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Abstract

The functioning of cells critically depends on the dynamics of biomolecular
systems, such as proteins or nucleic acids. Biophysical experiments as well as
Molecular Dynamics (MD) simulations are the primary techniques to model
and understand the kinetics and thermodynamics of biomolecules. Despite
their shared focus on molecular dynamics, their results often yield differing
conclusions due to computational or observational limitations. Combining the
two approaches in multi-modal models leads to a more accurate kinetic and
thermodynamic understanding of the systems by compensating for their respect-
ive weaknesses. However, this integration presents its own set of challenges due
to the differences in resolution and timescales between experimental data and
MD simulations. In this thesis, we explore the reconciliation of simulation data
with experimental evidence as well as the potential of machine learning (ML) to
alleviate some of MD’s fundamental problems. By incorporating experimental
constraints, we demonstrate how integrative kinetic models are more accurate
with respect to the “true” ensemble while retaining atomic-level detail. Addi-
tionally, we discuss ML’s evolving role in the analysis of MD simulation and
its potential as an independent method for sampling molecular conformations.
The work concludes by highlighting current limitations and future directions for
these integrative approaches and proposes potential remedies for ML models to
achieve enhanced accuracy and generalizability across different chemical spaces,
physical conditions, and timescales. These approaches offer the potential to
provide deeper insights into the complex dynamics of biomolecules, which
has profound implications for drug design and our understanding biological
processes.
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Chapter 1

Introduction

In his eloquent reflection on the natural world, Carl Sagan once remarked,
“The beauty of a living thing is not the atoms that go into it, but the way those
atoms are put together” [1]. This statement rings especially true in the context
of large biomolecules, like proteins or nucleic acids, which are comprised of
thousands of atoms. Expanding upon Sagan’s thought, I would add that the
beauty of life is not just about the mere assembly of these atoms. It is the
dynamic interactions they engage in that constitutes the very essence of life.
Thanks to the dynamics of biomolecules, proteins are able to break down food
into its fundamental components; cells can signal when to divide and when not
to; and our bodies are able to fight off pathogens in order not to get sick.

The field of biomolecular dynamics is inherently interdisciplinary in its
attempt to break down, model, and understand the mechanisms that determine
the behavior of macromolecules. This interdisciplinarity is also needed to fully
capture the complexity of these systems. In this thesis, we will focus on a
small part in this big endeavor. We will look at how to model biomolecular
dynamics from a theoretical perspective in a way that allows us to understand
the fundamental problems we need to address in order to solve them. We
will also look at computational approaches that have been developed to tackle
some of these problems, those include Molecular Dynamics (MD) simulation in
conjunction with and orthogonal to Machine Learning (ML). Finally, we will
consider experimental approaches and especially how the knowledge we gain
from experiments can be integrated into computational models.

MD simulations have been developed starting in the early 1950s but the
earliest models were severely limited by the computational capacities [2]. It
was only in the 1970s that Andrew McCammon, Bruce Gelin, and Martin
Karplus developed to study biomolecules [3–5]. Thanks to increasingly better
software and hardware, simulations could attain longer timescales, but were
still limited to picoseconds [3]. With the rise of specialized software and Force
Fields (FF), the method gained a lot of traction to study systems at even
longer timescales and bigger systems. With the advent of High-Performance
Clusters (HPC) and supercomputers specifically designed for MD [6], several
simulations with a trajectory length of tens to hundreds of microseconds are

3



4 CHAPTER 1. INTRODUCTION

attainable for standard biomolecules [6].

In the past 15 years, machine learning has emerged as a powerful tool to
mitigate some of the problems we face in MD (Section 2.3). Through generative
modeling, we have begun to develop independent methods that structurally do
not depend on MD simulations [7, 8], although they are still trained using MD
data.

Nevertheless, even with the integration of ML into MD and the development
of generative models in machine learning, there is a discrepancy between the
timescales we are typically interested in for biomolecular systems and the
timescales attainable by simulations [9]. Also, as we will see in Section 2.1,
modeling the energy function U(x) for a system in a configuration x turns out
to be a hard problem, leading to further discrepancies between experimental
observations and the predictions from simulations.

Naturally, it makes sense to combine the two sources of information to
improve our models. However, this is also not straight-forward and requires
developing many new techniques based on the existing ones. Hence, we discuss
and propose ways how experimental observables can be integrated into models
derived from simulation data (Section 2.4).

After a summary of my contributions in the field, that is, the development of
dynamic Augmented Markov Models – a tool to integrate dynamic experimental
data into kinetic models estimated using simulation statistics [10] – as well as
a book chapter on “Machine Learning in Molecular Dynamics Simulations of
Biomolecular Systems” [11], we will then draw some conclusions and propose
future directions (Section 4), where I discuss the most urgent questions in the
field at the moment, propose remedies and solutions, and give an outline on
what I will be focusing on for the next phase in my PhD.



Chapter 2

Background

2.1 MD Simulations and Experiments: Differ-
ent Perspectives on the Same Problem

Molecular dynamics simulations and certain biophysical experiments share
a common objective: to unravel the dynamics of proteins or nucleic acids.
Dynamics encompass the multitude of ways in which these physical systems
move, interact, and transition between different states. In order to illustrate
what we mean when we talk about dynamics, we shall have a look at Figure
2.1. It shows a 1D energy potential as a function of the state space. There
are several energy minima separated by high-energy barriers. The height of
these barriers determines the probability/rate at which transitions between the
energy minima occur (described by kinetics). The depth of the minima reflects
the relative stability of the different conformations. A lower minimum means
that it is more stable and therefore more populated at equilibrium (described
by thermodynamics). Naturally, the energy landscape of biomolecules is much
more complicated and much more high dimensional. However, the concept of
dynamics stays the same. There are two main approaches with which we can
investigate the dynamics of biomolecular systems. The first approach is to
simulate the system’s dynamics computationally by calculating and propagating
the forces acting on each atom over a period of time [12]. The second one
entails conducting physical experiments to investigate the interactions between
different parts of the molecule, gathering data that reflect the dynamics of the
“true” molecular ensemble. While both approaches study the same dynamical
system, the conclusions we draw from the analysis of the experiments and
simulations often differ substantially [13]. In this chapter, I will discuss how
these approaches offer insights at varying levels of detail, timescales, and
accuracy. I aim to demonstrate that both simulations and experiments, while
providing different perspectives, are equally crucial and complementary in
enhancing our understanding of molecular dynamics.

5



6 CHAPTER 2. BACKGROUND

2.1.1 MD Simulations

Molecular Dynamics simulations are the principal method for studying the be-
havior of molecules at atomic resolution [4, 14–16]. The movement of molecules
is governed by physical laws, typically approximated using Newton’s equations
of motion in MD simulations. MD integrators (e.g., Verlet or Langevin) nu-
merically approximate these equations over discrete time steps to simulate the
trajectory of molecules. These integration steps are on the femtosecond (i.e.,
10−15 s) timescale. A key aspect of simulating the (long-timescale) behavior
of molecules is modeling its energy landscape. In MD, the potential energy of
the system U(x) is calculated for every atom in the molecule using empirically
parameterized force fields F(x). These force fields move the atoms towards the
negative gradient of the energy, effectively guiding them to thermodynamically
stable configurations. The simulation is set up in a way that it samples from
the Boltzmann distribution as τ goes to infinity:

p(x) ∝ exp

(
−U(x)

kBT

)
. (2.1)

To understand why, we first have to consider the dynamics of a single
particle. Its behavior is modeled using Langevin dynamics that are based on
Newton’s laws of motion in classical simulations. The Langevin equation [17]
describes the deterministic and stochastic forces acting on the particle:

m
∂2x

∂t2
= −∇U(x)︸ ︷︷ ︸

deterministic term

+ friction term + stochastic term (2.2)

= F(x), (2.3)

where m is the molecule’s mass and x its configuration. The term m∂2x
∂t2

represents the momentum of the molecule, reflecting the change in velocity of
the molecule over time. The Langevin equation can be recast to describe the
temporal evolution of the probability density function for the position of the
molecule, denoted as pτ (xt+τ |xt). This reformulation particularly important
when modeling an ensemble of infinitely many non-interacting copies of the
same system. The so-called Fokker-Planck equation [18, 19] has the form:

∂tpτ (xt+τ |xt) = ∇ · [−pτ (xt+τ |xt)β∇U(x) +∇pτ (xt+τ |xt)] (2.4)

= ∇ · [pτ (xt+τ |xt)βF(x) +∇pτ (xt+τ |xt)], (2.5)

where β = (kBT )
−1 is the Boltzmann factor. In this formulation, the first

term represents the drift (deterministic part), and the second term represents
the diffusion (stochastic part). As we will examine in Section 2.3.2, if a
dynamical system is governed by the Fokker-Planck equation, the evolution of
the probability density can be described using the transfer operator formalism.
At equilibrium, when the time derivative ∂t approaches zero, the Fokker-Planck
equation yields the stationary solution, which corresponds to the Boltzmann
distribution:
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lim
τ→∞

pτ (xt+τ |xt) = π(x) ∝ exp

(
−U(x)

kBT

)
, (2.6)

This implies that, theoretically, running the simulation for an infinite
amount of time would result in sampling the stationary distribution π(x) of the
system. The probability of observing the system in a particular configuration
x is proportional to the exponential of the negative energy U(x) at a given
temperature T . This reflects the thermodynamic propensity of molecular
systems to occupy lower energy states.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
(x

)

Prinz Potential

Figure 2.1: Example of a one-dimensional energy landscape using the Prinz
potential [20]. The plot illustrates a series of energy minima and high-energy
barriers separating them.

In practice, running a simulation until the system reaches equilibrium is
computationally infeasible to do so for even small systems – much less for
most proteins or nucleic acids, even for state-of-the-art special-purpose high-
performance computing clusters [6]. Classical force fields, such as CHARMM
[21] and AMBER [22] typically include intra- and intermolecular interaction
terms to model the forces acting upon the atoms. Those terms include, among
others, long-range electrostatic forces such as Coulomb energy and van der
Waals forces, and harmonic elements like bonds, angles, and torsions. In
order to access the timescales required to study most biological processes,
these force fields are so-called classical approximations, as they do not rely on
Density Functional Theory (DFT) calculations [23]. Finite simulation lengths
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and the approximations of empirically parameterized force fields have several
implications for studying the long-timescale behavior of macromolecules:

1. Many, if not most, biological processes of interest occur on the micro- to
millisecond (10−6−10−3 s) timescale, some – like drug–target dissociations
– take seconds, minutes or hours (100 − 104 s) [24], while the integration
steps between MD frames are on the femtosecond (10−15 s) timescale.
Due to the inherent computational limitations, simulating such processes
may take years to simulate.

2. The number of pairwise (non-bonded) interactions scales quadratically
with the number of atoms, thus rendering the study of large molecules or
ensembles computationally demanding.

3. The conformational landscape of biomolecules can be frustrated, making
the full exploration of state space nearly impossible. If the simulations
are not long enough or if we are simply unlucky (due to the stochastic
part of the MD integrator), we may not sample all relevant states. This
is illustrated in Figure 2.1 using the example of a 1D energy potential.
The deeper the energy minima and the higher the barriers between them,
the longer the simulations have to be in order to fully characterize the
energy landscape.

4. Even if we sample all relevant states, we often need to observe the
transitions between them several times in order to estimate reliable
statistical models of kinetic exchange.

5. Modeling the potential energy of the system U(x) is critical as it rep-
resents the energy landscape in which the molecule moves. In MD, we
approximate U using empirically parameterized force fields that drive
the transition density generator, i.e., the MD integrator, to equilibrium
(Eq. 2.3, 2.5, and 2.6). Due to the aforementioned FF approximations,
predictions derived from simulations often do not match experimental
observations.

Despite these limitations, MD simulations provide valuable insights into
the atomic details of molecular dynamics [25–30] and many efforts have been
made in order to mitigate these problems [31, 32]. To further enhance our
understanding of biomolecular dynamics, it is essential to complement these
computational insights with experimental investigations. Laboratory experi-
ments offer empirical data, adding an additional layers of validity to our models
as well as information that simulations alone may not fully capture.

2.1.2 Experiments

Biophysical techniques, such as Nuclear Magnetic Resonance (NMR) or fluor-
escence spectroscopy, cryo-Electron Microscopy (cryo-EM) or Small-Angle
X-ray/Neutron Scattering (SAXS/SANS) have been developed to study various
aspects of conformational dynamics [24, 33–38]. In particular, NMR has the
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unique ability to provide atomic-level resolution and detailed dynamic informa-
tion about molecules in solution, offering insights into their structure, dynamics,
and interactions over a wide range of timescales [24, 39]. However, there a
several limitations that make the study of biomolecules using experiments
difficult:

1. Many biophysical techniques, like NMR and cryo-EM, have inherent limit-
ations in their temporal resolution. This makes capturing rapid molecular
dynamics and transient states, which often occur on short timescales,
quite challenging. Similarly, SAXS tends to yield data at a lower spatial
resolution, typically providing averaged structural information, rather
than precise atomic positions. This can limit the level of detail available
from experimental approaches.

2. It is often hard to control experimental conditions, such that the experi-
ment can be repeated with high statistical confidence. Also, artifacts, like
crystal packing contacts during crystallization or high concentrations that
are needed for NMR experiments may not reflect physiological conditions,
thus tainting our conclusions.

3. Many experimental techniques provide ensemble-averaged data, which
can mask the heterogeneity and the presence of rare or transient states in
biomolecular systems that may play an important role in the molecule’s
function.

Nevertheless, experiments offer a unique access to the “true” molecular
ensemble that can yield important insights into the thermodynamics and kin-
etics of molecular systems. By looking at the advantages and disadvantages
of biophysical simulations and experiments, respectively, it is clear that one
complements the other: the wide range of timescales accessible through ex-
periments can offset the computational constraints inherent in simulations.
Conversely, the atomic details available through MD can complement the lack
thereof in experiments. This synergistic relationship between simulations and
experiments is key to a comprehensive understanding of biomolecular dynamics
[40–48]. Now, we will look at how we can compare kinetic/thermodynamic
quantities predicted from simulations with their experimental counterparts.

2.2 Stationary and Dynamic Observables

In statistical mechanics, distinguishing between stationary (or static) and
dynamic observables is fundamental in studying the macroscopic behavior of
dynamical systems. Observables are physical quantities that can be either
measured in experiments or calculated from simulations, thus providing a link
between the two approaches. Stationary observables are quantities of a system
that stay constant with respect to time, meaning that they report on the
equilibrium properties of the system. Those include but are not limited to
(melting) temperature, secondary-structure content or molecular weight. For
some function f : X → Cn or Rn, where X = {x ∈ R3N | x ∈ Ω} with x being
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the Cartesian coordinates of the configuration, the corresponding stationary
observable ostatf is

ostatf =

∫
Ω

f(x)π(x) dx. (2.7)

Here, Ω is the state space of the system. Eq. 2.7 can be understood
as follows: f maps every configuration x ∈ Ω to some specific value. For
most observables, such as average helicity or melting temperature, of is a
scalar, thus, n = 1. These observables can be measured through averaging
over a long period of time (ensemble averaging), thus giving us access to the
thermodynamic properties of the system.

Dynamic observables, on the other hand, are a way of measuring how the
system evolves over time and are thus time dependent. For example, a common
dynamic observable in biomolecular experiments is to compare the position
of a molecule with its position at a later time point (we call this time lag).
This so-called autocorrelation function contains the information of how quickly
the molecules switches from one state to another or how long it stays in a
particular state. We often do not measure the time correlations directly but
through some forward model (see Section 2.2.1 for details). The observable
calculates the weighted correlation between some functions f and g over time,
integrated over all possible states:

odynfg (kτ) =

∫
Ω

∫
Ω

f(xt)g(xt+kτ )pτ (xt+kτ |xt)π(x) dxt dxt+kτ , (2.8)

where τ refers to some set time lag and pτ (xt+kτ |xt) is the transition density.
k is an integer multiple of τ . However, for simplicity and clarity, k is omitted
in the remainder of the thesis. ofg is called and auto-correlation function if
f = g and a cross-correlation function otherwise. Dynamic observables are
particularly useful when studying relaxation processes or the spectral properties
of systems (e.g., the timescales of exchange). Examples of techniques that
belong to the class of dynamic observables include T1 and T2 relaxation [49] as
well as relaxation dispersion techniques (such as R1ρ [50, 51] or Carl-Purcell-
Meiboom-Gill (CPMG) [52, 53]) and (single-molecule) Fluorescence Resonance
Energy Transfer (smFRET) [54, 55]. None of these techniques are measuring
the time correlation directly. R1ρ/CPMG relaxation dispersion, for example,
measure the Fourier transform of the autocorrelation function [50, 52, 53, 56].
We will now look at how to compare quantities, like relaxation dispersion,
obtained from experiments with those predicted from computational models.

2.2.1 Link between Experiments and Simulation

Correlation functions are crucial in quantitatively describing how physical
properties evolve over time (see Eq. 2.8). A key aspect of modeling the
dynamics of a molecule is to analyze its relaxation behavior, i.e., transitions
between molecular conformations. One fundamental assumption we make about
systems in equilibrium is the Markov property, which posits that the future
state of a system only depends on its present state and not on its past history.
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Under this assumption, we can decompose the overall relaxation behavior into
the sum of individual relaxation processes, whereby each contribution can be
characterized by its own timescale texi and amplitude ci. Mathematically, this
can be represented as:

C(τ) =
∑
i

cie
−τ/texi . (2.9)

Note that while functionally different, Eq. 2.8 and 2.9 are the same. Eq.
2.9 provides the general description of a correlation function, whereas Eq. 2.8
views the correlation through the lens of the two observable functions f(·) and
g(·).

To illustrate the relationship between MD-derived predictions and experi-
mental observations, consider this example of an NMR experiment that charac-
terizes the conformational exchange of molecules on the micro- to millisecond
timescale, called R1ρ relaxation dispersion [47, 51, 57]:

R1ρ(ν1) = (2πν0)
2

∫ ∞

0

C(τ) cos(2πν1τ) dτ, (2.10)

where the factor (2πν0)
2 is related to the Larmor frequency of nuclei under

investigation and ν1 is the probing frequency. Importantly, Eq. 2.10 gives us a
framework to

1. compute the relaxation rates directly from the MD simulations, and

2. compare the predictions from MD directly with the observations obtained
from the experiments.

It is important to stress the complementary nature of the two approaches:
From the experiments, we obtain the convolution of all exchange processes of
the “true” ensemble but lack the atomistic details to be able to explain them.
From simulations, we have full observability and are able to perfectly explain
all the different exchange processes. However, due to the aforementioned
issues with sampling and force field inaccuracies, we often lack the ability
to confidently assert that the MD simulations accurately represent the true
dynamics of the biomolecular system in its natural state.

This underlines the need for and importance of combining experimental
data with simulations. The goal therefore is to obtain detailed mechanistic
insights into the different exchange contributions from MD, all while ensuring
that the models we estimate are in fact consistent with the experimental data
available. Having truly integrative statistical models thus has the potential for
a more comprehensive understanding of (bio-)molecular dynamics.

2.3 Application of Machine Learning to Address
MD Limitations

So far, we have established the main limitations of MD simulations as well as
the usefulness of including experimental observables in obtaining more accurate
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xt ∈ ℝ3N

zt+τ ∼ pτ(zt+τ |zt)

zt ∈ ℝme( ⋅ )

dt+τ( ⋅ )

𝒯(τ) dt+τ=0( ⋅ )

F(z) = − ∇U(z) F′ (x′ ) ∈ ℝ3Nd( ⋅ )
F( ⋅ )

x′ t+τ ∈ ℝ3N

Figure 2.2: Schematic depicting machine learning applications in molecular
dynamics. The configuration of a system in Cartesian coordinates is denoted
by x, but a more common approach involves working with a lower-dimensional
representation z (where N > m), obtained through an encoding operation
e(·). The key role of ML in MD includes approximating the transfer operator
T (τ) for modeling transition density pτ (zt+τ |zt) as well as in predicting the
force field F(z) as the negative gradient of energy −∇U(z). Note that z may
be a lower-dimensional representation (e.g., coarse-graining) but it can also
include all-atom force field modeling if m = N . Finally, ML is used in the
decoding process dt+τ (·), translating the latent representation back to x′

t+τ in
configuration space. When τ ̸= 0, this involves reconstructing the time-lagged
latent sample. In the same way, ML aids in mapping the force of the coarse-
grained representation back to its all-atom equivalent F′(x′).

mechanistic models of the system’s thermodynamic as well as kinetic properties.
Now, we will look at how machine learning can be useful in addressing the
drawbacks that we face in MD simulations and finally, how experiments can be
integrated into ML techniques.

2.3.1 Encoding of Molecular Configurations

Molecular configurations typically live in a very high-dimensional space, and
there are several ways of representing them [58, 59]. In classical MD simulations,
molecules are represented using their Cartesian coordinates, i.e., x ∈ R3N ,
where N is the number of atoms. Using the same representation for machine
learning turns out to be unnecessarily hard and impractical as the machine
learning model might incorrectly interpret rotations or translations of the
molecule as meaningful changes in the system, whereas they are not. Some
quantities, such as the energy or the molecular weight of a molecule, do not
change whether the molecule is transformed, that is rotated or translated. We
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say that this quantity is invariant under some transformation. Mathematically,
we want to learn a representation such that the output of some function f(·),
e.g., energy, applied to the configuration x is the same when we apply some
transformation g(·): f(g(x)) = f(x). Similarly, other physical quantities, like
force, change with the transformation of the molecule in a predictable way.
This is referred to as equivariance, and we can express it mathematically as
g(f(x)) = f(g(x)). The field in machine learning that is concerned with
incorporating symmetry information into neural network architectures is called
geometric deep learning [58]. ML can therefore help us to find a potentially
lower-dimensional encoding zt = e(xt) of our configuration that inherently
respects physical symmetries (Figure 2.2). Learning the essential features
of a molecule reduces the computational complexity and therefore increases
the learning efficiency [60–67]. Another, orthogonal approach of identifying
a lower-dimensional encoding is often referred to as coarse graining in the
MD community [68, 69], and it enables us to study larger molecular systems
at longer timescales [70]. The idea is that not all atoms are important in
defining the energy landscape of the molecule; and by pooling groups of atoms
into “beads”, it is possible to run longer simulations for the same amount of
computational power. In particular, graph neural networks have played an
important role in learning a coarse-grained representation of biomolecules [69].

We will now shift our attention to understanding the framework that lies
behind models we can estimate from some encoded latent representation z.
These models serve, both, for our understanding of molecular kinetics (Section
2.3.3) as well as for sampling time-lagged conformations (Section 2.3.4).

2.3.2 Transfer Operator Formalism

Recall that one primary objective of molecular dynamics simulations is to learn
a model of the probability density pτ (zt+τ |zt). In Section 2.1.1, we introduced
the Fokker-Planck equation (Eq. 2.5), a differential equation describing the
evolution of the probability density of a molecule’s position over time. How-
ever, we can also take a different approach of modeling the evolution of that
distribution. Instead of using a differential equation, we can describe how a
system evolves over time using an operator-based framework. That is, we can
construct a so-called transfer operator [71, 72] such that it models the same
underlying physical process as described by the Fokker-Planck equation. In
this section, we will look at how to approximate this transfer operator TΩ
using machine learning. This can be helpful for estimating kinetic models or
sampling from the probability density. TΩ is a mathematical construct that
describes how the probability density pτ evolves in the state space Ω over time
τ . Mathematically, the relationship between the transfer operator and the
probability density can be described as [71, 72]:
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pτ (zt+τ |zt) =
∫
Ω

p(zt)pτ (zt+τ |zt) dz (2.11)

= TΩ(τ)p(zt) (2.12)

=

∞∑
i=1

λi(τ) |ϕi⟩ ⟨ψi| . (2.13)

The last equation is particularly useful as it allows us to model T using its
spectral decomposition. It can be interpreted as follows: A dynamical system
can be described by a superposition of i processes that are associated with a pair
of eigenvalues λi and eigenfunctions ψi. The eigenvalue decays exponentially
at a rate that is governed by the characteristic timescale texi of the process:

λi(τ) = exp

(
− τ

texi

)
. (2.14)

Since we are only considering systems in equilibrium, we can assume 0 ≤
|λi| ≤ 1 (conservation of probability), λi ∈ R (reversibility1), and λ1 =
1, |λi>1| < 1 (ergodicity). The corresponding eigenfunction ψi encodes a
particular mode or pattern of behavior in the system. That is, it describes
the probability flow between different states. The stationary density–weighted
eigenfunction ϕi determines the amplitude of the process and is defined as

ϕi = ψiπ. (2.15)

This gives us a powerful framework to approximate the probability dens-
ity pτ (zt+τ |zt) since we can use the spectral components to find the optimal
parameters that explain the data. Furthermore, we do not need to charac-
terize infinitely many processes but can resort to a low-rank approximation
where small eigenvalues, i.e., |λi| ≪ 1, are discarded since their corresponding
timescales are fast and thus do not contribute much to the overall signal.

2.3.3 Markov State Models (MSMs)

Markov state models have shown to be very expressive in modeling biomolecular
dynamics and their application to MD data have lead to many important
insights [73–87]. By using a discretization of Ω into n states, we are able to
approximate T by estimating the number of transitions between states in a
count matrix C ∈ Nn×n. At the core of the Markov state model approach is the
transition matrix T ∈ Rn×n. By enforcing physically meaningful constraints
for dynamical systems in equilibrium, such as reversibility, ergodicity, and row
stochasticity, Tij will contain the transition probability of the configuration

z
(i)
t at time t being in state i to its time-lagged equivalent z

(j)
t+τ in state j. As

we will see in Section 2.4, we can use the transfer operator formalism, and in
particular Markov state modeling, to predict, both, stationary and dynamic

1In order for the dynamical system to be reversible, it is also necessary that
π(zt+τ )pτ (zt+τ |zt) = π(zt)pτ (zt|zt+τ )
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observables, thus allowing us to compare the predictions based on MD data
with experimental data.

2.3.4 Sampling from the Boltzmann Distribution

With the transfer operator formalism as the foundation, we are now able
to understand how some models apply this theory to learn a model of the
probability density pτ (zt+τ |zt) which allows zt+τ ∼ pτ (zt+τ |zt) (Figure 2.2).
This is an exceptionally difficult task, given that the conformational space
is very high-dimensional and even in latent space, the energy landscape is
complicated and rugged. Also, due to the exponential relationship between
energy and probability (Eq. 2.1), small changes in z can have a big effect on
the probability density. Nevertheless, machine learning offers unique ways to
address the sampling time-lagged states of the system given its current state
(τ ≪∞) and from the Boltzmann distribution (τ →∞). Biomolecules often
have many different low-energy regions with high energy barriers between them.
These are often referred to as metastable states – and generating statistically
independent samples from these energy minima is an important goal in the
characterization and modeling of molecular dynamics [88]. The way ML can
help in sampling from distributions that are difficult to sample from directly, like
the Boltzmann distribution in high-dimensional spaces, is to learn how to map
low-energy configurations (sampled from molecular simulations or experimental
data) to a simpler latent space and back. ML aids in sampling from complicated
distributions, such as the Boltzmann distribution in high-dimensional spaces,
by mapping low-energy configurations (derived from molecular simulations
or experimental data) to a simpler latent space and back. The two primary
ML that currently are being used to achieve this are Normalizing Flows (NFs)
[7, 89–93] and Denoising Diffusion Probabilistic Models (DDPMs) [8, 94–97].
Normalizing flows achieve this through a series of invertible transformations,
while diffusion models do so by gradually denoising a simple distribution to the
target distribution. A conceptually different approach is to learn a function that
biases the energy potential to sample rare events (akin to classical enhanced
sampling in MD simulations) [98–101]. While much effort has been put into
developing these models, many open questions remain for developing models
that are able to sample valid configurations across state space in a time-lagged
fashion. A field where this generalization also is a key aspect is not just in
sampling but in deriving a model of the forces that govern the potential energy
landscape. This is the field of machine-learned force fields, which we will look
at next.

2.3.5 Machine-Learned Force Fields

Traditional force fields are based on empirical data and quantum chemical
calculations, thereby limiting the accuracy and scalability when applied to
large, complex biomolecular systems. Machine learning offers a promising
alternative by estimating force fields that can harness the vast amount of MD
data to learn more accurate and scalable models [102]. The force F(z) exerted
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on the atoms is defined as the negative gradient of the potential energy function
F(z) = −∇U(z). Machine learning offers a significant advantage compared to
the classical, error-prone force fields (Figure 2.2). ML algorithms can learn
complex patterns and dependencies from large datasets. This ability makes ML
particularly well-suited for approximating the potential energy surface U(z) of
biomolecules. Once trained, ML models can efficiently compute the forces in
MD simulations, thereby speeding up the simulation process while maintaining,
or even improving, the accuracy of the results. It is worth mentioning that
ML FF are being developed for, both, all-atom systems [102–112] as well as
coarse-grained ones [69, 113, 114].

Working with the coarse-grained representation is often fine in order to
understand the mechanisms-of-action. However, it can be of interest to map
the coarse-grained molecule back to its all-atom equivalent, and hence, also the
forces. How machine learning can help in decoding the latent representation is
what concerns us next.

2.3.6 Decoding the Latent Representation back to Con-
figuration Space

In order for our models to be interpretable and useful, we often need to decode
d(·) the compressed, lower-dimensional latent space representation z into its
reconstructed, high-dimensional Cartesian coordinate representation x′. How-
ever, we need to distinguish between two tasks. The first is to reconstruct
the latent sample z without time lag (τ = 0) and the other, is to decode the
time-propagated sample zt+τ back to configuration space. Examples of the
former include neural network architectures, such as Variational Autoencoders
(VAEs) that generate samples from a latent distribution, approximating the
underlying data distribution [61, 66, 99]. However, the much harder case is the
latter, which tries to find a way to time-propagate the latent representation and
to decode it back to configuration space x′

t+τ = dt+τ (zt) (see Section 2.3.2).
While there have been approaches to learn such a decoder [115, 116], they
do not seem suited to be applied to long-timescale MD data since they work
well for small τ . And while techniques, such as deep generative MSMs [117],
show promising results, the sampled conformations are often physically invalid.
Recently, Schreiner et al. proposed a promising approach, called the Implicit
Transfer Operator (ITO) to sample (multiple) time-lagged conformations with
a large τ from an equivariant latent presentation [8]. In its current implement-
ation, the method is, however, limited in size as well as its ability to generalize
across chemical and thermodynamic space.

In chapter 2.3.5, we looked at how machine learning can help in estimating
the force field of coarse-grained representations. Mapping this lower-dimensional
representation back to the all-atom equivalent is not a trivial task since we have
a many-to-one mapping: multiple all-atom configurations might correspond to
the same coarse-grained state. Here, graph neural networks play an important
role in learning this mapping [118–120], in particular also learning the forces
that have been estimated for the coarse-grained model.

Now we have covered the different aspects, ML can be used parallel to MD
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and even independent of it to study the dynamics of biomolecules. However, a
big question remains: How do we ensure that our machine learning models are
thermodynamically and kinetically consistent with experimental observations?

2.4 Using Experimental Constraints in the Mod-
eling of Molecular Conformations

Building on the complementary aspects of experiments and simulations dis-
cussed in Section (Section 2.1), we have shown that through the calculation and
acquisition of stationary and dynamic observables, we are able to compare MD
simulations and experimental data (Section 2.2). We have also looked at the
various ways, ML is able to address some of the most fundamental problems in
MD (Section 2.3). We also examined the usefulness of the transfer operator
formalism as a tool for modeling dynamical systems (Section 2.3.2). Now, we
have the background and tools to look at how experimental constraints that
report on the kinetics and thermodynamics of biomolecular systems can be
incorporated into machine learning techniques.

2.4.1 Computation of stationary/dynamic observables
from MSMs

Upon examining Eq. 2.9 and Eq. 2.14, we observe a fundamental connection
between the eigenvalues of the transfer operator and the relaxation contributions
in the time correlation functions. It highlights how the decay rates in correlation
functions are intrinsically linked to the timescales defined by the eigenvalues of
the transfer operator. The amplitudes in the correlation function, represented
as ci, can be efficiently computed using the spectral decomposition of the
transfer operator T , in particular its approximation, the MSM (Section 2.3.3).
The amplitudes are mathematically expressed as:

ci = (f · ϕi)
2, (2.16)

where f ∈ Rn is a vector representing the average value of the observable
function f(z) across all configurations of z within each state i ∈ n [47, 73, 121].
ψi is the left eigenvector of the ith process. This gives us a way to express
dynamic observables using MSMs:

odyn, MSM
ff (τ) = c1 +

n∑
i=2

ci exp

(
− τ

texi

)
, (2.17)

where c1 corresponds to the amplitude of the stationary process with λ = 1
and thus the stationary distribution π:

ostat, MSM
f = f · π. (2.18)
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2.4.2 Machine Learning with Kinetic and Thermody-
namic Constraints

Obtaining a machine learning model that is consistent with, both, simulation
and experimental data requires designing an objective function that is physically
consistent by penalizing deviations for predictions made by the model and the
experimental data available. In general, such an objective function L can be
expressed as

L = Ldata + αLstat + βLdyn, (2.19)

where α and β are both scaling factors. The specific forms of the stationary
and dynamic observable loss terms, vary depending on the model’s structure and
the nature of the data. However, we can define a more generalized expression
for these loss terms. For instance, considering stationary observables ostat, a
common approach is to devise a loss function that minimizes the discrepancy
between experimental observations and model predictions. Specifically, for m
experimental observations of a stationary observable, the thermodynamic loss
can be formulated as:

Lstat =

m∑
i=1

νi∥oexpi − opredi ∥2. (2.20)

The notation ∥ · ∥2 denotes the squared Euclidean norm (L2 norm), which
quantifies the squared difference between the experimental and predicted values.
νi can be some form of Lagrange multiplier or weight that needs to be learned.

The general form for the dynamic loss term is a bit more involved since
we are not just dealing with a single observation per data point but with
time correlations (Eq. 2.9). Thus, for m experimental observations with k
measurements per observation, we have

In the case of dynamic observables, where we rely on time correlations (Eq.
2.9), the formulation of the loss term must account for the temporal relationships
within the data. For a dataset comprising m experimental observations, each
consisting of k time-correlated measurements, the dynamic loss term can be
structured as follows:

Ldyn =

m∑
i=1

k∑
j=1

νij∥oexpi (jτ)− opredi (jτ)∥2. (2.21)

In addition to the data constraints, it is often necessary to include other,
physically relevant constraints as well. Those include

• Detailed balance/Reversibility: πipij = πjpji

• Ergodicity: λ1 = 1, |λi>1| < 1

• Row stochasticity:
∑

j pij = 1
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• Orthonormality of eigenvectors: ΨΨ⊤ = I, with

Ψ =

 | | |
ψ1 ψ2 · · · ψn

| | |


for systems in equilibrium.
They can be enforced in several ways [122–124], however the most straight-

forward way of doing so is by using Lagrange multipliers and using fixed-point
iteration algorithms [46] or gradient descent [10] to find the optimal parameters.

2.4.3 Balancing Experimental Priors with MD Data Us-
ing Maximum Entropy Principles

When biasing statistical models derived from classical MD data with experi-
mental constraints, it is necessary that the inferred probability distribution is
the most uniform given the imposed constraints. This ensures that we avoid
unwarranted assumptions about the systems. Maximum entropy principles
allow us to incorporate experimental knowledge in an information-theoretically
optimal way [125, 126]. Suppose you want to find a probability distribution
p(x) over a set of n states. The maximum entropy principle states that among
all distributions that satisfy the given constraints, the one that maximizes the
entropy is the least biased and therefore the most preferable. The entropy H
of the distribution p(x) is given by:

H[p(x)] = −
∑
n

p(x) log p(x). (2.22)

Given a set of m experimental constraints oexpi =
∑

n fi(x)p(x) with i ∈ m
(Eq. 2.7), we want to maximize H[p(x)] subject to these constraints. Using
Lagrange multipliers λ, we can write the Lagrangian as:

L = −
∑
n

p(x) log p(x)

+ λ0

(∑
n

p(x)− 1

)
+

m∑
i=1

λi

(∑
n

fi(x)p(x)− oexpi

)
. (2.23)

The first term is the entropy defined in Eq. 2.22. The second ensures
the normalization of p(x), and the last enforces the experimental constraints.
Differentiating L with respect to p(x) and setting it to zero gives the maximum
entropy distribution, balancing the probability p(x) estimated from simulation
data with the experimental evidence available.
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Chapter 3

Summary of Included
Papers

3.1 Rescuing off-equilibrium simulation data
through dynamic experimental data with
dynAMMo

In this paper, we developed a method to construct comprehensive mechanistic
models of kinetic exchange processes in proteins. Our method integrates mo-
lecular dynamics data with dynamic experimental observations in an augmented
Markov model, addressing the long-standing challenge of modeling protein
dynamics over extensive timescales.

Problem

Understanding the details of biochemical processes, such as the mode-of-action
of enzymes, ligand binding and unbinding as well as regulation of signaling
pathways, is imperative in, for example, designing drugs that specifically
target the biomolecules in question. In order to gain such understanding, the
most popular approaches are either to run molecular dynamics simulations or
to record biophysical experiments. Nevertheless, one of the most persistent
challenges in the field of molecular dynamics is to integrate the two sources
into a single kinetic model. This often results in estimating separate models
based on the simulation or experimental data, respectively. Those models
either lack the atomistic details necessary to explain the kinetic exchange or
often fail to reflect the accurate thermodynamic and kinetic realities of the
molecules. A unifying approach that utilizes the mechanistic details available
from MD simulations as well as reflects the empirical robustness from dynamic
experimental data in the most unbiased way is thus essential to bridge this gap
in our understanding of dynamic processes.

21
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Contribution

This paper introduces dynamic Augmented Markov Models (dynAMMo) – a
method to reconcile simulation statistics with experimental data that report on
the kinetics and thermodynamics of molecules in an information-theoretically
sound way. By showcasing the performance of the algorithm using two theoret-
ical model systems, we were able to show that our model accurately predicts
dynamic experimental observables in two important scenarios:

1. The case where sufficient simulation data are available to reproduce the
experimental evidence, however, the kinetics and thermodynamics are
biased, thus resulting in a discrepancy between the predictions and the
experimental observables.

2. The case where the simulations samples all thermodynamically relevant
states but fails to observe the transitions between them. Prior to this
method, it would not have been possible reproduce the experimental
observables.

Moreover, we demonstrate the failure of our model in a third important
scenario:

3. The case where not all thermodynamically important states were sampled.
In this scenario, we demonstrated that the model was not able to accur-
ately predict the experimental evidence. This shows that our method
does not introduce artifacts since we have to have all relevant information
in order to reproduce the experimental observation.

Those three cases are important scenarios with real-world relevance. The
first one addresses the issue that force fields in MD simulations often do not
reproduce correct kinetic and/or thermodynamic quantities even when all
states and transitions are sampled. The second, and arguably most important,
addresses the fact that MD simulations are limited in terms of the timescales of
exchange that can be reached. MD simulations often do not sample the trans-
itions between relevant states, hitherto hindering researchers in establishing
useful mechanistic models. The third and last scenario is important because
in the case that we do not have all relevant information available to us, it is
imperative to show that the estimated model is not reliable and we can assume
that given the data available, we are not able to reproduce the experimental
evidence.

The last important contribution of this paper is to show that the method
we have developed also works with real-world data. For this, we used Bovine
Pancreatic Trypsin Inhibitor (BPTI) as an example. This is a well-studied pro-
tein system [28, 34, 127–130] where, we assume to know all relevant structural
states. However, extensive experimental data show that there is a discrepancy
between the estimated exchange rates [127] and the ones estimated from the
simulation [28]. Using our model, we were able to correct for this bias and
estimate a mechanistic model of kinetic exchange with experimental accuracy.
Furthermore, by artificially recreating the “disconnected states” scenario, we
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were also able to show that were were able to reproduce the kinetics from the
“biased” scenario, thus underscoring the relevance of our model in a real-world
scenario.

Methodology

dynAMMo is a Markov state model that is estimated from simulation and
experimental data. A transition matrix T is first estimated using simulation
statistics only. Through the spectral decomposition of T, we get access to the
(right) eigenvectors, the eigenvalues, and the stationary distribution. Through
the use of an observable function f(·), we can calculate the stationary and
dynamic observables, ostat and odynamic, respectively. This allows us to match
the predicted observables with the experimental ones oexp. By constructing a
loss function that combines the maximum likelihood of the transition counts
with the mean squared error between the predictions and observed data, we can
estimate a dynamic augmented Markov model that takes, both, simulation and
experimental data into account. In addition, we use Lagrange multipliers to
enforce constraints that adhere to the equilibrium properties of physical systems.
That is, we constrain the model to be ergodic, reversible, and preserving the
measure of the system’s state space. Using gradient descent, the spectral
components of the transition matrix as well as the Lagrange multipliers are
optimized.
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3.2 Machine Learning in molecular dynamics
simulations of biomolecular systems

In this book chapter, we explore the significant ways in which machine learning
techniques have been utilized and developed for studying molecular systems.
These techniques are applied both in conjunction with and independently of
molecular dynamics simulations.

Problem

Classical MD simulations are fundamentally limited in many ways that affect
the characterization and modeling of biomolecular systems. This includes
issues of scalability in terms of size and timescale, thermodynamic and kinetic
accuracy due to empirical force field parameterization as well as sampling
efficiency. In the past years, machine learning has emerged as a powerful tool
to alleviate or improve those aforementioned limitations.

Contribution

This book chapter provides computational chemists with a comprehensive survey
of the application of machine learning in molecular dynamics simulations of
biomolecular systems. It focuses on the fundamental principles in modeling
the kinetics of molecular systems. In particular, it explains why Markov state
modeling is such a successful and popular approach in doing so. Furthermore,
we highlight different sampling techniques and neural network architectures and
how they are been used to sample metastable conformations. It also outlines
how coarse-grained force fields are being estimated. Finally, we identify the
current challenges and questions in the field and what is needed to further
improve the models and thus our understanding of biomolecular dynamics.
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Concluding Remarks and
Future Directions

Using experimental observations as prior information to enhance the accuracy
of models based on Molecular Dynamics (MD) data has significantly advanced
the scientific community’s knowledge of biomolecular systems [131–133]. Nev-
ertheless, as the arsenal of techniques from the ML community grows, more
and better solutions need to be found to profit from the synergy of combining
thermodynamic and kinetic prior information with computational data (both
from MD simulations as well as generated samples from ML models). Address-
ing the limitations and future directions of all methods related to ML in MD
is beyond the scope of this thesis. However, I will discuss the most pressing
aspects in this regard.

A remaining concern in the fields of machine-learned force fields (Section
2.3.5) as well as generative sampling of molecules (Section 2.3.4) is transferab-
ility with respect to chemical space, different physical conditions (temperature,
pressure, pH, etc.), and timescales. Transferability across chemical space is
the ability of ML models to generalize across different types of molecules and
chemical compositions. This feature is essential to avoid having to retrain
the models for every new molecule encountered. The thousands of structures
available in the Protein Data Bank (PDB) as well as the AlphaFold protein
structure database [134] together with the increasingly faster and more access-
ible high-performance computing, there is a big potential to make ML FF or
generative models capable of making useful predictions for previously unseen
molecules.

Secondly, The probability density of the system’s states is highly sensitive
to variations in external parameters. For example, small changes in the tem-
perature can significantly alter the thermodynamics and kinetics of molecular
systems. It is therefore necessary to work on developing models that are capable
of interpolating between a variety of environmental conditions, such as temper-
ature, pressure, or concentration. A recently introduced framework [135] shows
promising potential to address this problem. Albergo et al. proposed stochastic
interpolants that can bridge two probability density functions by learning a

25



26 CHAPTER 4. CONCLUDING REMARKS AND FUTURE DIRECTIONS

vector field (flow) between them. By including experimental observables, such
as dynamic observables at different temperatures, there is the potential to
vastly improve these models.

Furthermore, there are still challenges in finding meaningful and inter-
pretable representation of biomolecules that need to be addressed. First of
all, more work needs to be done on finding representations that account for
physical symmetries as well asthe time dependence in MD data. It has been
demonstrated that it is possible to include time lags in the encoding of MD
data through Variational Autoencoders (VAE) [66] by including calculations
of autocorrelation functions. It would be worth pursuing to also integrate
stationary or dynamic experimental observables in the hope to improve the
latent representation of the system. Including experimental constraints when
learning (equivariant) representations has several advantages. First, this would
ensure that the representation is meaningful in that it aligns with real-world
observations, making the model more accurate. Second, the combination of
equivariant representations and adherence to experimental data can lead to
models that generalize better across different molecular systems – addressing
the issue of generalization.

Lastly, there is a big potential for further exploiting the transfer operator
framework in sampling time-lagged conformations by expanding the Implicit
Transfer Operator (ITO) framework [8]. Instead of implicitly learning the sum
of all (slow) exchange contributions, one can learn the slow modes explicitly.
This would allow us greater access and improve our understanding of the
underlying kinetics of the system. By identifying the slowest eigenfunctions,
we gain an understanding what the most significant structural transitions
are and how slow they are. However, this means that it is necessary to also
learn the eigenvalues of the corresponding eigenfunctions, and hence, also the
timescales (Eq. 2.14). Taking inspiration from the dynAMMo approach [10],
it is conceivable to augment the model by including dynamic experimental
observables to match the predictions made by the model with the experimental
expectations.

In summary, while the progress in recent years in terms of modeling bio-
molecular systems has been substantial, there is still much room for improve-
ment. It is important to acknowledge that using empirical force fields combined
with enhanced sampling methods is quite effective in sampling the conforma-
tional space of molecules [32, 88, 136]; especially compared to the computational
resources required to train large ML models. The field of machine learning
for the physical sciences is still in its infancy, and there is much potential
to improve in order to consistently outperform more traditional molecular
dynamics simulations. Future research should focus on harnessing the full
potential of transfer operator frameworks as well as learning representations
of biomolecules that are consistent with stationary and dynamic experimental
data. The incorporation of experimental constraints also has implications on
the generalizability and transferability of the models. As we continue to expand
and refine these methods, we get closer to a comprehensive understanding of
biomolecular dynamics with wide-ranging implications in fields like drug design,
molecular engineering, and beyond.




