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A B S T R A C T   

Several geospatial factors influence the suitability of national power grid expansion, especially in remote areas. 
Since previous studies have neither explicitly examined the level of influence of these factors nor provided a clear 
spatial representation of their impact, this paper examines how geospatial factors (distance from substation and 
road, terrain slope, elevation, and land cover) influence grid extension suitability to unelectrified settlements in 
the context of Ethiopia. Open-access and remote-sensing datasets are used together with OnSSET geospatial 
modeling analysis methodology. A spatial grid extension suitability map is developed to display areas that are 
most suitable, semi-suitable, and less suitable for grid extension. Results show that terrain slope is the most 
significant contributor to grid extension suitability, accounting for 40.8 % of the total score. The findings reveal 
that the geospatial factors studied, aggregately, might increase the total investment cost of grid extension by 2.3 
%–29 % across Ethiopia. The results also show that 45 % and 85 % of Ethiopia’s population live within 10 km 
distance from high-voltage and projected medium-voltage lines, respectively. The study underscores that rather 
than focusing exclusively on distances from existing grid infrastructures, it is important to take into account the 
aforementioned geospatial factors affecting investment costs for grid extension planning.   

1. Introduction 

Access to electricity is a fundamental pillar for socioeconomic 
development, underscored by the United Nation’s (UN’s) Sustainable 
Development Goal 7 (SDG7) to ensure affordable and reliable energy for 
all by 2030 [1]. Electricity access significantly influences living stan
dards, education, healthcare, and agricultural productivity [2], but 759 
million still lacked basic electricity access in 2019, predominantly in 
Sub-Saharan Africa (SSA), where over half the population lacks elec
tricity access [3] in contrast to the UN’s goal of universal energy access 
and projected economic growth [4]. In light of this, the imperative to 
extend electricity access to underserved population figures prominently 
in the policy agendas of many developing countries. However, the 
pathways to achieve this goal diverge, primarily revolving around grid 
extension and off-grid systems. 

The de facto electrification strategy is to expand existing national 
power grids and transmission networks [5], supported by initiatives 

such as Power Africa [6]. 1Grid expansion refers to the construction of 
additional transmission lines to meet the increasing electricity demand. 
The feasibility of grid-based electrification relies on the correlation be
tween existing grid coverage and population distribution [7]. The dis
tance from households to the nearest grid connection point significantly 
impacts electricity transmission costs for two reasons: longer trans
mission lines entail higher capital costs, and also energy losses, for a 
given connection [8]. Thus, proximity to the grid typically translates to 
lower connection costs [9]. 

On the demand side, grid extension-based electrification pathways 
often face challenges from low electricity consumption by settlements 
[10]. This can be attributed to several factors, including low population 
density, sluggish economic growth, and low-income levels of residents: 
leading to limited demand for electricity. Consequently, the levelized 
cost of electricity (2LCOE) for grid-based electrification tends to be high, 
making it economically less viable. 

Grid extension suitability is also affected by various 3geospatial 
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factors, including but not limited to, access to roads, land cover, and 
topography [8]. For instance, road distance guides electrification 
choices in Directorate General of Energy (DGE) – Energy Division (Togo) 
[11]. Additionally, higher elevations entail greater expenses for con
struction and transportation [12]. Notably, these geospatial elements, 
including distance from power grid, can account for a significant portion 
of the initial investment cost, with estimates reaching up to 30 % [12]. 

Grid extension suitability in this study refers to the comparative 
suitability of extending the grid to different settlements, assessed by 
evaluating the grid extension penalty (GEP) and LCOE. GEP represents 
extra costs per unit grid extension length due to supply-side factors 
(distance from substation and road, terrain, elevation and land cover). 
LCOE covers total electricity costs, including capital and operating ex
penses. High GEP or LCOE values indicate higher extension expenses, 
while low values indicate better suitability for grid extension. 

Moreover, the dependency of geospatial analysis outcomes on the 
resolution of utilized datasets bears crucial significance [13]. Notably, 
employment of lower-resolution datasets can potentially undermine the 
accuracy of the GEP multiplier and, thus, possibly result in a skewed 
preference for grid extension as a more favorable electrification 
approach. This underscores the necessity of embracing finer-scale data 
to capture the intricate dynamics of geospatial factors accurately. 

In this context, the study by Mentis et al. [14] holds significance. The 
authors conducted geospatial planning studies to determine the 
least-cost electrification mix in Ethiopia for universal electricity access. 
Employing a population grid with a spatial resolution of 2.5 × 2.5 km, 
their findings indicate that grid extension was the cost-effective choice 
for nearly 89 % of the newly electrified population by 2030 for the base 
case scenario (for the electricity access targets 50 (rural)-300 (urban) 
kWh/capita/year). Similarly, Korkovelos et al. [8] undertook a compa
rable analysis, utilizing high-resolution population data (30 × 30 m grid 
size) in Malawi. Their emphasis on detailed data capture was geared 
towards accurately accounting for the characteristics of settlements, 
thereby yielding more precise estimations of grid extension suitability. 
Their work showed, under the baseline scenario, that by 2030 off-grid 
PV emerged as the least-cost option for 67.4 % of the population and 
grid extension only for the remaining 32.6 %. 

Furthermore, although previous studies [8,12,14–16] have made 
strides towards factoring in geospatial parameters, none of them has 
illuminated the precise spatial influence of these factors on individual 
unelectrified settlements. Additionally, they have not probed into the 
cumulative weight of these factors, nor have they delineated the specific 
contributions of each factor to the overall suitability of grid extension. 
This gap in comprehensive spatial representation hampers effective 
settlement prioritization for grid expansion, potentially leading to in
efficiencies in electrification initiatives and undermining larger-scale 
national strategies and investments. 

Addressing the problems, therefore, requires grid-based electrifica
tion planning that is grounded on comprehensive and thorough under
standing of the various geospatial factors and their influence on the 
suitability of grid-extension to unelectrified settlements. This will enable 
the government and other stakeholders to make informed electrification 
planning decisions. The main objective of this paper is, thus, to examine 
how various geospatial factors influence the suitability of grid extension, 
specifically in the context of areas where the population lacks access to 
electricity. With this objective, the paper seeks to answer the following 
research questions.  

⁃ How is the unelectrified population distributed in relation to the 
national power grid infrastructures? 

⁃ How and to what extent do geospatial factors influence the suit
ability of grid extension to unelectrified population settlements?  

⁃ How does the suitability of grid expansion, in terms of LCOE, vary 
across unelectrified settlements as electricity demand target 
changes? 

This study is novel in two ways. Firstly, it methodologically com
plements previous studies on electrification planning [5,8,12,14–17] by 
incorporating the projected medium-voltage lines, high-resolution 
populations, and nighttime light data into the modeling, particularly 
for grid-based electrification planning. Secondly, unlike earlier studies, 
it explicitly investigates how geospatial factors affect grid-extension 
suitability across various demand levels (electrification tiers), thus 
contributing to the understanding of this relationship amidst other 
influences. 

This research employs Ethiopia as a case due to its size (area of 1.1 
million km2), sizable (population over 114 million people) and consid
erable gaps in electricity access (only 51.1 % had access to electricity in 
2020 [18]). The country also has a pronounced rural-urban disparity 
with only 39.4 % of the rural population having access to electricity 
compared to 93.2 % in urban areas. These statistics underscore the 
challenges the country faces in achieving universal electricity access. 
The Government of Ethiopia (GoE) launched the second National Elec
trification Plan (NEP 2.0) in 2019, targeting universal access by 2025, 
with 65 % through the grid and 35 % via off-grid solutions [19]. As of 
2019, the government reported providing electricity to 33 % of its 
population through grid expansion and 11 % through off-grid solutions 
[19,20]. Notably, electricity tariffs in Ethiopia were subsidized at 
around 0.0187 USD/kWh from 2005 to 2017, rising to 0.0765 USD/kWh 
in 2021 [21]. Despite these relatively affordable tariffs, a major barrier 
to electricity access lies in the high connection fee, which amounts to 
USD 150 per household connection, relative to the low household in
come [20]. This last-mile connection cost is a key economic factor that 
inhibits wider access, particularly in SSA [22]. A related barrier is the 
high cost of electrical appliances such as CFL/LED lights, that are subject 
to 25 % import duty and 15 % VAT taxes [20]. 

The remainder of this paper is organized as follows. Section two 
details the methodology employed, including the choice of modeling 
tool and the techniques used for obtaining and processing input data. 
This methodology is then applied to the case country under investiga
tion. The results are then presented and analyzed in the Results and 
Analysis section. Section four provides a discussion of the results 
together with the novelty of the developed methodology and the 
strengths and weaknesses of the paper. The final section presents the 
major conclusions drawn from the research with the answers to the 
research questions posed at the outset of the research. 

2. Methodology 

2.1. Research approach 

It is evident from the introductory section that well-informed grid 
extension planning requires a comprehensive understanding of the in
fluence of several factors including geophysical factors, population 
density, and level of electricity demand [8,14–16]. Therefore, in this 
study, a causal comparative research approach is applied to analyze the 
relationships and level of influences of the various geospatial factors on 
grid extension suitability in unelectrified areas of Ethiopia. Causal 
research, also known as causal-comparative research, identifies the 
extent and nature of cause-and-effect relationships between two or more 
variables [23]. It is typically used to determine the influence of changes 
in explanatory variables on the outcome variable, in this case, the in
fluence of geospatial factors and the level of electricity demand on grid 
expansion suitability. In this study the approach is divided into four 
phases: modeling tool selection, data acquisition, data processing, and 
data analysis and visualization. The following subsections provide 
description of each phase. Fig. 1 shows a simplified flowchart of the 
methodology and steps followed. 

2.2. Modeling tool selection 

The selection of an appropriate energy-modeling tool depends on the 
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specific questions that need to be answered and the available data. For 
this particular study, the OnSSET (Open-Source Spatial Electrification 
Toolkit) was chosen for several reasons. Firstly, it is an open-source 
platform [24], making it easily accessible from the GitHub repository 
and customizable to tailor specific research needs. Secondly, the tool 
supports nationwide spatial analysis, which meets the study’s objective 
of examining the factors that affect grid extension suitability across 
unelectrified settlements in the entire country. The modeling tool is 
programmed to determine the extent of influence of geospatial factors 
and identify areas that are suitable, semi-suitable, and unsuitable for 
grid extension. This modeling tool is applied to Ethiopia. 

Thirdly, in contrast to traditional energy modeling tools, such as 
TIMES, MESSAGE, and OSeMOSYS, OnSSET has the unique capability of 
accounting for topography-related costs in grid extension-based elec
trification pathways [15]. Traditional energy supply models typically 
lack this capability of accounting for location-specific peculiarities [25]. 
Fourthly, OnSSET is thoroughly documented in the literature [8] and on 
the developers’ website [26]. All these qualities make OnSSET a 

preferred choice for nationwide spatial analysis of electrification efforts, 
particularly in developing countries like Ethiopia with diverse terrain 
and varying degrees of access to electricity. 

2.3. Data acquisition 

The second step in conducting this study is to acquire the necessary 
input GIS datasets and other parameters presented in Appendix 
Tables A1, A2, A3, A4, and A5. The datasets used in this study are ob
tained from open-source platforms. These datasets are further discussed 
in detail in the following subsections. 

2.3.1. Gridded population dataset 
The gridded population dataset serves as the basis for generating 

population clusters/settlements [17]. This data is used to determine 
where populations are situated within the study area’s territory. There 
are various free, open-source gridded population datasets available, like 
the Global Human Settlement Layer (GHSL), WorldPop, and the 

Fig. 1. Flowchart of methodological approach. Diagram color shows: olive green “input data”, gold and grey “data process” and red “results of the analysis”.  
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High-Resolution Settlement Layer (HRSL). This study used HRSL as it 
has demonstrated greater prowess in recognizing the footprint of 
built-up areas/buildings in both urban and rural settings than GHSL and 
WorldPop population dataset [27], owing to its resolution of approx. 30 
m (1 arc-second) grid size and the use of subnational census data 
together with high-resolution (0.5 m) satellite imagery [27,28]. How
ever, since the most recent population data from the 2020 census were 
not available, population data from 2018 were utilized and adjusted to 
reflect the total population in 2020. This raster dataset is produced by a 
joint venture between Meta (formerly Facebook) Connectivity Lab and 
Columbia University’s center for International Earth Science Informa
tion Network (CIESIN). Fig. 2 discloses Ethiopia’s 2018 HRSL popula
tion. It is divided into five categories that differentiate between densely 
and sparsely populated areas. 

2.3.2. Nighttime light imagery 
We utilized nighttime light (NTL) imagery in conjunction with 

population data, following the approach proposed by Falchetta et al. 
[29], to estimate electrification status of settlements and, consequently, 
the national electrification rate. This methodology has demonstrated 
effectiveness in previous research [30–34]. The satellite imagery dataset 
was sourced from the National Oceanic and Atmospheric Administration 
(NOAA) and comprises cloud-free composite VIIRS nighttime lights 
(NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG). As the satellite de
tects and gathers nocturnal light from a variety of sources, including 
lights from fires, flares, the sun and moon, boats, and blooming effects 
surrounding major cities, the best result of electricity rate estimation is 
obtained by using a dataset that has been cleaned of such noise [14]. 

To reduce short-term fluctuations and enhance data quality, we 
generated the 2020 annual composites of NTL from the VIIRS-DNB 
straylight-corrected monthly composite images utilizing the Google 
Earth Engine (GEE) platform, which is a cloud-based computing plat
form that allows users to analyze geospatial data based on Earth science 
data [34]. Following the approach by Falchetta et al. [29], we processed 
annual median composite scenarios using five different lower-bound 

noise floors: 0.25, 0.27, 0.28, 0.30, and 0.35 μW cm− 2 ⋅ sr− 1. These 
values represent the minimum intensity below which any light is 
considered noise or ephemeral. This ensures that only 
electricity-generated light is included in our analysis. We tested various 
noise floors in an effort to identify the one that offered the most precise 
estimation of Ethiopia’s national electrification rate in comparison to 
the World Bank’s reported electrification rate. Fig. 3 displays the NTL 
composite for the case study country. The data in this figure represents 
the annual median radiance, and it has been filtered using a threshold of 
0.27 μW ⋅ cm− 2 ⋅ sr− 1. Additionally, Appendix Figure A1 provides 
further insights into nighttime light variations using both the minimum 
threshold (0.25 μW cm− 2 ⋅ sr− 1) and the maximum threshold (0.35 μW 
cm− 2 ⋅ sr− 1). These thresholds provide insights into variations in 
nighttime light levels within the case study country. 

The population density map (Fig. 2) aligns closely with the processed 
nighttime light (NTL) map (Fig. 3), highlighting a strong correlation 
between population density and NTL intensity. Higher population den
sity corresponds to brighter NTL, signifying greater electrification, while 
lower population density areas exhibit dimmer or no NTL, indicating 
lower electrification levels. This connection emphasizes NTL’s effec
tiveness as a proxy for assessing electricity access where detailed data 
may be limited. 

2.3.3. Administrative boundaries 
The administrative boundaries were used to extract the nighttime 

light data from the NOAA VIIRS satellite data and delimit the analysis to 
the study area. By doing this, only the nighttime light data inside the 
administrative boundaries is accounted for in the analysis. This also 
ensures that the population cluster is contained within these boundaries, 
thus limiting the maximum area of the cluster [35]. In this study, the 
entire country territory (level 0) was applied for clipping the annual 
nighttime light raster data, and the first-level administrative boundaries 
(level 1) were employed for generating the population cluster. Both 
datasets were obtained from the Global Administrative Areas (GADM) 
version 4.0. The GADM gives high-resolution administrative boundaries 

Fig. 2. Population distribution in Ethiopia (at a resolution of 30 m) based on HRSL 2018 raster data [28].  
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Fig. 3. Annual NTL composite in Ethiopia, filtered using 0.27 μW cm− 2 ⋅ sr− 1.  

Fig. 4. Existing HV and projected MV lines, and substations in Ethiopia [37,40].  
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at different levels using the WGS84 datum coordinate reference system 
and longitude/latitude [36]. 

2.3.4. Power grid infrastructures 
The spatial distribution of the existing power grid infrastructures was 

used in order to examine where the unelectrified population lives in 
relation to it. To that end, publicly accessible georeferenced datasets of 
High Voltage (HV) transmission lines, projected Medium Voltage (MV) 
lines, and substations, were used as input data. These datasets can be 
obtained from Energydata.info, an open data platform created by the 
World Bank and its partners with the aim of filling a data gap in the 
energy sector [37]. The Energydata.info portal sources its data from 
multiple reliable and verified sources, such as Africa Infrastructure 
Country Diagnostic (AICD), OpenStreetMap (OSM) contributors, and 
World Bank projects archive and IBRD maps, and international organi
zations [38]. The data used for this case study was updated in 2017. 

It is worth noting that the availability of these datasets varies by 
country and the type of infrastructure. In specific instances, such as the 
case study area, the MV lines dataset is unavailable on the energydata. 
info platform. Consequently, we sourced this information from the 
Gridfinder web application [39]. This application uses machine learning 
and publicly available datasets, such as nighttime data and MODIS land 
cover data to drive MV network distribution lines. The Gridfinder Tool 
estimates the MV lines by utilizing a many-to-many variant of Dijkstra’s 
algorithm and integrating road networks as a cost function. The algo
rithm aims to predict distribution networks based on the assumption 
that lines tend to follow roads [39]. Fig. 4 displays the HV, projected MV 
lines, and substations in the study country. 

The red lines signify HV lines linking remote hydropower plants 
(depicted in green) to substations (highlighted in orange). The blue 
lines, on the other hand, depict the distribution of the projected Medium 
Voltage (MV) lines within cities and towns. These substations encompass 
both HV to MV converters and diesel-based units. 

2.3.5. Land cover 
To evaluate the suitability of land cover for grid extension, we 

employed the MODIS/Terra + Aqua Type MCD12Q1 Version 6 land 
cover dataset, obtained from Earth Data [41]. This dataset provides 
global land cover information at a resolution of 500 m [42]. Maps were 
created using data from the Moderate Resolution Imaging Spectroradi
ometer (MODIS), and land cover classification values were made based 
on a range of 1–17 [26]. Fig. 5 shows the land cover in Ethiopia in 2020, 
classified into different categories based on the MODIS/Terra + Aqua 
data. When calculating the GEP, the OnSSET GIS extraction model 
reclassifies these values, with corresponding weights listed in Table A2. 

This study utilized a reclassification approach [12], detailed in Ap
pendix Table A2, to assess the suitability of different land cover types for 
grid extension. This method integrates the Analytic Hierarchy Process to 
determine the significance (weight) of each land cover type in terms of 
grid extension suitability. Notably, land cover types like open shrub
lands, cropland/natural vegetation mosaics, savannas, grasslands, and 
barren areas are deemed highly suitable for grid extension, while water 
bodies and permanent wetlands are considered the least suitable for 
such expansion. 

2.3.6. Elevation and terrain slope 
To assess the influence of elevation and terrain slope on the suit

ability of grid extension [11], the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer Global Digital Elevation Model 
(ASTER GDEM) elevation dataset is used. This dataset, produced by the 
Japanese Ministry of Economy, Trade, and Industry and NASA, uses 
stereo-pair images from the Terra satellite to generate a digital elevation 
model with a horizontal resolution of 15 m [8,43]. The OnSSET GIS 
extraction model then utilizes this information to create a map of terrain 
slope, a sub-product of DEM, which is used to identify restriction zones 
and determine the suitability for grid extension. 

2.3.7. Road access 
The impact of road infrastructure access (major roads, highways, 

Fig. 5. MODIS/Terra + Aqua land cover types in Ethiopia in 2020 [42].  
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primary, and secondary roads) on the grid extension suitability is 
assessed by evaluating its proximity to roads [9,11]. The road scale 
should at least allow for the use of pickup/trucks [8]. The road data used 
in this study is obtained from the OpenStreetMap project via Geofabrik’s 
server, which is updated daily [44]. 

2.4. Data processing 

2.4.1. Population cluster and electrification rate 
At this stage, the population clusters are generated, and distribution 

of electrified and unelectrified settlements are identified. A population 
cluster also known as a settlement is a geospatial unit representing 
human settlements formed by contiguous groups of people, which serves 
as a basis for the analysis. Population clustering in this context is a 
technique for converting high-resolution raster population data into 
vector-based population clusters with unique characteristics indicating 
population, electrification status, and urban-rural categorization [45]. 
The following three GIS datasets are utilized to generate the population 
cluster and ascertain the current electrification status [26]; more in
formation about the datasets is given in Appendix Table A1.  

⁃ Gridded population dataset (raster layer)  
⁃ Nighttime light imagery (annual median nighttime light (raster)), 

cleaned from background, biomass burning, cloud cover, stray and 
aurora light  

⁃ Administrative boundaries (vector layer) 

To establish population clusters for analysis, researchers have several 
options available. Two common methods include using the PopCluster 
QGIS plugin developed by KTH-dES [35] or the Clustering method 
written in Python developed by Khavari et al. [27] and available on the 
GitHub repository [45]. Both methods allow the user to set a threshold 
for the population layer below which is counted as zero. Alternatively, 
the second method allows to set thresholds for both the population layer 
and the nighttime light. It also allows users to calibrate population data 
using “start year” (base year) population figures. At the end of this 
process, the population clusters are polygonized within the inner 
administrative border to ensure that the clusters do not spill over into 
different administrative territories, enabling leaders and policymakers 
to focus on a specific area/region [27]. 

In this study, the Clustering method [27] was used. The simplified 

Fig. 6. The simplified population clustering process diagram, adopted from Ref. [27].  
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steps of the process are depicted in Fig. 6. A threshold of zero was used 
for both the population and nighttime light data in the analysis. The 
population raster dataset (a raster with cell size of 30 m) is resampled to 
produce an output raster with cell size of 90 m [45]. Clusters are created 
by multiplying a resampled population with rasterized disaggregated 
administrative boundaries and then converting the resulting raster layer 
into polygons, each polygon representing a cluster. The size of the 
clusters is determined by the population’s spatial distribution and 
administrative boundaries. Each cluster denotes a specific region/
location. The Clustering method allowed us to analyze the demographic 
composition of each cluster, including the number of people, their 
electrification status, and the urban/rural split. 

In order to detect already electrified populations, OnSSET uses a 
heuristic approach utilizing a combination of spatial nighttime light 
brightness and population datasets to identify lit clusters and classify 
them as electrified (1) or unelectrified (0) [8], [14], [26]. Specifically, a 
settlement is considered as electrified if it fulfills the criteria of having a 
population density of at least 1 person per square kilometer and a 
nighttime light brightness value exceeding the minimum threshold 
described in Section 2.3.2. Then the number of electrified people is 
determined by summing the population with the count of individuals 
within each cluster who inhabit areas where light sources are detected, 
signifying those with access to electricity [45]. This enables us to assess 
access to electricity at a cluster level, information that is often difficult to 
obtain. The rate of access to electricity at the national level for the year 
2020 is then computed with equation (1). The Clustering method relies 
on thresholds used by Eurostat to classify settlements into urban and 
rural areas [27].   

where i and n represent the population cluster. 
Accordingly, the pixelated population of Ethiopia was divided into 

809,087 clusters by the OnSSET Clustering method. This was accom
plished by merging eight adjacent grid cells of the HRSL population 
dataset. 

2.4.2. Distance from the power grid 
The OnSSET grid extension algorithm begins by identifying all 

population settlements within the study area. Each settlement and 
power grid infrastructure (HV line, projected MV line, and substation) is 
denoted by its x and y position coordinates. The algorithm then itera
tively traverses a subset of the tree nodes using Locality-Sensitive 
Hashing (LSH) to identify the nearest HV line, projected MV line, and 
substation to each settlement [8]. LSH is a method for approximating the 
nearest neighbor search problem in high-dimensional spaces. It works 
by creating a hash table of the data points, and then using the hash 
values to quickly identify points that are likely to be close to the target 
point. 

Once the nearest power grid infrastructure (HV line, projected MV 
line, or substation) is identified for a population settlement, the algo
rithm uses the coordinates of both the settlement and the power grid 
infrastructure to calculate the distance between them. This allows the 
algorithm to determine the proportion of unelectrified and total popu
lation in relation to the grid infrastructure by computing the ratio of the 
sum of unelectrified population to the total population of the country 
and the ratio of the total population located at various distances from the 

grid infrastructure to the total population of the country, respectively. 

2.4.3. Residential electricity demand 
Population projections for 2030, along with different electricity ac

cess targets, referred to as “tiers,” are used to determine future resi
dential electricity demand scenarios. We used the current average 
electricity consumption per household in Ethiopia, approx. 335 kWh/ 
year [46,47], as a benchmark to adapt two consumption tiers. From the 
Global Tracking Framework [48], we adapted tier 1 (38.7 kWh/house
hold/year) and tier 3 (803 kWh/household/year), which are lower and 
higher than Ethiopia’s average consumption, respectively. These tiers 
are assumed to be applied uniformly across the country. Initially, two 
separate access tiers were considered for urban and rural areas. How
ever, the author notes that the urban areas of the country have nearly 
achieved electricity access, allowing for the use of a single, uniform tier 
without sacrificing any important information. The electricity demand 
for unelectrified settlements is calculated by multiplying the target 
electricity access tier by the projected population for the year 2030, 
taking into account the average household size in rural and urban areas. 

2.5. Data analysis and visualization 

At this phase, the suitability of grid extension to unelectrified set
tlements was evaluated by analyzing the GEP and LCOE. Accordingly, a 
spatial grid extension suitability map showing the distribution of areas 
most suitable, semi-suitable and least suitable for grid-based electrifi
cation is developed. 

2.5.1. Aggregate effects of geospatial factors 
The combined and weighted contribution of geospatial factors to grid 

extension suitability is estimated through Equation (2). Using this 
equation, we also evaluated the weighted contribution of each geo
spatial factor to the total grid extension suitability score. The input 
parameters were first classified between 1 and 5, with higher values 
indicating more suitable conditions, as shown in Table A2. The weight 
assigned to each geospatial factor represents the importance of that 
feature in determining the grid expansion penalty (GEP). The default 
weights provided by OnSSET were adopted in this study based on their 
extensive usage by the Global Electrification Platform in analyzing 
electrification strategies for 58 countries, many of which are SSA 
countries including Ethiopia [49]. However, the Analytic Hierarchy 
Process can be used to determine the weight assigned to each factor 
[12]. The GEP multiplier for each settlement is calculated using Equa
tion (3) [26]. This equation calculates the grid penalty to increase the 
grid cost in areas with high slope angles, unsuitable land cover, higher 
substation distance, higher road distance, or high elevation, [8,14,15]. 

Combined classification = (0.30 ∗ slope angle + 0.20

∗ land cover suitability + 0.20

∗ substation distance + 0.15 ∗ road distance

+ 0.15 ∗ elevation height )
(2)  

Grid expansion penalty (GEP)= 1 +
e(0.85∗|1− Combined classification|) − 1

100
(3) 

Access to electricity at national level=

∑n

i=1
Electrified population in each clusteri

∑n

i=1
Population in each clustersi

x100% (1)   
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The GEP is a crucial factor in the optimization of the grid extension 
process, as it estimates the additional cost (penalty) of extending the 
grid to unelectrified settlements. Settlements with high GEP values are 
considered less suitable for grid extension due to their higher penalty, 
while those with low GEP values are more suitable. To visually represent 
this information, the GEP was then mapped and settlements were 
categorized into three classes of suitability (most suitable, semi-suitable, 
and less suitable) based on their GEP values, using quantiles. This map 
may provide decision-makers and energy companies with a better un
derstanding of areas where grid expansion would be relatively feasible 
from the supply side perspective. 

2.5.2. LCOE 
The LCOE for each population settlement was calculated using a cost 

model following Nerini et al. [50] and Mentis et al. [12]. The LCOE 
calculation takes into account both supply and demand side factors 
including capital expenses, operating costs, and expected project life
span. In the LCOE calculations, we considered three key parameters 
interlinked with costs: I) the targeted level of electricity demand 
expressed in kWh/household/year; II) population density, quantified in 
households/km2; III) local grid connection specifics, encompassing the 
distance from the nearest grid (km), translatable into wire costs and the 
average national cost of grid electricity ($/kWh). Details of the cost 
model are given in the Appendix Table A4 and Table A5. Based on the 
LCOE values, settlements are classified into three suitability categories 
as most suitable, semi-suitable, and less suitable. Settlements with a low 
LCOE value were deemed most suitable for grid extension while those 
with an intermediate LCOE value were considered semi-suitable, and 
settlements with a high LCOE were considered less suitable. Finally, the 
data analysis results are presented in maps, graphs, and figures for better 
understanding and easier visualization. 

It is evident from the detailed description of the methodology section 
that this study is based on high-quality and multiple datasets to the 
greatest extent possible, including high-resolution population datasets, 
NTL datasets, varying demand levels; and as many robust and relevant 
data analysis methods as possible, including GEP, LCOE, and visual- 
spatial representations. 

Fig. 7. OnSSET based electricity access, applying 0.27 μW cm− 2⋅sr− 1 lower bound noise floor, resulting in an estimated electricity access of 51.3 %.  

Table 1 
Geospatially estimated electricity access at different noise threshold floors.  

NTL data noise floor 
(μW ⋅ cm− 2 ⋅ sr− 1) 

Estimated 
electricity 
national 
access 

Urban and 
rural access 
respectively 

Compared to the 
national statistics 
from World Bank 

0.25 69.1 % 98.7 % and 
61.4 % 

Overestimated (+18 
%) 

0.27 51.3 % 97 % and 39.3 
% 

Overestimated (+0.2 
%) 

0.28 44.1 % 96 % and 30.4 
% 

Underestimated 
(− 7%) 

0.30 33.8 % 93.4 % and 
18.2 % 

Underestimated 
(− 17.3 %) 

0.35 24.6 % 88.4 % and 8.1 
% 

Underestimated 
(− 26.5 %) 

The results indicate that a noise floor of 0.27 μW cm− 2⋅sr− 1 provides the best 
estimate, with a slight overestimation of the national electrification rate by 0.2 
% compared to the World Bank’s reported rate of 51.1 % for Ethiopia. In 
contrast, a noise floor of 0.28 μW cm− 2⋅sr− 1 underestimates electrification rates 
by 7 %. The study highlights the importance of selecting an appropriate noise 
floor when using NTL data for estimating access to electricity. Additionally, the 
study suggests that using a noise floor of 0.30 μW cm− 2⋅sr− 1 or higher can 
provide better accuracy in determining access to electricity in urban areas, while 
a noise floor of 0.27 μW cm− 2⋅sr− 1 or higher yields better results for estimating 
access in rural areas. 
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3. Results and Analysis 

3.1. Geospatially estimated electrification rate 

Fig. 7 provides a visual representation of the distribution of electri
fied and unelectrified populations at the cluster level, as determined by 
the methodology described in section 2.4.1. The blue areas indicate the 
electrified population, while the yellow areas correspond to the un
electrified population. To accurately estimate the electrification rate, 
the study applied five different noise filter floors to find the noise floor 
that minimizes the discrepancy between the estimated access to elec
tricity and the World Bank report, as explained in section 2.3.2. Table 1 
presents the estimated access to electricity obtained from these filters, 
which varies from 69.1 % at the lowest noise filter value (0.25 μW 
cm− 2⋅sr− 1) to 24.6 % at the highest noise filter value (0.35 μW 
cm− 2⋅sr− 1). 

Fig. 8 shows the subnational electrification estimates of the 11 
regional states/administrative regions. These results are compared with 
the regional electricity access rates available in the GoE NEP 2.0 report, 
specifically for the five regional states. The subnational electrification 
estimation results generally align with the GoE NEP 2 report (see 
Figure A3.2 in [20]), with variations observed in specific regions. For 
instance, Addis Ababa’s perfect electrification estimate of 100 % closely 
corresponds to the GoE NEP 2’s 99.9 % rate. While Amhara’s 41.8 % 
estimate falls below GoE NEP 2’s 51.3 %, a correlation is still evident. 
Conversely, our model’s estimates for Oromia (69.20 %) and SNNP 
(71.49 %) surpass the GoE NEP 2 rates of 63.3 % and 37.9 %, respec
tively. The Tigray variation is notable, with our estimate at 61.08 % 
compared to the GoE NEP 2’s 87.7 %. These comparisons highlight the 
model’s insights and the significance of using diverse sources for 
comprehensive assessments. 

3.2. Power grid infrastructures proximity to population settlements 

The results of the study presented in Section 2.4.2 indicate that a 
significant portion of Ethiopia’s population resides in close proximity to 
power grid infrastructure. Specifically, Fig. 9 shows that 85 % of the 
population lives within 10 km of the projected medium-voltage (MV) 
transmission lines, while 45 % of the population lives within the same 
distance of the high-voltage (HV) lines. Combining the two figures re
veals that 87.7 % of the population lives within 10 km of either HV or the 
projected MV lines. Additionally, the study shows that almost all elec
trified population in Ethiopia is located within 5 km of existing grid 
lines, while nearly all the unelectrified populations are located within a 
25 km from existing grid lines. These findings have important implica
tions for the planning and prioritization of electrification projects in 
Ethiopia, particularly with regards to extension of the power grid. 

Unfortunately, this study did not include off-grid electrification 

solutions such as mini-grids due to lack of reliable nationwide data. As a 
result, the geographic overlap between the grid and off-grid systems, as 
well as the distribution of Ethiopia’s population relative to these off-grid 
power generation and distribution systems are not analyzed in this 
study. 

Limited access to data on MV lines presents a challenge in assessing 
their contribution to electrification planning. However, the inclusion of 
projected MV lines in our analysis improves the understanding of the 

Fig. 8. Estimated access to electricity at subnational level.  

Fig. 9. Share of the population as a function of distance from the closest HV/ 
projected MV line. The total share of the unelectrified population is 48.7 %. 

Fig. 10. Share of the population as a function of distance from the closest 
substation. The total share of the unelectrified population is 48.7 %. 
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distribution of the total and unelectrified population in relation to the 
existing grid infrastructure. This strengthens the robustness of our 
findings and provides a clearer picture of the proportion of the popu
lation residing in close proximity to the grid. In addition, the use of high- 
resolution population data (30 m) enhances the accuracy of our analysis, 
enabling the identification of areas without access to electricity at a finer 
resolution. 

Fig. 10 presents the percentage of the total and unelectrified popu
lation within different distances from the closest substation. The results 
reveal that more than 90 % of the total population and nearly all the 
electrified population are located within 100 km of the nearest sub
station. Furthermore, almost all the unelectrified population is located 
within 125 km of the nearest substation. 

3.3. Grid extension suitability and penalty 

Fig. 11 illustrates the relative contribution of the five geospatial 
factors to the grid extension suitability, as determined from equation (2) 
in section 2.5.1. The results indicate that terrain slope contributes the 
most to the grid extension suitability, accounting for 40.8 % of the total 
score. This is because the majority of settlements in Ethiopia, 94 %, have 
a terrain slope of less than 10◦, which is considered the most suitable 
class in this study, as presented in Table A2 in the Appendix. In contrast, 
the distance from the substation contributes the least (5.7 %) to the 
suitability score. This is because only a small fraction of the settlements 
falls under the most suitable class, which indicates that the distance 
from the substation has a high contribution to the GEP multiplier, 
resulting in a significant impact on the capital cost of grid extension. 

The impact of the five geospatial factors on grid extension costs was 
evaluated by calculating the GEP multiplier using Equation (3). Ac
cording to the analysis results, the combined impact of these factors 
could raise the cost of grid extension across unelectrified settlements in 
Ethiopia by an average of 8.6 %, ranging from 2.3 % to 29 % depending 
on the location. The variability in GEP values across settlements is likely 
due to location-specific factors, implying that the cost of grid extension 
may vary based on the specific conditions of the settlement. The GEP 
multiplier is also used as an indicator of the suitability of grid extension, 
as a penalty is the inverse of suitability. Settlements with a lower GEP 
value are more suitable for grid extension, while those with a higher GEP 
value are less suitable. Fig. 12 presents a spatial representation of the 
GEP multiplier. The figure shows the relative suitability of extending the 
grid network across the country. Settlements with a GEP value below 1/ 
3 quantile (green) are deemed most suitable for grid extension, those 
with a GEP value in the range between 1/3 and 2/3 quantiles (yellow) 
are semi-suitable, and those with a GEP value in the upper 2/3 quantile 
(red) are unsuitable for grid extension due to the high penalty cost 
involved. 

The most suitable class of settlements requires lower investment 

costs than other settlements, while the less suitable class of settlements 
would incur high investment costs. There is a significant variation in the 
distribution of grid extension suitability across the country. 

The semi-suitable locations are distributed throughout the country. It 
is worth noting that proximity to electrified settlements is not the only 
determining factor for grid extension suitability. There are areas near 
electrified settlements but not suitable for grid extension due to other 
geospatial factors than just distance. On the other hand, there are also 
areas that are semi-suitable for grid extension despite being far from 
electrified settlements. This is due to other factors, such as favorable 
local topography, suitable land cover, and convenient road access. 

3.4. Grid extension suitability in terms of LCOE 

Fig. 13 presents the findings of the geospatial analysis using the 
LCOE as a primary metric for grid extension suitability. The LCOE was 
calculated for two distinct electricity access targets: tier-1 (38.7 kWh/ 
household/year) and tier-3 (803 kWh/household/year) as adapted from 
the World Bank’s Global Tracking Framework [48]. The results shown 
by the two maps in Fig. 13 provide a comprehensive visual represen
tation of the regions that are most suitable (green), semi-suitable (yel
low), and less suitable (red) for grid extension for both access targets. 

Semi-suitable locations are scattered across the country. Fig. 13 also 
shows that as the demand target increases from tier-1 to tier-3, the 
proportion of people falling under the most suitable category increases 
by 13 %. Conversely, the proportion of people falling under the less 
suitable category decreases by 62 % as the demand shifts from tier-1 to 
tier-3. 

4. Discussion 

4.1. Distribution of the total and unelectrified population in relation to the 
grid 

Approximately 87.7 % of Ethiopia’s population resides within 10 km 
of the HV or projected MV grid lines, with 85 % within the 10 km dis
tance of the projected MV lines. Our findings also show that almost the 
entire unelectrified population (48.7 % of the total) resides within 25 km 
of power grid lines. This finding is in agreement with the Ethiopian 
government’s NEP 2.0 report, which states that 90 % of the population 
lives within 10 km distance from the existing MV lines [20]. A study by 
Arderne et al. [39] using nighttime light data to map power system 
networks calculated that 97 % of the world’s population is located 
within 10 km from an MV line. The authors, however, noted that this 
estimate varies greatly among regions and income levels, with SSA 
having the highest proportion of individuals beyond 10 km from an MV 
line. Our results suggest that the distribution of unelectrified population 
within a reasonably short (10 km) distance from HV/the projected MV 
lines could make grid extension viable, considering other factors and 
available capital. 

4.2. National electrification rate estimation using geospatial analysis 

The electrification rate estimation using the NTL imagery and pop
ulation data shows that for a lower bound noise filter of 0.27 μW 
cm− 2⋅sr− 1, the estimated electricity access rate is relatively accurate 
with +0.2 % margin of error compared to the World Bank report. 
However, a 0.35 μW cm− 2⋅sr− 1 noise floor leads to larger discrepancies 
with a − 26.5 % margin of error. This result is in line with earlier studies 
[27,29], which similarly underestimated electricity access rate in 
Ethiopia by 26.8 % and 20 %, respectively. It is worth noting that the use 
of a noise floor less than 0.35 μW⋅cm− 2⋅sr− 1 in estimating electrification 
rate resulted in estimates higher than those reported in previous studies 
by Falchetta et al. [29] and Khavari et al. [27]. The underestimation of 
the electricity access rates, when lower bound noise floors of above 0.27 
μW cm− 2⋅sr− 1 are used, could be due to several factors, including under 

Fig. 11. The contribution of each geospatial factor to the grid extension 
suitability. 
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detection of standalone solutions such as solar-home-systems (SHS), or 
low levels of lighting in highly distributed communities [29]. The 
method’s reliability is indicated by its alignment with the World Bank’s 
data, affirming its practical application potential. 

4.3. The influence of geospatial factors on grid extension suitability 

Our findings show that among the considered geospatial factors, 
terrain slope and land cover contribute the most to the suitability of grid 
extension to unelectrified settlements (see Fig. 11). Terrain slope has the 
most significant contribution to the grid extension suitability or con
tributes the least to the GEP multiplier, compared to the other four 

Fig. 12. Grid extension penalty (GEP) map.  

Fig. 13. Relative grid extension suitability in Ethiopia for two different electricity demand targets (tiers): 38.7 kWh/household/year (left) and 803 kWh/household/ 
year (right). 
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geospatial factors. Land cover is the second significant factor that con
tributes to the suitability of grid extension to unelectrified settlements. 
This is because the majority of settlements in Ethiopia are located in 
cropland, grassland, and savanna areas and according to the suitability 
classification outlined in section 2.3.5, grasslands, and savannas were 
classified as the most suitable and croplands were classified as semi- 
suitable for grid extension. 

The distance from existing substations, in contrast, contributes the 
least to the grid extension suitability, accounting for 5.7 % of the total 
suitability score. This is due to that only a minuscule fraction of settle
ments falls under the most suitable class, while the vast majority of 
settlements (97 %) are found in the least suitable class of distance from 
substations. Thus, the distance of settlements from existing substations 
plays a crucial role in increasing or decreasing the GEP multiplier and is 
perhaps the primary limiting factor for grid extension in Ethiopia. 

According to the results presented in section 3.3, the combined 
impact of the five geospatial factors can result in a substantial rise in the 
investment cost by up to 29 %, depending on the location. This un
equivocally illustrate the critical role of geospatial factors in grid 
extension planning; neglecting them can lead to nearly 30 % cost in
creases. A comparable study [12] showed that the GEP multiplier could 
escalate the grid extension investment cost by 30 %. 

4.4. Novelty and significance of the study 

This study introduces several novel aspects to the field. Firstly, it 
methodologically complements prior studies [8,14–17] which have 
implicitly considered geospatial factors in grid extension planning, 
especially in the context of grid vs. off-grid electrification. However, 
these studies, except [16], have used lower-resolution population 
datasets with a spatial resolution of 1 sq. km. This reliance on 
lower-resolution data can lead to an underestimation or misrepresen
tation of geospatial factors due to the complexities present at finer 
scales. Consequently, critical nuances in grid extension suitability might 
be overlooked, potentially resulting in suboptimal investment choices 
and inefficiencies in electrification planning. With finer spatial granu
larity (30 m for terrain, 500 m for land cover, and 30 m for population 
distribution), we are able to capture intricate local variations that 
impact grid-extension suitability. By leveraging such high-resolution 
datasets, our study minimizes the risk of overlooking critical geo
spatial factors, ultimately contributing to more effective and accurate 
electrification planning. 

Secondly, this study stands out by incorporating not only HV lines 
but also the projected MV lines and substations into the modeling pro
cess, unlike the studies referenced as [14,15], and [17]. These studies 
primarily focused solely on HV lines when evaluating electrification 
planning in Nigeria, Ethiopia, and SSA, respectively. This comprehen
sive inclusion of multiple voltage levels and infrastructure elements 
enhances the accuracy of our electrification planning analysis. It allows 
us to capture a more nuanced representation of the grid network and its 
potential extensions, leading to more robust and precise planning out
comes. Thirdly, this study breaks new ground by explicitly analyzing the 
spatial impact of geospatial factors on grid-extension suitability, 
factoring in diverse energy demand targets or electrification tiers. 

Although the research employed Ethiopia as a case study, the 
robustness of the methodology applied and the datasets and analyses 
employed make the findings generalizable and applicable to other 
developing countries that have sizable populations without access to 
electricity. In addition to its scientific contribution, this study offers 
valuable insights to decision-makers, government bodies, and utility 
companies, guiding investment decisions towards areas with the highest 
potential for benefiting from grid extension. This targeted approach 
enhances the overall resource efficiency of electrification efforts. 

4.5. Limitations of the study 

One limitation pertains to the reliance on open-access datasets, 
which might not consistently capture the most up-to-date information. 
This reliance on open-access datasets could potentially introduce limi
tations in terms of data accuracy, affecting the precision of the study’s 
findings and conclusions. A particular noteworthy limitation within this 
context pertains to our use of the Gridfinder Tool for assessing popula
tion proximity to MV (Medium Voltage) lines. It is important to 
acknowledge that predictive tools like Gridfinder, relying on remote 
sensing techniques and publicly available datasets, such as nighttime 
data and MODIS land cover data, to establish MV network distribution 
lines, may not achieve the same level of reliability as data directly 
sourced from utility companies. This discrepancy is evident when 
considering the contrast between the relatively low nightlight imagery 
in Ethiopia and Gridfinder’s estimates of densely distributed MV lines in 
the west of Addis Ababa, as illustrated in Fig. 4. This could potentially 
affect the accuracy of the grid extension suitability analysis conducted 
using the LCOE for each settlement. However, this does not affect the 
grid extension suitability analysis solely based on geospatial factors. 

Besides, the study does not take into account off-grid solutions such 
as SHSs and mini-grids in accelerating the electrification in remote 
areas. Grid extension feasibility might not fully represent the complete 
electrification landscape. By excluding consideration of off-grid solu
tions, the study might not capture the potential contributions of these 
alternative approaches to rapidly expand electrification in remote and 
underserved areas. In addition, the study’s scope is confined to the 
economic viability of grid extension and does not address other chal
lenges (political, regulatory, socio-cultural factors, etc.) that often 
significantly influence large-scale electrification projects. 

Moreover, a noteworthy limitation of the study pertains to its reli
ance on nighttime satellite imagery, collected at 1:30 a.m. local time 
when many rural households may not have their interior lighting 
switched on, thereby remaining invisible from an external perspective. 
This limitation can result in the underestimation of actual electricity use 
in rural areas, especially for activities such as indoor lighting, refriger
ation, or electricity for irrigation, which might not be detectable by the 
satellite sensors. This can lead to the omission of actual electricity use in 
the estimation. A previous study [30] also highlighted this challenge, 
indicating that the NOAA VIIRS sensor’s capability to detect electricity 
availability might be compromised in areas with minimal or absent 
outdoor lighting. Even in cases where electrified villages emit subdued 
light, the sensor’s sensitivity may not be sufficient for accurate detec
tion. This potential challenge influences the accuracy of electrification 
rates estimation. The study underscores the need for a nuanced under
standing of the limitations inherent in the use of nighttime imagery for 
electrification assessment and acknowledges the potential for discrep
ancies in the results due to these constraints. Additionally, the accuracy 
of electrification estimation is also contingent upon the noise filter 
applied to the nighttime light imagery, which can inadvertently affect 
the identification of electrified areas. 

5. Conclusions and future work 

This paper investigates how and to what extent geospatial factors 
(distance from substation and road, terrain slope, elevation, and land 
cover) influence grid expansion suitability in Ethiopia. Using high- 
resolution nighttime light (NTL) imagery and population data with the 
OnSSET methodology, the research examines the proportion of the 
country’s population in relation to the power grid infrastructures and 
the suitability of extending the grid to unelectrified areas. 

The findings show that a significant portion of the population resides 
near the existing power grid lines, with 87.7 % living within a 10 km 
distance from a high-voltage lines and/or projected medium-voltage 
line, and 85 % residing within a 10 km distance from the projected 
medium-voltage lines. Nearly all unelectrified population (about 49 % of 
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the total) lives within 25 km of power grid lines. This proximity suggests 
the potential cost-effectiveness of grid extension-based electrification. 

The study finds that the combined impact of the five geospatial 
factors (GEP multiplier) increases grid extension costs by 2.3 %–29 %, 
depending on location. Terrain slope and land cover are the factors 
contributing the most to the suitability of extending the grid to un
electrified settlements, while distance from substations contributes the 
least to the grid extension suitability. This emphasizes the necessity of 
considering geospatial factors for accurate and efficient grid extension 
planning. Neglecting these factors could lead to cost underestimations 
and ineffective electrification strategies. Consequently, the Ethiopian 
Electric Utility (EEU) and Government of Ethiopia (GoE) should inte
grate these factors in planning, moving beyond the conventional focus 
on proximity to existing infrastructure. Incorporating spatial analyses of 
grid extension suitability enhances planning efficacy. 

Furthermore, the study demonstrates that grid extension suitability, 
gauged by LCOE, highlights the need to consider both electricity de
mand and population when assessing grid extension feasibility. This 
underscores the significance of geospatial factors in grid planning and 
informs priority areas for extension or off-grid solutions. This approach 
optimizes costs and expedites electricity access in unelectrified regions. 

Future research could explore demand estimation, cost-effective alter
natives, and investment strategies for universal electrification. 
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Appendix. All the input GIS datasets, parameters and variables used in this paper are listed below  

Table A1 
Input GIS datasets.  

Dataset Data source Data type Spatial resolution Temporal coverage The year used in analysis 

Population HRSL (High Resolution Settlement Layer) [28] Raster 30 m 2003–2020 2018 
Administrative boundaries GADM administrative areas V.4.0 [36] Vector/polygon – 2018–2022 2018 
Night-time light VIIRS DNB night-time lights [51] Raster ~500 m (at equator) 2012–2021 2020 
HV and substation EnergyData.info [37] Vector/polygon – 2012–2017 2017 
MV lines gridfinder.org [40] Vector/polygon – − 2020 2020 
Land cover MODIS Land Cover Product (MCD12Q1) V6 [42] Raster − 500 m 2001- 2020 
Terrain elevation and slope GDEM (NASA and Japan Space 

Systems) [43] 
Raster 30 m 2009–2019 2019 

Roads Geofabric [44] Vector/lines – − 2018 2018   

Table A2 
Geospatial factors classification and weight [26,49].   

Geospatial factor 
Weight Suitability index 

5 (suitable) 4 3 2 1 (unsuitable) 

Slope (degree) 30 % 0–10 10.1–20 20.1–30 30.1–40 >40 
Land cover a 20 % 7,9,10,14,16 2,4 1,3,5,12,13,15 6,8 11,17 
Distance to substation (km) 20 % 0 0.5 1 5 >10 
Distance to road (km) 15 % 0 5 10 25 >50 
Digital elevation (m) 15 % <500 500–1000 1000–2000 2000–3000 >3000  
a Further classification can be obtained at https://lpdaac.usgs.gov/products/mcd12q1v006/.  

Table A3 
Major socioeconomic parameters of the study area [18,46,47,52].  

Parameters Unit Year Study base year value 

Population Million persons 2020 114.96 
Medium population growth Percent 2030 2.2 
High population growth Percent 2030 2.5 
Average household size, urban People 2030 4.4 
Average household size, rural People 2030 5.2 
Urban ratio start year Percent 2020 21.7 
Urban ratio end year Percent 2030 26.9 
Total electricity access Percent 2020 51.1 
Urban electricity access Percent 2020 93.2 
Rural electricity access Percent 2020 39.4   
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Table A4 
Grid generating and T&D cost. Sources [12,50,53–56].  

Parameter Value Unit 

HV line (69–132 kV) 53000 USDkm− 1 

MV line (11–33 kV) 7000 USDkm− 1 

LV line (0.2–0.4 kV) 4250 USDkm− 1 

HV to MV substation (1000 kVA) 25000 USD/unit 
MV to LV substation (400 kVA) 10000 USD/unit 
Service transformer (50 kVA) 4250 USD/unit 
Generating cost 0.09 USDkWh− 1 

Additional connection cost per household connected to grid 150 USD/HH 
T&D losses 7–29 % of capital cost/year 
O&M costs of distribution 2 % of capital cost/year   

Table A5 
Other model parameter. Sources [12,18,52].  

Parameter Value Unit 

Annual new grid connection limit 534,000 Households/year 
Annual grid generation limit 389 MW/year 
Discount rate 8 Percent 
Lifetime 30 years  

Fig. A1. Filtered nighttime light of 2020 using 0.25 μWcm-2sr-1 (left) and 0.35 μWcm-2sr-1 (right) lower bound noise floor.  
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