □

Remark 2.12. — It is possible, but somewhat tedious, to write the proof of The-
orem 2.9 directly in terms of A−1A[Σ−1]. In particular, it can be checked that
(A,B) 7→ (B,A) defines a functorial inverse on A−1A[Σ−1]. See also the related Re-
mark 2.10. The contraction isomorphism (A,B) + (B,A) ≃ 0 can be chosen to be
induced by the natural morphism (0, 0) → (A,B) ⊕ (B,A), defined by the pair
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(idA⊕B , cA,B). Notice that the latter already exists in A−1A, but it is in general
not invertible in this category. This is the reason why we need to localize along Σ.

In Section 3, we will encounter the problem of turning a rig category into a ring
category. A rig category is a symmetric monoidal category with the further structure
of a product, and the problem at hand consists in extending the product to the
Picardification. The following proposition provides a tool for the extension of this
and more general structures.

Proposition 2.13. — Let A1, . . . ,An,B be symmetric monoidal categories, which are
moreover groupoids, and let F : A1×· · ·×An → B be a multimonoidal and multisym-
metric functor. Then there is an extension of F into a multimonoidal and multisym-
metric functor

F̃ : V (A1)× · · · × V (An) −→ V (B).

The construction is functorial with respect to natural transformations.

Proof. — First of all, we compose F with the natural functor B→ V (B). Then, the
proof proceeds by induction and is analogous to the proof of Corollary 2.6, replacing
Proposition 2.4 with Theorem 2.9. We leave the details to the reader. □

Remark 2.14
(1) Proposition 2.13 can also be stated as an equivalence of categories of multi-

monoidal and multisymmetric functors.
(2) As in Remark 2.7, we notice that in the proof of Proposition 2.13, there is a

choice of order of the Picard categories. Contrary to the rationalization, the Picardi-
fication construction depends on the order. Let us first discuss the relevant case of a
product functor ⊗ : A×B→ C. Then the reasoning of the proof implicitly chooses to
first develop a product (

∑
iAi)⊗(

∑
j Bj) on the left into an object

∑
i

(
Ai⊗(

∑
j Bj)

)
,

and later develop the right-hand side. Doing it in the opposite order determines an-
other extension of the product. They are equal up to sign. We refer to [10, §4.11]
for a related discussion. The general case is analogous and reduces to the case of a
product functor by induction. Hence, the different choices of order yield extensions
which differ at most by signs.

3. Rig and ring categories

In this section, we review and discuss the notions and properties of rig and ring
categories, which are categorifications of corresponding structures in commutative
algebra.(6) The Picardification theory of the previous section allows us to turn a rig
category into a ring category. We also consider such structures endowed with the
additional datum of a grading.

(6)A rig is defined analogously to a ring but without the formation of the negative of an element.
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3.1. Generalities. — The results of this subsection recall the basics of rig and ring
categories. Our definitions are more restrictive than in other references, such as
Laplaza [35] or Baas–Dundas–Richter–Rognes [1], but they are adapted to our needs
in the ulterior theory of Chern categories.

3.1.1. Rig and ring categories. — A rig category is a category A endowed with two
symmetric monoidal structures ⊕ and ⊗, called addition and product (or multiplica-
tion), respectively. One requires that there are left and right functorial distributivity
isomorphisms:(7)

A⊗ (B ⊕ C) −→ (A⊗B)⊕ (A⊗ C), (A⊕B)⊗ C −→ (A⊗ C)⊕ (B ⊗ C).

There are also left and right functorial isomorphisms 0A⊗A→ 0A and A⊗0A → 0A,
where 0A is the neutral object for addition. These are called absorption isomorphisms.
Finally, several coherence conditions must hold. These are discussed by Laplaza in
[35, §1], to which we refer to for the precise list of 24 axioms. See also [32, Vol. I] for
a recent treatment of coherence theorem on bimonoidal categories.

The coherence conditions in particular guarantee that⊗ : A×A→ A is bisymmetric
and bimonoidal, with respect to ⊕. In this paper, rig categories whose addition and
product are strictly symmetric will be called strict rig categories.

Rig categories satisfy Laplaza’s coherence theorem [35, §7]. It asserts that, under a
regularity condition on objects, any diagram involving combinations of addition, prod-
uct, symmetry, associativity (or its inverse), distributivity, contractions with neutral
elements (or their inverses), and absorption (or its inverse), must commute. The regu-
larity condition is studied in [35, §3]. Roughly, after forgetting parentheses, a regular
object is a sum of different objects, which are themselves products of different objects.
In practice, in this article, we will only encounter rig categories for which the coher-
ence theorem is satisfied without the regularity condition. We will refer to these as
being strongly coherent. A strongly coherent rig category is necessarily strict. A strict
rig category is actually strongly coherent, as a careful examination of the proof of
[35, Prop. 10] shows. In other words, being strict or strongly coherent, are equivalent
notions.

A ring category R is a rig category (R,⊕,⊗), such that (R,⊕) is moreover a
Picard category. In particular, R is a groupoid. We say that R is strict (resp. strongly
coherent) if it is so as a rig category.

A functor between rig (resp. ring) categories F : A → B is a symmetric functor
of symmetric monoidal categories for both monoidal structures ⊕ and ⊗, which is
moreover compatible with the distributivity and absorption properties. For clarity,
let us indicate what this means for the left absorption property. Consider the diagram

0B ⊗ F (A)

��

// 0B

��

F (0A)⊗ F (A) // F (0A ⊗A) // F (0A).

(7)In some references, such as [35], the distributivity property is more generally given by
monomorphisms.
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It is constructed using the monoidal structure of F and the absorption isomorphisms
of A and B. The required compatibility consists in the commutativity of the diagram.

3.1.2. Graded rig and graded ring categories. — We will need graded counterparts of
rig and ring categories. A graded rig (resp. ring) category is a rig (resp. ring) category
(A,⊕,⊗), of the form A =

∏
k⩾0 Ak. Here, we suppose that (Ak,⊕) is a symmetric

monoidal category (resp. commutative Picard category) with respect to addition and
that the symmetric monoidal structure ⊕ on A is induced by componentwise addition.
In particular, the zero object of A is of the form 0A = (0A0

, 0A1
, . . . ). We also suppose

given bimonoidal bisymmetric functors ⊗ : Ak×Ak′ → Ak+k′ , called graded products,
which induce the product ⊗ on A as follows:

A×A ≃
∏
ℓ

ℓ∏
k=0

Ak ×Aℓ−k −→ A =
∏
ℓ

Aℓ

((Aj)j , (Bj)j) 7−→
( ℓ∑

k=0

Ak ⊗Bℓ−k

)
ℓ

.

(3.1)

In this expression, we adopt the convention (2.1) for the addition of several terms.(8)

The category Ak is called the graded piece of degree k. Objects of Ak are called
objects of pure degree k.

In a graded rig category, the defining axioms (associativity, commutativity, dis-
tributivity, neutral elements, absorption, coherence conditions) are required to be
compatible with corresponding axioms limited to objects of pure degree. The proper
formulation involves the associativity and commutativity isomorphisms for addition
and Mac Lane’s coherence theorems. For the sake of clarity, the next two paragraphs
discuss some instances of these axioms. The other axioms admit an analogous treat-
ment, whose details are left to the reader.

The graded products are supposed to be equipped with functorial symmetry iso-
morphisms, that we denote by cj,k : Aj ⊗ Bk → Bk ⊗ Aj , satisfying ck,j ◦ cj,k = 1.
Combining with the associativity and symmetry isomorphisms for the addition on the
graded pieces, we obtain natural functorial isomorphisms

(3.2)
ℓ∑

k=0

Ak ⊗Bℓ−k −→
ℓ∑

j=0

Bj ⊗Aℓ−j .

We notice that the associativity and symmetry isomorphisms for the addition can
be performed in any order, by Mac Lane’s coherence theorems. Also, applying these
first and then the symmetry for the graded products, or inversely, yields the same
result, by functoriality of the associativity and symmetry for the addition. It is then
checked that the functorial isomorphisms (3.2) induce a symmetry constraint for the
product (3.1).

(8)Thanks to Mac Lane’s coherence theorem [37] for symmetric monoidal categories, any other
convention would yield an equivalent notion of graded product.
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The category A0 has the structure of a rig category, and in particular, has a unit
object 1A0 . This is a neutral object for the graded products: there are functorial
isomorphisms 1A0 ⊗ Ak ≃ Ak and Ak ⊗ 1A0 ≃ Ak in Ak. We also have graded left
absorption isomorphisms 0Ak

⊗ Ak′ ≃ 0Ak+k′ , and similarly for the right absorption
isomorphisms. These are all supposed to be compatible with the symmetry constraint
for the graded products. We see that 1A := (1A0

, 0A1
, 0A2

, . . . ) provides a unit object
for the product on A, and that the zero object 0A = (0A0 , 0A1 , . . . ) is equipped with
natural left and right absorption isomorphisms.

A graded rig (resp. ring) category whose product and addition are strictly symmet-
ric will be called a graded strict rig (resp. ring) category. As for the defining axioms
of a graded rig category, the property of being strict can be stated in terms of the
graded pieces.

A functor of graded rig categories F : A → B is a functor of rig categories that
is induced by functors Fk : Ak → Bk, which are symmetric monoidal with respect to
addition and are compatible with the product structure. This means that there are
natural transformations Fk(Ak)⊗Fk′(Ak′)→ Fk+k′(Ak⊗Ak′), which are compatible
with associativity, symmetry, distributivity, absorption, etc.

We conclude this subsection by commenting on some standard constructions re-
lated to rig categories. If A is a graded rig category, we have natural sections of the
projection functors A→ Ak. These consist in completing an object by zero. Precisely,
if Ak is an object of Ak and we let Ãk be (0A0

, . . . , 0Ak−1
, Ak, 0Ak+1

, . . . ), then the
assignment Ak 7→ Ãk can be naturally upgraded into a functor ik : Ak → A, which
is a commutative functor of symmetric monoidal categories with respect to addition.
This construction is functorial, in the following sense. Let F : A→ B be a functor of
graded rig categories, and assume that B is a groupoid. Then, the diagram

Ak
ik //

Fk

��

A

F

��

Bk
ik
// B

is naturally 2-commutative. This means that there is a natural isomorphism of func-
tors of symmetric monoidal categories F◦ik ≃ ik◦Fk, which is induced by the monoidal
structure of Fk. In a similar vein, if N ⩾ 0 is an integer and A⩽N =

∏
k⩽N Ak, we have

a natural section of the projection A→ A⩽N , which is functorial with respect to func-
tors of graded rig categories.

If R is a graded rig category, we denote by 1 + R+ the full subcategory of R

whose objects have 0-th component isomorphic to 1R0
, together with a choice of

isomorphism. It has a natural structure of symmetric monoidal category with respect
to the product induced by R. If R is in fact a graded ring category, it can be easily
checked that 1 + R+ is actually a commutative Picard category. The construction is
clearly functorial with respect to functors of graded ring categories.
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3.2. Picardification of rig categories. — We apply the Picardification machinery
in Section 2.2, in order to turn a rig category into a ring category.

3.2.1. Ungraded rig categories. — We first treat the case of rig categories without
grading.

Proposition 3.1. — Let (A,⊕,⊗) be a rig category, which is also a groupoid. Let
V (A) be the Picardification of A with respect to addition.

(1) V (A) has a structure of ring category, such that the natural functor A→ V (A)

is a functor of rig categories.
(2) If R is a ring category, then the natural functor A→ V (A) induces an equiva-

lence of categories of functors, of rig categories, Hom(V (A),R) ≃ Hom(A,R).

Proof. — First of all, by Proposition 2.13 the symmetric monoidal structure ⊗ ex-
tends to V (A). For V (A) to be a ring category, we need to show that it satisfies
Laplaza’s coherence axioms. This can also be inferred from Proposition 2.13. For con-
creteness, let us elaborate on the coherence diagram [35, §1 (VI)], and leave the rest
as an exercise. The diagram under consideration is
(3.3)

A⊗ [B ⊗ (C ⊕D)] //

��

A⊗ (B ⊗ C ⊕B ⊗D) // A⊗ (B ⊗ C)⊕A⊗ (B ⊗D)

��

(A⊗B)⊗ (C ⊕D) // (A⊗B)⊗ C ⊕ (A⊗B)⊗D.

We introduce the functor F : A×A×A×2 → A, sending an object (A,B, (C,D)) to
the object A⊗ [B⊗ (C ⊕D)]. If we endow A×2 with the monoidal structure given by
the componentwise addition, then F is a multimonoidal and multisymmetric functor.
Similarly, we have a functor G sending (A,B, (C,D)) to (A⊗B)⊗C⊕(A⊗B)⊗D. The
up-right composition corresponds to a natural transformation λ : F → G. The left-
bottom composition corresponds to another natural transformation µ. The coherence
condition requiring the commutativity of (3.3) is recast as λ = µ. Since F and G are
multimonoidal and multisymmetric, from Proposition 2.13 we deduce that F and G

extend to analogous functors for V (A), and that the natural transformations extend
to λ̃, µ̃. Since λ = µ, then we necessarily have λ̃ = µ̃, which is the coherence condition
[35, §1 (VI)] for V (A).

The second claim of the statement is similarly deduced from Proposition 2.13.
We leave the details to the reader. □

3.2.2. Graded rig categories. — In the case of a graded rig category, the Picardifica-
tion is not sensitive to the grading, which is therefore lost. The following proposition
fixes this issue.

Proposition 3.2. — Let A =
∏

k Ak be a graded rig category, which is also a groupoid.
Define Vgr(A) =

∏
k V (Ak), where V (Ak) is the Picardification of Ak with respect to

addition.
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(1) Vgr(A) has a natural structure of graded ring category, such that the natural
functor A→ Vgr(A) is a functor of graded rig categories.

(2) If R is a graded ring category, then the functor A→ Vgr(A) induces an equiva-
lence of categories of functors, of graded rig categories, Hom(Vgr(A),R) ≃ Hom(A,R).

Proof. — The argument is a slight variant of Proposition 3.1. By Proposition 2.13,
the products Ak × Ak′ → Ak+k′ extend to products V (Ak) × V (Ak′) → V (Ak+k′).
We endow Vgr(A), with the componentwise addition, and with the product defined
by (3.1). We claim that with these structures, Vgr(A) is a graded ring category. We
will only comment on the coherence conditions.

Consider a coherence condition on A expressed in terms of functors F,G : A×N → A

and natural transformations µ, λ : F → G. We can decompose F and G according to
the grading on the target A. For every k, we obtain functors

Fk, Gk : Aℓ1 × · · · ×Aℓr −→ Ak

and natural transformations µk, λk : Fk → Gk. The index r and the degrees ℓ1, . . . , ℓr
depend on k, but we don’t specify the dependence to ease the notation.

By Proposition 2.13, the functors Fk, Gk, extend to analogous functors involving
the Picardifications, and the natural transformations extend to natural transforma-
tions µ̃k and λ̃k. The point here is that Fk, Gk can be rewritten as multisymmetric,
multimonoidal functors of the form A×N1

m1
× · · · × A×Ns

ms
→ Ak, where each A×Ni

mi
is

endowed with the componentwise addition, and that there is a natural identification
V (A×Ni

mi
) = V (Ami)

×Ni .
Finally, by the very definition of a graded rig category, the coherence condition

µ = λ is equivalent to µk = λk for every k. This entails µ̃k = λ̃k for every k. Hence,
the coherence conditions for Vgr(A) hold.

The second claim of the statement is established along the same lines, and the
verification is left to the reader. □

In order to distinguish the construction of the previous proposition from the usual
Picardification, we introduce the following terminology.

Definition 3.3. — With the hypotheses and notation as in Proposition 3.2, we say
that Vgr(A) is the graded Picardification of A.

Remark 3.4
(1) If A is a graded rig groupoid, it is in general not true that the categories V (A)

and Vgr(A) are equivalent. By the universal property of the Picardification, there is
however a natural functor V (A) → Vgr(A). Taking into account the description of
V (A) as A−1A[Σ−1] provided by Lemma 2.11, it can be seen that this functor is the
identity on objects, while it is strictly injective on the Hom sets.

(2) If A is a strict (graded) rig groupoid, then its Picardification is strict as well.
In particular, it is strongly coherent.

(3) The subject of ring completing a rig category has been considered by sev-
eral authors. We mention the work of Baas–Dundas–Richter–Rognes [1]. From a rig
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category A whose translation functors are faithful, the authors produce functors of
rig categories A→ ZA, A→ A, where A is a ring category and the induced maps on
spectra are stable equivalences. We notice that the notion of ring category in [1] does
actually not require A to be a Picard category. To understand the difference between
both constructions, we claim that if A is a groupoid, then our functor A→ V (A) gen-
erally does not induce a stable equivalence on spectra. For this, we first recall that the
spectrum of a Picard category such as V (A) is [0, 1]-connected, meaning that its ho-
motopy groups are concentrated in degrees 0 and 1. By [52, pp. 1657–1658], the functor
A → A−1A induces a stable equivalence, while by construction A−1A → V (A) in-
duces isomorphisms only on π0 and π1. We refer the reader to the appendix in [43] for
a thorough discussion of the homotopy equivalence between [0, 1]-connected spectra
and Picard categories.

3.2.3. Picardification of strict rig categories. — Under a strictness assumption, the pro-
cedure of turning a rig category into a ring category, via Picardification, becomes
rather concrete and simplifies some arguments. We will make this precise for rig cat-
egories without a grading, and leave the analogous graded case to the reader.

Let A be a strict rig groupoid.(9) Recall from Lemma 2.11 that the Picardifica-
tion V (A) can be realized in terms of the Grayson–Quillen completion, namely as
V (A) = A−1A[Σ−1], where Σ is the set of morphisms of A−1A. With this presenta-
tion, the product ⊗ is extended to V (A) as follows. Given objects (A,A′), (B,B′),
we set
(3.4) (A,A′)⊗ (B,B′) = (A⊗B′ ⊕ A′ ⊗B, A⊗B ⊕ A′ ⊗B′).

For the product of morphisms, it suffices to consider morphisms (A,A′)→ (C,C ′) and
(B,B′)→ (D,D′) in A−1A. We suppose these are represented by pairs of morphisms
(f, f ′) and (g, g′), with morphisms
f : A⊕X −→ C, f ′ : A′⊕X −→ C ′, and g : B⊕ Y −→ D, g′ : B′⊕ Y −→ D′.

We form the morphisms f ⊗ g′ ⊕ f ′ ⊗ g and f ⊗ g ⊕ f ′ ⊗ g′. After reordering terms
by means of symmetry isomorphisms for addition, the first one is transformed into
(3.5) A⊗B′ ⊕ A′ ⊗B ⊕ Z −→ C ⊗D′ ⊕ C ′ ⊗D,

where Z is given by
Z = A⊗ Y ⊕ X ⊗B′ ⊕ X ⊗ Y ⊕ A′ ⊗ Y ⊕ X ⊗B ⊕ X ⊗ Y.

A similar manipulation with f ⊗ g ⊕ f ′ ⊗ g′ yields
(3.6) A⊗B ⊕ A′ ⊗B′ ⊕ Z −→ C ⊗D ⊕ C ′ ⊗D′.

The pair constituted by (3.5)–(3.6) defines a morphism
(A,A′)⊗ (C,C ′) −→ (B,B′)⊗ (D,D′).

It is easy to see that it only depends on the equivalence class of (f, f ′) and (g, g′)

in the construction of A−1A, recalled at the end of Section 2.1.1. It is tedious, but

(9)It would be enough to require that the addition be strictly symmetric.
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formal, to check that the construction indeed defines a bifunctorial product. The only
non-trivial ingredients needed in the verification are Mac Lane’s coherence theorems
for addition and, most importantly, the fact that addition is strictly symmetric by
assumption. That the procedure just described yields a well-behaved extension of the
product in the strict case, was already observed by Thomason [51, p. 572].

Finally, for given objects Z,W in A, one can easily find natural isomorphisms of
the form (−Z)⊗W ≃ −(Z ⊗W ) ≃ Z ⊗ (−W ). For this, we recall that the inversion
can be realized as (A,B) 7→ (B,A), see Remark 2.10 and Remark 2.12. Using the
explicit formula for the product, the sought isomorphisms can be explicitly written
down, componentwise, in terms of symmetries for the addition. There are unique such
isomorphisms since A is strongly coherent.

3.3. Rationalization of ring categories. — Let (R,⊕,⊗) be a ring category. Since
(R,⊕) is a Picard category by definition, we can form the rationalization RQ. By Corol-
lary 2.6, the product structure ⊗ extends to RQ. The argument of the proof of Propo-
sition 3.1 can be adapted to show that RQ has the structure of a ring category, and
the natural functor R → RQ is a functor of ring categories. To adapt the argument
of Proposition 3.1, one needs to replace Proposition 2.13 with Corollary 2.6, and the
rest of the reasoning is formally the same. Clearly, the construction is functorial with
respect to functors of ring categories.

If R =
∏

k Rk is a graded ring category, we define the graded rationalization as the
product category RQ :=

∏
k Rk Q. As in the previous paragraph, we can adapt the

reasoning of Proposition 3.2, and show that RQ has the structure of a graded ring
category, such that the natural functor R→ RQ is a functor of graded ring categories.
We notice that this construction does not in general coincide with the rationalization
of R as a commutative Picard category. Therefore, in the graded case, the notation RQ
is actually abusive. However, in the applications below, this should not be a source
of confusion. As in the non-graded case, the construction just described is functorial
with respect to functors of graded ring categories.

We refer to the procedures just presented as the rationalization of ring or graded
ring categories. The rationalization of a ring category is universal, in a similar vein
as in Proposition 2.4, among divisible ring categories. Divisibility here refers to the
underlying additive Picard category. In the graded case, the notion of divisibility
refers to the graded pieces taken individually. Then, a similar universal property of
the rationalization holds. These universal properties will not be needed in the sequel.

In the applications to the theory of Chern categories, we will combine the Picardi-
fication and the rationalization constructions. Precisely, we will first construct certain
graded rig category A. We will go on to perform the graded Picardification Vgr(A).
Finally, we will form the graded version of the rationalization Vgr(A)Q.

4. Multiplicative functors and virtual categories

In this section, we review the notion of multiplicative functors, sometimes referred
to as determinant functors, and of virtual categories. Given an exact category C,
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a multiplicative functor on C is roughly a functor to a Picard category which behaves
as the determinant of vector bundles with respect to exact sequences. The virtual
category is a universal Picard category receiving a multiplicative functor from C.
The formalism of virtual categories extends to more general Waldhausen categories.
This leads us to the study of the virtual categories of schemes, attached to various
categories of vector bundles and sheaves.

4.1. Multiplicative functors. — We recall the notion of a multiplicative functor
from an exact category to a monoidal category. Most of the time, the latter will
actually be a groupoid, or in fact a Picard category. We also stress that we are mainly
interested in the commutative setting.

Definition 4.1. — Let C be an exact category and (P,⊗) a monoidal category. We say
that a functor F : (C, iso)→ P is multiplicative, if:

(1) For any exact sequence in C

Σ: 0 −→ A −→ B −→ C −→ 0,

F is equipped with an isomorphism

F (Σ) : F (B) −→ F (A)⊗ F (C),

which is functorial with respect to isomorphisms of exact sequences.
(2) F is equipped with the choice of an isomorphism

F (0) −→ 1P.

(3) If φ : A→ B is an isomorphism in C, it gives rise to an exact sequence in C of
the form Σφ : 0→ A→ B → 0→ 0, and a sequence of isomorphisms

F (B)
F (Σφ)−−−−→ F (A)⊗ F (0) −→ F (A)⊗ 1P −→ F (A).

We require it to be equal to F (φ)−1. If we instead consider the induced exact sequence
0 → 0 → A → B → 0, we require that the morphism F (A) → F (B) analogously
constructed is F (φ).

(4) Given an admissible filtration A′′ ⊆ A′ ⊆ A, the diagram

F (A) //

��

F (A′)⊗ F (A/A′)

��

F (A′′)⊗ F (A/A′′) // F (A′′)⊗ F (A′/A′′)⊗ F (A/A′)

commutes.
(5) If moreover P is symmetric, we say that F is commutative if for any objects

A,B of C, and given the natural exact sequences

ΣA,B : 0 −→ A −→ A⊕B −→ B −→ 0, ΣB,A : 0 −→ B −→ A⊕B −→ A −→ 0,
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then the diagram
F (A⊕B)

F (ΣA,B)

vv

F (ΣB,A)

((

F (A)⊗ F (B)
cF (A),F (B)

// F (B)⊗ F (A)

commutes.

The (commutative) multiplicative functors actually constitute the objects of a cat-
egory, whose morphisms are natural transformations preserving the (commutative)
multiplicative structure.

Remark 4.2
(1) In Definition 4.1(4), the quotients of the form A/A′ are only defined up to

unique isomorphism. Nevertheless, the condition is meaningful since we have imposed
compatibility with isomorphisms of exact sequences in (1). Also, if we take brack-
ets into account, the bottom and right arrows of the diagram actually have different
targets. These are naturally identified via the associativity isomorphism, hence dis-
pensing us from specifying the bracketing.

(2) For a natural transformation of (commutative) multiplicative functors F and G
to preserve the multiplicative structure, it is enough to check the compatibility with
exact sequences, as well as the compatibility of the trivializations F (0) ≃ 1P and
G(0) ≃ 1P.

4.2. Virtual categories of exact and Waldhausen categories. — We briefly re-
capitulate several known results about virtual categories of exact categories and
Waldhausen categories. It parallels the Picardification construction of a symmetric
monoidal category introduced in Section 2.2, in the sense that they both associate a
universal Picard category with a category that enjoys a notion of a sum or a product
structure. Since a symmetric monoidal category isn’t necessarily an exact category,
the two constructions are not obviously related.

The following summarizes the discussion in [10, §4.4].

Theorem 4.3
(1) Given an exact category C, there is a commutative Picard category V (C), and a

commutative multiplicative functor [−] : (C, iso)→ V (C), such that for any commuta-
tive Picard category P, [−] induces an equivalence of the category of commutative mul-
tiplicative functors (C, iso)→ P and the category of commutative functors V (C)→ P

of commutative Picard categories.
(2) V (C) can be realized as the fundamental groupoid of the Quillen construc-

tion ΩBQC. In particular, if Ki(C) denotes the Quillen K-theory groups, we have
π0(V (C)) = K0(C) and π1(V (C)) = K1(C). □

It was noted in [10, §4.10], extending an observation made in [34], that for a com-
mutative Picard category P, and any commutative multiplicative functor (C, iso)→ P,
there is a natural factorization
(4.1) (C, iso) −→ (Db(C), iso) −→ P.

J.É.P. — M., 2024, tome 11



Deligne–Riemann–Roch and intersection bundles 281

In [33] multiplicative functors were called determinant functors. There this notion was
extended to the category of bounded complexes on an exact category, with formally
the same axioms. The main difference is that one more generally considers functors
from the category of bounded complexes on C together with the quasi-isomorphisms,

(Cb(C), quasi-iso) −→ P,

and requires functoriality with respect to quasi-isomorphisms. In [33, Th. 2.3],
it is proved that the category of multiplicative functors (Cb(C), quasi-iso)→P is
equivalent to that of multiplicative functors (C, iso)→ P as in (4.1).

In [40] the notion of multiplicative functor was extended to general Waldhausen
categories, which includes the case of (Cb(C), quasi-iso).(10) Here we refer to the first
section of [55] or the first section of [54] for a comprehensive introduction to Wald-
hausen categories and their relation to K-theory. We summarize the results of [40] in
the following:

Theorem 4.4. — Let W be a Waldhausen category. Then:
(1) There exists a Picard category V (W) with the analogous properties of Theorem

4.3, where the universal property is given with respect to multiplicative functors on
Waldhausen categories as in [40, Def. 1.2.3].

(2) If F : W → W′ is an exact functor of Waldhausen categories, then there is a
canonically induced functor F̃ : V (W)→ V (W′) of Picard categories.

(3) If F as above induces a homotopy equivalence of the associated Waldhausen
K-theory spectra, then F̃ is an equivalence of Picard categories.

Proof. — The first point then follows from [40, Th. 4.3.4, Th. 4.4.2, Cor. 4.4.5]. We no-
tice that in loc. cit. the existence of the virtual category is part of the existence prop-
erty of a universal determinant functor. The second point follows by the universal
property. The third point follows from [40, Th. 4.5.2], which gives the connection
between the virtual category and the Waldhausen K-theory spectra K(W). □

In [54], for Waldhausen categories of complexes in an abelian category, also called
complicial, the cofibrations are implicitly assumed to be degreewise split monomor-
phisms whose quotient also lies in the same Waldhausen category. The analogous
categories, but with cofibrations being the degreewise admissible monomorphisms,
have homotopy equivalent K-theory spectra, by Th. 1.9.2 and Th. 1.11.7 in op.cit..
As a result, by Theorem 4.4, they have equivalent virtual categories. In the sequel,
we always work with degreewise admissible monomorphisms as cofibrations.

From Knudsen’s results in [33] and the universal property of virtual categories,
we conclude the following.

(10)There seems to be missing a compatibility condition in the definition of their determinant
functors, which should be analogous to our Definition 4.1(2)–(3).
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Corollary 4.5. — Let C be an exact category, and consider Cb(C) as a Waldhausen
category, whose weak equivalences are the quasi-isomorphisms. Then there is a natural
equivalence of commutative Picard categories:

(4.2) V (C) −→ V (Cb(C)).

Furthermore, sending a bounded complex E• to
∑

(−1)k[Ek] in V (C), induces a func-
tor of commutative Picard categories V (Cb(C)) → V (C), which is a quasi-inverse
of (4.2). □

We recall that given a complicial biWaldhausen category(11) W, the derived cat-
egory D(W) is obtained from that of W by localizing the weak equivalences, hence
formally inverting the weak equivalences. By assumption, the weak equivalences in a
complicial biWaldhausen category contain the quasi-isomorphisms. We remark that
inverting the quasi-isomorphisms automatically identifies homotopic maps, as ex-
plained in [54, §1.9.6].

Proposition 4.6. — Consider an abelian category A, and suppose that W,W′ are
complicial biWaldhausen categories considered as subcategories of (C(A), quasi-iso).
We require that they are both closed under extensions and shifts. If W is a subcategory
of W′, inducing an equivalence of derived categories D(W)→ D(W′), then:

(1) There is an equivalence of virtual categories V (W)→ V (W′).
(2) The universal functor W→ V (W) factors through D(W)→ V (W).

Furthermore, D(W) → D(W′) is an equivalence of categories if for each object W ′

of W′, there is a quasi-isomorphism W →W ′ with W in W.

Proof. — The first point follows from Theorem 4.4(3) combined with [54, Th. 1.9.8
& Ex. 1.3.6]. The second point is trivially true since weak equivalences are sent to
isomorphisms in the virtual category. The last part of the proposition follows from
the discussion in [54, §1.9.7]. □

We conclude with an analog of Proposition 2.13 for virtual categories of exact
categories, also see Remark 2.14. The argument goes along the same lines as in loc. cit.,
and we don’t provide the details.

Proposition 4.7. — Let C1, . . . ,Cn,C be exact categories, and F : C1×· · ·×Cn→C

a multiexact functor. Then there is an extension of F into a functor, which is multi-
plicative in every entry,

F̃ : V (C1)× · · · × V (Cn) −→ V (C).

The construction is functorial with respect to natural transformations. □

(11)biWaldhausen means that the opposite category is also a Waldhausen category. To form the
opposite category, one interchanges the role of fibrations and cofibrations.
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Corollary 4.8. — Let C be an exact category, with addition law ⊕. Suppose it is
further endowed with a biexact functor ⊗ : C × C → C, such that (C,⊕,⊗) is a rig
category. Then, V (C) inherits from C a structure of ring category.

Proof. — The proof is formally the same as that of Proposition 3.1, replacing Propo-
sition 2.13 with Proposition 4.7. □

4.3. Virtual categories of schemes. — We specialize the previous formalism of vir-
tual categories to schemes. For this, we recall that a perfect complex in the derived
category of OX -modules, D(OX), is a complex that is locally quasi-isomorphic to a
bounded complex of vector bundles. Equivalently, a perfect complex is a complex
that is pseudo-coherent, i.e., locally quasi-isomorphic to a bounded above complex of
vector bundles, and locally of finite Tor-amplitude.

Definition 4.9. — Let X be a scheme.
(1) The virtual category of X is defined as V (X) = V (VectX), where VectX is the

exact category of vector bundles on X.
(2) The virtual category of perfect complexes is defined as V (PX), where PX de-

notes the complicial biWaldhausen category of perfect complexes of globally bounded
Tor-amplitude, in the abelian category of all OX -modules. Here, we take the quasi-
isomorphisms as the weak equivalences in PX .

The above definition using globally bounded Tor-amplitude is to conform with the
definition in [54, Def. 3.1]. We notice that ifX is quasi-compact, then a perfect complex
is automatically of globally bounded Tor-dimension. The complicial biWaldhausen
category of perfect complexes on X will simply be denoted PerfX . The latter will
only appear in Definition 4.16, but will otherwise not be needed in the rest of the
article.

In the category PX , the cofibration sequences, i.e., the analogs of exact sequences,
can be taken to be sequences of complexes of OX -modules, which are degreewise exact
sequences of OX -modules.

Definition 4.10. — A scheme X is called divisorial if X is quasi-compact and quasi-
separated and admits an ample family of line bundles [31, Exp. II, Déf. 2.2.4].

We record, for future reference, the following comparison of the two virtual cate-
gories.

Lemma 4.11. — Suppose that X is divisorial. Then the natural inclusion VectX → PX

induces an equivalence of categories:

V (X) −→ V (PX).

Proof. — This is the conjunction of [54, Cor. 3.9 & Prop. 3.10], which states a homo-
topy equivalence for the corresponding K-theory spectra, and Theorem 4.4. □
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The direct sum and tensor product of vector bundles induce a ring category struc-
ture on V (X). Indeed, since the tensor product of vector bundles is biexact, by Propo-
sition 4.7 one also obtains a bifunctor V (X)× V (X)→ V (X), which we still denote
by ⊗. From the fact that (VectX ,⊕,⊗) is a rig category, we infer that (V (X),⊕,⊗)
has the natural structure of a ring category, by Corollary 4.8.

Virtual categories of schemes enjoy functoriality properties similar to those of the
K-theory of schemes, by construction. If f : X → Y is a morphism of schemes, the
operation of pulling back a vector bundle is exact and induces a pullback functor f∗ :

V (Y )→ V (X), which is actually a functor of ring categories. The assignment f 7→ f∗

is a contravariant functor, up to natural transformation of the form (g ◦f)∗ ≃ f∗ ◦g∗.
It satisfies a cleavage condition, inherited from the case of vector bundles. We recall
this condition is expressed by two constraints. The first one is that whenever g = id

or f = id, the isomorphism of functors (g ◦ f)∗ ≃ f∗ ◦ g∗ is the identity. The second
one is a compatibility condition with the associativity law for the composition: there
are a priori two natural isomorphisms (h◦g ◦f)∗ ≃ f∗ ◦g∗ ◦h∗, and they are required
to be equal.

The same remarks apply to V (PX), replacing the pullback and the tensor product
with their derived versions, relying on the constructions in the derived category and
Proposition 4.6. We leave the precise construction to the reader but we also refer
to [54, §3.14, §3.15] for the corresponding treatment in the case of the spectra of
K-theory.

We next discuss the covariant functoriality of the virtual categories. Taking direct
images of complexes of sheaves is not exact, but we can adopt the approach from the
situation in algebraic K-theory.

Proposition 4.12. — Let f : X → Y be a proper morphism of schemes, with Y quasi-
compact. Suppose that the derived direct image functor Rf∗ sends perfect complexes
to perfect complexes. Then it induces a commutative multiplicative functor of Picard
categories f! : V (PX)→ V (PY ), referred to as the direct image functor, such that:

(1) The direct image functor is multiplicative. It is compatible with the composition
of morphisms satisfying the assumptions in the proposition.

(2) If E is a virtual perfect complex on X, and F a virtual perfect complex on Y ,
then there is a natural projection formula isomorphism,

f! (E ⊗ f∗F ) −→ f!E ⊗ F,

of functors of Picard categories V (PX)× V (PY )→ V (PY ).
(3) Suppose E is a virtual perfect complex on X, and suppose g : Y ′ → Y is a

morphism of quasi-compact schemes, such that g is Tor-independent with f . Suppose
in addition that the base change f ′ : X ′ → Y ′ is such that Rf ′∗ also preserves perfect
complexes. Then there is a canonical base change isomorphism

g∗f!E −→ f ′! g
′∗E

of functors of Picard categories V (PX)→ V (PY ′).
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Proof. — During the proof, for a quasi-compact scheme Z, denote by WZ the compli-
cial biWaldhausen categories of bounded below perfect complexes of flabby OZ-mod-
ules on Z, and P+

Z the category of bounded below perfect complexes. There are then
natural functors V (WZ) → V (PZ) and V (P+

Z ) → V (PZ), which are equivalences of
categories, by [54, Lem. 3.5] and Proposition 4.4(3).

To construct the functor, let E be a bounded below perfect complex on X and fix
quasi-isomorphism E → I•, with I• bounded below complex of injective OX -mod-
ules. The complex I• is an object of WX . By the assumption that Rf∗ preserves
perfect complexes, taking direct images provides a complex f∗I

• in WY . The image
of this object in V (WY ) depends, a priori, on the choice of resolution, but only up to
unique isomorphism since WY → V (WY ) factors over the derived category D(WY )

by Proposition 4.6. By the same token, this construction defines a functor

[Rf∗(·)] : (P+
X , quasi-iso) −→ V (WY ) −→ V (PY ).

We argue that this is a multiplicative functor as in [40, Def. 1.2.3]. Given an exact
sequence of bounded below complexes, say Σ : 0 → E → F → G → 0, there is a
short exact sequence of injective resolutions 0 → I• → J• → K• → 0 by [50, 013T],
and hence a short exact sequence 0 → f∗(I

•) → f∗(J
•) → f∗(K

•) → 0. From this,
we conclude an isomorphism

[Σ] : [Rf∗F ] −→ [Rf∗E] + [Rf∗G].

It is straightforward to verify the axioms of [40, Def. 1.2.3], except possibly the asso-
ciativity. This however is again a consequence of [50, 013T], which assures that one
can choose the first resolution I• from which the other ones are constructed.

Hence by the universal property of virtual categories, E 7→ [Rf∗E] defines a functor
of Picard categories

V (P+
X) −→ V (PY )

and by inverting the equivalence V (P+
X)→ V (PX) we obtain the functor f!. It is for-

mal to verify that for a composition fg of morphisms, there is a natural isomorphism
of functors (fg)! → f!g!.

To prove the other properties, it is convenient to follow the approach of the con-
struction of the direct image functor as in [54, §3.16]. To be able to rely on this,
we recall that any bounded below complex E admits a Godement resolution, see
[50, 0FKT], which amounts to a quasi-isomorphism E → T (E) where T (E) is a com-
plex of flabby sheaves. If E is perfect and bounded below, then T (E) is an object
of WX . The Godement resolution is functorial and preserves exact sequences. Taking
direct images and considering the image in the virtual category provides another mul-
tiplicative functor (P+

X , quasi-iso)→ V (PY ), and hence a functor of Picard categories
f? : V (PX) → V (PY ). We have an isomorphism Rf∗E → f∗T (E) in D(WY ). This
induces a natural isomorphism of functors of Picard categories f! → f?, the proof of
which we leave to the interested reader. We henceforth identify the two functors.

To prove the projection formula and the base change formula, we can now refer
the reader to Proposition 3.17 and Proposition 3.18 of [54]. While the statements
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concern homotopies of maps between spectra, the proofs actually construct quasi-
isomorphisms of complexes in appropriate Waldhausen categories, where the con-
structed functors involve the Godement resolution discussed above. This suffices to
provide the natural transformations in the virtual category. □

From Lemma 4.11 we conclude the following corollary:

Corollary 4.13. — With the notation and assumptions as in Proposition 4.12, assu-
me moreover that Y (and Y ′ where it applies) are divisorial. Then there is a direct
image functor of virtual categories f! : V (X) → V (Y ), satisfying the corresponding
properties. □

In view of Proposition 4.12, we now provide several criteria which ensure that the
derived direct image preserves perfection.

Proposition 4.14. — Let f : X → Y be a morphism. In either of the following
situations, the functor Rf∗ sends perfect complexes to perfect complexes:

(1) f is a proper morphism of finite Tor-dimension, with X and Y Noetherian
schemes [50, 0B6G] [50, 0684] [50, 069C].

(2) f is flat, proper, and of finite presentation. Moreover, in this case, the forma-
tion of Rf∗ commutes with arbitrary base changes [50, 0B91].

(3) More generally, any proper perfect morphism [36, Ex. 2.2(a)]. □

Since the virtual category of perfect complexes (cf. Definition 4.9) is defined in
terms of perfect complexes with globally finite Tor-amplitude, we also include the
following criteria which address the preservation of this.

Proposition 4.15. — Suppose f : X → Y is a morphism of schemes. In the following
cases, the functor Rf∗ sends perfect complexes to perfect complexes, and moreover
sends complexes of globally finite Tor-amplitude to complexes of globally finite Tor-
amplitude:

(1) Any situation in Proposition 4.14, with Y quasi-compact.
(2) f satisfies the condition (Cn).
(3) f is a regular closed immersion of codimension d, for a positive integer d.

Proof. — The first item follows from the fact that on a quasi-compact scheme, being
of locally bounded Tor-amplitude implies being of globally bounded Tor-amplitude.
We next treat the case of a morphism satisfying the condition (Cn).

The fact that Rf∗ sends perfect complexes to perfect complexes is already stated
in Proposition 4.14(2). We prove the proposition by providing uniform bounds on the
Tor-ampli-tudes for Rf∗E in the case Y is affine, and hence X is quasi-compact and
separated, and even divisorial since we may assume X → Y is projective.

We denote by E our perfect complex of OX -modules. We suppose it has Tor-
amplitude contained in [a, b]. We want to prove that the complex Rf∗E has Tor-
amplitude in [a, b+n]. By [54, Th. 2.4.3] we can moreover suppose that E is a complex
of vector bundles, with non-zero terms contained in [a, b]. By successively filtering E
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by subcomplexes of vector bundles, one readily reduces to the case of E itself being
a vector bundle.

By Noetherian approximation, there is a Noetherian affine scheme Y0, a morphism
g : Y → Y0, a scheme X0 and a vector bundle E0, and a morphism X0 → Y0 satisfying
the condition (Cn), such that (X → Y,E) is the pullback of (X0 → Y0, E0) via g. Now,
since f is flat and by the vanishing of higher direct images above the fiber dimension
for Noetherian schemes [50, 02V7], we deduce that Rf0,∗E0 is of globally finite Tor-
amplitude contained in [0, n] by the criterion in [31, III, Cor. 3.7.1]. From this we
can conclude, observing that the left derived functor Lg∗ preserves Tor-amplitude
[31, III, Cor. 3.5.2], and Rf∗E ≃ Lg∗Rf0,∗E0 by Tor-independent base change in the
derived category, cf. [50, 08IB].

The case of a regular closed immersion is treated similarly, but more direct. It fol-
lows by combining the statements in [31, Ex. 4.1.1, Prop. 4.4, Cor. 4.5.1]. □

To conclude this section, we take the opportunity to discuss the determinant of the
cohomology of the introduction of the article. For this, we recall that by the work of
Knudsen–Mumford [34], given a perfect complex E on a scheme Y , there is a naturally
defined graded line bundle detE on Y , with the property that if E is a locally free
sheaf of rank r, seen as a complex concentrated in degree 0, then

detE = (r,ΛrE).

By their construction, it defines a commutative multiplicative functor from the cate-
gory of perfect complexes on Y , which we recall is denoted by PerfY , to the category
of graded line bundles on Y , which we recall is denoted by Pic(Y )gr. We denote this
and the induced functor of Picard categories V (PerfY )→ Pic(Y )gr by det. It is some-
times useful to forget the grading, and by abuse of notation, we still denote the same
functor by det.

Definition 4.16. — Suppose f : X → Y is a flat, proper morphism of finite presenta-
tion. The functor that takes a perfect complex E and produces a graded line bundle
detRf∗(E) is called the determinant of the cohomology and is also denoted by λf (E).

This is the same as the composition of functors det f! when E is of finite Tor-
amplitude.

It follows from Proposition 4.14(2) that the construction of the determinant with
the cohomology commutes with arbitrary base change.

5. Chern categories and line distributions

To properly formulate statements involving functoriality of intersection bundles, we
develop a formalism of Chern categories and categorical Chern classes. This amounts
to a naive categorification of the Chow rings and the Chern morphisms appearing in
[31] and [20]. The objects are rational formal power series in the ranks and Chern
classes of vector bundles, and the morphisms are abstract incarnations of basic prop-
erties of Chern classes, such as the Whitney formula. However, we leave aside finer
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structures such as projective bundle formulas or triviality of Chern classes of higher
degree. While our Chern categories enjoy a pullback functoriality, they do not admit
direct image functors. To partially fix this, we introduce the formalism of line distri-
butions, which are functors from Chern categories to Picard categories of line bundles
on base schemes. The main example in this paper will be provided by intersection
bundles.

The formalism we develop in this section is based on the categorical material ex-
pounded in Section 2, Section 3, and Section 4.

5.1. Universal Chern categories. — We begin with a purely categorical construc-
tion, that we call the universal Chern category. This category is tailored to be universal
among graded strict ring categories receiving Chern functors, which are defined on
vector bundles and behave like the total Chern class. A drawback of the universal
Chern category is that it does not properly account for the topology of our schemes.
This issue will be addressed in a later stage Section 5.2.

5.1.1. Chern functors. — We introduce the category of Chern functors and the asso-
ciated notion of universal Chern category.

Definition 5.1. — Let X be a scheme and R a graded strict ring category. The
category of Chern functors for X, with values in R, consists of the following:

(1) The objects, called Chern functors, are symmetric monoidal functors of the
form c : (V (X),⊕) → (R,⊗), whose components of degree 0 are endowed with an
isomorphism with the constant functor 1R0 . The functor determined by the component
of degree k is denoted by ck : V (X)→ Rk.

(2) The morphisms are natural transformations of the underlying symmetric
monoidal functors, which induce the identity transformations on the components of
degree 0.

Remark 5.2
(1) A Chern functor V (X)→ R defines a functor V (X)→ 1+R+ of commutative

Picard categories. Therefore, via Theorem 4.3, a Chern functor can equivalent be
seen as commutative multiplicative functor (VectX , iso) → 1 + R+, whose degree 0
component is equipped with an isomorphism with the constant functor 1R0

. We will
pass from one point of view to the other, without further explanation.

(2) The degree one component of a Chern functor defines a functor of commutative
Picard categories c1 : (V (X),+)→ (R,+).

Definition 5.3. — A universal Chern category for X is a graded strict ring category
CHu(X), with a Chern functor cX : V (X)→ CHu(X), such that for any graded strict
ring category R, composition with cX induces an equivalence of categories of functors

(5.1) Ξ : Homgraded ring
category

(CHu(X),R) −→ HomChern(V (X),R).

Unless there is some danger of confusion, we will write c instead of cX .
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In practice, the equivalence of categories (5.1) is used in the lines of the discussion
after Definition 2.8. In particular, if a universal Chern category exists, it is unique up
to equivalence of ring categories. The equivalence itself is determined up to unique
natural transformation. We may thus speak about the, rather than a, universal Chern
category. In the sequel, we provide the construction.

5.1.2. Construction of an intermediate Chern category. — Towards the construction of
CHu(X), we begin by introducing an intermediate category CH+(X). The construction
is based on a variant of the free {+, ·}-algebra on a set, and an associated quotient
rig category. We refer to [35, §2] and [32, Volume I, Chapter 3] for such constructions
in the context of rig categories, which are our source of inspiration.

A graph on Chern classes and the associated free category. — We define Ck(X) as the
free category associated with the graph whose vertices Vk and edges Ek are specified
below:(12)

(V) Vertices. — Given by a set Vk, called the set of homogeneous vertices in degree k,
determined by the following rules:

(1) For k = 0, V0 is the free {+, ·}-algebra on the symbols c0(E), where E is
a vector bundle on X. In particular, V0 contains distinguished elements given by
symbols 0 and 1. Hence, elements of V0 are obtained by formally performing additions
and products of symbols 0, 1, c0(E1), . . . c0(Em) in some order, which is indicated by
appropriately placing parentheses. For example, one may form

0 + (c0(E) + (1 · (1 · c0(F ))) and (c0(E) + ((1 · 1) · c0(F ))) + 0,

which give rise to distinct elements, due to the position of the parentheses and the
order of the addition with 0.

(2) For k ⩾ 1, Vk is constructed inductively as follows:
(a) We introduce the set Vk

prim whose elements are of the form ck(E), where E
is a vector bundle on X.

(b) We declare that Vk
prim ⊆ Vk and 0 ∈ Vk. We shall write 0k if we need to

emphasize the degree of homogeneity of 0 ∈ Vk.
(c) We require that Vk is closed under addition: if uk, vk ∈ Vk, then there is

a symbol uk + vk ∈ Vk.
(d) For every ℓ ⩽ k, and for any elements uk−ℓ ∈ Vk−ℓ and vℓ ∈ Vℓ, there is

a symbol uk−ℓ · vℓ ∈ Vk.
By construction, addition and product define maps

(5.2) Vk × Vk +−→ Vk, Vk × Vℓ ·−→ Vk+ℓ.

For the time being, these are just abstract binary operations.

(12)See [38, Chap. II, Section 7] for a review of free categories associated with ordered graphs.
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(E) Edges. — Given by a set Ek, call the set of edges in degree k, determined induc-
tively by the following rules:

(1) For every k ⩾ 0, we introduce a set of primitive edges Ek
prim:

(a) Ek
prim contains the structure edges, defined as the analogs of the edges

defined in [32, Volume I, Definition 3.1.6] restricted to homogeneous vertices in
degree k. This is the same list as in [35, §2]. These correspond to structural prop-
erties of the following kind: (i) additivity (includes associativity, commutativity
or symmetry, and addition with 0), (ii) multiplicativity (includes associativity,
commutativity or symmetry, and product with 1), (iii) distributivity and (iv)
identities. We denote the identity edge of a vertex u by

→
idu. Moreover, with

respect to loc. cit., we also add the formal inverses of the distributivity edges.
In particular, if uk−ℓ, vℓ, wℓ are homogeneous vertices of degrees k − ℓ, ℓ and ℓ,
there are two edges

uk−ℓ · (vℓ + wℓ)
//
(uk−ℓ · vℓ) + (uk−ℓ · wℓ).oo

(b) Ek
prim contains the Chern edges:

(i) Elementary projection formula. For k = 0, for every vector
bundle E, two edges in E0

prim

c0(E)
//
1.oo

(ii) Rank triviality for the zero vector bundle. For every integer
k > 0, two edges in Ek

prim

ck(0)
//
0.oo

(iii) Whitney formula. For every exact sequence of vector bundles
0→ E′ → E → E′′ → 0 and every integer k ⩾ 0, two edges in Ek

prim:

ck(E)
//∑k

i=0 ci(E
′) · ck−i(E

′′).oo

Here, we follow the convention (2.1) for the reiterated addition.
(iv) Isomorphisms of vector bundles. For every isomorphism of

vector bundles φ : E→F and every integer k⩾0, two edges in Ek
prim:

ck(E)
[φ]k

//
ck(F ).

[φ]−1
k

oo

(2) We impose that Ek
prim ⊆ Ek.

(3) If ϕk, ψk ∈ Ek are edges, of sources uk, u′k, respectively, and targets vk, v′k,
respectively, then there is an edge ϕk +ψk ∈ Ek of source uk + u′k and target vk + v′k.

(4) For every ℓ ⩽ k, and any edges ϕk−ℓ ∈ Ek−ℓ, ψℓ ∈ Eℓ, of sources uk−ℓ, u
′
ℓ,

respectively, and targets vk−ℓ, v
′
ℓ, respectively, we associate an edge ϕk−ℓ · ψℓ ∈ Ek,

of source uk−ℓ · u′ℓ and target vk−ℓ · v′ℓ.
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As for vertices, by construction we have maps

(5.3) Ek × Ek +−→ Ek, Ek × Eℓ ·−→ Ek+ℓ,

defining just abstract binary operations between edges.
In a category associated with a graph, such as Ck(X), morphisms are obtained by

concatenation of edges. The identity morphisms correspond to the empty concatena-
tions, that is vertices alone. We denote the identity morphism of an object A by idA,
and notice that it is different from the morphism corresponding to the identity edge
→
idA, introduced in (E) (1a).

Extension of the operations from edges to morphisms of Ck(X). — The binary opera-
tions in (5.3) are only defined on edges. We wish to extend them to the morphisms of
the category Ck(X). Given two morphisms f : A1 → An and g : B1 → Bm, we define
the addition f + g as follows. If f and g are morphisms defined by edges, then f + g

has already been defined. Suppose next that f and g are concatenations of two or
more edges:

A1
f1−−→ A2

f2−−→ · · · fn−1−−−→ An, B1
g1−−→ B2

g2−−→ · · · gm−1−−−−→ Bm.

For every edge fi, we can consider a new edge fi +
→
idB1 . Similarly, for every edge gj

we have a new edge
→
idAn

+ gj . We then define f + g as the composition

A1 +B1

f1+
→
idB1−−−−−−→ · · ·

fn−1+
→
idB1−−−−−−−→ An +B1

→
idAn+g1−−−−−−→ · · ·

→
idAn+gm−1−−−−−−−−→ An +Bm.

If f is an identity morphism, then it is reduced to a vertex. In this case, if g is not an
identity morphism, we can define f + g as the composition of edges

A1 +B1

→
idA1

+g1−−−−−−→ A1 +B2

→
idA1

+g2−−−−−−→ · · ·
→
idA1

+gm−1−−−−−−−−→ A1 +Bm.

We adopt the symmetric definition if g is an identity morphism but not f . Finally,
if both f and g are identity morphisms, we define f + g as the morphism associated
to the edge

→
idA1

+
→
idB1

. The construction of the product of two morphisms goes along
the same lines.

We notice that, at this stage, the binary operations so defined on morphisms of
Ck(X) do not define functors. This issue will be addressed soon. Nevertheless, we in-
troduce the notation

(5.4) Ck(X)× Ck(X)
+−→ Ck(X), Ck(X)× Cℓ(X)

·−→ Ck+ℓ(X).

to refer to our family of categories endowed with the binary operations + and · on
objects and morphisms.

Imposing relations between morphisms. — The category CHk
+(X) is defined as a quo-

tient category of Ck(X), by identifying different combinations of morphisms. For the
general procedure to build quotient categories from relations and congruences, we
refer the reader to [38, Chap. II, Section 8, Proposition 1]. We first introduce some
terminology and a lemma.
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Definition 5.4. — We consider a graded family C of categories Ck, k ⩾ 0, equipped
with two binary graded operations {+, ·} on objects an morphisms, as in (5.4).

(1) A functor between two graded families equipped with two binary graded oper-
ations {+, ·} is a functor between the graded pieces that interchanges the respective
graded binary operations.

(2) An ideal relation R, or ∼, consists in a family of equivalence relations Rk,
or ∼k, on the HomCk -sets, which is:

(a) A congruence relation. In other words, it is closed under left and right
composition.

(b) Closed under addition and product; that is, if f ∼k f
′, g ∼ℓ g

′, then:
(i) If k = ℓ, we have f ∼k f

′, g ∼k g
′, then f + g ∼k g + g′.

(ii) We have f · g ∼k+ℓ f
′ · g′.

Lemma 5.5. — Consider a graded family of categories C endowed with graded bi-
nary operations {+, ·}. Suppose there is a sequence of binary relations Rk on the sets
HomCk . Then:

(1) There is a smallest ideal relation R̃ such that R̃k contains Rk. We call it the
ideal relation generated by the Rk.

(2) The quotient of the family of graded categories C by an ideal relation is a graded
category that inherits the graded binary operations {+, ·} induced from C.

(3) Suppose that F : C → A is a functor of graded families endowed with graded
binary relations. Then F factors over the quotient C/R̃ if and only if F (f) = F (g)

for f ∼k g in Rk, for all k.

Proof. — We provide the construction of R̃ in terms of R :=
⊔

k Rk. Without loss of
generality, we can suppose that R is an equivalence relation, by rendering it reflexive,
symmetric and transitive. We introduce a nested sequence of equivalence relations as
follows. Define R(0) = R. For n ⩾ 1, we let S(n) be the congruence relation gener-
ated by R(n−1), and then we define R(n) by taking polynomials (with some choice of
parentheses) in homogeneous elements of S(n), so that the resulting element is homo-
geneous. By construction, we have R(n−1) ⊆ R(n), and we finally define R̃ =

⋃
nR

(n).
The rest of the proof is straightforward and is omitted. □

We proceed to quotient the categories Ck(X) by a series of ideal relations, in several
steps. To simplify the notation, at each step, we still denote the resulting category
by Ck(X). It is formal to check that the identifications and structures introduced in
former steps are preserved.

(1) We first consider the quotient by the ideal relation generated by
→
idA ∼ idA,

→
idA +

→
idB ∼

→
idA+B ,

→
idA ·

→
idB ∼

→
idA·B .

(2) We quotient the morphisms in Ck(X) by the ideal relation to the effect that in
the quotient, the operations + and · become functors. Here, we notice that the fact
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that the binary operations are functors can be expressed as a condition that certain
diagrams commute, which determines the equivalence relationship.

(3) We quotient Ck(X) by the ideal relation to the effect that + and · define
symmetric monoidal functors on C(X) :=

∏
k⩾0 C

k(X), with unital elements induced
by 0 and 1. For this, the required conditions can be expressed in terms of diagrams, and
imposing their commutativity generates our relations. Since in a symmetric monoidal
category the structure morphisms, such as associativity under + or ·, are invertible,
we remark in particular that we are relating the composition of the structure edges
and their formal inverses to the identity morphism.

(4) We quotient Ck(X) by the ideal relation to the effect that the symmetry edges
A+B → B +A is the identity, if A = B, and analogously for the product.

(5) We quotient Ck(X) by the ideal relation which renders C(X) =
∏

k C
k(X)

a graded rig category.
(6) There is a correspondence c : (VectX , iso) → C(X) defined on objects by

E 7→ (ck(E))k and morphisms by φ 7→ ([φ]k)k. We consider the relation given by
the conditions that c is a Chern functor, except for the fact that C(X) is a ring
category. This involves declaring that the composition of two mutual formal in-
verses of the Chern edges is related to the identity. We denote the quotient by
CH+(X) =

∏
k CH

k
+(X).

We record the following properties, which are immediate from the construction.

Lemma 5.6. — Consider the category CH+(X) constructed above.
(1) It has a natural structure of graded strict rig category, with respect to addition

and product.
(2) It is a groupoid.
(3) The functor c =

∑
k ck : (VectX , iso)→ CH+(X) is commutative multiplicative

in the sense of Definition 4.1, and c0 is isomorphic to the constant functor 1. □

The following lemma describes the piece of degree 0 of CH+(X). It points towards
the pathology of the construction anticipated at the beginning of this subsection:
if X decomposes as a disjoint union of schemes, then CH+(X) can not detect this
decomposition.

Lemma 5.7. — Let N be the set of natural numbers, considered as a rig category.
Then, there is a natural equivalence of rig categories N→ CH0

+(X).

Proof. — We define a functor N → CH0
+(X) by sending a natural integer n ⩾ 0 to

n times the sum of the object 1, and all the morphisms to identities. This is clearly a
functor of rig categories. A functor in the other direction, with the property of being
compatible with the rig structures, is determined by the relationship c0(E) ≃ 1 for
every vector bundle, and sending all the morphisms to identities. The construction
of the morphisms in CH0

+(X) is such that, via the isomorphisms c0(E) ≃ 1, all the
isomorphisms correspond to identities of objects of the form n ·1. From this, it follows
that the exhibited functors are mutually quasi-inverse. □
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5.1.3. Construction of the universal Chern category. — The category CH+(X) fulfills
the assumptions of Proposition 3.2. Thus, we can make the following definition.

Definition 5.8. — The universal Chern category of X, denoted by CHu(X), is the
graded Picardification of CH+(X).

By construction of the graded Picardification (cf. Definition 3.3), the category
CHu(X) is the product

∏
k CH

k
u(X), where CHk

u(X) is the Picardification of CHk
+(X).

Theorem 5.9. — The functor c : (VectX , iso) → CH+(X) naturally induces a Chern
functor

c : V (X) −→ CHu(X),

such that (5.1) is an equivalence of categories. Therefore, CHu(X) together with c is
universal with respect to graded strict ring categories equipped with Chern functors.

Proof. — The functor c : (VectX , iso) → CH+(X) followed by CH+(X) → CHu(X)

gives rise to a commutative multiplicative functor (VectX , iso) → CHu(X), with
respect to the product structure on CHu(X). By Lemma 5.6, it actually lands in
1 + CHu(X)+, which is a strictly commutative Picard category. Hence, there is an
induced functor V (X) → 1 + CHu(X)+, that we still denote by c. The compo-
nent of degree 0 is necessarily isomorphic to the constant functor 1, and hence
c : V (X)→ CHu(X) is a Chern functor.

Now, the positive Chern category CH+(X), together with c : (VectX , iso)→CH+(X),
satisfies a universal property akin to (5.1). This follows from the very construction
and a repeated application of Lemma 5.5(3). We conclude by the universal property
of the graded Picardification, in Proposition 3.2, and the universal property of virtual
categories in Theorem 4.3. □

Below is a counterpart of Lemma 5.7 for the universal Chern category.

Lemma 5.10. — Let Z be the set of integers, considered as a ring category. Then,
there is a natural functor of ring categories Z→ CH0

u(X), which is an equivalence of
categories.

Proof. — The claim results from Lemma 5.7 by passing to the Picardifications. □

5.1.4. Functoriality. — The universal property of CHu(X) ensures the functorial be-
havior with respect to morphisms of schemes. For the formulation, in the next state-
ment, we return to the notation cX for the universal Chern functor for X. We recall
that the pullback functoriality of vector bundles induces a pullback functoriality for
the virtual categories of schemes. The standard cleavage for the pullback of vector
bundles induces a cleavage for the pullback on virtual categories.

Corollary 5.11. — The pullback functoriality for the virtual categories of schemes
induces a pullback functoriality for the universal Chern categories. More precisely:
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(1) Let g : X ′′ → X ′ be a morphism of schemes. There is an associated pullback
functor of graded ring categories g∗ : CHu(X

′)→ CHu(X
′′), together with an isomor-

phism of functors of commutative Picard categories g∗ ◦ cX′ ≃ cX′′ ◦ g∗.
(2) If h : X ′′′ → X ′′ is another morphism, there is a canonical isomorphism of

functors (g ◦ h)∗ ≃ h∗ ◦ g∗ of graded ring categories CHu(X
′) → CHu(X

′′′), charac-
terized by the commutativity of the following diagram:

(5.5)

h∗ ◦ g∗ ◦ cX′ //

��

h∗ ◦ cX′′ ◦ g∗ // cX′′′ ◦ h∗ ◦ g∗

��

(g ◦ h)∗ ◦ cX′ // cX′′′ ◦ (g ◦ h)∗,

where the vertical arrow on the right is induced by the isomorphism of functors
(g ◦ h)∗ ≃ h∗ ◦ g∗ between virtual categories V (X ′)→ V (X ′′′).

(3) The collection of pullback functors between universal Chern categories is natu-
rally cloven.

Proof. — The claims follow from the fact that (5.1) is an equivalence of categories,
along the lines of the discussion following Definition 2.8.

The composition V (X ′)
g∗

−→ V (X ′′)
cX′′−→ CHu(X

′′) is a Chern functor. By the
universal property, established in Theorem 5.9, it corresponds to a functor of graded
ring categories g∗ : CHu(X

′)→ CHu(X
′′) as in the first point of the corollary.

The isomorphism (g ◦ h)∗ ≃ h∗ ◦ g∗ of the second claim is deduced from the
corresponding isomorphism of functors between virtual categories, by imposing the
commutativity of the diagram and using that (5.1) is fully faithful. With this construc-
tion, the cleavage for the pullback functors between virtual categories is automatically
inherited by the pullback functors between universal Chern categories. □

Remark 5.12
(1) Because the rationalization of graded ring categories is functorial, we ob-

serve that the pullback described in the previous corollary induces a functor
f∗ : CHu(X)Q → CHu(X

′)Q, with analogous properties.
(2) By the very definition of a functor of graded ring categories, the pullback

functor f∗ is induced by functors CHk
u(X)→ CHk

u(X
′), which we still denote by f∗.

5.1.5. A strong coherence property. — Because the universal Chern category CHu(X)

is a graded strict ring category, it is strongly coherent. Due to its particularly simple
structure, the strong coherence can be upgraded to include the contraction of an
object against an inverse.

Corollary 5.13. — In CHu(X), all diagrams involving only addition, multiplication,
associativity, commutativity, distributivity, neutral and unit elements, inversion, and
contractions against inverses, must commute.

Proof. — For the proof, recall the discussion in Section 3.2.3 regarding the Picardi-
fication of strict rig categories, in terms of the description provided by Lemma 2.11.
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In particular, we will implicitly use that we have natural isomorphisms of objects
(−Z) ·W ≃ −(Z ·W ) ≃ Z · (−W ), which are componentwise given by symmetries.

Let φ : Z → W be a morphism involving only the operations as in the statement.
Suppose that it factors as

Z −→ T −→ T ′ −→W,

where T → T ′ involves a contraction, and Z → T does not involve any contraction.
We may write T = T0 + Y − Y + T1, and T ′ = T0 + T1. Then, the morphism T → T ′

can be decomposed as

T −→ T0 + T1 + Y − Y −→ T ′,

where the first morphism permutes Y − Y and T1. Hence, we may suppose that we
have T = T ′ + Y − Y , while keeping the property that Z → T does not involve any
contraction. Next, the morphism T ′ → W no longer modifies the contracted factor
Y −Y . It is thus possible to factor T →W as T ′+Y −Y →W +Y −Y →W , where
the first arrow is induced by T ′ →W and the identity of Y −Y , and the second arrow
is a contraction. Going on in this fashion, we can finally suppose that φ factors as
Z → T →W , where Z → T does not involve any contraction, T =W +

∑
i(Yi − Yi),

and T →W is a sequence of contractions.
To conclude, let ψ : Z → W be another such morphism. We can similarly de-

compose it as Z → T ′ → W , where Z → T ′ does not involve any contraction,
T ′ =W +

∑
j(Y

′
j − Y ′

j ) and T ′ →W is a sequence of contractions. Since Z → T and
Z → T ′ do not involve any contractions, these are actually induced by symmetries.
Hence, the objects

∑
i(Yi − Yi) and

∑
j(Y

′
j − Y ′

j ) are necessarily isomorphic through
symmetries. Let σ be such an isomorphism. Therefore, φ,ψ fit into the following
diagram

T =W +
∑

i(Yi − Yi)

��

))
Z

55

))

W

T ′ =W +
∑

j(Y
′
j − Y ′

j ),

55

where the vertical map is idW +σ. The triangle on the right commutes, by the functo-
riality of addition. The triangle on the left does not involve any contractions, and thus
it commutes since CHu(X) is strongly coherent; or, alternatively, because between two
objects there is at most one morphism composed of associativity and commutativity
isomorphisms. We infer that φ = ψ, thus finishing the proof. □

Remark 5.14
(1) The practical content of the corollary is that in CHu(X), we may perform poly-

nomial manipulations with objects, without caring about the order of the operations.
(2) It seems likely, but we didn’t check, that the statement of Corollary 5.13 holds

for any strict ring category. This guess is based on the fact that the very construction
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of CH+(X), and the reasoning of the proof of Corollary 5.13, are within the spirit of
the proof of Laplaza’s coherence theorems.

5.1.6. Chern power series, polynomials and monomials. — We make some observations
and introduce some terminology regarding the structure of the objects of CH+(X)

and CHu(X).
We begin with an object P of CH+(X). It can be written as P =

∑
k P

(k), where
P (k) is an object of CHk

+(X). We call P a positive Chern power series, and P (k)

the component of degree k of P . By performing additions and products between the
primitive vertices defining P (k) and, in particular, applying the distributivity law, we
find an isomorphism

(5.6) P (k) −→
∑

k1+···+kmi
=k

u
(i)
k1
· · · · · u(i)kmi

=: Q,

where u(i)kj
∈ V

kj

prim is thus of the form 1 (only possible if j = 0), or 0j or ckj
(E) for some

vector bundle E. In writing the object Q, there is a choice of order for the sum, while
the order of each monomial u(i)k1

· · · · ·u(i)kmi
is actually uniquely determined. The latter

fact will be important in later constructions of intersection bundles, and in particular
in Section 7.3. Also, we need to choose some order of parentheses. The choices of order
and parentheses are irrelevant, thanks to the coherence theorems. Indeed, if P (k) → Q′

is another such isomorphism, then it factors as P (k) → Q → Q′, where P (k) → Q is
the isomorphism (5.6) and Q → Q′ is a uniquely determined isomorphism involving
only associativity isomorphisms for the addition and the product, and commutativity
isomorphisms for the addition law. Further applying the isomorphisms describing the
product rule with 1 (resp. product or addition with 0), we finally come to a canonical
isomorphism

(5.7) P (k) −→
∑

k1+···+kmi
=k

ck1
(E

(i)
1 ) · · · · · ckmi

(E(i)
mi

),

where the sum can eventually be empty. In view of the latter expression, we may
call P (k) a positive homogeneous Chern polynomial of degree k, and refer to its
constituents ck1(E

(i)
1 ) · · · · · ckmi

(E
(i)
mi) as Chern monomials of degree k. Notice that

we can also suppose that all the Chern monomials are distinct, at the expense of
introducing positive integer coefficients.

Thanks to the strong coherence property of Corollary 5.13, the previous discussion
generalizes to objects of the universal Chern category, and we extend the terminology
by dropping the adjective positive. Chern power series can be written as differences
of positive Chern power series. Homogeneous Chern polynomials are now well-defined
expressions of the form

P (k) −→
∑

k1+···+kmi
=k

N
(i)
k1,...,kmi

· ck1
(E

(i)
1 ) · · · · · ckmi

(E(i)
mi

),

where the coefficients N (i)
k1,...,kmi

are integer numbers.
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5.2. Chern categories. — Building on the previous theory of universal Chern cat-
egories, we proceed to develop a theory of Chern categories for schemes, which is
sensitive to the fact that the rank of a vector bundle is in general not constant, but
locally constant. For a scheme given by a finite disjoint open covering of connected
schemes, for example in the Noetherian case (cf. [50, 04MF]), it would be enough to
consider the universal Chern categories of these components separately. In the gen-
eral case, the connected components are not necessarily open, and hence the space
of locally constant functions has a more complicated structure. The construction we
propose accounts for this.

5.2.1. Construction of the Chern category. — Let X be a scheme. If X is non-empty,
an open cover U = {Ui}i∈I of X is said to be an open partition of X if the various
sets Ui are non-empty and pairwise disjoint. It is called a finite open partition if I
is finite. An open partition of X always exists, for instance, X itself. If X is quasi-
compact, an open partition is necessarily finite. If X is empty, by convention the only
open partition of X is constituted by the empty set alone.

A refinement V = {Vj}j∈J of an open partition U = {Ui}i∈I of X is an open
partition of X such that for every j ∈ J , there is an i ∈ I such that Vj ⊆ Ui.
We denote the refinement relation by V ≺ U. Notice that two open partitions U1

and U2 always have a common refinement obtained by forming the intersections of
the open subsets of U1 and U2.

For an open partition U of X, we denote by CHk
u(U) the product category∏

i∈I CH
k
u(Ui), which is a strictly commutative Picard category. Notice that if we

have a refinement V of U as above, the inclusion maps Vj ⊆ Ui define, by Corol-
lary 5.11, a natural restriction functor ρVU : CHk

u(U) → CHk
u(V), denoted on objects

by A 7→ A|V. If W is a refinement of V, then there is an isomorphism of functors
ρWU ≃ ρWV ◦ ρVU. The collection of restriction functors carries a cleavage. We sim-
ilarly define CHu(U), which enjoys of analogous properties. This is a strict graded
ring category, with graded pieces CHk

u(U).
The first step towards the definition of the Chern category consists in constructing

its graded piece of degree k.

Definition 5.15
(1) The degree k Chern category of X is defined as the following direct limit over

all the open partitions of X:

CHk(X) := lim−→
U

CHk
u(U).

More precisely:
(a) An object consists in giving an open partition U of X and an object AU

of CHk
u(U).

(b) The morphisms between two objects AU and BV are given by

lim−→Hom(AU|W, BV|W),
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where the limit runs over the open partitions W refining both U and V. The
transition maps are as follows: given fW : AU|W → BV|W and a refinement W′

of W, define fW′ by the commutativity of the diagram

(AU|W)|W′
(fW)|W′

//

��

(BV|W)|W′

��

AU|W′
fW′

// BV|W′ ,

where the vertical maps are induced by the isomorphism ρW′W ◦ ρWU ≃ ρW′U

of restriction functors, and the analogous isomorphism for V. The cleavage con-
dition guarantees the transitivity condition for a directed system.

(2) We let πU : CHk
u(U) → CHk(X) be the functor sending an object (resp. mor-

phism) to itself.

The next statement asserts that the degree k Chern category satisfies a universal
property. It is a direct application of the definitions, and we again omit the proof.

Proposition 5.16. — The degree k Chern category CHk(X) satisfies the following
properties.

(1) The category CHk(X) has a natural structure of strictly commutative Picard
category, such that the πU : CHk

u(U) → CHk(X) are functors of commutative Picard
categories.

(2) If V is a refinement of U, then the restriction from U to V fits into a canonically
2-commutative diagram of functors of commutative Picard categories

CHk
u(U)

CHk(X),

CHk
u(V)

πU

ρVU

πV

µUV

where µUV is an isomorphism of functors πU ≃ πV ◦ ρVU. If W is a refinement of V,
then under the natural isomorphism ρWU ≃ ρWV ◦ ρVU, the transformation µUW

corresponds to µUV ◦ µVW.
(3) The category CHk(X) is universal in the 2-category of small commutative

Picard categories, with the properties (1)–(2). Precisely, if P is a commutative Picard
category endowed with functors of commutative Picard categories FU : CHk

u(U) → P

satisfying (1)–(2), then there exists a unique functor of commutative Picard categories
F : CHk(X)→ P such that FU = F ◦ πU.(13)

(13)This is stronger than the existence of a natural transformation, but knowing the latter would
suffice for our purposes.
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Analogous facts hold for the product category CH⩽N (X) =
∏

k⩽N CHk(X), and the
rationalizations CH(X)kQ and CH⩽N (X)Q =

∏
k⩽N CHk(X)Q. □

We are now ready to define the Chern category of X.

Definition 5.17. — The Chern category of X is defined as CH(X) =
∏

k CH
k(X).

The rational Chern category of X is defined as CH(X)Q =
∏

k CH
k(X)Q. Their objects

are called Chern power series.

Remark 5.18
(1) It is not clear whether the category CH(X) admits a universal property as in

Proposition 5.16, but it seems it does not. There could be objects (Ak)k, where Ak

is an object of CHk
u(Uk), which can not be defined, up to isomorphism, on a common

refinement of the Uk. A candidate scheme where this could happen isX = Spec(
∏

N k),
for a field k. The underlying topological space is known to be homeomorphic to the
Stone–Čech compactification of N, see [39, Ex. G, Chap. II]. In particular, it is totally
disconnected [50, 090C]. Combining this with the quasi-compactness of X, one can
construct a strictly decreasing sequence of open partitions U1 ≻ U2 ≻ . . . , which do
not share a common refinement. In practice, however, we will only be concerned with
objects which can be defined on a given partition. See Section 5.2.2 and Section 5.3
below.

(2) Let K be the category of open partitions of X. Morphisms are given by the
refinement relationship: for each refinement V ≺ U, there is a morphism U→ V. The
assignment U 7→ CHk

u(U), together with the restriction maps and the cleavage condi-
tion, defines an op-lax functor F : K→ (CAT), where (CAT) is the category of small
categories. Following Thomason [53, §3], one can associate with F a category K

∫
F ,

fibered over K, called the Grothendieck construction of F . It satisfies a universal
property, from which one deduces a functor K

∫
F → CHk(X). Because CHk(X) is a

groupoid, this functor extends to the localization (K
∫
F )[Σ−1]→ CHk(X), where Σ

is the set of all the morphisms in K
∫
F . It can be checked that this functor is an

equivalence of categories.

We record the basic properties of the Chern categories. The verification, which is
again formal, is omitted.

Proposition 5.19. — The following structures are induced from the corresponding
ones for the universal Chern categories, via the direct limit construction:

(1) The category CH(X) has a structure of graded strict ring category. It also in-
herits the strong form of the coherence property of Corollary 5.13.

(2) For every open partition U, there is a natural functor of graded ring categories
CHu(U)→ CH(X). These functors are compatible in the sense of Proposition 5.16(2).
In particular, there is a natural functor of graded ring categories CHu(X)→ CH(X).

(3) There is a Chern functor c : V (X) → CH(X), induced by the universal Chern
functor c : V (X)→ CHu(X) and the natural functor CHu(X)→ CH(X).
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(4) The categories CHk(X) and CH(X) enjoy of pullback functoriality analogous
to those in Corollary 5.11.

The corresponding properties hold for CH(X)Q. □

Remark 5.20
(1) We deduce from the proposition that there is a natural functor of ring categories

lim−→
U

CHu(U) → CH(X). We do not expect that this functor induces an equivalence of

categories. In this regard, see Remark (5.18)(1).
(2) The rational Chern category CH(X)Q is the graded rationalization of CH(X),

as introduced in Section 3.3.

The next corollary confirms that the zeroth Chern category is sensitive to the
topology of the scheme, which was not the case with the universal counterpart.

Corollary 5.21. — Let H0(X,Z) be the set of locally constant Z-valued functions
on X, considered as a ring category. Then, there is a natural equivalence of ring cate-
gories H0(X,Z)→ CH0(X). In particular, for any locally constant Z-valued function
on X, there is a naturally associated object of CH(X). Similarly, there is an equiva-
lence of ring categories H0(X,Q)→ CH0(X)Q.

Proof. — The first claim is a direct consequence of Lemma 5.10 and Proposition 5.16.
The second claim is obtained by composing H0(X,Z) → CH0(X) with CH0(X) →
CH(X). □

Remark 5.22. — As a prototypical example of the corollary, we mention the rank
function associated with a vector bundle E on X. The corresponding object in CH0(X)

or CH(X) is denoted simply by rkE.

5.2.2. Categorical characteristic classes. — The typical objects of CH(X) we will be
dealing with are given by power series in the ranks and the Chern classes of a finite
number of vector bundles. These are categorical avatars of characteristic classes, as
formalized in the next definition.

Definition 5.23. — A categorical characteristic class ϕ for X, in ℓ ⩾ 1 variables,
consists of the following data:

(1) For every morphism X ′ → X, we are given a functor

ϕX′ : (VectX′ , iso)×ℓ −→ CH(X ′)Q.

(2) If g : X ′′ → X ′ is another morphism, we are given a natural transformation of
functors g∗ ◦ ϕX′ ≃ ϕX′′ ◦ g∗.

(3) If h : X ′′′ → X ′′ is yet another morphism, there is a commutative diagram
analogous to (5.5).

J.É.P. — M., 2024, tome 11



302 D. Eriksson & G. Freixas i Montplet

(4) There is a universal bound on the denominators: for every k ⩾ 0, there exists
an integer m = m(k, ϕ) ⩾ 1, and a family of commutative diagrams

(VectX′ , iso)×ℓ
m·ϕX′

//

))

CH(X ′)Q // CHk(X ′)Q

CHk(X ′),

66

for X ′ running over the morphisms X ′ → X. This family of diagrams is supposed to
be compatible with the pullback functors. If we can take m = 1 for every k, then we
say that the categorical characteristic class is integral.
A categorical characteristic class in one variable will simply be called a categorical
characteristic class.

We notice that the addition and the product of two categorical characteristic classes
is again a categorical characteristic class.

The first example of categorical characteristic class, which is moreover integral, is
provided by the Chern functor c : V (X) → CH(X) of Proposition 5.19(3). A second
example is given by the rank of vector bundles. See Corollary 5.21 and the subsequent
remark. More generally, a prominent family of categorical characteristic classes is
provided by additive (resp. multiplicative) categorical characteristic classes. These
are constructed from the Chern classes along the same lines as in the theory of Chow
groups. We expound on the main points of the argument.

Suppose we are first given ϕ ∈ Q[[T ]] with ϕ(0) = 0. Consider the algebra of power
series in an infinite number of variables A = Q[[c1, c2, . . .]]. A grading on A is defined
by declaring that ck has degree k. We associate with ϕ a power series Φ ∈ A. The
component of degree 0 of ϕ is 0. The component of degree k ⩾ 1 of Φ, denoted
by Φk, is related to that of ϕ as follows. Let r ⩾ k be an integer. If σ1, . . . , σr are the
elementary symmetric polynomials in T1, . . . , Tr, then we can write

(5.8)
∑
j

ϕk(Tj) = Φk(σ1, . . . , σk),

for a unique Φk ∈ Q[c1, . . . , ck] of degree k. This polynomial does not depend on
the choice of r ⩾ k. Indeed, to pass from the construction in r + 1 variables to the
construction in r variables, it is enough to set Tr+1 = 0 and use the uniqueness
of the expression in the elementary symmetric polynomials. From this independence
property, it follows that Φk satisfies the following additivity property. Introduce new
variables c′j and c′′j , for every j ⩾ 0, with the convention c′0 = c′′0 = 1. Then, upon
substituting ci by

∑
m+n=i c

′
mc

′′
n, we obtain

(5.9) Φk(c1, . . . , ck) = Φk(c
′
1, . . . , c

′
k) + Φk(c

′′
1 , . . . , c

′′
k).

To see this, we consider the analog of (5.8) for the variables T ′
1, . . . , T

′
r, T

′′
1 , . . . , T

′′
r ,

with r ⩾ k, and then use the relationship between elementary symmetric polynomials

σi(T
′
1, . . . , T

′
r, T

′′
1 , . . . , T

′′
r ) =

∑
m+n=i

σm(T ′
1, . . . , T

′
r)σn(T

′′
1 , . . . , T

′′
r ).
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Let now E be a vector bundle on X. Because of the coherence result stated in
Corollary 5.13 and Proposition 5.19(1), up to canonical isomorphism, we can associate
an object ϕ(E) in CH(X)Q by

ϕ(E) =
∑
k⩾1

Φk(c1(E), . . . , ck(E)).

In the general case of a power series ϕ ∈ Q[[T ]], we decompose ϕ = ϕ0 + ϕ+, where
ϕ0 ∈ Q is the component of degree 0 of ϕ. We then set

ϕ(E) = ϕ0 rkE + ϕ+(E),

where rkE is understood as a locally constant function on X, and hence canonically
defines an object of CH(X), by Corollary 5.21.

Analogously, in the multiplicative case, to ψ ∈ 1 + TQ[[T ]], we can associate a
natural object ψ(E) ∈ 1 + CH(X)+Q to any vector bundle E.

Proposition 5.24. — The following assertions hold:
(1) For ϕ ∈ Q[T ], the assignment E 7→ ϕ(E) ∈ CH(X)Q can be naturally

upgraded into a categorical characteristic class, such that the associated functors
(VectX′ , iso)→ (CH(X ′)Q,+) are commutative multiplicative. In particular, these
induce functors of commutative Picard categories (V (X ′),⊕)→ (CH(X ′)Q,+).

(2) For ψ ∈ 1+ TQ[T ], the assignment E 7→ ψ(E) ∈ 1+ CH(X)+Q can be naturally
upgraded into a categorical characteristic class, such that the corresponding functors
(VectX′ , iso)→ (1+CH(X ′)+Q , · ) are commutative multiplicative. In particular, these
induce functors of commutative Picard categories (V (X ′),⊕)→ (1 + CH(X ′)+Q , · ).
Furthermore, the corresponding base change isomorphisms as in Definition 5.23(2)
are isomorphisms of commutative multiplicative functors.

Proof. — For concreteness, we treat the additive case only. If ϕ = ϕ0 is a constant
power series, there is nothing to prove, for this case reduces to the rank function of
vector bundles.

Suppose now that ϕ(0)=0. The properties of E 7→ϕ(E) then follow from the addi-
tivity property of the polynomials Φk as in (5.8), the fact that c : V (X)→1+CH(X)+

is a commutative functor of Picard categories, the strong coherence property of Corol-
lary 5.13 and Proposition 5.19(1), and the pullback functoriality provided by Corol-
lary 5.11 and Proposition 5.19(4). □

We notice that the proposition contains, as particular cases, the categorical charac-
teristic classes defined by the Chern functors and the rank function of vector bundles.

Definition 5.25. — In the particular cases of the Chern and Todd characteristic
classes, associated with the series exp(T ) and T/(1 − e−T ) respectively, we denote
the corresponding additive and multiplicative categorical characteristic classes by ch

and td. We also denote by td∗ the multiplicative categorical characteristic class ob-
tained from td by multiplying the piece of degree k by (−1)k.

J.É.P. — M., 2024, tome 11



304 D. Eriksson & G. Freixas i Montplet

Remark 5.26. — The functor ch : V (X) → CH(X)Q is a functor of commutative
Picard categories, with respect to addition. However, it is not a functor of ring cat-
egories. Our Chern categories do not incorporate enough axioms to guarantee that
ck(E ⊗ F ) can be expressed as a polynomial in the ci(E) and cj(F ). One of the aims
of the forthcoming theory of line distributions is to address this inconvenience. See
Remark 5.45 below.

The theory of additive and multiplicative categorical characteristic classes extends
to the category of bounded complexes of vector bundles, endowed with the quasi-
isomorphisms and exact sequences of complexes, as in Corollary 4.5. By Proposi-
tion 4.6, it even extends to the derived category. This is summarized in the following
corollary.

Corollary 5.27. — The additive (resp. multiplicative) categorical characteristic
classes extend to functors defined on (Db(VectX), quasi-iso), multiplicative on true
triangles. □

5.3. Line distributions. — Let X → S be a proper fppf morphism of schemes.
In practice, this will be a morphism satisfying the condition (Cn). We introduce
a direct image formalism for the virtual Chern category of X, with values in line
bundles on S.

To lighten the notation, in the discussion below, we adopt the following conventions.
Whenever we are given a morphism of schemes f : S′ → S, we write X ′ → S′ for the
morphism deduced from X → S by base change to S′. Also, we still denote by f the
projection morphism X ′ → X.

Definition 5.28. — Let X → S be a proper fppf morphism of schemes. The cate-
gory of entire line distributions for X → S, denoted by DZ(X/S), has objects and
morphisms as follows:

(1) Objects: entire line distributions T for X → S, consisting in giving :
(a) An integer N ⩾ 0, and for every morphism S′ → S, a commutative

functor of Picard categories
(5.10) TS′ : (CH⩽N (X ′),+) −→ Pic(S′).

Equivalently, TS′ can be seen as a functor defined on CH(X ′), which factors
through CH⩽N (X ′).

(b) If g : S′′ → S′ is a morphism, there is an isomorphism of functors of
commutative Picard categories TS′′ ◦ g∗ ≃ g∗ ◦ TS′ . We refer to this as base
change identification or simply base change.

(c) If h : S′′′ → S′′ is another morphism, the natural diagram akin to (5.5)
commutes.

(2) Morphisms: isomorphisms of entire line distributions T1 ≃ T2, consisting in
giving natural transformations T1,S′ ≃ T2,S′ of functors of commutative Picard cate-
gories, compatibly with the base change identifications.
An entire line distribution is said to have degree N if (5.10) factors through CHN (X ′).
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The tensor product of line bundles induces a structure of strictly commutative
Picard category on DZ(X/S). The following definition thus makes sense.

Definition 5.29. — The category of line distributions for X → S, denoted by
D(X/S), is the rationalization of DZ(X/S). Equivalently, it can be described as in
Definition 5.28, by replacing the categories with their rationalizations, and imposing
universal bounds:

(1) Objects: for a line distribution T , there exists a non-zero integer m such that
T⊗m is induced by an entire line distribution. We say that T has degree N is T⊗m

has degree N .
(2) Morphisms: a morphism of line distributions T → T ′ is induced by a morphism

of entire line distributions T⊗m → T ′⊗m, for some non-zero integer m.

Given a line distribution, the smallest integer m as in the definition is called the de-
nominator of the distribution. In particular, we notice that an entire line distribution
defines a line distribution with denominator 1.

Remark 5.30
(1) Occasionally, we will adopt additive notation for the product of line distribu-

tions.
(2) A line distribution which is both of degree N and N ′ ̸= N , is necessarily

isomorphic to the constant line distribution with image OS .
(3) A tautological consequence of the definition is that a line distribution for X→S

induces a line distribution for X ′ → S′, for any morphism S′ → S.
(4) The line distributions considered in this article are provided by intersection

bundles of Elkik [12], discussed in Section 7 below. The fact that these indeed define
line distributions, proved in Section 8, together with the coherence result for the
Chern categories, will allow us to treat intersection bundles formally as polynomials
in the Chern classes in an unambiguous way.

Proposition 5.31. — Suppose that, in the definition of line distributions (cf. Defini-
tion 5.28 and Definition 5.29), one only assumes S′, S′′, and S′′′ are affine. Then
this defines a category that is equivalent to the category of line distributions.

Proof. — By the very definition of line distribution, we can reduce to the case of
an entire line distribution. Let P be an object of CH(X). Suppose that we are
given two open affine subsets S1 and S2 of S, with preimages X1 and X2 in X.
To construct a line bundle TS(P ) over X, we first construct a gluing isomorphism
φ12 : TS1(P )|S1∩S2 → TS2(P )|S1∩S2 , which depends functorially on P . For this, it is
enough to construct such an isomorphism for any open affine U of S1 ∩S2, which fur-
ther satisfies a gluing condition. We define φU as the composition of natural restriction
isomorphisms (cf. Definition 5.28(1b)):

TS1
(P )|U ≃ TU (P ) ≃ TS2

(P )|U .

This isomorphism depends functorially on P since the restriction isomorphisms are
given by isomorphisms of functors of commutative Picard categories.
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Given another open affine U ′ of S1 ∩ S2, we need to prove that φU |U∩U ′ and
φU ′ |U∩U ′ agree. For this, it is enough to do so on an open affine V ⊆ U ∩ U ′. The
condition in Definition 5.28(1c) guarantees the equality φU |V = φV = φU ′ |V , which
concludes the proof.

Given an affine covering of S, the gluing isomorphisms constructed as above satisfy
a cocycle condition of the form φ13 = φ12φ23. Indeed, from the construction, this is
immediate locally on open affine subsets in the triple intersections, hence everywhere.
Hence, we can glue the affine locally defined line bundles into a line bundle TS(P ).
Since the gluing isomorphisms depend functorially on P , we see that P 7→ TS(P )

indeed defines a functor of commutative Picard categories.
The above discussion can be applied to any base change XS′ → S′. Once the

line bundles TS′(P ′) have been constructed, we still need to verify the axioms of
Definition 5.28. Since they are of local nature, we can check them on open affine
subsets, where they are satisfied by assumption.

One similarly globalizes isomorphisms of line distributions. This concludes the
proof. □

Remark 5.32. — After the previous proposition, the category of line distributions can
be seen as a stack over (Aff/S), endowed with the Zariski topology. Recall that, by
descent, line bundles for the Zariski topology are equivalent to line bundles for the
étale, fppf , or fpqc topologies, see [50, 03P7]. From this, we deduce that the category
of line distributions is also a stack over (Aff/S), endowed with any of these other
topologies.

To conclude this subsection, we record some formal constructions on line distribu-
tions.

Definition 5.33. — Let T be a line distribution for X → S. Let P be a Chern power
series in CH(X)Q. We define a line distribution P · T by the formula on objects given
by, for f : S′ → S and a Chern power series Q on X ′,

(P · T )S′(Q) = TS′(Q · f∗P ).

We observe that this definition actually provides us with a bisymmetric and bi-
monoidal functor of the form (CH(X)Q,+)× (D(X/S),⊗)→ (D(X/S),⊗). In appli-
cations, we will work with the particular situation when P = ϕ(E) is a categorical
characteristic class. In this case, sending an object E to the object ϕ(E) · T induces
a functor (VectX , iso)→ D(X/S).

Definition 5.34. — Let X and Y be proper and fppf over S, and h : Y → X a
morphism over S. Suppose we are given a line distribution T for Y → S. We define a
line distribution h∗T for X → S, by the formula on objects given by

(h′∗T )(Q) = T (h′∗Q),

where h′ is the base change of h by a morphism S′ → S, and Q is a Chern power
series on X ′.
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Notice that, by construction, we formally have:

(5.11) h∗ (h
∗P · T ) = P · h∗T.

This can be seen as a projection formula for line distributions.

5.4. Line functors and splitting principles. — In this subsection we recall for the
convenience of the reader and without proof, statements from [15, §2] on line functors
and splitting principles.

5.4.1. Line functors. — We first review the notion of line functor in [15, Def. 2.1],
adapted to the current article. We refer to op. cit. for details.

Definition 5.35. — An admissible class of morphisms P is a class of proper fppf
morphisms, satisfying the following properties:

(P1) The class P is stable under flat base changes and isomorphisms of families.
(P2) Let f : X → S be a proper fppf morphism. Suppose that U = {Xi}i and

V = {Sj}j are open partitions of X and S, and that f induces surjective morphisms
fi : Xi → Sj(i). Then, f belongs to P if, and only if, all the fi belong to P.

In this article, the prototypical example of this definition will be the smallest
admissible class containing a given proper fppf morphism f : X → S. This we call the
class generated by f .

Definition 5.36. — The category of line functors in k-variables, for an admissible
class P, has objects and morphisms as follows:

(1) Objects: line functors in k variables, consisting in associating, to any f : X → S

in P, a functor

(5.12) Gf : (VectX , iso)
×k −→ Pic(S).

We require compatibility with (P1) and (P2) in Definition 5.35, in the following sense:
(F1) The base changes and isomorphisms of families are supposed to identify

the various Gf , satisfying a condition akin to the commutative diagram (5.5).
(F2) In the setting of (P2), the functor Gf is isomorphic to the product of

the functors Gfi . Here the functor Gfi determines a line functor on S by trivially
extending the line bundles from Sj(i) to S. This isomorphism is supposed to be
compatible with (F1).

(2) Morphisms: isomorphisms of line functors G→ G′, consisting in associating, to
every f in P, an isomorphism of functors Gf → G′

f , in a way compatible with (F1)

and (F2).
A line functor in one variable is simply called a line functor.

Notice that, by the property (F1), line functors are Zariski locally determined.
Since the families are quasi-compact morphisms, the products appearing in (F2) are,
locally on S, finite. Hence, property (F2) is meaningful.
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In these definitions, we notice that, unlike the reference [15], the schemes and
morphisms are more general and the vector bundles are not necessarily of constant
rank. The definition of the class P and the gluing property is more restrictive to be
able to reduce to the case of constant rank.

The category of line functors, endowed with the tensor product, has a natural
structure of a strictly commutative Picard category. The following definition thus
makes sense.

Definition 5.37. — The category of Q-line functors in k-variables, for an admissible
family P, is the rationalization of the category of line functors for P in k-variables.
Its objects and morphisms can equivalently be described as follows:

(1) Objects: Q-lines functors in k-variables. These consist in functors of the form
Gf : (VectX , iso)

k → Pic(S)Q, such that the various G⊗m
f define a line functor, for a

non-zero integer m independent of f .
(2) Morphisms: an isomorphism of Q-line functors in k-variables G → G′ consists

in an isomorphism of line functors in k-variables G⊗m → G′⊗m, for some non-zero
integer m.

We will encounter variants of the above notions, where the functors are endowed
with an additional multiplicative datum:

Definition 5.38. — A line functor G in k-variables, for P, is commutative multiplica-
tive if the various Gf are commutative multiplicative functors in every entry, in a
way compatible with the properties (F1) and (F2). We similarly define commutative
multiplicative Q-line functors.

Most of the time, for simplicity, we will omit the mention of the class P. It will
thus be implicit.

5.4.2. Splitting principles. — We recall the splitting principles for line functors. For
concreteness, the below statements are formulated for line functors only, but they hold
more generally for line functors in several variables and their rational counterparts.

Proposition 5.39 (cf. [15, Prop. 2.2]). — Let G be a line functor. Then, for any exact
sequence of vector bundles Σ : 0→ E′ → E → E′′ → 0, there is a unique isomorphism

ψΣ : G(E) −→ G(E′ ⊕ E′′)

which:
(1) Is functorial with respect to pullback and isomorphisms of exact sequences.
(2) Is the identity whenever Σ is the standard split exact sequence

(5.13) 0 −→ E′ −→ E′ ⊕ E′′ −→ E′′ −→ 0. □

Remark 5.40. — We mention that the proof of [15, Prop. 2.2] relies on the following
elementary fact, which was stated under simplifying assumptions on the base scheme.
If S is any scheme, every line bundle L on P1

S is isomorphic to a line bundle of the
form O(k) ⊗ p∗M , where k is a locally constant function S → Z, p : P1

S → S is the
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projection. Necessarily, M is isomorphic to σ∗L, where σ : S → P1
S is the ∞ section.

In loc. cit. this is proved by citing a result of [44], valid for quasi-compact schemes.
For arbitrary S, the claim thus holds locally and can be seen to hold in general by
gluing.

The proof of the below proposition uses the isomorphism in the previous proposition
to reduce considerations to the split case and constitutes our second splitting principle.

Proposition 5.41 (cf. [15, Th. 2.10 & Rem. 2.12]). — Let G,G′ be line functors. Sup-
pose that for direct sums of line bundles, E =

⊕r
i=1 Li, we have an isomorphism

G(E) → G′(E), compatible with isomorphisms in E preserving the complete flag
L1 ⊆ L1 ⊕ L2 ⊆ · · · ⊆ E, and compatible with base change in S. Then there is an
isomorphism of line functors G→ G′. □

Remark 5.42. — The above is, in fact, a combination of the splitting principle in
Proposition 5.39 and a splitting principle that reduces to constructions depending on
a flag. It is part of the result that the outcome is independent of the flag.

The following corresponds to [15, Prop. 2.16 & Prop. 2.19 & Cor. 2.20]. It relies on
the two splitting principles recalled above and allows us to reduce the study of com-
mutative multiplicative line functors to the case of split sequences and line bundles.

Corollary 5.43. — There is an equivalence of categories, between:
(1) The category of commutative multiplicative line functors.
(2) The category described as follows:

(a) Objects: line functors G with an isomorphism of line bundles
Gf (E ⊕ E′) ≃ Gf (E)⊗ Gf (E

′),

for any f,E,E′. It should be commutative whenever E and E′ are line bundles.
These properties should be compatible with (F1) and (F2).

(b) Morphisms: isomorphisms Gf (L) → G′
f (L) for any line bundle L, com-

patible with (F1) and (F2). □

As an application, we conclude this section with a splitting principle for line distri-
butions. For simplicity, we state the result for a single vector bundle E, but analogous
results hold for categorical characteristic classes in more variables.

Corollary 5.44. — Suppose we are given two categorical characteristic classes ϕ

and ψ for X. Moreover, suppose that for any S′ → S and any (ordered) direct sum of
line bundles E =

⊕r
i=1 Li on X ′, where r is locally constant, there is an isomorphism

of line distributions:
ϕ(E) · TS′ −→ ψ(E) · TS′ .

Then, there is such an isomorphism for any vector bundle E.

Proof. — By the very definition of line distributions and categorical characteristic
classes, we can reduce to the case of entire line distributions and integral characteristic
classes. Denote by S′ → S any morphism of schemes. For a fixed Chern power series P
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on X ′, the functors E 7→ (ϕ(E) ·TS′)(P ) and E 7→ (ψ(E) ·TS′)(P ) define line functors
for the family generated by X ′ → S′. By the splitting principle in Proposition 5.41,
the datum of the statement defines an isomorphism of line bundles for every vector
bundle E, that we denote by ρP (E) : (ϕ(E) · TS′)(P ) → (ψ(E) · TS′)(P ). In the
case when E is a sum of line bundles, these isomorphisms define isomorphisms of
line distributions by assumption. Hence, by the splitting principle, they also define
isomorphisms of line distributions for general E. □

Remark 5.45. — Continuing with Remark 5.26, the splitting principle above will allow
us to show that, in the setting of intersection bundles, the categorical characteristic
classes ch(E ⊗ F ) and ch(E) · ch(F ) induce isomorphic line distributions. This is
accomplished in Proposition 9.1 below.

6. Deligne pairings

In this section we discuss the construction and some properties of Deligne pairings,
for morphisms satisfying the condition (Cn), following [8, 10, 11, 12, 15, 22]. In these
references, several levels of generality are allowed. Below, we provide a unified presen-
tation using generators and relations. In particular, the construction does not assume
the base schemes to be locally Noetherian or the morphisms to have Cohen–Macaulay
fibers, as was required in the original approach by Elkik [12].

We recall that when we deal with intersection bundles, functorial means compatible
with base change, and isomorphisms of the involved S-schemes and vector bundles.

6.1. Construction of Deligne pairings. — In this subsection, we will consider mor-
phisms of schemes f : X → S which satisfy the condition (Cn), for some integer
n ⩾ 0.

6.1.1. Construction with the determinant of the cohomology. — The Deligne pairings
for f : X → S consist in functorially associating, to any given line bundles L0, . . . , Ln

on X, a line bundle on S denoted by

(6.1) ⟨L0, . . . , Ln⟩X/S , or simply ⟨L0, . . . , Ln⟩.

These line bundles are modeled on the intersection classes

(6.2) f∗(c1(L0) · · · · · c1(Ln)).

Over a general base scheme, the bundles (6.1) can be directly constructed using the
determinant of the cohomology, as developed in [11] and generalized in [8, App.]. The
definition of the bundle is given by the (n+1)-th symmetric difference of determinant
of cohomologies (cf. Definition 4.16):

(6.3) ⟨L0, . . . , Ln⟩X/S =
⊗

I⊆{0,...,n}
detRf∗

(⊗
i∈I

Li

)(−1)n+1−|I|

.

We will elaborate on the precise relationship with (6.2) in Section 6.1.4, in particular,
see Corollary 6.9. For the time being, we summarize the main properties proved in
these references.
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Proposition 6.1. — With assumptions as above, we have the following functorial
constructions:

(1) The Deligne pairing is multilinear for the tensor product of line bundles.
(2) Given any permutation σ of {0, . . . , n}, there is a canonical symmetry isomor-

phism

(6.4) ⟨L0, . . . , Ln⟩X/S −→ ⟨Lσ(0), . . . , Lσ(n)⟩X/S .

If Li = Lj, and σ = (i, j), then [σ] = (−1)κ, where κ =
∫
X/S

∏
k ̸=i c1(Lk).

(3) Given a relative effective Cartier divisor D ⊆ X, there is a canonical restriction
isomorphism

(6.5) ⟨L0, . . . ,O(D), . . . , Ln−1⟩X/S −→ ⟨L0|D, . . . , Ln−1|D⟩D/S ,

(4) If X → S is of relative dimension zero, the construction ⟨L0⟩X/S coincides
with the norm functor NX/S(L0) in [26, §6.5.5].

(5) Let u ∈ O×
S . The multiplication map u : Li → Li induces, by functoriality, an

automorphism [u] of ⟨L0, . . . , Ln⟩. We have

[u] = uκ, where κ =

∫
X/S

∏
j ̸=i

c1(Lj).

(6) Iterated applications of the above isomorphisms can be performed in any order,
with the same result. In particular, iterated applications of restrictions along relative
Cartier divisors are independent of the order. □

Proof. — The statements are contained in [11] in the generality of projective mor-
phisms of Noetherian schemes, and extended to projective morphisms of schemes in
[8, App.]. For a morphism of type (Cn), we hence know that the stated properties hold
locally over S. Since they are all compatible with base change, and the determinant
of the cohomology is compatible with base change as well, we can globalize to the
whole S by gluing. □

Remark 6.2. — Property (3) in the statement requires some clarification. The struc-
ture morphism D → S is locally projective, flat, and of finite presentation. In par-
ticular, its image is an open and closed subset T of S. The morphism D → T sat-
isfies the condition (Cn−1). Indeed, the fibers of a relative effective Cartier divisor
in X are purely of dimension n − 1, because f has equidimensional fibers and by
[27, Prop. 16.4.1], or also [28, Cor. 5.2.4]. The line bundle ⟨L0|D, . . . , Ln−1|D⟩ is then
understood as the line bundle over S determined by

⟨L0|D, . . . , Ln−1 |D⟩
∣∣
T
= ⟨L0|D, . . . , Ln−1|D⟩D/T

and
⟨L0|D, . . . , Ln−1 |D⟩

∣∣
S∖T

= OT .

In particular, if D is the zero divisor, then (6.5) provides a trivialization.
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6.1.2. Generators and relations. — Taking Proposition 6.1 for granted, one can pro-
duce an equivalent presentation of the Deligne pairings in terms of generators, called
symbols, and relations. In this and the next subsection, we expound this approach.
For the foundations and terminology on rational (or meromorphic) functions, sections,
and divisors, we follow [30, §20 & §21].

Construction. — For X → S satisfying (Cn), the Deligne pairing ⟨L0, . . . , Ln⟩X/S

can be presented in terms of generators and relations, defined locally Zariski, or étale,
with respect to S:

Generators. — Given rational sections ℓ0, . . . , ℓn of L0, . . . , Ln respectively, in general
position, there is a local trivialization
(6.6) ⟨ℓ0, . . . , ℓn⟩.

Here general position means:
(1) The Cartier divisor corresponding to ℓi is of the form Di = D0

i − D1
i , where

D0
i and D1

i are relative effective Cartier divisors. In particular, ℓi is a relative regular
meromorphic section. See [30, §21.15].

(2) For any permutation σ of I = {0, . . . , n}, any function ε : I → {0, 1} and any
index i ∈ I, the scheme theoretic intersection

D
ε(i)
σ(i) ∩

i−1⋂
j=0

D
ε(j)
σ(j)

defines a relative effective Cartier divisor in
⋂i−1

j=0D
ε(j)
σ(j). Here, for i = 0 we interpret

the intersection over the empty set as all of X, and for i = n the intersection is empty.
The existence of sufficiently many sections in general position is addressed in Sec-
tion 6.1.3 below.

Relations. — If ℓi = hℓ′i for a rational function h and the symbol ⟨ℓ0, . . . , ℓ′i, . . . , ℓn⟩
is defined, then
(6.7) ⟨ℓ0, . . . , ℓi, . . . ℓn⟩ = ND/S(h|D)⟨ℓ0, . . . , ℓ′i, . . . , ℓn⟩

where D =
⋂

j ̸=iDj and ND/S(h|D) denotes the norm of the regular function h|D
on D. Here, D is understood as a cycle whose components are finite and flat over S.
It is non-necessarily effective, and the norm is extended multiplicatively with respect
to the addition of cycles.

In this article, arguments involving generators of Deligne pairings will be carried
out locally in the Zariski topology. However, we refer to Proposition 6.6 and the
subsequent remark regarding the use of generators in the étale topology.

Remark 6.3
(1) The properties listed in Proposition 6.1 can all be written in terms of gener-

ators and relations. From this, one can also derive the compatibility between those.
For instance, the multilinearity of Deligne pairings sends a section ⟨ℓ0 ⊗ ℓ′0, . . . , ℓn⟩
to ⟨ℓ0, . . . , ℓn⟩⊗ ⟨ℓ′0, . . . , ℓn⟩, and analogously in other entries. The symmetry isomor-
phism sends a symbol of the form ⟨ℓ0, . . . , ℓn⟩ to ⟨ℓσ(0), . . . , ℓσ(n)⟩. We thus see that
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both operations commute in a natural way. Similarly, the restriction isomorphism (6.5)
sends a symbol ⟨ℓ0, . . . ,1D, . . . , ℓn−1⟩ to ⟨ℓ0|D, . . . , ℓn−1|D⟩, whenever defined. Here,
1D denotes the canonical section of O(D).

(2) If X admits a finite open partition {Xi}i, whose components Xi are faithful
over S, then there is a canonical isomorphism

(6.8) ⟨L0, . . . , Ln⟩X/S −→
⊗
i

⟨L0|Xi
, . . . , Ln|Xi

⟩Xi/S ,

given by sending a symbol of the form ⟨ℓ0, . . . , ℓn⟩ to the product of the symbols
⟨ℓ0|Xi

, . . . , ℓn|Xi
⟩. Actually, since the construction of the Deligne pairing is local over

the base, this can be extended to the case when the Xi are not necessarily faithful
over the base, as in Remark 6.2.

6.1.3. Sections in general position. — We announced an equivalent construction of the
Deligne pairings in Section 6.1.2, provided we know the existence of sufficiently many
rational sections in general position. For the sake of completeness, we now justify this
fact. We begin by recalling an instance of the prime avoidance lemma.

Lemma 6.4. — Let Y be a projective scheme over a field k, L a line bundle, and A a
very ample line bundle on Y . Let y1, . . . , ym be given distinct points of Y . Then:

(1) If k is infinite, there exists a global section of A which avoids y1, . . . , ym.
(2) In general, for some N0 ⩾ 0 and for every integer N ⩾ N0, L⊗ AN admits a

global section that avoids y1, . . . , ym.

Proof. — The first statement is well-known, and an argument is provided by Nakai
in the proof of [41, Th. 4]. For the second claim, consider the Zariski closures {yi}
with the reduced scheme structure. We choose distinct closed points zi ∈ {yi}, which
exist because Y is of finite type over k. Let I be the coherent sheaf of ideals of the
closed reduced subscheme Z = {z1, . . . , zm}. Then, for some N0 ⩾ 0 and for every
N ⩾ N0, H1(Y, L ⊗ AN ⊗ I) = 0, and hence restricting to Z defines a surjection
H0(Y, L ⊗ AN ) → H0(Z,L ⊗ AN |Z). The latter is isomorphic to

⊕
i k(zi). We can

thus find s ∈ H0(X,L⊗AN ) which does not vanish at any of the zi. In particular, it
does not vanish identically on any of the {yi}. Since the yi are the generic points of
the latter, we are done. □

We next establish a variant of the previous lemma in a families situation. To lighten
the statement, we first introduce the setting, which is tailored to the ulterior proof
of the birational invariance of the Deligne pairings in Proposition 6.13. Let S be a
scheme and Y → S a flat and proper morphism of finite presentation. We assume
that Y is equipped with a line bundle L and a relatively very ample line bundle A.
We also suppose given a finite collection of commutative diagrams

(6.9)
Zi

hi //

��

Y

��

Ti // S,
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for i = 1, . . . ,m. Here, the morphisms Ti → S are closed immersions of finite presen-
tation, and the morphisms Zi → Ti are flat and proper of finite presentation. The hi
are automatically proper of finite presentation.

Lemma 6.5. — In the setting (6.9), the following hold locally with respect to S and
the Ti, in the specified topologies:

(1) (Étale topology) There exists a global section of A that defines a relative effective
Cartier divisor over S, and whose pullbacks to the Zi are defined and are relative
effective Cartier divisors over the Ti.

(2) (Zariski topology) For some N0 ⩾ 0 and for every integer N ⩾ N0, there exists
a global section of L ⊗ AN which defines a relative effective Cartier divisor over S,
and whose pullbacks to the Zi are defined and are relative effective Cartier divisors
over the Ti.

Proof. — We can suppose that S is affine. By a Noetherian approximation argument,
we can reduce to the case when the involved schemes are Noetherian. It is then enough
to establish the claims locally around any given closed point s ∈ S. Because the
morphisms Ti → S are closed immersions, without loss of generality we can suppose
that s is in the image of all these maps.

For the first claim, after possibly restricting S, we can fix a closed embedding
j : Y → PM

S , such that A ≃ j∗O(1). We begin by looking at the fiber of (6.9) over s.
Let k be the separable closure of the residue field k(s), so that k is an infinite field.
By Lemma 6.4(1), we can find a global section σ of O(1)|PM

k
, which avoids the as-

sociated primes of Yk and the images of the associated points of the (Zi)k. Indeed,
there are only finitely many such points. The section σ is defined over some finite
separable extension of k(s). We redefine k to be such an extension. Using [50, 02LF]
and base change, we can replace (S, s) with an étale neighborhood of s, and suppose
that k(s) = k. After possibly shrinking S around s, the section σ extends to a sec-
tion of O(1) in PM

S . We denote by σ̃ any choice of extension. This section avoids the
associated points of Ys. Because Y → S is proper and flat of finite presentation, the
section σ̃ defines a relative effective Cartier divisor, by [29, Prop. 11.3.7 & Th. 11.3.8].
By construction, the pullbacks h∗i (σ̃) also avoid the associated points of the (Zi)s.
Hence, they also define relative effective Cartier divisors.

The second claim is proved along the same lines, using Lemma 6.4(2). Nevertheless,
a moment’s thought indicates that one can no longer use an embedding into a pro-
jective space. Instead, we proceed as follows. For some N0 ⩾ 0 and for every N ⩾ N0,
there exists a section σ of L⊗ AN which avoids the associated primes of Ys and the
images of the associated primes of the (Zi)s. Let I be the coherent sheaf of ideals
defining the closed subscheme Ys of Y . By possibly increasing N0, we can moreover
suppose that H1(Y, L⊗ AN ⊗ I) = 0 for N ⩾ N0. This ensures that σ extends to Y .
The rest of the argument is analogous to that of the first point addressed above. □

With the help of the previous lemmas, we can establish the existence of generators
of the Deligne pairings.
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Proposition 6.6. — Let f : X → S be a morphism satisfying the condition (Cn). Let
L0, . . . , Ln be line bundles on X. The following assertions hold, locally with respect
to S, in the specified topologies:

(1) (Étale topology) If the Li are relatively very ample, there exist global sections
of the Li, in general position in the sense of Section 6.1.2.

(2) (Zariski topology) In general, there exist rational sections of the Li, in general
position in the sense of Section 6.1.2.

Proof. — We discuss the second statement and leave the first one as an analogous
exercise. In the sequel, the constructions are Zariski local on S, and we no longer
comment on the several necessary and repeated restrictions of the base scheme.

Since f is locally projective, we can suppose that there is an ample line bundle A
on X. By Lemma 6.4(2), we can find global sections of L⊗AN and AN which define
relative effective Cartier divisors D0

0 and D1
0. The (multiplicative) difference provides

a rational section ℓ0.
Suppose we have constructed rational sections ℓ0, . . . , ℓk, for some k ⩽ n − 1,

defining Cartier divisors D0
i − D1

i which satisfy the general position conditions in
Section 6.1.2. We apply Lemma 6.5(2) to the following situation of the type (6.9):

(6.10)
⋂

j∈J D
εj
j
� � //

��

X

��

S S,

for J ⊆ {0, . . . , k} and εj = 0 or 1. We obtain global sections of L ⊗ AM and AM ,
whose divisors are relative effective Cartier divisors, and meet all the intersections in
(6.10) in relative effective Cartier divisors of the latter. The difference is our choice for
ℓk+1. For the sections ℓ0, . . . , ℓk, ℓk+1 to satisfy the conditions of Section 6.1.2 it only
remains to check that they can be permuted in any order. This is a consequence of the
criterion for reordering regular sequences in [50, 07DW]. The proof is complete. □

Remark 6.7. — In Proposition 6.6, suppose that the Li are relatively very ample. If
we invoke the existence of generators in the Zariski topology, we can only guarantee
the existence of rational sections, as opposed to global ones. In this respect, it can
occasionally be better to work in the étale topology. In any event, in constructions
that are to be compatible with base change and to preserve the multilinearity of the
Deligne pairings, we can reduce to Deligne pairings of relatively ample line bundles,
which admit global sections in general position.

6.1.4. Chern classes and direct images. — The main goal of this section is to provide
the relationship between the isomorphism class of the line bundle (6.3) with the direct
image of Chern classes in (6.1). While the expression in (6.3) is defined for general
schemes and morphisms satisfying the condition (Cn), we need to suppose that our
base scheme S admits an ample family of line bundles. If there was an extension of the
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constructions, including γ-operations and the relation (6.11) below, to the K-theory
of perfect complexes, this could be avoided.

Let X be a scheme, and denote by K0(X) the K-theory of vector bundles on X.
The exterior powers of vector bundles define λ-operations on K0(X). Following the
reasoning in [31, Exp. V, §3], we define for any positive integer i, γi(x) = λi(x+ i−1).
We obtain the γ-operations onK0(X), which endowsK0(X) with an alternative λ-ring
structure.

The γ-filtration, F iK0(X) ⊆ K0(X), is defined in the following way. One
first defines F 0K0(X) = K0(X) and let F 1K0(X) be the kernel of the rank map
K0(X)→ H0(X,Z). Also, F iK0(X) is generated by products of the form

∏
γkj (xj)

where xj ∈ F 1K0(X) and
∑
kj ⩾ i. This allows one to define Chow-like groups by

GriK0(X) = F iK0(X)/F i+1K0(X). The i-th Chern class of a vector bundle E is
defined by the class of γi([E] − r) in GriK0(X), where r ∈ H0(X,Z) is the rank
of E. If X is quasi-compact and E is a vector bundle of constant rank r + 1 on X,
recall that K0(P(E)) is a free module over K0(X), and a basis is given by 1, ξ, . . . , ξr,
where ξ is the class of O(1) in K0(P(E)). From this description, the Chern classes
can equivalently be constructed à la Grothendieck [31, Exp. VI, §5].

If X is quasi-compact, by [31, Exp. X, Th. 5.3.2], the determinant induces an iso-
morphism

(6.11) Gr1K0(X) −→ Pic(X).

In particular, F 2K0(X) is the kernel of the determinant map on F 1K0(X).
If f : X → Y is a projective local complete intersection morphism of constant rela-

tive dimension d, with Y admitting an ample line bundle, by [31, Exp. VIII, Prop. 3.2]
the derived direct image of a complex induces a graded morphism of filtrations, after
tensoring with Q,

(6.12) f! : F
iK0(X)Q −→ F i−dK0(Y )Q.

It hence furnishes a direct image f∗ : GriK0(X)Q → Gri−dK0(Y )Q. Here we prefer
the notation f∗ for the direct image on the graded pieces since it corresponds to the
pushforward functoriality of Chow groups. We notice that the assumptions on the
morphism are to ensure that the derived direct image of a vector bundle is perfect,
and the assumption of the existence of an ample line bundle is to guarantee that the
K-theory defined in terms of perfect complexes is equal to that defined by vector
bundles. By [54, Prop. 3.10], the latter property also holds replacing an ample line
bundle by Y being divisorial, see Definition 4.10. The statements on the grading are
concrete computations by factoring into a regular embedding and a projective bundle
projection.

In the following proposition, in a restricted setting, we establish an integral version
of (6.12). For a related argument in the Noetherian case, see [42, Prop. 2.25].

Proposition 6.8. — Suppose that f : X → S is a morphism satisfying the condition
(Cn), with S divisorial. Then, the direct image Rf∗ naturally furnishes a direct image
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map
f∗ : Grn+1K0(X) −→ Gr1K0(S).

Proof. — As in the discussion leading up to the proposition, to verify that the de-
rived direct image induces a map of K0-groups, it is enough to verify that it sends
vector bundles to perfect complexes. Since f is a proper, flat, and finitely presented
morphism, by Proposition 4.14(2) Rf∗ sends perfect complexes, in particular vector
bundles, to perfect complexes.

We need to prove that f! sends Fn+1K0(X) to F 1K0(S) and Fn+2K0(X) to
F 2K0(S). Given x =

∏
γkj (xj) in Fn+1K0(X), to prove that f! x ∈ K0(S) is of

virtual rank 0, and hence in F 1K0(S), by Proposition 4.14(2) we can reduce to the
case that S is a point. In this case, the virtual rank coincides with the Euler character-
istic of x. This can be computed by the Riemann–Roch theorem for singular varieties
as in [19, Cor. 18.3.1]. For simplicity, we treat the case xj = Lj − 1 and kj = 1. One
then observes that for k > 0 the Chern class

∏n+k
j=1 ch(Lj−1) is concentrated in degrees

bigger than n, and hence for dimension reasons χ(x) =
∫
X

∏n+k
j=1 ch(Lj − 1) ∩ td(X)

is zero. We leave the general case to the reader, using for example some version of the
splitting principle.

If x belongs to Fn+2K0(X), to prove that it is sent to F 2K0(S), by (6.11) we need to
establish the equality det f!

∏
γkj (xj)=[OS ]∈Pic(S) whenever

∑
kj⩾n+2. Since any

element xj is a virtual sum of vector bundles of virtual rank 0, one straightforwardly
reduces to the case when xj = [Ej ] − rj , for a vector bundle Ej . For simplicity,
we suppose the ranks rj are constant. We want to reduce to the case when Ej is
a line bundle by a version of the splitting principle, and perform the argument for
E = E0 and r = r0, k = k0. If E admits a complete flag this is immediate. The
complete flag variety π : D → X of E is a composition of projective bundles, and we
denote by Oℓ(1), ℓ = 1, . . . , r the successive tautological line bundles. It is of relative
dimension m = 1 + · · ·+ (r − 1). Therefore, by [31, Exp. VI, Cor. 5.8] it follows that
π! F

n+1+mK0(D) ⊆ Fn+1K0(X). By the projection formula

f!

(
([E]− r) ·

∏
j⩾1

γkj (xj)
)

= (fπ)! π
∗
((

γk0([E]− r) ·
∏
j⩾1

γkj (xj)
)∏

ℓ

(1− [Oℓ(−1)])r−ℓ

)
.

Here, we used that for a projective bundle g : P(V ) → X, Rg∗O(−i) ≃ 0 whenever
i = 1, . . . , (rkV )−1 and OX for i = 0. Hence, possibly replacing f by f ◦π iteratively
over the various flag varieties corresponding to the Ej , we are reduced to proving that
there exists, for k ⩾ 1, an isomorphism

detRf∗ ((L0 − 1) · · · · · (Ln − 1) · · · · · (Ln+k − 1)) ≃ OS .

Notice that whenever k = 0 the left-hand side is the definition in (6.3). By Noetherian
approximation, we can suppose that S is in fact Noetherian. In this case, the statement
is a major ingredient in the proof of the main theorem of [11], and it can be deduced
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from [11, Prop. 4.7.1], which produces a canonical such isomorphism for determinants
of cohomologies. □

The proof in fact gives the following more precise form:

Corollary 6.9. — With the same assumptions and notations as in Proposition 6.8,
suppose we are given line bundles L0, . . . , Ln. Then,

c1(⟨L0, . . . , Ln⟩X/S) = f∗ (c1(L0) · · · · · c1(Ln)) . □

6.2. Properties of Deligne pairings. — We discuss the projection formula and bira-
tional invariance property of Deligne pairings, originally due to Elkik [12] and Muñoz
García [22], in the Noetherian setting. The case of base schemes is treated by Noe-
therian approximation. We further address some features which are not covered by
these references.

Proposition 6.10 (Projection formula). — Let f : X→S, g : X ′→S, and h : X ′→X

be morphisms satisfying the conditions (Cn), (Cn+n′), and (Cn′), respectively. Suppose
that we are given line bundles L0, . . . , Lℓ on X and M0, . . . ,Mm on X ′, satisfying
(ℓ+ 1) + (m+ 1) = n+ n′ + 1. There are canonical projection formula isomorphisms

⟨h∗L0, . . . , h
∗Lℓ,M0, . . . ,Mm⟩X′/S ≃


⟨L0, . . . , Ln−1, ⟨M0, . . . ,Mn′⟩X′/X⟩X/S ,

if m = n′.

⟨L0, . . . , Ln⟩κX/S , if m = n′ − 1.

OS , if m < n′ − 1.

In the second case, κ =
∫
X′/X

∏
i c1(Mi) is the fiberwise degree and is then assumed

to be constant. Moreover:
(1) The isomorphisms are functorial and multilinear in the line bundles, where,

in the third case, we interpret OS as a constant functor.
(2) The projection formula isomorphisms are compatible with restrictions along

divisors in any of the Li.
(3) The projection formula isomorphisms are compatible with the symmetry iso-

morphisms in the Li and the Mj, separately.

Proof. — We first reason locally and suppose S affine and that f : X → S and
g : X ′ → S are projective, in which case h : X ′ → X is projective as well. Since
Deligne pairings are functorial, by Noetherian approximation, we can reduce the con-
struction of the isomorphisms to the case of schemes that are finitely generated over Z.
We notice that given Noetherian approximations fα : Xα → Sα and gα : X ′

α → Sα of f
and g, by [50, 01ZM] we may assume that h descends to a morphism hα : X

′
α → Xα.

In this situation all schemes are Noetherian, and we can then refer to [12, §IV.2]
and [22, §5.2]. We notice that in [22], the base change compatibility of the projection
formula for flat morphisms is not explicitly stated. It can however be checked by a
careful proofreading. See also the construction below, from which this can also be
inferred by a simple inspection.
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For a general base scheme S, it is enough to compare the constructions for affine S
and any affine open V in S. Since this open affine embedding can be approximated
by Noetherian schemes, the functoriality in the Noetherian situation entails that the
local construction above glues together on all of S. For similar reasons the resulting
isomorphisms are functorial.

For future reference, we recall the construction of the isomorphisms in the Noe-
therian case. For the first one, working locally on S, we can reduce ourselves to the
case when all the line bundles are relatively ample over S. Locally on the base, we can
suppose there are regular sections ℓi of Li, i = 0, . . . , n− 1 which cut out a scheme D
in X, which satisfies the condition (C0) over S. Denote by D′ = X ′×XD → D, which
is a morphism satisfying the condition (Cn′). After performing a reduction along the
sections ℓi and h∗ℓi, as in Proposition 6.1(3), the projection formula takes the form
of an isomorphism

(6.13) ⟨M0|D′ , . . . ,Mn′ |D′⟩D′/S ≃ ND/S

(
⟨M0|D′ , . . . ,Mn′ |D′⟩D′/D

)
.

Using that D → S is finite, one can see that locally on S, there exist regular sec-
tions mi of the Mi|D′ , for i = 0, . . . , n′−1, which cut out a closed subscheme D′′ of D′,
such that the natural morphism D′′ → D satisfies the condition (C0). Then D′′ → S

also satisfies the condition (C0). Restricting along the divisors of these sections, the
projection formula then takes the form

ND′′/S(Mn′ |D′′) ≃ ND/SND′′/D(Mn′ |D′′),

which is the usual transitivity of the determinant construction, see [30, Lem. 21.5.7.2].
It is part of the construction in [12, §IV.2] and [22, §5.2] that this is independent of
the choice of regular sequences, and hence defines a canonical projection formula
isomorphism in general.

Incidentally, the above description of the first projection formula isomorphism,
together with the construction of the Deligne pairings by generators and relations,
leads to the following expression for the isomorphism (6.13). We can actually choose
that the sequence m0, . . . ,mn′−1 is part of a larger sequence of sections m0, . . . ,mn′ ,
which are in general position with respect to D, and hence with respect to S. Then,
the isomorphism (6.13) is determined by the assignment

⟨m0, . . . ,mn′⟩D′/S 7−→ ND/S(⟨m0, . . . ,mn′⟩D′/D).

The transitivity of the norm on functions shows that this is indeed compatible with
the relations defining the Deligne pairings (6.7), and hence defines an isomorphism of
line bundles.

The second isomorphism is given on symbols by

(6.14) ⟨h∗ℓ0, . . . , h∗ℓn,m0, . . . ,mn′−1⟩ 7−→ ⟨ℓ0, . . . , ℓn⟩κ.

We notice that such symbols exist and provide local bases for the involved line bun-
dles. Also, observe that this assignment is compatible with the relations defining the
Deligne pairings. Finally, the resulting isomorphism is compatible with restriction
along sections of the line bundles Li, which in turn entails it is compatible with the
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first projection formula. Concretely, it coincides with the following combination of the
first projection formula, and the special case of the second projection formula when
n = 0:
⟨h∗L0, . . . , h

∗Ln−1, h
∗Ln,M0, . . . ,Mn′−1⟩ ≃ ⟨L0, . . . , Ln−1, ⟨h∗Ln,M0, . . . ,Mn′−1⟩⟩

≃ ⟨L0, . . . , Ln−1, L
κ
n⟩

≃ ⟨L0, . . . , Ln−1, Ln⟩κ.

The third isomorphism in turn follows from the second one since κ = 0 under those
assumptions.

The functoriality and the multilinearity statements follow from the above descrip-
tions. The compatibility with restrictions along divisors is contained in the construc-
tion, and the compatibility with symmetries is also apparent from the construc-
tion. □

Remark 6.11. — Since the formation of Deligne pairings is compatible with base
change, a posteriori we see that the description provided in the proof of Proposition
6.10 remains valid over any base S.

Corollary 6.12. — With the notation as in Proposition 6.10, suppose h′ : X ′′ → X ′

is a morphism satisfying the condition (Cn′′), and such that the morphisms X ′′ → X,
X ′′ → S satisfy the conditions (Cn′+n′′), (Cn+n′+n′′). Then, the composition of the
projection formula for h and h′ is that of h′′ = h ◦ h′ and h′. More precisely, there
are two natural isomorphisms of the form

⟨h′′∗L0, . . . , h
′′∗Ln−1, h

′∗M0, . . . , h
′∗Mn′−1, N0, . . . , Nn′′⟩X′′/S

−→ ⟨L0, . . . , Ln−1, ⟨M0, . . . ,Mn′−1, ⟨N0, . . . , Nn′′⟩X′′/X′⟩X′/X⟩X/S

which can be derived from the projection formula, and both coincide and likewise in
the other possible cases.

Proof. — The statement can be checked locally in the étale topology on S, and work-
ing with symbols. By the compatibility of the projection formula isomorphisms with
the multilinearity of the Deligne pairings, we can suppose that all the line bundles are
relatively very ample. Recall that the projection formula isomorphisms are compatible
with restrictions along relative divisors D of sections of L0. By iteratively choosing
sections of L0, L1|D, etc., we reduce to the case when X → S is finite. Then, as in
the construction, we can analogously restrict along divisors of the Mi, which are rel-
ative over both S and X, to reduce to the case when also X ′ → X is finite. Finally,
the same restriction argument along the remaining bundles allows us to suppose that
X ′′ → X ′ is finite. In this case, the statement reduces to the transitivity of the norm
functor. □

Proposition 6.13 (Birational invariance). — Let π : X̃ → X be a morphism of
schemes, such that X̃ → S also satisfies the condition (Cn). Suppose that there exists
an open subset U of X, fulfilling:
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– The open immersion U → X is quasi-compact.
– U is fiberwise dense in X.
– π−1(U)→ U is an isomorphism.

Let L0, . . . , Ln denote line bundles on X. Then, there is a canonical isomorphism

(6.15) ⟨L0, . . . , Ln⟩X/S ≃ ⟨π∗L0, . . . , π
∗Ln⟩X̃/S ,

which is functorial and multilinear in the line bundles. Moreover:
(1) The isomorphism (6.15) is compatible with the symmetry isomorphisms.
(2) If some Li = O(D) for D a relative effective Cartier divisor, such that D̃ = π∗D

is defined and is also a relative effective divisor, and D ∩ U is fiberwise dense in D,
then the isomorphism (6.15) is compatible with the restriction isomorphisms along D
and D̃.

Proof. — Since the construction is to be compatible with base change, we can suppose
that the base is affine and that X̃ → S and X → S are projective. By a Noetherian
approximation argument, we can reduce to the case when the involved schemes are
Noetherian. To descend the open immersion U → X it is necessary to assume it
is of finite presentation, which is guaranteed by the assumption of U → X being
quasi-compact. In this situation, the existence of a functorial multilinear isomorphism,
modulo the base change compatibility and properties (1)–(2), is contained in the
statement of [22, Th. 5.3.1].

To prove the base change compatibility and properties (1)–(2), we will review
the description of the isomorphism (6.15) in terms of symbols, extracted from the
statement [22, Th. 5.3.1]. In particular, this will provide a self-contained construction
of (6.15). All the arguments to follow are local with respect to S.

Fix a closed point s of S. Around s, we can find a trivialization ⟨ℓ0, . . . , ℓn⟩ of
⟨L0, . . . , Ln⟩, such that:

(a) The ℓi define Cartier divisors Di = D0
i −D1

i as in Section 6.1.2.
(b) The pullback sections π∗(ℓi) are defined, and the corresponding Cartier divisors

π∗(Di) = π∗(D0
i )− π∗(D1

i ) satisfy the conditions in Section 6.1.2.
(c) For every i = 0, . . . , n, we have Dε0

0 ∩ . . . D̂
εi
i · · · ∩Dεn

n ∩ (X ∖ U)s = ∅. Here,
εi = 0 or 1 and the term D̂εi

i is omitted.
The existence of such a trivialization is obtained along the same lines as in Proposi-
tion 6.6. We will just explain the necessary modifications.

For the construction of the first section ℓ0, we apply Lemma 6.5(2), with the choice
of diagrams

X̃
π //

��

X

��

S S

(X ∖ U)s
� � //

��

X

��

Spec k(s)
� � // S,

where X ∖U is endowed with the reduced scheme structure. We go on by induction
and assume we have constructed the sections ℓ0, . . . , ℓk, k ⩽ n− 1. To construct ℓk+1,
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we apply again Lemma 6.5(2). Besides the diagrams (6.10), we also take⋂
j∈J π

∗(D
εj
j )

π //

��

X

��

S S

⋂
j∈J D

εj
j ∩ (X ∖ U)s

� � //

��

X

��

Spec k(s) �
�

// S,

for J ⊆ {0, . . . , k} and εj = 0 or 1. From this point, it is easy to complete the
induction. We notice that, with the sections so constructed, condition (c) is auto-
matically fulfilled for dimension reasons. Moreover, because the morphism X → S is
proper, condition (c) continues to hold even if we replace (X ∖ U)s by (X ∖ U)s′ ,
for s′ non-necessarily closed and in a well-chosen neighborhood of s. We infer that
Dε0

0 ∩ . . . D̂
εi
i · · · ∩ Dεn

n , which is finite and flat over S, is entirely contained in U .
Consequently, it is necessarily isomorphic to its pullback by π.

In terms of the sections above, the isomorphism (6.15) is given by

(6.16) ⟨ℓ0, . . . , ℓn⟩ 7−→ ⟨π∗(ℓ0), . . . , π
∗(ℓn)⟩.

This assignment is compatible with the relations defining the Deligne pairings, when-
ever we change the sections ℓi by sections ℓ′i satisfying properties (a)–(c); for the
intersection of any of the n associated divisors is contained in U . In passing, this
entails that the exhibited local construction of (6.15) globalizes. The base change and
symmetry properties are now clear from (6.16).

For the compatibility with the restriction isomorphisms, we suppose, without loss
of generality, that L0 = O(D) as in the statement. We argue with symbols. The
assumptions on D guarantee that, in the construction of the sections ℓi, we can take
ℓ0 = 1D, the canonical section of O(D). Then, the collection ℓ1|D, . . . , ℓn|D satisfies
properties (a)–(c), relative to the morphism D̃ → D and the open D∩U . Notice that
1D̃ = π∗(1D). The restriction isomorphisms send the trivializations ⟨1D, ℓ1, . . . , ℓn⟩
to ⟨ℓ1|D, . . . , ℓn|D⟩ and ⟨1D̃, π

∗(ℓ1), . . . , π
∗(ℓn)⟩ to ⟨π∗(ℓ1)|D̃, . . . , π

∗(ℓn)|D̃⟩. Because
1D̃ = π∗(1D) and π∗(ℓi)|D̃ = π∗(ℓi|D), we conclude from the description (6.16) for
X̃ → X and D̃ → D. □

The next corollary states that the isomorphisms of Proposition 6.10 and Propo-
sition 6.13 are compatible with each other. In preparation for the statement, we
introduce some notation. Suppose that we are given morphisms h : X ′ → X is as
in Proposition 6.10 and π : X̃ → X as in Proposition 6.13. Construct the Cartesian
diagram

(6.17)
X̃ ′ π′

//

h̃
��

X ′

h
��

X̃
π
// X.

We notice that π′ satisfies the assumptions of Proposition 6.13. For a line bundle L
on X (resp. M on X ′), we write L̃ for the pullback to X̃ (resp. M̃ for the pullback
to X̃ ′).
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Corollary 6.14. — With the notation as in Proposition 6.10 and (6.17) above, if
m = n′, the diagram of isomorphisms

⟨h∗L0, . . . , h
∗Ln−1,M0, . . . ,Mn′⟩X′/S

��

// ⟨h̃∗L̃0, . . . , h̃
∗L̃n−1, M̃0, . . . , M̃n′⟩X̃′/S

��

⟨L0, . . . , Ln−1, ⟨M0, . . . ,Mn′⟩X′/X⟩X/S
// ⟨L̃0, . . . , L̃n−1, ⟨M̃0, . . . , M̃n′⟩X̃′/X̃⟩X̃/S

commutes, and similarly for m = n′ − 1 or m < n′ − 1.

Proof. — This results by combining the description of the isomorphisms in terms of
symbols, provided in the proofs of Proposition 6.10 and Proposition 6.13. The details
are left to the reader. □

7. Intersection bundles

In this section, following Elkik [12, §V], we use the Deligne pairings to define in-
tersection bundles, which are functorial counterparts of direct images of higher Chern
classes. We establish basic properties of those, in the form of canonical isomorphisms
which lift classical identities between Chern classes. Our approach slightly differs from
that of Elkik, in that we systematically use the splitting principles proved in our previ-
ous work [15] and recalled in Section 5.4. However, we show that both yield equivalent
results. The comparison is based on various compatibility features between the basic
properties, which are only mentioned in passing in [12]. These will also be key in
the development of a functorial framework for the theory of intersection bundles in
Section 8.

7.1. Construction of intersection bundles. — We construct intersection bundles
for morphisms of schemes satisfying the condition (Cn), say f : X → S. While Elkik’s
original approach restricts to Cohen–Macaulay morphisms over Noetherian bases, the
results in Section 6.1 allow us to work in greater generality.

7.1.1. Intersection bundles of Chern power series. — Recall the category CH+(X) con-
structed in Section 5.1. We proceed to associate, to every object in CH+(X), a line
bundle over S. Recall that such objects are called positive Chern power series.

Suppose first that we are given vector bundles E1, . . . , Em on X, of non-zero con-
stant ranks r1, . . . , rm. Let k1, . . . , km ⩾ 0 be integers with

∑
i ki = n+ 1. We define

a Chern-type intersection bundle on S,

(7.1) ⟨ck1
(E1) · · · · · ckm

(Em)⟩X/S or ⟨ck1
(E1) · · · · · ckm

(Em)⟩,

by first defining a Segre-type intersection bundle. Let P = P(E1)×X · · ·×XP(Em), and
notice that the morphism P→ S satisfies the condition (Cd), with d = n−m+

∑
ri,

by [50, 0C4P]: since P → X is projective and X → S is locally projective, the
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composition P→ S is locally projective too. Denote by Oi(1) the tautological bundle
on P(Ei), or its pullback to X ′. Then, we put
(7.2) ⟨sk1

(E1) · · · · ·skm
(Em)⟩X/S = ⟨O1(1){r1+k1−1}, . . . ,Ok(1){rm+km−1}⟩P/S ,

where Oi(1){ri+ki−1} means Oi(1) repeated ri+ki−1 times. Notice that we follow
the convention for Segre classes in [12], and the construction above hence differs
from that of Fulton [19] by the sign (−1)n+1. This has no effect on the Chern-type
constructions below, where both approaches produce the same bundles.

The intersection bundles (7.1) are then constructed inductively, by defining
⟨ck1

(E1) · · · · · c0(Ej) · · · · · ckm
(Em)⟩X/S = ⟨ck1

(E1) · · · · · s0(Ej) · · · · · ckm
(Em)⟩X/S

and, for k ⩾ 1,
⟨ck1

(E1) · · · · · ck(Ej) · · · · · ckm
(Em)⟩X/S

=
k⊗

i=1

⟨ck1
(E1) · · · · · si(Ej) · ck−i(Ej) · · · · · ckm

(Em)⟩(−1)i+1

X/S .

Anticipating the relation with Chern categories later in Section 8, these definitions
correspond to the formal identifications

(7.3) c0 = s0 and ck =

k∑
i=1

(−1)i+1sick−i if k ⩾ 1.

The inductive construction of (7.1) requires an order on the indices (k1, . . . , km), but
the result is independent of the order up to canonical isomorphism. Unwinding the
definitions, this follows by MacLane’s coherence theorem for the tensor product of
line bundles since the category of line bundles is strictly commutative. It allows us to
identify double duals of line bundles with the line bundles themselves, without any
ordering issues. It is clear from the construction that the intersection bundles thus
defined satisfy a decomposition property akin to (6.8).

In the case some of the vector bundles have rank zero, by convention, we remove
the corresponding c0 terms from the monomial and define the monomial to be zero if
there are any corresponding terms with ci for i > 0.

Suppose now that E1, . . . , Em have possibly non-constant ranks. We generalize the
construction of the intersection bundle ⟨ck1(E1)·· · ··ckm(Em)⟩X/S in a way compatible
with the decomposition property of the type (6.8). For simplicity, we assume first that
there is a finite open partition U = {Xi}i∈I such that the vector bundles have constant
ranks on the Xi. For example, if S, hence X is quasi-compact. Using that f : X → S

satisfies the condition (Cn), after possibly refining U, we can find a finite open partition
{Sj}j∈J of S with the following property: the restriction of f toXi induces a morphism
Xi → Sj(i), also satisfying condition (Cn). We define ⟨ck1

(E1) · · · · · ckm
(Em)⟩X/S as

the line bundle on S whose restriction to Sj is
(7.4)

⊗
i∈I | j(i)=j

⟨ck1
(E1) · · · · · ckm

(Em)⟩Xi/Sj
.

Notice that the result does not depend on the open partition U, up to canonical
isomorphism, and that the construction is local over S. This allows us to glue along a
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general base scheme S since the affine open schemes are quasi-compact and constitute
a basis of Zariski open subsets.

The first Chern class of ⟨ck1(E1) · · · · ·ckm(Em)⟩X/S can be computed via Segre-type
intersection bundles. It follows from Corollary 6.9 that we have:

Proposition 7.1. — Let f : X → S be a morphism satisfying the condition (Cn),
with S divisorial, and E1, . . . , Em vector bundles on X. Then

(7.5) c1(⟨ck1
(E1) · · · · · ckm

(Em)⟩X/S) = f∗(ck1
(E1) · · · · · ckm

(Em)).

Proof. — Since S is quasi-compact by assumption, the scheme X is quasi-compact
too. Then, associated with the vector bundles E1, . . . , Em, there are finite open par-
titions {Xi} and {Sj} of X and S, as in the construction above (7.4). For these finite
partitions, we have K0(X) =

∏
iK0(Xi) and Pic(S) =

∏
j Pic(Sj), and we can hence

reduce to the case of vector bundles of constant rank. It is then enough to prove the
counterpart of (7.5) for the Segre-type intersection bundles (7.2). In this case, the
result then follows from an application of Corollary 6.9. □

We gather in a lemma some elementary facts which follow easily from the construc-
tion.

Lemma 7.2. — Let E1, . . . , Em be vector bundles on X, and k1, . . . , km ⩾ 0 integers.
(1) The construction ⟨ck1

(E1) · · · · · ckm
(Em)⟩X/S is functorial. In particular, if for

some i, α : Ei → E′
i is an isomorphism of vector bundles, we denote by [α] the induced

isomorphism of the intersection bundles.
Furthermore, there are the following functorial constructions:

(2) If m = n + 1 and the Ei = Li are line bundles, then there is a canonical
isomorphism

⟨c1(L1) · · · · · c1(Ln+1)⟩X/S ≃ ⟨L1, . . . , Ln+1⟩X/S .

(3) Assume that ki = 1 and rkEi = 1 for a subset I ⊆ {1, . . . ,m}. Then the
construction ⟨ck1

(E1)·· · ··ckm
(Em)⟩X/S is multilinear with respect to the tensor product

in the Ei, for i ∈ I. In particular, if one of the terms equals c1(OX), the corresponding
intersection bundle is canonically trivial.

(4) If ki = 0, then there is a canonical isomorphism

⟨ck1
(E1) · · · · ·ckm

(Em)⟩X/S ≃ ⟨ck1
(E1) · · · · ·cki−1

(Ei−1) ·cki+1
(Ei+1) · · · · ·ckm

(Em)⟩X/S ,

which is compatible with the multilinearity property of (3), when it applies.

Proof. — It is enough to prove the corresponding statements for Segre-type intersec-
tion bundles. By construction, the first property reduces to the analogous fact for
Deligne pairings of line bundles, which is known. The next two properties are also a
direct consequence of the definition of Segre classes as Deligne pairings (7.2), and the
fact that if L is a line bundle on X, then via the canonical isomorphism P(L) ≃ X

the line bundle O(1) is identified with L. The last property follows from the definition
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and the second projection formula in Proposition 6.10 since Oi(1) has degree one on
the fibers of P(Ei)→ X. □

For the following definition, the reader is advised to review Section 5.1.6 for the
structure properties of Chern power series and the associated terminology. In particu-
lar, recall the isomorphism (5.7) expressing a homogeneous positive Chern polynomial
as a sum of Chern monomials, where there is a choice of order for the sum, while the
order of the monomials is uniquely determined.

Definition 7.3. — Let P be an object of CH+(X), and consider a decomposition of
its component of degree n + 1 in terms of Chern monomials P (n+1) ≃

∑N
i=1 P

(n+1)
i

as in Section 5.1.6. Then, we define

⟨P ⟩X/S = ⟨P (n+1)⟩X/S =
N⊗
i=1

⟨P (n+1)
i ⟩X/S ,

with the following convention:
(1) If one of the P (n+1)

i contains a factor 0, we interpret ⟨P (n+1)
i ⟩X/S as OS .

(2) If one of the P (n+1)
i contains a factor 1, we interpret ⟨P (n+1)

i ⟩X/S as the cor-
responding object with the ones removed.
It defines an object which is well-defined up to unique isomorphism.

This construction is trivially multilinear with respect to the addition in CH+(X),
and compatible with the additive strictly commutativity law in CH+(X) and Pic(S).
In particular, we can safely write expressions such as

⟨ (
∑
i∈I

Pi) · (
∑
j∈J

Qj) ⟩X/S =
⊗

i∈I,j∈J

⟨Pi ·Qj⟩X/S ,

without caring about the order.

Remark 7.4. — Suppose that E is a vector bundle on X of constant rank r, and P

is a positive Chern power series on X. Let h : P(E)→ X be the projection map, and
O(1) be the tautological line bundle on P(E). It follows from the definition that we
tautologically have the following projection formula:

⟨P · sk(E)⟩X/S = ⟨h∗P · c1(O(1))r+k−1⟩P(E)/S .

This formula is consistent with the definition sk(E) = h∗(c1(O(1))
r+k−1) of the Segre

classes in classical Chow theory.

7.2. Properties of intersection bundles. — We establish several natural isomor-
phisms between intersection bundles, which lift classical identities in intersection the-
ory to the level of line bundles. For the statement, we recall that for a vector bundle E
on X, we denote by rkE the locally constant function defined by the rank of E.

Proposition 7.5. — Let f : X → S be a morphism satisfying the condition (Cn),
and let P , P ′ denote positive Chern power series. The following constructions are
functorial:
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(1) (Projection formulas) Let g : X ′ → S and h : X ′ → X satisfy the conditions
(Cn+n′) and (Cn′), respectively, and P , P ′ have pure degrees with degP+degP ′ being
n′ + n+ 1. Then there are canonical projection formula isomorphisms

⟨h∗P · P ′⟩X′/S ≃


⟨P · ⟨P ′⟩X′/X⟩X/S , if degP ′ = n′ + 1.

⟨P ⟩κX/S , if degP ′ = n′.

OS , if degP ′ < n′.

In the first case, we wrote ⟨P ′⟩X′/X instead of c1(⟨P ′⟩X′/X) for simplicity. In the
second case, κ denotes the relative degree

∫
X′/X

P ′, and is then assumed to be constant.
In the third case, we interpret OS as a constant functor. These isomorphisms satisfy
the analogs of Corollary 6.12.

(2) (Whitney isomorphism) Let 0→ E′ → E → E′′ → 0 be a short exact sequence
of vector bundles on X. Then there is a canonical isomorphism

⟨P · ck(E) · P ′⟩X/S −→
k⊗

i=0

⟨P · ci(E′) · ck−i(E
′′) · P ′⟩X/S ,

in a way that is compatible with admissible filtrations.
(3) (First Chern class isomorphism) Let E be a vector bundle on X. Then, there

is a canonical isomorphism

⟨P · c1(E) · P ′⟩X/S ≃ ⟨P · c1(detE) · P ′⟩X/S ,

that is compatible with the Whitney isomorphism.
(4) (Rank triviality) Let E be a vector bundle on X and q an integer such that

q > rkE. Then the intersection bundle

⟨P · cq(E) · P ′⟩X/S

is canonically isomorphic to the constant functor OS. Moreover, the isomorphism is
compatible with the Whitney isomorphism.

(5) (Restriction isomorphism) Let σ be a regular section of a vector bundle E,
of constant rank r, whose zero locus Y , possibly empty, is flat over S. Then there is
a canonical isomorphism

⟨P · cr(E) · P ′⟩X/S −→ ⟨P |Y · P ′|Y ⟩Y/S ,

where we adopt the same convention as in Proposition 6.1(3) (cf. Remark 6.2).
(6) (Birational invariance) Let g : X̃ → S be a morphism satisfying condition

(Cn). Assume that there exists a morphism π : X̃ → X and a quasi-compact open
immersion U → X, such that π−1(U) → U is an isomorphism and U is fiberwise
dense in X. Then there is a canonical isomorphism

⟨P ⟩X/S ≃ ⟨π∗P ⟩X̃/S .

Proof. — The projection formula formally follows from the construction of Segre and
Chern classes together with Proposition 6.10, as in [12, §V.4.2]. Notice that in loc. cit.,
X is only assumed to be connected in the general case, for simplicity. The analog of
Corollary 6.12 similarly follows.
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The Whitney isomorphism is constructed similarly as in [12, §V.4.8]. Before recall-
ing it, we remark it is only defined therein whenever the vector bundles have positive
ranks. In the case α : E′ → E is an isomorphism, so that E′′ = 0, we define the
Whitney isomorphism as [α]−1, where [α] is the isomorphism of intersection bundles
induced by α as in Lemma 7.2(1). Likewise, if α : E → E′′ is an isomorphism and
E′ = 0, we define the Whitney isomorphism as [α].

The construction in the general case reduces to a Whitney-type isomorphism for
Segre classes. By the splitting principle in Proposition 5.39 and Proposition 5.41, it is
enough to describe this in the case when E′ = L is a line bundle. Let r be the rank
of E. We may suppose that r ⩾ 2. Denote by π : P(E) → X the projection map,
and O(1) the tautological bundle on P(E). We can write, successively replacing a
single O(1) by O(1)⊗ π∗L∨ ⊗ π∗L and iterating the process k times :

⟨P · sk(E) · P ′⟩ = ⟨π∗P · c1(O(1))r+k−1 · π∗P ′⟩

= ⟨π∗P · c1(O(1)⊗ π∗L∨) · c1(O(1))r+k−2 · π∗P ′⟩

⊗ ⟨π∗P · c1(π∗L) · c1(O(1))r+k−2 · π∗P ′⟩
= · · ·

=
k−1⊗
i=0

⟨π∗P · c1(O(1)⊗ π∗L∨) · c1(O(1))r+k−2−i · c1(π∗L)i · π∗P ′⟩

⊗ ⟨π∗P · c1(π∗L)k · c1(O(1))r−1 · π∗P ′⟩.

(7.6)

By Remark 7.4, the last term is identified with ⟨P · sk(L) · s0(E′′) · P ⟩. Also, the
bundle O(1)⊗π∗L∨ admits a natural section σ, obtained from combining L→ E and
π∗E → O(1). Its zero scheme is the relative Cartier divisor P(E′′) of P(E). Restricting
the bundles along this section and applying Proposition 6.1(3), provides the sought
Whitney-type isomorphism, again by Remark 7.4. The proof of the compatibility with
admissible filtrations is formal, as in [12, §V.2.3].

The first Chern class isomorphism can be constructed by induction on the rank
and the splitting principle. For rank 0, we impose that the isomorphism is the one
respecting the trivializations of both sides, see Lemma 7.2(3). The isomorphism in
general is then the one that makes the following diagram commute, associated with
an exact sequence 0→ L→ E → E′′ → 0 with L a line bundle:

(7.7)

⟨P · c1(E) · P ′⟩ //

��

⟨P · c1(detE) · P ′⟩

��

⟨P · c1(L) · P ′⟩ ⊗ ⟨P · c1(E′′) · P ′⟩ // ⟨P · c1(L) · P ′⟩ ⊗ ⟨P · c1(detE′′) · P ′⟩.

Here the left vertical isomorphism is the Whitney isomorphism together with Lem-
ma 7.2(4), the right vertical one follows from detE ≃ L ⊗ detE′′ together with the
multilinearity for c1 (cf. Lemma 7.2(3)), and the lower horizontal one is constructed
by induction. The compatibility with the Whitney isomorphism is automatic, by the
splitting principle and the construction.
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The rank triviality is addressed as follows. By the construction of intersection
bundles, we can suppose that E has constant non-zero rank. We begin with the case
when E is a line bundle L. Observe that in terms of intersection bundles since O(1)

identifies with L under the isomorphism P(L) ≃ X, we have

⟨P · sq(L) · P ′⟩ = ⟨P · s1(L)q · P ′⟩.

From the defining recurrence (7.3), we deduce that the rank triviality isomorphism is
tautological for q = 2. In general, proceeding by induction on q, we find

(7.8) ⟨P · cq(L) · P ′⟩ ≃ ⟨P · sq(L) · P ′⟩(−1)q+1

⊗ ⟨P · sq−1(L) · s1(L) · P ′⟩(−1)q ≃ OS .

This identifies the leftmost bundle with the trivial line functor OS . For the general
case, one argues by applying the splitting principle in Proposition 5.41 and the Whit-
ney isomorphism above. This reduces us to the case of a product of Chern classes
of line bundles with one or more indices strictly bigger than one. We can use the
above isomorphism (7.8) for any of those Chern classes. It is formal to verify that
the resulting trivialization does not depend on the order, by an argument similar to
that after (7.3). We notice that, in particular, the compatibility with the Whitney
isomorphism is part of the construction of the rank triviality isomorphism.

The restriction isomorphism can be constructed as in [12, §V.4.9]. Set T to be the
image of Y in S. It is both open and closed since Y → S is proper, flat, and of finite
presentation. Since the construction of intersection bundles is local with respect to S,
and by the convention as in Remark 6.2, we can suppose that either S = T or that Y
is empty.

We first suppose that S = T . We observe that, since σ is a regular section whose
zero locus is faithfully flat over S, then Y automatically satisfies the condition (Cn−r)

over S. Indeed, to verify that the morphism Y → S has constant pure relative dimen-
sion n−r, one can argue locally on X, in which case Y ⊆ X is obtained by successively
intersecting with relative Cartier divisors which are of pure relative dimension n− 1,
as in the remarks following Proposition 6.1.

We follow [12, §V.4.10]. The case r = 1 relies on (3) in Proposition 6.1. For gen-
eral r, we proceed by induction on the rank. Introduce π : P(E)→ X, and the universal
exact sequence (1.9).

The section π∗σ of π∗E induces a regular section of O(1) on P(E). We denote by
D ⊆ P(E) its divisor. It is a relative Cartier divisor. The restriction of π∗σ on D

defines a regular section of Q|D. Its zero locus scheme Z equals the restriction of the
projective bundle to Y , that is Z = P(E|Y ). Then there is a string of isomorphisms:

⟨P · cr(E) · P ′⟩X/S ≃ ⟨π∗P · cr(π∗E) · π∗P ′ · c1(O(1))r−1⟩P(E)/S

≃ ⟨π∗P · cr−1(Q) · c1(O(1)) · π∗P ′ · c1(O(1))r−1⟩P(E)/S

≃ ⟨π∗P |D · cr−1(Q|D) · π∗(P ′|D) · c1(O(1))r−1⟩D/S

≃ ⟨π∗P |Z · π∗(P ′|Z) · c1(O(1))r−1⟩Z/S

≃ ⟨P |Y · P ′|Y ⟩Y/S .

(7.9)
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The first isomorphism in (7.9) is the second case of the projection formula. The
second one is the Whitney isomorphism associated with (1.9) combined with the rank
triviality. The third one uses the case r = 1, and the fourth isomorphism is constructed
by induction. The final one performs the projection formula again.

The argument for the case Y = ∅ goes along the same lines. The case of rank
one again reduces to Proposition 6.1. See Remark 6.2. For the higher rank case, the
same manipulation as in (7.9) applies, but here instead the scheme Z will be empty,
allowing us to apply induction again.

Finally, we address the birational invariance. We can suppose P is a single mono-
mial in the Segre classes of some vector bundles. If p : P → X denotes the pro-
jective bundle over X that appears in the definition of the Segre classes in P , then
P ×X X̃ → X̃ is the corresponding projective bundle in the definition of the Segre
classes of π∗P . The open subset p−1(U) satisfies the assumptions of Proposition 6.13
and the property easily follows from this. □

Remark 7.6. — In the proof of Proposition 7.5(5), we could introduce a term
c1(O(1))

r−1 by means of the projection formula, for instance in the first line
of (7.9). More generally, we could have chosen any other Chern class of degree 1
on fibers and obtain the same result. See [12, §V.4.10]. This can be deduced from
the very construction of the second projection formula for Deligne pairings, see in
particular (6.14).

7.3. Compatibility. — In this subsection, we address the compatibility between var-
ious properties of the intersection bundles.

7.3.1. The basic compatibilities. — The operations in Proposition 7.5 can be com-
bined, and the question arises whether these can be effected in any order with the
same result. We show that this is indeed the case. For this, we begin by stating some
simple compatibilities, whose proof is a direct application of the definitions and is
omitted.

Proposition 7.7. — Let the notation and terminology be as in Proposition 7.5. The
following statements hold:

(1) If P or P ′ contain a term c1(L) for a line bundle L, then all the isomorphisms
are compatible with the tensor product multilinearity in L (cf. Lemma 7.2(3)).

(2) Performed on different variables, the Whitney isomorphism (2), first Chern
class isomorphism (3), and rank triviality (4), commute with each other. Here, it is
allowed to repeat the same type of operation on several variables.

(3) The birational invariance isomorphism (6) is compatible with all the other prop-
erties. In the case of the restriction isomorphism (5), it is necessary to assume that
Y ∩ U is fiberwise dense in Y , and π∗(σ) is a regular section whose zero-locus is flat
over S. □
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Proposition 7.8. — Let the notation and terminology be as in Proposition 7.5. Let
E,F, F ′ be vector bundles on X, and let P , P ′ denote positive Chern power series.
We assume:

– that E fits into an exact sequence 0→ E′ → E → E′′ → 0.
– that m is an integer such that m > rkF .
– that F ′ is of constant rank r and admits a regular section σ, whose zero-locus Y

is flat over S.
The following statements hold:

(1) The rank triviality is compatible with the projection formula: if P has pure
degree n−m, then the diagram

⟨h∗(P · cm(F )) · P ′⟩X′/S
//

��

OS

id
��

⟨P · cm(F ) · ⟨P ′⟩X′/X⟩X/S
// OS

commutes, and similarly for the cases when P has pure degree ⩾ n − m + 1. The
analogous statement holds with respect to P ′.

(2) The Whitney isomorphism is compatible with the restriction isomorphism: the
diagram

⟨P · cr(F ′) · ck(E) · P ′⟩X/S
//

��

⟨P · ck(E|Y ) · P ′⟩Y/S

��

k⊗
i=0

⟨P · cr(F ′) · ci(E′) · ck−i(E
′′) · P ′⟩X/S

//
k⊗

i=0

⟨P · ci(E′|Y ) · ck−i(E
′′|Y ) · P ′⟩Y/S

commutes.
(3) The Whitney isomorphism is compatible with the projection formula: if P has

pure degree n− k, then the diagram

⟨h∗(P · ck(E)) · P ′⟩X′/S
//

��

⟨P · ck(E) · ⟨P ′⟩⟩X/S

��

k⊗
i=0

⟨h∗(P · ci(E′) · ck−i(E
′′)) · P ′⟩X′/S

//
k⊗

i=0

⟨P · ci(E′) · ck−i(E
′′) · ⟨P ′⟩⟩X/S

commutes, and similarly for the cases when P has pure degree ⩾ n − k + 1. The
analogous statement holds with respect P ′.

(4) The projection formula is compatible with the restriction isomorphism: if P has
pure degree n− r, then the diagram

⟨h∗(P · cr(F ′)) · P ′⟩X′/S
//

��

⟨h∗(P |Y ) · P ′|Y ′⟩Y ′/S

��

⟨P · cr(F ′) · ⟨P ′⟩⟩X/S
// ⟨P |Y · ⟨P ′|Y ′⟩⟩Y/S
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commutes, and similarly when P has pure degree ⩾ n−r+1. Here, Y ′ denotes h−1(Y )

as a scheme. The analogous statement holds with respect to P ′, supposing instead
that F ′ is a vector bundle on X ′ and the zero locus of the section is flat, possibly
empty, over X.

(5) The rank triviality is compatible with the restriction isomorphism: the diagram

⟨P · cr(F ′) · cm(F ) · P ′⟩X/S
//

��

OS

id
��

⟨P |Y · cm(F |Y ) · P ′|Y ⟩Y/S
// OS

commutes.

Proof. — We assume that the ranks of all the vector bundles are constant. This
is legitimate since the construction of intersection bundles ultimately reduces to this
case. Since the principles are the same, we omit below the proofs referring to analogous
statements with respect to P ′.

Assuming (3), the verification of (1) follows formally from the construction of the
rank triviality isomorphism and is left to the reader.

By the splitting principle in Proposition 5.41, the statements involving the Whitney
isomorphism reduce to the case of E′ being a line bundle. To verify (2), we first treat
the case when we restrict along a relative effective Cartier divisor, i.e., when F ′ is a line
bundle with a regular section. Also, it is enough to treat the case of Segre classes for E.
The construction of the Whitney-type isomorphism in this case is based on two points.
Firstly, the definition of Segre classes as Deligne pairings of tautological bundles on
projective spaces (7.2). Secondly, the restriction property (6.5) in Proposition 6.1(3).
The conclusion follows from the independence of the order of reiterated restrictions
to relative Cartier divisors, stated in Proposition 6.1(6).

Before treating the general case of (2), we consider the compatibility (3). It reduces
to studying the compatibility of the projection formula and the construction related
to (7.6). Since the projection formula is additive in P and (7.6) is a rewriting of
terms, the statement can be inferred from the following two facts. The first fact is
the compatibility (4) in the case of restrictions associated with line bundles, which
is already contained in the proof of Proposition 6.10. The second fact is that the
composition of two projection formulas is the projection formula for the composition,
in the particular situation that we next discuss. If V is a vector bundle of rank d

on X, and h : X ′ → X is a morphism as in the statement of the projection formula
consider the diagram

P(h∗V )
h′
//

π′
��

P(V )

π
��

X ′ h //

&&

X

��

S.
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Denote by ξ = c1(O(1)) and ξ′ = h′∗ξ. Then the claim is that the following diagram
commutes:

(7.10)

⟨h′∗(π∗P · ξd−1) · π′∗P ′⟩

��

≃ // ⟨π′∗h∗P · π′∗P ′ · ξ′d−1⟩

��

⟨π∗P · ξd−1 · ⟨π′∗P ′⟩⟩

≃

��

⟨h∗P · P ′⟩

��

⟨π∗P · ξd−1 · π∗⟨P ′⟩⟩ // ⟨P · ⟨P ′⟩⟩.

Here the upper horizontal isomorphism is a rewriting of the terms, using the natural
transformation h′∗π∗ ≃ π′∗h∗ and h′∗ξ = ξ′, and in the lower left vertical isomorphism
the base change functoriality of the intersection bundles was used for the rewriting
⟨π′∗P ′⟩ ≃ π∗⟨P ′⟩. The other isomorphisms are the natural projection formulas.

By linearity, we can reduce the commutativity of (7.10) to the case when P and P ′

are products of Segre classes. By construction of the Segre classes and the projection
formulas, it is formal to reduce to the case when P (resp. P ′) is a product of first
Chern classes of line bundles Li (resp. Mj). Possibly restricting S, we can suppose
that the Li are differences of relatively very ample line bundles. By the linearity of
Deligne products, we can even suppose that the bundles Li are relatively very ample.
By the construction of the projection formula recalled in the proof of Proposition 6.10,
the commutativity of (7.10) is equivalent to the statement obtained after restricting
along regular sections of the Li, in general position, see Section 6.1.2. This way we
are reduced to the case when P = 1 and X → S is of relative dimension 0. In this
case, the upper left intersection bundle in (7.10) admits defining symbols that realize
trivializations of all the involved intersection bundles. An inspection of the construc-
tion recalled in the proof of Proposition 6.10 shows that the diagram commutes. This
proves (3) in general, and hence, as mentioned at the beginning of the proof, (1) as
well.

To deduce the general case of (2), we first introduce some notation analogous
to that of (7.9). Let π : P(F ′) → X be the projection morphism, and consider the
universal exact sequence

0 −→ Q −→ π∗F ′ −→ O(1) −→ 0.

The section π∗σ of π∗F ′ induces a section of O(1) on P(F ′). We denote by D ⊆ P(F ′)

its divisor. The restriction of π∗σ on D defines a regular section of Q|D. Its zero locus
scheme Z equals the restriction of the projective bundle to Y , that is Z = P(F ′|Y ).
Finally, we let ξ = c1(O(1)). With this understood, we write down a sequence of
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diagrams, where we suppose for simplicity of notation that P and P ′ are 1:
(7.11)

⟨cr(F ′) · ck(E)⟩ //

��

(A)

⊗
i+j=k

⟨cr(F ′) · ci(E′) · cj(E′′)⟩

��

⟨cr(π∗F ′) · ck(π∗E) · ξr−1⟩ //

��

(B)

⊗
i+j=k

⟨cr(π∗F ′) · ci(π∗E′) · cj(π∗E′′) · ξr−1⟩

��

⟨cr−1(Q) · ξ · ck(π∗E) · ξr−1⟩ //

��

(C)

⊗
i+j=k

⟨cr−1(Q) · ξ · ci(π∗E′) · cj(π∗E′′) · ξr−1⟩

��

⟨cr−1(Q|D) · ck(π∗E|D) · ξr−1⟩ //

��

(D)

⊗
i+j=k

⟨cr−1(Q|D) · ci(π∗E′|D) · cj(π∗E′′|D) · ξr−1⟩

��

⟨ck(π∗E|Z) · ξr−1⟩ //

��

(E)

⊗
i+j=k

⟨ci(π∗E′|Z) · cj(π∗E′′|Z) · ξr−1⟩

��

⟨ck(E|Y )⟩ //
⊗

i+j=k

⟨ci(E′|Y ) · cj(E′′|Y )⟩.

The composition of the vertical isomorphisms denotes our restriction isomorphism
in (7.9), and the commutativity of the outer contour of the diagram is hence (2). The
upper vertical and lower vertical arrows denote projection formula isomorphisms. The
diagrams (A) and (E) hence commute because of the already established (3). The
diagram (B) commutes because rank triviality is compatible with the Whitney isomor-
phism by Proposition 7.5(4) and the iterated applications of Whitney isomorphisms
in different entries clearly commute. The diagram (C) commutes because of (2) in
the case of restrictions to divisors, and the diagram (D) commutes by induction on
the rank, which hence establishes (2) in general.

The general case of (4) is proved along the same lines, by rendering explicit the
isomorphisms analogously to (7.11) and relying on the commutativity of (7.10), (2),
(3) and the already proved case of (4) when r = 1. We leave the details to the
reader. □

Corollary 7.9. — Let the notation and terminology be as in Proposition 7.5. The
following statements hold:

(1) The first Chern class isomorphism is compatible with the projection formula
with respect to P or P ′.

(2) Performed on different variables, the first Chern class isomorphism is compat-
ible with the restriction isomorphism.
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Proof. — The proof of the first Chern class isomorphism proceeds inductively on the
rank and involves the splitting principle and the Whitney isomorphism. Therefore,
the statement is a straightforward consequence of the statements in Proposition 7.7
and Proposition 7.8, which in particular address the compatibility of the Whitney
isomorphism with the other operations as in the statement of this corollary. □

Corollary 7.10. — Let E′ and E′′ be two vector bundles of constant ranks r′ and r′′,
with regular sections σ′ and σ′′. We suppose that the respective zero loci, Y ′ and Y ′′,
are flat over S, possibly empty, and that their intersection is Tor-independent and flat
over S, possibly empty. Then, for any objects P, P ′ in CH+(X), the following diagram
of restriction isomorphisms commutes:

⟨P · cr′(E′) · cr′′(E′′) · P ′⟩ //

��

⟨P |Y ′′ · cr′(E′|Y ′′) · P ′|Y ′′⟩

��

⟨P |Y ′ · cr′′(E′′|Y ′) · P ′|Y ′⟩ // ⟨P |Y ′∩Y ′′ · P ′|Y ′∩Y ′′⟩.

Proof. — We proceed by induction on the ranks of the vector bundles. If both bundles
are line bundles, this reduces to the statement of Proposition 6.1(3).

In general, we suppose the diagram commutes for vector bundles E′ up to rank r′−1
and fixed E′′. The construction of the restriction isomorphism for E′ in (7.9) is given
in terms of a projection formula, Whitney isomorphisms and rank trivialities, and
inductively over iterated restrictions for lower rank vector bundles. By the established
compatibility of these operations, and the induction hypothesis, one readily concludes
that it also holds for E′. The analogous argument works for induction over the rank
of E′′ of rank r′. □

We conclude this subsection on basic compatibilities by proving that the isomor-
phisms in Proposition 7.5 coincide with those of Elkik whenever the latter are defined.

Corollary 7.11. — Suppose that f : X → S has moreover Cohen–Macaulay fibers,
with S Noetherian. Then the constructions in Proposition 7.5 coincide with those of
Elkik in [12].

Proof. — The projection formula in Proposition 7.5 is by construction the same as
that in [12]. All the other properties coincide with those of [12] in the base case of
line bundles. For the Whitney isomorphism, we interpret this to mean that E′ is a
line bundle.

In our approach, we then extend the isomorphisms to general vector bundles by
the splitting principle, which proceeds by giving a construction based on complete
flags of all the involved vector bundles. Part of the splitting principle states that the
isomorphism is independent of the choice of a complete flag.

In [12, §V.2.3], the following splitting principle is considered. Let E be a vector
bundle of constant rank r on X, and π : D → X the complete flag variety of E. It is
of relative dimension 1 + · · ·+ r − 1 = r(r − 1)/2. Consider the tautological bundles
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L1, . . . , Lr on D, and let P = c1(L2)
2−1 · · · · · c1(Lr)

r−1. Then, the second projection
formula in Proposition 7.5(1) yields a canonical isomorphism

⟨Q⟩X/S −→ ⟨π∗Q · P ⟩D/S

for every Q of degree n+1 on X. This way she can assume that E admits a complete
flag, and define her isomorphisms using this, or slight modifications of this construc-
tion. The compatibility between our Whitney isomorphism and hers hence follows
from the line bundle case and the compatibility of our Whitney isomorphism and the
projection formula elucidated in Proposition 7.8(3).

The same argument applies to the comparison of the rank triviality isomorphisms
and the restriction isomorphisms since ours are compatible with the projection formula
in Proposition 7.8(1) and (4).

For the first Chern class isomorphism, we first remark that the construction
provided in [12, §V.1.2 (e)] is compatible with the Whitney isomorphism as
in Proposition 7.5(3). This amounts to the multiplicativity of the isomorphism
⟨O(1){rkE}⟩P(E)/X ≃ detE provided in [12, Prop. IV.3] under exact sequences
0→ L→ E → E′′ → 0, where L is a line bundle. This is proved as in the discussion
surrounding (7.6). By the splitting principle for multiplicative functors, the sought
comparison reduces to the case when E is of rank one. In this case, both constructions
are equal to the identity and hence coincide.

For the verification of (5), we can reduce to the case when F is a line bundle. For
this, we combine the splitting principle, the Whitney isomorphism, and the fact that
the latter is compatible with restrictions. In the case of line bundles, the statement is
a formality. □

7.3.2. Further compatibilities. — In the previous subsection, we studied the interac-
tion between the possible combinations of the operations in Proposition 7.5. As an
application, in this subsection, we discuss other options which are less immediate.

Proposition 7.12. — Let X → S be a morphism of schemes satisfying the condition
(Cn), and P, P ′ objects in CH+(X). Let E be a vector bundle of constant rank r

on X, admitting a nowhere vanishing section σ : OX → E. Consider the following
isomorphisms, obtained by combining the Whitney isomorphism for the associated
exact sequence 0 → OX → E → E′′ → 0, together with the rank triviality and the
restriction isomorphism for OX :

(7.12) ⟨P · cr(E) · P ′⟩X/S −→ ⟨P · c1(OX) · cr−1(E
′′) · P ′⟩X/S −→ OS .

Then, the trivialization (7.12) coincides with the trivialization provided by the restric-
tion isomorphism stated in Proposition 7.5(5), applied to the section σ.

Proof. — We proceed by induction on the rank r. In rank one, σ is a trivialization
of E, and the claim is obvious. In general, since the Whitney isomorphism and the
rank triviality are compatible with the projection formula, we can pull back all the
objects by π : P(E′′)→ X, at the expense of introducing a term ξr−2 = c1(O(1))

r−2.
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Consider the tautological exact sequence on P(E′′) of the form (1.9), but decorated
with a double prime symbol. We also consider the tautological exact sequence (1.9)
on P(E), and keep the same notation for the restriction to P(E′′) ⊆ P(E) associated
with σ. All these fit into a commutative diagram of exact sequences on P(E′′):

O
��

��

O
��

��

Q // //

����

π∗E

����

// //

��

O(1)

Q′′ // // π∗E′′ // // O(1).

For simplicity, we omit in the rest of the proof the pullback π∗. Because the Whitney
isomorphism is compatible with admissible filtrations, and the rank triviality is com-
patible with the Whitney isomorphism in separate variables, we have the following
commutative diagram:

⟨P · cr(E) · P ′ · ξr−2⟩P(E′′)/S
//

��

⟨P · cr−1(Q) · c1(O(1)) · P ′ · ξr−2⟩P(E′′)/S

��

⟨P · c1(O) · cr−1(E
′′)·P ′ · ξr−2⟩P(E′′)/S

// ⟨P · c1(O) · cr−2(Q
′′) · c1(O(1))·P ′ · ξr−2⟩P(E′′)/S .

In this diagram, the trivializations of the lower terms induced by the presence of
c1(O) correspond to each other since the Whitney isomorphism is compatible with
the restriction isomorphism. The rightmost upper term is also trivial by the restric-
tion isomorphism applied to the section O → Q. This trivializes, through the upper
horizontal morphism, the leftmost upper term. We claim that this coincides with the
trivialization provided by the restriction isomorphism for E and σ. We have then
reduced to the case of O→ Q on P(E′′), for which the statement holds by induction.

Let us prove the claim. The restriction isomorphism is compatible with the projec-
tion formula, the Whitney isomorphism, and the rank triviality. We thus derive the
following commutative diagram, where we omit the reference to P and P ′ in all the
terms for typographical reasons:

⟨cr(E) · ξr−1⟩P(E)/S
//

��

⟨cr−1(Q) · c1(O(1)) · ξr−1⟩P(E)/S

��

⟨cr(E)⟩X/S

55

))

⟨cr(E) · ξr−2⟩P(E′′)/S
// ⟨cr−1(Q) · c1(O(1)) · ξr−2⟩P(E′′)/S ≃ OS .

The diagonal arrows are given by projection formulas. The vertical arrows are as-
sociated with the restriction along the divisor of the section O → E → O(1). The
trivialization of the rightmost lower term is provided by the restriction isomorphism
for Q on P(E′′), which is given by induction on the rank. The restriction isomorphism
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for E is obtained as the composition of the upper diagonal, upper horizontal, and
rightmost vertical morphisms, together with the trivialization of the rightmost lower
term. Since the diagram commutes, this proves the claim and concludes the proof. □

Lemma 7.13. — Suppose that h : X ′ → X and X → S are as in Proposition 7.5(1),
and F is a vector bundle on X ′ of rank r, admitting a regular section σ whose zero-
locus defines a section of X ′ → X. Suppose that r = n′, the relative dimension
of h. Then, for any object P in CH+(X), the projection formula isomorphism and the
restriction isomorphism both define isomorphisms:

⟨h∗P · cr(F )⟩X′/S −→ ⟨P ⟩X/S .

These coincide.

Proof. — This is an immediate application of Proposition 7.8(4). With the notation
therein, it is indeed enough to use the compatibility of the second projection formula
isomorphism and the restriction isomorphism applied to the term P ′ = cr(F ). For the
projection formula, one observes that cr(F ) has degree one along the fibers since the
zero locus of σ defines a section X → X ′ of X ′ → X. □

Proposition 7.14. — Let 0→ E′ → E → E′′ → 0 be a short exact sequence of vector
bundles, of constant ranks r′, r, r′′ respectively. Suppose that σ is a regular section
of E, with zero-locus Z, flat over S, satisfying:

(1) The projection of σ onto E′′ is a regular section σ′′ of E′′, with zero-locus Y
flat over S.

(2) The section σ|Y induces a regular section σ′ of E′|Y .
Then, for any positive Chern power series P, P ′, the following diagram of restrictions,
Whitney isomorphisms, and rank trivialities is commutative:

⟨P · cr(E) · P ′⟩X/S

��

// ⟨P |Z · P ′|Z⟩Z/S

⟨P · cr′(E′) · cr′′(E′′) · P ′⟩X/S
// ⟨P |Y · cr′(E′|Y ) · P ′|Y ⟩Y/S .

OO

Proof. — For simplicity of notation, we omit P and P ′ from the notation, which are
thus formally replaced by 1. Also, in diagrams involving intersection bundles, we omit
the pullback notation to projective bundles.

We first suppose that E′′ = L is a line bundle. We begin with some geometric
observations. Consider the projective bundle π : P(E)→ X and the tautological exact
sequence (1.9) on P(E). By composition, the section σ induces a section of O(1), whose
divisor we denote by D. The composition π∗E′ → π∗E → O(1) induces a global
section of F := O(1)⊗ (π∗E′)∨, denoted by τ . Its zero locus is isomorphic to a copy
of X embedded in P(E) as a section of π. Furthermore, the restriction of the universal
exact sequence (1.9) to this copy of X gives back the sequence 0→ E′ → E → L→ 0.
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Consider the following diagram:

(7.13)

⟨cr(E)⟩X/S

��

// ⟨1⟩Z/S

⟨cr(E) · cr−1(F )⟩P(E)/S
//

��

⟨cr−1(F )⟩π−1(Z)/S

OO

⟨cr−1(Q) · c1(O(1)) · cr−1(F )⟩P(E)/S
//

��

⟨cr−1(Q|D) · cr−1(F |D)⟩D/S

OO

⟨cr−1(E
′) · c1(L)⟩X/S

// ⟨cr−1(E
′|Y )⟩Y/S .

OO

The outer contour of this diagram corresponds to the diagram in the proposition, as
we shall now explain. The two upper vertical arrows are projection formulas, which
hold since the zero locus of τ induces a section X → P(F ). By Lemma 7.13, these are
actually equal to the restriction isomorphisms for F and τ . The two upper horizontal
arrows are given by the restriction isomorphisms for E and σ. The upper square
diagram thus commutes by Corollary 7.10. The middle square corresponds to the
very construction of the restriction isomorphism for E and σ, as described in (7.9).
Notice that in loc. cit. we used c1(O(1))

r−1 instead of cr−1(F ), but both choices yield
the same result, after Remark 7.6. The lower diagram is a composition of restrictions,
which again commute by Corollary 7.10.

The left horizontal composition of morphisms is equal to the Whitney isomor-
phism and rank triviality since these commute with restrictions. The composition of
the rightmost vertical morphisms corresponds to the definition of the restriction iso-
morphism for E′|Y and σ′. This proves the proposition in the case of E′′ being a line
bundle.

We proceed by induction on the rank of E′′, assuming the statement is known up
to rank r′′− 1. We consider the tautological sequence (1.9) on P(E)→ X and denote
by the same letters the restriction to P(E′′). Denote by Q′′ the tautological subbundle
on P(E′′)→ X. These are all related by the diagram of exact sequences and rows on
P(E′′)

π∗E′
��

��

π∗E′
��

��

Q // //

����

π∗E

����

// //

��

O(1)

Q′′ // // π∗E′′ // // O(1).

There is an induced section of O(1) on P(E′′), with divisor D′′.
From Proposition 7.8, the projection formula commutes with the Whitney isomor-

phism, the rank triviality, and the restriction isomorphism. We can then consider the
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following composition of diagrams, where we write ξ = c1(O(1)):

⟨cr(E) · ξr′′−1⟩P(E′′)/S
//

��

⟨cr−1(Q) · c1(O(1)) · ξr
′′−1⟩P(E′′)/S

��

⟨cr′(E′) · cr′′(E′′) · ξr′′−1⟩P(E′′)/S
// ⟨cr′(E′) · cr′′−1(Q

′′) · c1(O(1)) · ξr
′′−1⟩P(E′′)/S

// ⟨cr−1(Q|D′′) · ξr′′−1⟩D′′/S
//

��

⟨ξr′′−1⟩π−1(Z)/S

��

// ⟨cr′(E′|D′′) · cr′′−1(Q
′′|D′′) · ξr′′−1⟩D′′/S

// ⟨cr′(E′|Y ) · ξr
′′−1⟩π−1(Y )/S .

We explain the morphisms. The composition of the lower horizontal morphisms cor-
responds to the definition of the restriction morphism for σ′′. The rightmost vertical
morphism identifies with the restriction morphism of σ′ since this commutes with
the projection formula. The composition of upper horizontal morphisms identifies,
by the induction hypothesis and the projection formula, with the restriction isomor-
phism corresponding to σ. The other isomorphisms are Whitney isomorphisms and
rank triviality isomorphisms. Since the projection formula commutes with all these
involved isomorphisms, the commutativity of the above diagram is equivalent to the
commutativity of the one in the proposition.

The two leftmost squares commute since the Whitney isomorphism commutes with
restriction and rank triviality. The rightmost square commute by the induction hy-
pothesis on the rank of E′′, which concludes the proof. □

8. A functorial framework for intersection bundles

In this section, we show that Elkik’s intersection bundles provide line distributions.
This relies on the compatibility properties established in the previous section, together
with a study of the behavior of the Whitney isomorphism for split exact sequences,
and the action of symmetries on the intersection bundles.

Below, f : X → S denotes a morphism of schemes satisfying the condition (Cn).

8.1. Symmetries and signs. — In the below, we study how some standard symmetry
isomorphisms only produce signs.

Lemma 8.1. — Let E1, . . . , Em be vector bundles on X.
(1) For any permutation σ of {1, . . . ,m}, there is a canonical functorial symmetry

isomorphism

[σ] : ⟨ck1
(E1) · · · · · ckm

(Em)⟩X/S ≃ ⟨ckσ(1)
(Eσ(1)) · · · · · ckσ(m)

(Eσ(m))⟩X/S ,

which is compatible with the basic properties of the intersection bundles stated in
Lemma 7.2 and Proposition 7.5. Moreover, given two permutations σ and τ , we have
[σ◦τ ] = [σ]◦ [τ ]. If σ is a permutation fixing the Chern monomial, then [σ] is a locally
constant unit, and only assumes the values ±1.
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(2) Suppose that Ei = E′
i ⊕ E′′

i and consider the diagram:⊗ki

j=0⟨· · · · cj(E′
i) · cki−j(E

′′
i ) · . . . ⟩X/S

��

⟨· · · · cki(E
′
i ⊕ E′′

i ) · . . . ⟩X/S

22

,,⊗ki

j=0⟨· · · · cki−j(E
′′
i ) · cj(E′

i) · . . . ⟩X/S .

Here, the diagonal morphisms are, from the upper one to the lower one, the two
Whitney isomorphisms obtained by filtering by E′

i (on the left) and E′′
i (on the right),

and the vertical isomorphism is a product of the symmetry isomorphisms interchanging
cki−j(E

′
i) with cj(E

′′
i ) and a reordering of the tensor products.

Then, this diagram commutes up to a unit λ, which is locally constant and only
assumes the values ±1.

Proof. — Throughout the proof, we suppose the ranks of the vector bundles are
constant.

For the first point, the existence of the symmetry isomorphism is formal and follows
from the case of Deligne pairings as in Proposition 6.1(2). The compatibility statement
is formal too since all the basic properties ultimately reduce to basic properties of
Deligne pairings, which are all compatible with the symmetry isomorphisms. For the
statement about permutations fixing the Chern monomial, one reduces to the case of
transpositions. If one transposes factors of the form c1(Li) where Li is a line bundle,
it readily follows from Proposition 6.1 (6.4) that [σ] is a sign as in the statement. In the
general case, since the flag variety of Ei is faithfully flat over S, to determine [σ] we can
assume that the Ei admits a full flag. By the splitting principle, we can suppose that Ei

is a sum of line bundles. By developing the expression using the Whitney isomorphism
and rank triviality, one reduces to the line bundle situation.

For the second point, by the construction of intersection bundles, we reduce to the
case when the only terms beyond cki

(Ei) in the leftmost expression are of the form
c1(Lℓ), where Lℓ is a line bundle. Arguing locally on S, we can suppose we can write,
for any ℓ ̸= i, Lℓ = Aℓ⊗B∨

ℓ where Aℓ and Bℓ are very ample relative to S, and admit
non-trivial regular sections, defining relative Cartier divisors. Using the multilinearity
for the first Chern class, it is enough to determine the unit λ whenever Lℓ = O(Dℓ) for
a non-trivial relative effective Cartier divisorDℓ. Furthermore, applying the restriction
isomorphism from Proposition 7.5(5), we can reduce to the case when X → S is
of relative dimension ki − 1 and the Chern monomial in the leftmost vertex of the
diagram is of the form ⟨cki

(Ei)⟩. As in the previous point, we can as well suppose that
all the involved vector bundles are sums of line bundles. By using that the Whitney
isomorphism is compatible with admissible filtrations, one can finally reduce to the
case that E′

i and E′′
i are line bundles, say L and M , compare with [15, Cor. 2.20].

At this point, we need to distinguish three cases, namely when ki = 1, 2, and when
ki > 2.
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We first consider the case ki = 1, so that in particular f : X → S is finite and flat,
of degree deg f . We will prove that the diagram commutes up to the sign (−1)deg f .
By the very definition of the Chern classes, we have

⟨c1(L⊕M)⟩X/S = ⟨O(1),O(1)⟩P(L⊕M)/S .

The Whitney isomorphism corresponding to filtering by L amounts, according to (7.6),
to the following string of isomorphisms:

⟨O(1),O(1)⟩P(L⊕M)/S −→ ⟨O(1)⊗ L∨,O(1)⟩P(L⊕M)/S ⊗ ⟨L,O(1)⟩P(L⊕M)/S

−→ ND/S(O(1)|D)⊗NX/S(L)

−→ NX/S(M)⊗NX/S(L).

(8.1)

We recall the meaning of the arrows. The first isomorphism is obtained just as a
formal rewriting of terms. For the second isomorphism, we denoted by D the divisor
of the natural section O → O(1) ⊗ L∨, and we used the restriction isomorphism
along it. We also used the projection formula isomorphism on the second factor. For
the third isomorphism, we observe that D provides a section of P(L⊕M)→ X, and
the restriction of O(1) along this section is naturally isomorphic to M .

We now write (8.1) in terms of symbols. Possible localizing on S, we may assume
that L and M admit trivializing sections, denoted by ℓ and m, respectively. We denote
by ℓ̃ and m̃ the sections of O(1) induced by ℓ and m. Then, the symbol ⟨ℓ̃, m̃⟩ trivializes
⟨O(1),O(1)⟩P(L⊕M)/S . We observe that the section O→ O(1)⊗L∨ is nothing but ℓ̃⊗ℓ∨,
and one sees from the definitions that the restriction of m̃ to D gets identified to m.
With this understood, the effect of (8.1) on symbols is

⟨ℓ̃, m̃⟩ 7−→ ⟨ℓ̃⊗ ℓ∨, m̃⟩ ⊗ ⟨ℓ, m̃⟩
7−→ ND/S(m̃|D)⊗NX/S(ℓ)

7−→ NX/S(m)⊗NX/S(ℓ).

(8.2)

In the second isomorphism, we used the explicit expression of the projection formula
in (6.14).

Next, we need to repeat the above argument, but filtering by M . We now denote
by E the divisor of the section O→ O(1)⊗M∨. The manipulation corresponding to
(8.2) is, in this case,

⟨ℓ̃, m̃⟩ = (−1)deg f ⟨m̃, ℓ̃⟩ 7−→ (−1)deg f ⟨m̃⊗m∨, ℓ̃⟩ ⊗ ⟨m, ℓ̃⟩

7−→ (−1)deg fNE/S(ℓ̃|E)⊗NX/S(m)

7−→ (−1)deg fNX/S(ℓ)⊗NX/S(m).

(8.3)

The equality in the first line is given by the property of permuting two equal factors
in a Deligne pairing, in Proposition 6.1(2). This is responsible for the sign (−1)κ, with

κ =

∫
P(L⊕M)/S

c1(O(1)) = (deg f)

∫
P(L⊕M)/X

c1(O(1)) = deg f.

We conclude by comparing (8.2) and (8.3).
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The case ki = 2 is analogously considered in [15, Prop. 3.9], and shows that the
corresponding diagram commutes up to a locally constant sign. Notice also that the
definition of the Whitney isomorphism there is actually modified from that of Elkik by
a locally constant sign. To this effect, see the end of the proof of Th. 3.6 & Rem. 3.7(2)
in [15]. In any case, the diagram commutes up to a locally constant sign, and we
conclude in this case.

In the case ki > 2, all the functors are canonically trivial by rank triviality. The
rank triviality is moreover constructed via the splitting principle, see in particular
Remark 5.42, to be compatible with the Whitney isomorphism for either filtrations
L ⊆ L⊕M or M ⊆ L⊕M , and hence coincide. One straightforwardly deduces that
λ = 1 in this case. □

8.2. Intersection bundles as line distributions. — The results of Section 7 together
with the previous subsection imply the following, which constitutes the main theorem
of this section:

Theorem 8.2. — The intersection bundles

P 7−→ ⟨P ⟩X/S

define line distributions of denominator 2 and degree n+ 1.

Towards the proof of the theorem, it will be handy to first show that the intersec-
tion bundles define functors on the free category Cn+1(X) constructed Section 5.1.2.
We record this fact in a separate lemma.

Lemma 8.3. — The following holds:
(1) The intersection bundles induce functors ⟨•⟩X/S : C

n+1(X)→ Pic(S).
(2) The elementary structural symmetry edge P · Q → Q · P induces, whenever

P = Q, multiplication by a sign.
(3) The other elementary structural edges induce a composition of associativity and

symmetry isomorphisms in Pic(S).

Proof. — On the level of objects, the functor is already defined as in Definition 7.3.
Since any morphism in Cn+1(X) is composed by edges, it is enough to define the
functor on those edges. Those edges are inductively composed of elementary edges
by the symbols + and ·, and we describe how to inductively define the isomorphism.
Since we naturally have ⟨P +Q⟩ ≃ ⟨P ⟩ ⊗ ⟨Q⟩, the isomorphism between intersection
bundles of an edge constructed from a sum of two edges is naturally defined. Suppose
now that we have an edge of the form ϕ · ψ, where ϕ : P → P ′ and ψ : Q → Q′ are
edges. If ϕ = ϕ1+ϕ2 is a sum of edges from P1 → P ′

1 and P2 → P ′
2, we have a natural

isomorphism ⟨P ·Q⟩ ≃ ⟨P1 ·Q⟩ ⊗ ⟨P2 ·Q⟩, and we define the isomorphism associated
to ϕ ·ψ in terms of ϕ1 ·ψ and ϕ2 ·ψ. Repeating this, we can reduce to the case when ϕ
is a product of elementary edges. We then likewise develop the morphism ψ, to the
effect that we can suppose it is a product of elementary edges.
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To complete the induction, we need to treat products ϕk1
· · · · · ϕkm

, with some
choice of parentheses we don’t specify, where ϕkj : Pj → Qj is an elementary edge in
degree kj ,

∑
kj = n+ 1. We do this by imposing

(8.4) ⟨ϕk1 · · · · · ϕkm⟩ = ⟨
→
idQ1 · · · · ·

→
idQm−1 · ϕkm⟩ ◦ · · · ◦ ⟨ϕk1 ·

→
idP2 · · · · ·

→
idPm⟩.

We are reduced to define the morphisms on the right hand side of (8.4). For simplicity,
we treat the morphism involving ϕk1 . For a Chern edge, we associate the correspond-
ing isomorphism constructed in Section 7. For an identity edge, we associate to it
the identity morphism. For an elementary multiplicative symmetry edge, we realize
the associated morphism as a tensor product of symmetry isomorphisms as in Lem-
ma 8.1(1). For the rest of elementary edges, the construction is straightforward. For
the sake of completeness, we discuss the case when ϕk1

is a distributivity edge between
objects P1 = A · (B +C) and Q1 = A ·B +A ·C. We unravel the construction of the
objects ⟨P1 · P2 · · · · · Pm⟩ and ⟨Q1 · P2 · · · · · Pm⟩ (with some choice of parentheses),
according to Definition 7.3. By MacLane’s coherence theorem, we then see that there
is a well-defined isomorphism of line bundles ⟨P1 · P2 · · · · · Pm⟩ → ⟨Q1 · P2 · · · · · Pm⟩,
composed of associativity and symmetry isomorphisms. We take this as the definition
of ⟨ϕk1 ·

→
idP2 · · · · ·

→
idPm⟩.

The second point of the lemma can be deduced from Lemma 8.1(1). The third point
is immediate from the construction, of which we detailed the case of a distributivity
isomorphism. □

Remark 8.4. — By the third point in the previous lemma, by MacLane’s coherence
theorem, we can treat the images of the structural edges as identities.

Proof of Theorem 8.2. — We begin by proving that the functor in Lemma 8.3 factors
through CHn+1

+ (X). For this, one verifies it is compatible with the various relations
introduced in Section 5.1.2 in the construction of CH+(X). The compatibilities are
formal to verify, except for:

(1) Verifying that a multiplicative symmetry P · Q → Q · P induces the identity
whenever P = Q. In other words, the induced automorphism of the intersection
bundles is 2-torsion, so that the line distribution is of denominator 2. This is the
content of Lemma 8.3(2).

(2) The compatibility with the conditions to the effect that E → c(E) is a sym-
metric functor. This is the content of Lemma 8.1(2).
By these remarks, and the construction, the functor CHn+1

+ (X)→ Pic(S) given by the
square of the intersection bundles is a symmetric monoidal functor, where CHn+1

+ (X)

is considered with the addition. Hence, it induces a functor of commutative Picard
categories CHn+1

u (X)→ Pic(S).
For the rest of the proof, by Proposition 5.31, we may suppose that all our base

schemes are quasi-compact. The above construction generalizes to provide, for any
open partition U of X, a functor CHn+1

u (U) → Pic(S). Since hence X is also quasi-
compact, U is necessarily finite. For the construction of the sought functor, write
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U = {Xi}, and Si = f(Xi). The Si constitute a finite open and closed cover of S, but
not necessarily a partition. Nevertheless, from it we can canonically construct an open
partition S = {S′

j}j , and then replace U by the common refinement U′ = U∩ f−1(S).
This allows us to reduce to the case when the Si form an open partition. In this case,
for an object P = (Pi)i in CHn+1

u (U) =
∏

i CH
n+1
u (Xi) we define a line bundle, locally

over each Si:
⟨P ⟩X/S |Si

=
⊗

f(Xj)=Si

⟨Pj⟩Xj/Si
.

The functor we seek is then given on objects by squaring. We declare morphisms
to behave accordingly. This construction is compatible with base change and with
refinements V of U. By the universal property of CHn+1(X) (cf. Proposition 5.16),
this procedure defines an entire line distribution of degree n + 1. It hence induces a
line distribution of degree n+ 1 and denominator 2. □

We next introduce some definitions and notations based on the line distribution
provided by the intersection bundles. Before, the reader may review Section 5.3 for
the basic notions on line distributions, and in particular the product operation by
Chern power series (cf. Definition 5.33) and the direct images (cf. Definition 5.34).

Definition 8.5. — Suppose that X → S satisfies the condition (Cn).
(1) The line distribution defined by the intersection bundles, referred to as the

intersection distribution, is denoted by ⟨•⟩X/S .
(2) If P is a Chern power series, we denote by [P ]X/S , or simply [P ], the line

distribution P · ⟨•⟩X/S .
(3) If i : Y → X is a closed subscheme, such that Y → S satisfies the condition

(Cm), we denote by δY/S the line distribution of degree m + 1 on X → S given by
i∗[1]Y/S .

(4) By convention, if Y → T satisfies the condition (Cm) and T ⊆ S is a closed and
open immersion of schemes, we equally denote by δY/S the line distribution which is
δY/T over T and trivial over S ∖ T .

(5) When S is implicit and there is no risk for confusion, we simply denote by δY
the line distribution δY/S .

For simplicity, we will call intersection distribution any line distribution built out
from intersection distributions, such as [P ]X/S or δY/S above.

Notice that, with the notation above, if d is a rational number, the line distribution
[d]X/S is identified with ⟨•⟩⊗d

X/S . In particular, [0]X/S is isomorphic to the trivial line
distribution. Abusing notations, we will sometimes denote the distributions [0]X/S

and [1]X/S by 0 and 1, respectively.
The intersection distribution satisfies some formal properties, which can be derived

straightforwardly from the properties of intersection bundles. For instance, given line
bundles L and M on X, the multilinearity of the Deligne products translates into an
isomorphism of line distributions

(8.5) [c1(L⊗M)]X/S ≃ [c1(L)]X/S + [c1(M)]X/S ,
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where we recall that we use additive instead of tensor product notation for line dis-
tributions.

In the rest of this section, we record some relevant features of the intersection
distributions, in analogy with the usual properties in intersection theory. The prop-
erties are rather direct applications of the formalism and the developed properties for
intersection bundles. The first statement recapitulates, within the formalism of line
distributions, the contents of Section 7.3.

Corollary 8.6. — With the notation and assumptions of Proposition 7.5, the inter-
section distributions satisfy the following properties:

(1) (Projection formulas) Let h : X ′ → X be as in Proposition 7.5(1), and take P in
CH(X)Q and P ′ in CH(X ′)Q. There are canonical isomorphisms of line distributions:

h∗[P
′]X′/S ≃


[
c1(⟨P ′⟩X′/X)

]
X/S

, if degP ′ = n′ + 1.

[κ]X/S , if degP ′ = n′.

0, if degP ′ < n′.

(2) (Whitney isomorphism) Let 0→ E′ → E → E′′ → 0 be a short exact sequence
of vector bundles on X. Then there is a canonical isomorphism

[ck(E)]X/S ≃
k∑

i=0

[ci(E
′) · ck−i(E

′′)]X/S ,

in a way compatible with admissible filtrations.
(3) (First Chern class isomorphism) Let E be a vector bundle on X. Then, there

is a canonical isomorphism

[c1(E)]X/S ≃ [c1(detE)]X/S

in a way that is compatible with the Whitney isomorphism.
(4) (Rank triviality) Let E be a vector bundle on X and q an integer such that

q > rkE. Then there is an isomorphism

[cq(E)]X/S ≃ 0.

(5) (Restriction isomorphism) Let E be a vector bundle of constant rank r on X.
Suppose that σ is a regular section of E, whose zero locus Y , possibly empty, is flat
over S. Then, there is a canonical isomorphism

[cr(E)]X/S ≃ δY/S ,

where i : Y ↪→ X is the closed immersion of Y in X.
(6) (Birational invariance) Suppose h : X ′ → X is as in Proposition 7.5(6). Then,

there is a canonical isomorphism

h∗δX′/S ≃ δX/S .

In particular, h∗[h∗P ]X′/S ≃ [P ]X/S.
By the definition P · [Q]X/S = [Q · P ]X/S these operations can be composed with each
other in a natural way. As such, all operations commute with each other.
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Proof. — The first part is a reformulation of the formal projection formula for line
distributions in (5.11), combined with the projection formula in Proposition 7.5. Simi-
larly, the last property is proved by instead appealing to Proposition 7.7(3). The other
properties are direct translations of the corresponding properties in Proposition 7.5.
The fact that these indeed induce isomorphisms of line distributions, which commute
with each other, follows from the results in Section 7.3 and a reasoning similar to the
proof of Theorem 8.2. □

Remark 8.7. — By construction, the isomorphism (8.5) can be obtained as a combi-
nation of the first Chern class isomorphism applied to E = L⊕M , and the Whitney
isomorphism for the obvious filtration L ⊆ L ⊕M . Consequently, the fact that the
isomorphism (8.5) commutes with all the other stated isomorphisms, is already con-
tained in the corollary.

Corollary 8.8. — Let p : M → P1
S verify the property (Cn) and consider the line

distributions δM0/S and δM∞/S of degree n+1 from M to S. Then, there is a canonical
isomorphism

δM0/S ≃ δM∞/S

of line distributions of degree n + 1 from M to S, which is compatible with the con-
structions in Corollary 8.6.

Proof. — On P1
S , consider the standard isomorphisms of line bundles O(∞) ≃ O(0).

Pulling these back to M , and using the isomorphism [c1(O(D))] ≃ δD provided by
Corollary 8.6(5), we obtain

δM∞/S ≃ [c1(p
∗O(∞))]M/S ≃ [c1(p

∗O(0))]M/S ≃ δM0/S .

By construction, it is compatible with the isomorphisms in Corollary 8.6. □

Corollary 8.9. — Let D =
∑
Di be a finite sum of relative effective Cartier divi-

sors Di on X. Suppose moreover that whenever i ̸= j, Di ∩Dj is a relative effective
Cartier divisor in Dj. Then, there is a canonical isomorphism

δD ≃
∑

δDi
,

which is compatible with the constructions in Corollary 8.6. The hypothesis that all Di

are relative effective Cartier divisors is, in particular, satisfied if D is a relative ef-
fective Cartier divisor and all but one of the Di are.

Proof. — Notice that, by [50, 0B8U], the sum is automatically a relative effective
Cartier divisor. The sought isomorphism of distributions follows from Corollary 8.6(6)
since

⊔
Di →

∑
Di satisfies the assumptions of Proposition 7.5(6). The compatibility

claim is automatic by the construction and the compatibility claim in Corollary 8.6.
The last point follows from [50, 0B8V]. □

We conclude this subsection with some further properties of the line distributions
defined by Chern classes.
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Proposition 8.10. — The first Chern class satisfies the following properties.
(1) Both E 7→ [c1(E)] and E 7→ [c1(detE)] are commutative multiplicative functors

from (VectX , iso) to the commutative Picard category D(X/S).
(2) The first Chern class isomorphism is a natural transformation of these multi-

plicative functors.
(3) The functors in the first point and the first Chern class isomorphism extend to

the virtual category of vector bundles.

Proof. — The third point is a formal consequence of the first two and the definition
of the virtual category. We address the first point. The functor E 7→ [c1(E)] is com-
mutative multiplicative, because it is the composition of c1, which is a commutative
multiplicative functor (cf. Remark 5.2(2)), and the intersection distribution.

In a similar vein, the functors E 7→ det(E) and L 7→ [c1(L)] are both multiplicative,
see (8.5) for the second one. Actually, the (ungraded) determinant functor is only
commutative up to sign, which is not seen on the level of line distributions, and hence
the composition [c1(detE)] is a commutative multiplicative functor.

To complete the proof, we need to show that the natural transformation of the
Chern class isomorphism preserve the multiplicative structures. Since the isomorphism
is constructed by the splitting principle, this is immediate. □

We next discuss the behavior of Chern classes with respect to the duality of vector
bundles.

Proposition 8.11. — Let E be a vector bundle on X. For any integer k ⩾ 0, there is
a canonical isomorphism of line distributions,

[ck(E
∨)]X/S ≃ (−1)k[ck(E)]X/S ,

which is compatible with the constructions in Corollary 8.6.

Proof. — By the same reductions as in the case of the other isomorphisms of line
distributions, the statement amounts to constructing an isomorphism, for any Chern
power series P, P ′ in CH+(X),

⟨P · ck(E∨) · P ′⟩X/S ≃ ⟨P · ck(E) · P ′⟩(−1)k

X/S ,

compatible with the Whitney isomorphism.
We suppose for simplicity that E has constant rank r. The general case readily

reduces to this. If k = 0 both Chern classes appearing are trivial and the isomorphism
is defined to be the one respecting this. If k > r, both sides are canonically trivial by
rank triviality in Proposition 7.5(4), and one thus again defines the isomorphism to
be the one respecting this. These are both compatible with the Whitney isomorphism
as the rank triviality isomorphism also does.

In general, by the splitting principle, we reduce to the case when E is a sum of line
bundles, E = L1⊕· · ·⊕Lr. Then we have canonically E∨ = L∨

1⊕· · ·⊕L∨
r . Applying the

Whitney isomorphism to the filtrations on E (resp. E∨) starting with L1 (resp. L∨
1 ),

and again applying rank triviality, one reduces to the case of E being a line bundle
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and k = 1. In this case, it follows from Lemma 7.2(3) which gives the multilinearity
in L of the term c1(L).

Since duals change the order in short exact sequences, the dual of the filtration
starting with L1 starts with L∨

r and not with L∨
1 . By Lemma 8.1(2) the difference

between the Whitney isomorphisms applied to the two filtration orders is ±1, which is
not seen on the level of intersection distributions. One concludes from the construction
that the isomorphism is compatible with the Whitney isomorphism.

The compatibility with the isomorphisms in Corollary 8.6 is automatic by con-
struction since we relied on the Whitney isomorphism and the rank triviality, which
are themselves compatible. □

We conclude with a result on the behavior of Chern classes under the twist of a
vector bundle by a line bundle.

Proposition 8.12. — Let E be a vector bundle on X of constant rank r ⩾ 1, and L

a line bundle. Then there is a canonical isomorphism of line distributions

(8.6) [ck(E ⊗ L)]X/S ≃
k∑

i=0

(
r − k + 1

i

)
[ck−i(E) · c1(L)i]X/S ,

which is compatible with the construction in Corollary 8.6. For the Whitney isomor-
phism with respect to exact sequences in E, one needs to take into account Vander-
monde’s binomial identity (

n+m

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
.

Proof. — First of all, if k > r, the right-hand side is identically zero, and we define
the isomorphism to be the one compatible with the rank triviality in Corollary 8.6(4).
For k = 0 the two sides are identical. For 1 ⩽ k ⩽ r, we perform an induction on
the rank of E. For E of rank 1 and k = 1, we define the isomorphism according to
[c1(E⊗L)]X/S ≃ [c1(E)]X/S+[c1(L)]X/S . For general rank r and k ⩽ r, by the splitting
principle in Corollary 5.44, it is enough to prove the statement when E is a sum of
line bundles. Developing this by the Whitney isomorphism and reordering according
to the binomial identity, and applying the induction hypothesis, one finds that the
two sides are canonically isomorphic. The compatibility claim holds automatically by
construction and Corollary 8.6. □

9. The Riemann–Roch distribution

The goal of this section is to construct and study the properties of the right-
hand side of the Grothendieck–Riemann–Roch theorem in the context of intersection
bundles and incarnate it in the form of a line distribution, which we refer to as the
Riemann–Roch distribution. For this, suppose first that we are given a local complete
intersection morphism f : X → Y of schemes satisfying the condition (Cn) and (Cm)
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over a base scheme S. In this setting, there is a cotangent complex(14) LX/Y , which
locally with respect to S is quasi-isomorphic to a complex of vector bundles of length
two, see [50, 08TJ] and [50, 0FV4]. The formalism of categorical characteristic classes
and line distributions in Section 5, and the results on intersection distributions in
Section 8 (in particular to Definition 5.25, Proposition 5.31, and Theorem 8.2), allow
us to associate with X → S, and every vector bundle E on X, a line distribution

(9.1) [ch(E) · td∗(LX/Y )]X/S ,

where we recall that td∗ is the multiplicative class obtained from td by changing the
sign in each degree k by (−1)k. In fact, since X is divisorial locally with respect to S,
we can suppose that E is a perfect complex, by Lemma 4.11 and Proposition 5.31.

Taking direct images of the line distribution (9.1) one obtains a line distribution

(9.2) f∗[ch(E) · td∗(LX/Y )]X/S

for Y → S. The construction is a functor in the variable E, which is multiplicative for
short exact sequences 0 → E′ → E → E′′ → 0. It does not, however, follow directly
from the definition that the categorical Chern character takes tensor products to
products of categorical Chern characters since ch does not define a functor of ring
categories, see Remark 5.26.

Below, we establish these and other natural properties with respect to the Todd
class for (9.1) and hence also (9.2).

9.1. Chern character. — Let f : X → S be a morphism satisfying the property
(Cn). In this subsection, we study in detail the line distributions induced by the
Chern categorical classes. That is, we consider the assignment

V (PX) −→ D(X/S)

E 7−→ [ch(E)]X/S ,

which is constructed as in the introduction of the current section. Because ch is an
additive categorical characteristic class, this functor has a natural structure of functor
of commutative Picard categories. Our aim is to describe the behavior of this functor
with respect to the tensor product operation on V (PX).

Proposition 9.1. — The functor E 7→ [ch(E)]X/S satisfies the following properties:
(1) For any virtual perfect complexes E,F , there is a canonical isomorphism of

line distributions

(9.3) [ch(E ⊗ F )]X/S ≃ [ch(E) · ch(F )]X/S .

Moreover:
(a) It defines an isomorphism of bimonoidal functors

V (PX)× V (PX) −→ D(X/S).

(14)Referred to as the naive cotangent complex in [50, 08P5].
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(b) For virtual perfect complexes E,F,G, the isomorphism (9.3) is compatible
with the natural associativity isomorphism (E⊗F )⊗G→ E⊗ (F ⊗G), and the
associativity of the product in the Chern categories.

(2) (a) There is a canonical isomorphism

(9.4) [ch(OX)]X/S ≃ 1.

(b) The natural isomorphism E → E ⊗ OX induces, together with (9.3) and
(9.4), an isomorphism of monoidal functors V (PX)→ D(X/S),

(9.5) [ch(E)]X/S −→ [ch(E ⊗ OX)]X/S −→ [ch(E) · ch(OX)]X/S −→ [ch(E)]X/S .

This is the identity natural transformation of functors in E.

Proof. — For (1), the statement is local on S and we can suppose that X and S are
divisorial. In this case, applying Lemma 4.11 and the universal property of virtual
categories, we can even assume E and F are vector bundles. By the splitting principles,
we may suppose that E and F admit filtrations with line bundle quotients and that
all the filtrations are split. Since the categorical characteristic class ch is additive, see
Remark 5.26, we are reduced to consider a product of two line bundles L,L′. Notice
that because we are working with line bundles with rational coefficients, and because
of Lemma 8.1, this is independent of the order we develop the product.

By rank triviality, a distribution of the form [ch(L)] is canonically isomorphic to
the distribution [exp(c1(L))]. This is independent of the order in which one applies
the isomorphism [ck(L)] ≃ 0 for k ⩾ 2, as can be deduced from the compatibility
of the operations stated in Corollary 8.6. Hence, in the case of rank one bundles,
the natural isomorphism is constructed by developing exp(c1(L ⊗ L′)) in a power
series and applying the isomorphism of the type (8.5). This corresponds to the formal
identity exp(x + y) = exp(x) exp(y) by formal manipulations. The stated properties
follow from the construction.

The first part of (2) follows from the isomorphism [ch(OX)] ≃ [exp(c1(OX))], and
the canonical triviality of the intersection bundles where a term of the form c1(OX)

appears, see Lemma 7.2(3). This is again independent of the order in which we apply
the isomorphisms [c1(OX)] ≃ 0 in the expression for [exp(c1(OX))], as can also be
concluded from the corresponding properties of Deligne pairings.

The second part of the second point, by the construction of (9.3), reduces to the
case when E is simply a line bundle. One then unravels the definitions, and reduces
to show that the following analogous composition of morphisms is the identity:

⟨L0, L1, . . . , Ln⟩ −→ ⟨L0 ⊗ OX , L1, . . . , Ln⟩
−→ ⟨L0, L1, . . . , Ln⟩ ⊗ ⟨OX , L1, . . . , Ln⟩ −→ ⟨L0, L1, . . . , Ln⟩.

This can be verified at the level of symbols. □

9.2. Todd class of the cotangent complex. — In this subsection, we discuss in more
detail the properties of the Todd class of the tangent complex discussed at the begin-
ning of this section.
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Let f : X → Y be a local complete intersection morphism of schemes. As recalled
at the beginning of this section, the cotangent complex for f is a perfect complex
on X, of Tor-amplitude contained in [−1, 0], LX/Y . Suppose now we are moreover
given a morphism X → S satisfying the condition (Cn). Then, there is an associated
distribution [td∗(LX/Y )]X/S .

Given a factorization σ of f , written as X → Q→ Y , where i : X → Q is a Koszul-
regular closed immersion and p : Q→ Y is a smooth morphism, there is an associated
complex

(9.6) LX/Y,σ = [N∨
X/Q −→ i∗ΩQ/Y ].

Here, the conormal bundle is placed in degree −1. There is a canonical isomorphism
LX/Y,σ ≃ LX/Y in the derived category [50, 0FV4]. From this, we conclude the
following lemma:

Lemma 9.2. — Let X → S and f : X → Y be as above.
(1) Given σ a factorization X → Q→ Y of f , there is a canonical isomorphism

[td∗(LX/Y )]X/S −→ [td∗(LX/Y,σ)]X/S −→ [td∗(i∗ΩQ/Y ) · td∗(N∨
X/Q)

−1]X/S

of line distributions for X → S.
(2) Suppose Y and Z are schemes with morphisms to S satisfying the condi-

tions (Cm) and (Cℓ). Suppose we are given a local complete intersection morphism
g : Y → Z. Then there is a canonical isomorphism of line distributions:

[td∗(LX/Z)]X/S −→ [td∗(LX/Y ) · td∗(f∗LY/Z)]X/S .

Proof. — From the canonical isomorphism LX/Y ≃ LX/Y,σ in the derived category
[50, 08TJ], combined with Proposition 4.6 and Corollary 5.27, we infer a canonical iso-
morphism td∗(LX/Y ) ≃ td∗(LX/Y,σ) in CH(X)Q. This entails the first claim, by taking
the associated distributions.

If σ′ is another factorization, there is hence an isomorphism in the derived category
LX/Y,σ → LX/Y,σ′ . Indeed, suppose first that the factorization σ dominates σ′. Then,
pullback functoriality induces a quasi-isomorphism of complexes LX/Y,σ′ → LX/Y,σ,
see [31, Exp. VIII, proof of Prop. 2.2]. As in loc. cit., the general such isomorphism is
constructed by dominating σ and σ′ respectively by the diagonal factorization σ×σ′.
This description will be useful later in this proof.

For the second point, first of all we notice that, while there is a distinguished
triangle

Lf∗LY/Z −→ LX/Z −→ LX/Y −→ Lf∗LY/Z [1],

it does not automatically imply the statement since the virtual categories are a priori
only additive with respect to true triangles.

The question is local and we suppose that S is affine and all the schemes are
projective over S. It follows that all the morphisms admit global factorizations as a
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regular closed immersion followed by a smooth morphism. Suppose we fix factoriza-
tions τ : X → Q′ → Z and τ ′′ : Y → Q→ Z. We consider the natural diagram

X //

##

Y ×Z Q
′

��

// Q×Z Q
′

��

Y

&&

// Q

��

Z,

where the square is Cartesian and we notice that the top horizontal arrows are regular
immersions. The outer triangle provides another factorization of X → Z, which we
denote by τ̃ . The lower right triangle factorization is τ ′′, and we denote the upper left
by τ̃ ′. By the proof of [31, Exp. VIII, Prop. 2.6], there is an associated exact sequence
of the associated complexes, defined as in (9.6):

(9.7) 0 −→ g∗LY/Z,τ ′′ −→ LX/Z,τ̃ −→ LX/Y,τ̃ ′ −→ 0.

By the multiplicativity of td∗ for short exact sequences of complexes of vector bundles,
we derive an isomorphism as in the second point, possibly depending on the factor-
izations. We denote it by Φτ,τ ′′ . Suppose we are given a second set of factorizations
µ, µ′′. If the second set of factorizations dominates the first one, as explained above
there are induced maps of the corresponding cotangent complexes, which fit into ac-
tual morphisms of corresponding exact sequences of complexes (9.7). We deduce that
Φτ,τ ′′ = Φµ,µ′′ . In general, two sets of factorizations can be dominated by a third one,
via a diagonal argument. □

9.3. The Borel–Serre isomorphism. — The classical Borel–Serre identity [7, Lem. 18]
expresses the Chern character of a Koszul-type complex in terms of the Todd class.
As such, it plays an essential role in the Grothendieck–Riemann–Roch theorem for
closed immersions. In this subsection, we establish the corresponding distributional
version and provide natural compatibilities with other operations.

Let now E be a vector bundle E of constant rank r on X. Consider the virtual
vector bundle

(9.8) λ−1(E) =

r∑
p=0

(−1)p[ΛpE]

in V (X). Notice that if σ is a section of E, the Koszul complex thereof is

(9.9) K(σ) =
[
ΛrE∨ −→ Λr−1E∨ −→ . . . −→ E∨ −→ OX

]
,

where the term ΛkE is placed in degree −k. Hence, λ−1(E
∨) is isomorphic to K(σ)

in V (X). In particular, if K(σ) is acyclic, this provides a trivialization of λ−1(E
∨).

Lemma 9.3. — Let f : X → S be a morphism satisfying the condition (Cn). Suppose
that 0 → E′ → E → E′′ → 0 is a short exact sequence of vector bundles of constant
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ranks on X. Then there is a canonical isomorphism

[ch(λ−1(E))]X/S ≃ [ch(λ−1(E
′)) · ch(λ−1(E

′′))]X/S

of line distributions. It is:
(1) Natural with respect to isomorphisms of short exact sequences.
(2) Compatible with admissible filtrations.

Proof. — First of all, on ΛkE there is a standard natural filtration

F iΛkE = Im(Λi(E′)⊗ Λk−i(E) −→ Λk(E))

whose successive quotients are given by

(9.10) F iΛkE/F i+1ΛkE ≃ Λi(E′)⊗ Λk−i(E′′).

We deduce a canonical isomorphism in the virtual category

(9.11) [Λk(E)] ≃
k∑

i=0

[
Λi(E′)⊗ Λk−i(E′′)

]
.

The construction is clearly functorial with respect to isomorphisms of short exact
sequences.

From the definition (9.8) and (9.11), a formal computation provides an isomorphism
in the virtual category

(9.12) λ−1(E) ≃ λ−1(E
′)⊗ λ−1(E

′′).

This depends on the choice of an isomorphism of the type (−A)⊗(−B) ≃ A⊗B. The
dependence is only up to sign (2.4), by [10, §4.11 (b)]. Therefore, by Remark 2.5(1),
the isomorphism induced by (9.12) in V (X)Q is well-defined.

The existence of the canonical isomorphism follows by applying the Chern character
to this isomorphism, and using the tensor product multiplicativity of the associated
line distributions (9.3) in Proposition 9.1(1).

This construction is clearly base change functorial and functorial for isomorphisms
of short exact sequences. The rest of the statement follows from general properties
of the filtration (9.10) with respect to admissible filtrations of E, again relying on
Proposition 9.1(1), which ensures the compatibility of (9.3) with admissible filtrations.

□

Remark 9.4. — Notice that, despite the relationship (9.12), the construction of λ−1

does not extend to the virtual category since the objects λ−1(E) are not invertible
with respect to the tensor product.

Theorem 9.5 (Borel–Serre isomorphism). — Let E be a vector bundle of constant rank
r on X. Then, there is a canonical isomorphism of line distributions

(9.13) [ch(λ−1(E))]X/S ≃ [cr(E
∨) · td(E∨)−1]X/S ,

which satisfies:
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(1) It is compatible with short exact sequences 0 → E′ → E → E′′ → 0 of vec-
tor bundles of constant ranks r′, r, r′′, respectively, in the sense that the diagram of
isomorphisms

[ch(λ−1(E))]X/S
//

��

[ch(λ−1(E
′))·ch(λ−1(E

′′))]X/S

��

[cr(E
∨) · td(E∨)−1]X/S

// [cr′((E
′)∨) · td((E′)∨)−1 · cr′′((E′′)∨) · td((E′′)∨)−1]X/S

commutes. Here, the vertical arrows are those of (9.13). The upper horizontal isomor-
phism is that of Lemma 9.3. Finally, the lower horizontal isomorphism is obtained by
combining the Whitney isomorphism and the rank triviality in Corollary 8.6, and the
multiplicativity for the Todd categorical class.

(2) The isomorphism is compatible with admissible filtrations.
(3) If σ is a regular everywhere non-vanishing section of E∨, both sides of (9.13)

are canonically trivial, and the two trivializations correspond to each other. Here, the
left-hand side is trivialized by the acyclicity of the associated Koszul complex K(σ),
see (9.9), and the right-hand side is trivialized by Corollary 8.6(5).

Proof. — We construct the isomorphism by induction on the rank of E, which is con-
stant by assumption. If E has rank one, given the rank triviality property in Propo-
sition 7.5(4), the isomorphism is a simple rewriting of Chern power series combined
with the isomorphism 8.11 for duals of vector bundles.

Assume now that the isomorphism is constructed for vector bundles of rank up
to r − 1, and E is of rank r. By the splitting principle in Proposition 5.41, we can
suppose that E admits a complete flag, of which the first line bundle sits in a sequence
0 → L → E → Q → 0, where Q also admits a complete flag. We then define the
isomorphism by the commutativity of the diagram
(9.14)

⟨P · ch(λ−1(E)) · P ′⟩ //

��

⟨P · cr(E∨) · td(E∨)−1 · P ′⟩

��

⟨P ·ch(λ−1(L))·ch(λ−1(Q))·P ′⟩ // ⟨P ·c1(L∨)·td(L∨)−1 ·cr−1(Q
∨)·td(Q∨)−1 ·P ′⟩.

Here, the left vertical isomorphism is provided by Lemma 9.3, and the lower horizontal
isomorphism is given by the induction hypothesis. The right vertical isomorphism is
obtained by combining the Whitney isomorphism with the rank triviality, together
with the multiplicativity of the Todd class. This proves the first two statements.

The third statement is less immediate since the two trivializations are constructed
in a priori completely different ways. We prove it by induction on the rank of E. If E
is a line bundle, it is trivialized by σ∨ and we can suppose E = OX . In this case,
we recall from Proposition 9.1(2a) that there is a canonical isomorphism [ch(OX)] ≃ 1.
It relies on the triviality [ck(OX)] ≃ 0 for k ⩾ 1, which can be applied in any order in
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the construction of the isomorphism. Now, consider the diagram of isomorphisms
[ch(OX)− ch(OX)] //

��

1− [ch(OX)]

��

// [c1(OX) · td(OX)−1]

��

0 // 1− 1 // [0 · 1] = 0.

The upper horizontal isomorphism is the Borel–Serre isomorphism for the trivial bun-
dle, where we have identified O∨

X to OX . The vertical isomorphisms are the canonical
trivializations. The statement that the outer contour commutes corresponds to the
desired compatibility of the trivializations in the rank one case. We first remark that
the leftmost square commutes for formal reasons. The rightmost square commutes
too. Indeed, by construction, the upper right horizontal morphism is obtained by the
rank triviality [ck(OX)] = 0 for k ⩾ 2 and then rewriting 1− [exp(c1(OX))], and both
vertical isomorphisms are defined in terms of the same rank triviality together with
[c1(OX)] ≃ 0.

In the general case, σ corresponds to an exact sequence 0→ OX → E∨ → F∨ → 0

of vector bundles of constant rank. Consider the below diagram:

(9.15)

[ch(λ−1(E))] //

��

++

[cr(E
∨) · td(E∨)−1]

��

rr

[ch(λ−1(OX)) · ch(λ−1(F ))] //

��

[c1(OX) · td(OX)−1 · cr−1(F
∨) · td(F∨)−1]

��

0
= // 0.

Here, the two upper horizontal morphisms are the Borel–Serre isomorphisms, again
identifying O∨

X ≃ OX . The upper vertical morphisms are the morphisms corresponding
to the exact sequence 0 → OX → E∨ → F∨ → 0 and the vertical morphisms
in (9.14). The lower vertical isomorphisms are the canonical trivializations induced
by [ch(λ−1(OX))] ≃ 0 and [c1(OX)] ≃ 0. The curved downwards isomorphisms are
the trivializations in the third point of the theorem, and the statement reduces to
the assertion that the diagram of the outer contour commutes. The upper middle
square commutes by construction, and the lower middle square commutes because of
the above treated case. We are left to show that the leftmost and rightmost triangles
commute. The rightmost triangle commutes by Proposition 7.12. Below, we address
the leftmost triangle.

First, we notice that the construction of the isomorphism (9.12) for the exact
sequence 0→ F → E → OX → 0 relies on the induced exact sequences
(9.16) 0 −→ ΛkF −→ ΛkE −→ Λk−1F −→ 0,

where it can be verified that the first map is the inclusion and the second is naturally
isomorphic to the image of the Koszul differential d−k : Λ

kE → Λk−1E. Now, the
trivialization of the virtual class of the Koszul complex is obtained by the isomorphism

[K(σ)] ≃
∑
k

(−1)k ([ker dk] + [Im dk])

and the equality Im dk = ker dk−1. The latter are described in (9.16), which also
provides the isomorphism in the virtual category λ−1(E) ≃ λ−1(OX)⊗ λ−1(F ). The
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identification of the kernels and the cokernels corresponds to the obvious triviality
λ−1(OX) ≃ 0. It follows that under the isomorphism λ−1(E) ≃ λ−1(OX)⊗λ−1(F ) in
(9.12), the trivialization of λ−1(E) coming from the Koszul complex corresponds to
the trivialization λ−1(OX) ≃ 0.

Since the functor [ch(E⊗F )] is bimonoidal in E and F by Lemma 9.3, we conclude
that the two trivializations of

[ch(λ−1(E))] ≃ [ch(λ−1(OX)⊗ λ−1(F ))] ≃ [ch(λ−1(OX)) · ch(λ−1(F ))]

appearing in the left triangle of (9.15) correspond to each other. This concludes the
proof. □

As an application, we find the following primitive version of the Deligne–Riemann–
Roch isomorphism, for regular closed immersions defined by the zeros of a given
section of a vector bundle.

Corollary 9.6. — Let X → S be a morphism satisfying the condition (Cn) and E a
vector bundle of constant rank r on X. Suppose that σ is a regular section of E, whose
zero locus Y , possibly empty, is flat over S. Then there is a canonical isomorphism,
a priori depending on σ,

[ch(i! OY )]X/S −→ i∗[td(NX/Y )
−1]Y/S

of line distributions. If Y is empty, then both sides are canonically trivial, and the
isomorphism identifies with the identity isomorphism.

Proof. — This is a rewriting of the Borel–Serre isomorphism (9.13) in Theorem 9.5,
replacing E by E∨. Indeed, on the one hand, the Koszul complex K(σ) provides a
resolution of i∗OY , so that i! OY ≃ K(σ) in V (X). Recalling the definition of the
Koszul resolution in (9.9), we see that [ch(λ−1(E

∨))]X/S ≃ [ch(i! OY )]X/S . On the
other hand, since σ is a regular section, by the restriction property in Corollary 8.6(5)
there is an isomorphism [cr(E)]X/S ≃ δY/S , and it is standard that E|Z ≃ NX/Z . We
deduce [cr(E) · td(E)−1]X/S ≃ i∗[td(NX/Y )

−1]Y/S .
Notice that the above proof works independently of if Y is empty or not. □

Corollary 9.7. — Under the assumptions of Corollary 9.6, suppose moreover that
there exists a retraction p : X → Y . Then, for any virtual perfect complex F on Y ,
there exists an isomorphism of line distributions

[ch(i! F )]X/S −→ i∗[ch(F ) · td(NX/Y )
−1]Y/S ,

which is functorial in F . That is, it defines an isomorphism V (PY ) → D(X/S) of
functors of commutative Picard categories.

Proof. — Suppose we multiply the isomorphism in Corollary 9.6 by the class ch(p∗F ).
By Proposition 9.1(1) and Proposition 4.12(2), the left-hand side is isomorphic to

[ch(p∗F ⊗ i! OX)]X/S ≃ [ch(i! i
∗p∗F )]X/S ≃ [ch(i! F )]X/S .

On the other hand, by the projection formula for line distributions (5.11), we have
similarly that the right-hand side is isomorphic to

i∗[ch(i
∗p∗F ) · td(NX/Y )

−1]Y/S ≃ i∗[ch(F ) · td(NX/Y )
−1]Y/S .
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The functoriality claim is automatic, by the pullback functoriality of the Chern cate-
gories and the virtual categories, together with Proposition 9.1(1a). □

9.4. Formulation of Deligne–Riemann–Roch. — In this subsection, we propose a
formulation, in the framework of line distributions, of the existence of a functorial
Riemann–Roch isomorphism. It contains, as a special case, the conjectured functorial
form of the Riemann–Roch theorem in the program by Deligne in [10]. For simplicity,
we work in the category of divisorial schemes.

Let X → S and Y → S be morphisms satisfying the conditions (Cn) and (Cm),
and f : X → Y be a local complete intersection morphism of S-schemes. Let E be a
virtual perfect complex on X. Recall, from the introduction of this section, the line
distribution f∗[ch(E)·td∗(LX/Y )]X/S . As for any line distribution, it is defined over any
S-scheme, say u : S′ → S. Hence, it makes sense to compare it with the distribution
obtained from the base changed morphism f ′ : X ′ → Y ′. We will implicitly identify
these distributions over S′. For this comparison to make sense, it is enough to notice
that the morphisms Y ′ → Y and X → Y are Tor-independent, as is readily verified
from the fact that X → S and Y → S are flat, so that there is a canonical isomorphism
u∗LX/Y ≃ LX′/Y ′ .

In a similar vein, we will consider the line distribution [ch(f! E)]Y/S which, to every
u : S′ → S and every object P of CH(Y ′)Q, associates

[ch(f! E)]Y ′/S′(P ′) = ⟨ch(f ′!u∗E) · P ′⟩Y ′/S′ .

This indeed defines a line distribution, since by Proposition 4.12(3) there is a natural
identification in the virtual category f ′! (u∗E) ≃ u∗(f! E).

Notice that these constructions give rise to functors V (PX)→ D(Y/S) of commu-
tative Picard categories. With this in mind, we provide the following definition:

Definition 9.8. — A Deligne–Riemann–Roch isomorphism for f is an isomorphism
(9.17) Rf (E) : [ch(f! E)]Y/S −→ f∗[ch(E) · td∗(LX/Y )]X/S

of line distributions. Considering both sides of the isomorphism (9.17) as functors
of commutative Picard categories V (PX) → D(Y/S), the assignment E 7→ Rf (E) is
further required to be an isomorphism of such functors.

We notice that for a given Chern power series P and vector bundle E, at least
when S is divisorial and f : X → S and g : Y → S are globally projective, there is
an identity of Chern classes

g∗ (ch(f! [E]) · [P ]) = g∗
(
f∗(ch([E]) · td∗(LX/Y )) · [P ]

)
.

Here, [P ] is the class in the Chow ring of P and [E] is the class in K0(X) of E.
This follows from the classical Grothendieck–Riemann–Roch theorem for X → Y in
[31, Exp. VIII], together with the Chern class computation of intersection bundles in
Proposition 7.1. Taking the codimension one part, this shows that there is always an
isomorphism of the Q-line bundles underlying a Deligne–Riemann–Roch isomorphism
as in (9.17).

Conjecture. — There is a canonical Deligne–Riemann–Roch isomorphism.
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Ideally, one expects a natural such isomorphism to satisfy further compatibilities:
– Multiplying both sides of (9.17) with an object ch(F ) for a virtual perfect com-

plex F on Y , one can transform both sides according to the projection formulas in
Proposition 4.12(2) and (5.11). One expects the isomorphism Rf to interchange these
projection formulas.

– Compatibility with compositions X → Y → Z of schemes over S.
– Compatibility with the Corollary 9.6 and Corollary 9.7.

The above list is not exhaustive, in that we expect to need more properties in order
to characterize Rf .

Corollary 9.9. — Let f : X → S be a local complete intersection morphism satisfying
the condition (Cn). If there exists a Deligne–Riemann–Roch isomorphism for f , then
there is a functorial isomorphism

(9.18) λf (E) ≃ ⟨ch(E) · td∗(LX/S)⟩X/S .

In particular, it is functorial in E and compatible with base change.

Proof. — First, we evaluate the isomorphism of line distributions for the Chern power
series P = 1. This immediately provides the right-hand side of the isomorphism (9.18).
The left-hand side is given by ⟨ch(f! E)⟩S/S = ⟨c1(f! E)⟩S/S . By the first Chern class
isomorphism, see also Proposition 8.10, the latter is isomorphic to ⟨c1(det f! E)⟩S/S ,
which in turn is the line bundle λf (E). □
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