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Abstract: Motivated by cosmic ray (CR) re-acceleration at a potential Galactic Wind
Termination Shock (GWTS), we present a numerical model for time-dependent Diffusive
Shock Acceleration (DSA). We use the stochastic differential equation solver (DiffusionSDE)
of the cosmic ray propagation framework CRPropa3.2 with two modifications: An importance
sampling module is introduced to improve statistics at high energies in order to keep the
simulation time short. An adaptive time step is implemented in the DiffusionSDE module.
This ensures to efficiently meet constraints on the time and diffusion step, which is crucial to
obtain the correct shock spectra. The time evolution of the spectrum at a one-dimensional
planar shock is verified against the solution obtained by the grid-based solver VLUGR3 for
both energy-independent and energy-dependent diffusion. We show that the injection of pre-
accelerated particles can lead to a broken power law spectrum in momentum if the incoming
spectrum of CRs is harder than the re-accelerated spectrum. If the injected spectrum is
steeper, the shock spectrum dominates at all energies. We finally apply the developed model
to the GWTS by considering a spherically symmetric shock, a spiral Galactic magnetic
field, and anisotropic diffusion. The time-dependent spectrum at the shock is modeled as
a basis for further studies.
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1 Introduction

The cosmic-ray energy spectrum and composition is by now well-studied from GeV up to
ZeV energies. The origin of these highly energetic, charged particles is still largely unknown.
Particularly unresolved is the question of the energy range between 1015 eV and 3 × 1018 eV.
This energy range is defined by two kinks in the spectrum, the “knee” and the “ankle”. Up
to ∼ 1015 eV it is believed that CRs are accelerated in the Galaxy, most likely at Supernova
Remnants (SNRs) (see e.g. [1]). Above the ankle (∼ 1018 eV) [1] CRs have gyroradii larger
than the Galaxy and are clearly of extra-galactic origin. The breaks in the spectrum may
indicate changes in the contributions to the spectrum: The spectral softening at the knee
could be due to the maximal energy reached by Galactic sources. It could also result from a
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change in the energy-dependence of the residence time of CRs. The break at ≈ 200 − 300 GV
especially at lower energies ([1] and references therein) are also attributed to a change in
the transport properties.

In general, the observed power-law spectrum indicates that CRs are accelerated by
stochastic processes. There are two possible scenarios of how to accelerate particles stochasti-
cally, both developed early-on by Fermi. Fermi second-order acceleration [2] was suggested
first as acceleration on moving magnetized clouds in the Galaxy. Fermi first-order accel-
eration [3–7] is more efficient: CRs are scattered on both sides of a shock and may cross
the shock front repeatedly. Each time they cross the shock, they are accelerated depending
on their energy, ∆E ∝ E. The energy gain can be derived by Lorentz boosts between the
upstream and downstream reference frames. For non-relativistic, stationary shocks and
neglecting non-linear interaction between the CRs and the background plasma the slope of
the stationary shock spectrum is purely dependent on the shock’s compression ratio. Even
for non-linear diffusion coefficients the spectral form is unchanged [8].

There are some limitations to DSA, one of which is that particles must be able to reach
the shock from downstream to upstream again, see, e.g. [9]. In order to cross the shock, CRs
must have been accelerated to energies that give them a gyroradius larger than the shock
width, which is also known as the injection problem. Also, CRs have to be contained in
the acceleration region to experience ample acceleration. This implies a diffusive particle
transport with diffusion low enough that CRs are not escaping too quickly. Containment can
also be implied by the geometry of the system, e.g. in stellar clusters.

An upper bound of the maximum energy produced by a source can be estimated by
the Hillas criterion and depends on the particles’ rigidity and the size of the acceleration
region [10]. Often magnetic field amplification due to CRs determines the maximum energy
reached by DSA at the shock. There are other limiting factors like the lifetime of the
accelerator or loss processes like synchrotron radiation.

In the transition region from Galactic to extragalactic CRs the Galactic Wind Termination
Shock (GWTS) might contribute to the sources of CRs via re-acceleration [11, 12]. A possible
Galactic wind can be driven by, e.g., radiation or the CRs themselves (e.g. [13–17]). It may
form a shock when the supersonic wind slows down due to interaction with the Intergalactic
Medium (IGM). Especially for starburst galaxies there is evidence for supersonic outflowing
winds (e.g. [18, 19]).

CRs with their origin in the Galactic disk are advected outwards and are accelerated to
higher energies at the GWTS. Either they leave the Galaxy or a fraction of the high-energy
CRs may be able to propagate back to the Galaxy against the Galactic wind. The idea
of particle acceleration at the GWTS was already discussed e.g. by [11, 12, 20], and most
recently by [21]. With the assumption that about two solar masses per year are advected
outwards, the GWTS cannot be supported by the wind longer than 100 Myr [22]. The
finite lifetime of the shock may also impact the shock spectrum and its contribution to the
observed cosmic-ray spectrum on Earth.

Not only the origin of CR but also their transport properties change in the transition
region. Particles undergo a random walk due to scattering on magnetic field turbulence. The
interaction of CRs with the magnetic field turbulence depends on the gyroradius and the
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turbulence spectrum of the magnetic field. CRs with energies above ∼ 1018 eV engage less
in interaction with the turbulent Galactic magnetic field and can only be described by the
diffusion approximation at late times, and with that, on larger scales [23]. The transition
time from ballistic to diffusive transport generally grows with energy. In energy, it is still
unclear where exactly the transitions between diffusive and ballistic transport as well as
Galactic and extra-galactic CRs lie.

Methods for the simulations of CR transport have to reflect that transition: For high-
energy extra-galactic CRs the equation of motion is integrated. In this ballistic regime,
individual particle trajectories in arbitrary magnetic field configurations can be simulated
precisely. However, for Galactic CRs with energies below 1016 eV this approach becomes
computationally costly as most of the computation is spend on resolving the particles’ gyration.
Therefore, for Galactic CRs the transport equation is commonly used to describe diffusive
transport in space and momentum.

The simplified, assuming isotropic (in momentum space) CR distributions, Fokker-Planck
equation, often called Parker transport equation (e.g. [24])

∂N
∂t

+ u⃗ · ∇N = ∇ · (κ̂∇N ) + 1
p2

∂

∂p

(
p2D

∂N
∂p

)
+ 1

3 (∇ · u⃗) ∂N
∂ ln p

+ S(x⃗, p, t), (1.1)

describes the time evolution of the cosmic-ray differential number density N = p2f(x⃗, p, t)
in space x⃗ and momentum p = |p⃗|, with f being the CR distribution function. Individual
terms describe advection of CR with a background flow u⃗, spatial diffusion described by
the diffusion tensor κ̂, momentum diffusion described by the coefficient D, adiabatic energy
changes and cosmic-ray sources S.

In the test-particle picture, the average change in the particle’s momentum can be
calculated from changing the local fluid frames when the shock is crossed. Together with the
probability to escape downstream and never return to the shock, the well-known power-law
in momentum can be derived (e.g. [5] or microscopic derivation in [25]). In the diffusive
picture, the ensemble-averaged distribution function f or density N , are described by the
transport equation in the frame in which the shock front is stationary. Here, diffusive shock
acceleration results from adiabatic heating and the interplay between advection and spatial
diffusion (e.g. [4, 26] or macroscopic approach in [25]).

The spatial diffusion tensor is often defined in a local coordinate frame, describing
diffusion parallel and perpendicular to the local magnetic field. The momentum diffusion
coefficient describes acceleration of CR in the presence of magnetic field turbulence (second-
order Fermi acceleration). The knowledge of both, spatial and momentum diffusion tensors,
is essential for the complete description of CR transport.

There is not yet a closed description of the diffusion tensor. Depending on the assumed
magnetic field, coherent background and turbulent component, and the CRs properties
analytical or numerical approximations might be available (e.g. [27–33]). On the other, hand
it can also be used as a free parameter and fitted to match, e.g., the observed primary and
secondary ratios in a model of Galactic cosmic-ray transport. Since all of these approaches
come with their own caveats, we will use normalized diffusion coefficients κ̃∥ = 1 throughout
this work.
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Considering the GWTS mentioned at the beginning, re-accelerated CRs are expected to
be in the transition from diffusive to ballistic transport. We expect a finite lifetime for the
GWTS, so that the transition time between the transport regimes is important. Close to
the shock due to strong turbulence induced by the CRs themselves the diffusive approach
is valid for higher energies than in the interstellar or IGM at a fixed time [5, 34]. Particles
escaping the acceleration region, however, cannot necessarily be described by the diffusion
approximation depending on their energy. In order to assess the contribution of the GWTS to
the cosmic-ray spectrum they must be propagated back to the Galaxy using either the ballistic
or diffusive approach depending on their energy. Thus, the spectrum observed on Earth is
further modulated by the energy-dependence and spatial variability of the diffusive transport.

The CR propagation framework CRPropa3.2 [35] offers the possibility to simulate
acceleration and propagation in both regimes. Also, the structure of CRPropa3.2, which is
described in more depth in section 2, makes it relatively easy to define arbitrary magnetic
field and shock configurations in up to three dimensions. Together with the GWTS scenario,
this motivates an in-depth study of DSA using the diffusion approach of CRPropa3.2 [36].
In test scenarios we explore different questions related to the re-acceleration of CR at the
GWTS: How does the spectrum change when a finite shock lifetime is considered? What are
the effects on the spectrum when CRs are already pre-accelerated to a power-law? To what
extent does a finite acceleration region affect the maximal energy that can be reached?

First, we give a short overview of CRPropa3.2 and its diffusion approach which is based
on Stochastic Differential Equations (SDEs) in section 2. A new module is presented that
was specifically implemented to enhance statistics when simulating DSA with CRPropa3.2.

In section 3 we show that DSA simulations with CRPropa3.2 result in the expected
spectral slope for acceleration at one-dimensional planar shocks. We validate the obtained
stationary spectra with predictions from theory and other ensemble-averaged approaches
to DSA. The time evolution of the spectrum at the shock is compared to simulations that
integrate the transport equation using the finite difference code VLUGR3 [8, 37, 38]. We
clarify constraints for simulating DSA based on SDEs. Based on those findings, we consider a
finite shock lifetime, energy-dependent diffusion and the injection of pre-accelerated spectra.
The effects of each modification on the spectrum at the shock or the downstream boundary
are analyzed separately.

In section 4 we take anisotropic diffusion into account and consider oblique shocks.
Finally, we present the time-dependent spectrum at a simple model for the GWTS: A
spherical symmetric shock and spiral magnetic field.

2 Methods

In this section we briefly introduce SDEs and how they relate to the transport equation (1.1).
We explain how they are used in CRPropa3.2 to solve the transport equation. For the simu-
lation of DSA a new module, CandidateSplitting, was implemented to enhance statistics
at high energies.
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2.1 Stochastic Differential Equations

One way to simulate DSA is the solution of the transport equation (1.1), a partial differential
equation in reduced phase-space. The solution directly results in the distribution function of
CRs. We followed this approach using the well-established VLUGR3 [37, 38] code to cross
check our results. Another way is to make use of the connection between Fokker-Planck
type equations and SDEs. In general, Fokker-Planck type equations describe the transition
probability from one state to a set of other states. SDEs describe dynamical systems which
are subject to noise.

In the following we discuss briefly the set of SDEs implemented in CRPropa3.2. For an
in-depth explanation the reader is referred to [36] or e.g. [39].

In the absence of second-order Fermi acceleration processes, i.e. D = 0, and spatially
constant diffusion the system of SDEs equivalent to the transport equation (1.1) is given by

dx⃗ = u⃗(x) dt + B̂ dω⃗t, (2.1)

dp = −p

3∇ · u⃗ dt, (2.2)

where dω⃗t =
√

dt η⃗ is a Wiener process with ηi being random numbers from a unit normal
distribution. The tensor B̂ corresponds to spatial diffusion. In the local frame of the magnetic
field line the diffusion tensor becomes diagonal. Drift terms due to curvature of the magnetic
field lines are described by off-diagonal elements and are neglected in the following. With this
assumption B̂ is given by Bij = δij

√
2κij. Equation (2.1) describes the spatial displacement due

to advection and stochastic fluctuations. Equation (2.2) describes the adiabatic energy change.
Without diffusion in momentum space it is not an SDE but an ordinary differential equation.

SDEs can also be written in integral form by making use of the Itô integral [40]. In this
form they can be approximated numerically (see e.g. [41, 42]). The SDE approach has the
advantage that it is easy to implement and to extend to arbitrary geometries. We describe
the first-order Euler-Maruyama scheme implemented in CRPropa3.2 for numerical solution
of the SDE (eq. (2.1)) in the following section.

2.2 Simulation with CRPropa3.2

CRPropa3.2 has a modular structure with the Candidate class as central element. When
the EoM is used, the candidate simply corresponds to the propagated particle. When the
diffusive transport is used, the candidate corresponds to a phase-space element that is
propagated. The phase-space element is also called pseudo-particle in the following. The
candidate module holds all information about the (pseudo-)particle that can be used and
altered by other modules in the ModuleList that are successively called each simulation step.
The user can add different kinds of modules to the ModuleList: Propagation, Acceleration,
Interaction, Boundaries and Observers. Other modules handle the simulation environment
(MagneticField, AdvectionField), the injection of candidates (Source) and the output.
The modular structure makes it easy to set up simulations for various scenarios and to
add new modules.

– 5 –
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To model DSA, we use the DiffusionSDE module [36]. Pseudo-particles are propagated
parallel and perpendicular to a magnetic field, depending on the diffusion tensor

κ̂ = κ∥

ϵ 0 0
0 ϵ 0
0 0 1

 (
E

E0

)α

, (2.3)

which is constant in space and can depend on energy. The diffusion coefficients for the normal
and binormal direction of the magnetic background field line can be assumed to be the same
for large curvature radii of the magnetic field lines κn = κb ≡ κ⊥ = ϵκ∥. In section 3.4
energy-dependent diffusion is considered. Other than that, diffusion is considered to be energy-
independent. The SDE (2.1) is integrated using the Euler-Maruyama Scheme (e.g. [41])

x⃗n+1 − x⃗n = u⃗∆t +
√

2κ̂∆ω⃗n, (2.4)

with time step ∆t and random variables ∆ω⃗n = ω⃗tn+1 − ω⃗tn drawn from a normal distribution
with an expected value of zero and variance of ∆t. SDE methods have no constraints on the
used time step. However, the choice of time step can be crucial to obtain correct results.
See [43] for a discussion.

Eq. (2.4) in general is defined in the lab frame. Since the diffusion coefficient in eq. (2.3)
is defined in the local magnetic field frame, the diffusive step

√
2κ̂ · ∆ω⃗n is calculated in

the orthonormal base of the magnetic field by integrating along the magnetic field line for
parallel diffusion, calculating the perpendicular diffusive step and transforming back to the
lab frame in each time step.

To ensure one-dimensional propagation in section 3 the magnetic field is set constant in
x-direction and diffusion is allowed only parallel to the magnetic field, i.e. ϵ = 0. In section 4
perpendicular diffusion is taken into account as well as a more complex magnetic field.

Acceleration is handled by the AdiabaticCooling module according to the momentum
equation (Eq. (2.2)) based on the divergence of the shock profile specified in the Advection-
Field class. The advection field and magnetic fields used for simulations are specified in
the following sections.

Free-escape boundaries L± can be specified in the upstream and downstream region.
Observer modules detect pseudo-particles when they cross those boundaries or the TimeEvo-
lutionObserver is used to detect pseudo-particles’ positions and energies at given times
ti during the simulation in the acceleration region.

2.3 Analysis

The energy spectrum J(E) = dN/dE of particles in the acceleration region is approximated
by the histogram ∆N/∆E, with ∆N being the number of pseudo-particles in each energy
bin ∆E. In the high-relativistic limit, assuming E = p/c, J ∝ p2f(p, t). Since we expect a
power-law spectrum, energy is binned with equal distance in logarithmic space. The error for
each bin is then given by ∆J = J/

√
∆N , any additional errors (e.g. from summing over time

“snaps” as explained in section 3.1) are not included. The spectrum can be weighted by E2

to highlight the spectral slope s = −2 predicted for acceleration at strong shocks.
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2.4 Candidate splitting

With the assumptions of non-relativistic shocks and neglecting non-linear interactions, DSA
produces a power-law spectrum in energy and the spectral slope depends only on the shock
compression ratio. When mono-energetic candidates are injected at the shock and accelerated
until they leave the acceleration region, the number of candidates decreases with increasing
energy. Especially for less efficient acceleration at shocks with a low compression ratio,
statistics at high energies may be so bad that it is difficult to evaluate whether the stationary
solution is already reached or to determine the resulting spectral slope.

The number of injected candidates can be increased in order to get sufficient statistics
at high energies, which comes at large computational costs. Another way to overcome this
problem is to split candidates in nsplit copies once they cross energy boundaries in log-space.
For DSA the optimal splitting number depends on the expected spectral slope to compensate
for the loss of candidates at higher energies. Each splitted candidate is assigned with a weight
w = 1/nsplit during the simulation. In the later analysis candidates are weighted accordingly
to obtain the correct spectra. In order to determine the error of the spectrum for each energy
bin all candidates can be used, which reduces the uncertainty at high energies.

In figure 1 resulting shock spectra simulated with and without candidate splitting are
compared at the same simulation time (t = 400 t0). The injected number of candidates
is N0 = 106 for the simulation without and N0 = 104 with candidate splitting. For the
latter, the actual number of simulated candidates increases during the simulation. Still,
computational time goes down by a factor of 25,1 when candidate splitting is used, since
fewer candidates are simulated in low-energy bins. For the set-up shown in figure 1, at
t = 400 t0, the number of candidates is about 2.1N0.

Note that the depicted errors are given by ∆J = J/
√

∆N . To approximate the stationary
solution of the energy spectrum at the shock, energy of pseudo-particles stored during
simulation are summed over time as explained in section 3.1. Such time related errors are
not shown in figure 1 and following figures.

Splitting of candidates at energy bins in logarithmic space is one way of importance
sampling used also in other approaches to DSA [44]. Another way is the introduction of
artificial drift terms pushing particles to the shock [43, 45]. Such drift terms need to be
extracted in the analysis. The candidate splitting method is, however, easier to apply to
more complex configurations of the magnetic field and advection field.

Candidate splitting is implemented as an independent module in CRPropa3.2. It is
possible to define individual energy bins and number of splits. For use in diffusive shock
acceleration only the minimal and maximal energy as well as the expected spectral index
need to be specified.

3 One-dimensional Diffusive Shock Acceleration

In the ensemble averaged picture, energy gain at shocks is described by eq. (2.2). To apply
this adiabatic description a finite shock width is considered since the advective speed u(x)

1CPU Time (Apple M1 Pro) for N0 = 104 candidates with CandidateSplitting: 194 ± 7.92 s. CPU Time
for N0 = 106 candidates without CandidateSplitting: 5212 ± 75 s. Both averaged over 8 runs.
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Figure 1. Left: Spectra obtained with and without using the CandidateSplitting module at
simulation time t = 400 t0 evaluated at the shock, x = [0, 2] x0. The shock compression ratio is q = 4
and both simulations reproduce the expected spectral slope s = −2. The simulation with candidate
splitting reaches higher energies up to 107 E0 with smaller errors. Right: Weighted spectra (top) and
relative error (J−2 − J)/J where J−2 is the predicted spectrum (bottom).

must be continuously differentiable. Deviations from a sharp shock transition can occur if
a population of energetic particles is interacting with the thermal background plasma. In
such case the latter can experience a decelerating force due to the pressure gradient resulting
from the (energy density) distribution of the suprathermal particle population and either a
so-called subshock forms or the shock weakens into a smooth transition (see, e.g., [46–51]).
The one-dimensional shock profile is implemented

u(x) = u1 + u2
2 − u1 − u2

2 tanh
(

x

Lsh

)
, (3.1)

with upstream and downstream velocity, u1 and u2 = u1/q, and shock width Lsh. In the
following, all units are normalized so that

x̃ = x

x0
, ũ = u

u0
, t̃ = t

t0
, κ̃ = κ

κ0
, Ẽ = E

E0
, (3.2)

with x0/v0 = t0 and E0 being the energy injected at the shock. Thus, different physical
scenarios can be modeled with the same simulation by adjusting the time scale. For the
CRPropa3.2 simulations we used x0 = 1 km and v0 = 1 m/s, so that t0 = 1000 s and
κ0 = x0v0 = 1000 m2/s.

The velocity profile u(x) is also used in other studies of linear and non-linear DSA [8,
44, 52]. Figure 2 illustrates u(x) for a shock compression ratio q = u1/u2 = 4 and different
shock widths. The narrower the shock width, the better the approximation of the ideal shock.
However, from the numerical perspective the region where ∂u/∂x ̸= 0 must be large enough
compared to the integration step length for candidates to experience acceleration. Otherwise
energy gains may be underestimated (see section 3.2 for a detailed analysis).
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Figure 2. One-dimensional advection field with shock at x̃ = 0. and a shock compression ratio
q = 4. The smaller the shock width compared to the integration step length, the better the ideal
shock solution is approximated.

3.1 Stationary solution

Simulating with CRPropa3.2, pseudo-particles are injected at t = 0 at the shock and
propagated until a maximum simulation time or until they leave the acceleration region
downstream through free-escape boundaries.

In order to obtain a stationary solution to compare the results with shock spectra
predicted from theory, s = 2 − 3q/(q − 1) (e.g. [25]), continuous injection upstream must be
assumed. The inherent structure of CRPropa3.2 does not allow for continuous injection during
the simulation itself. To construct the stationary solution at the shock afterwards CRPropa’s
TimeEvolutionObserver module is used. Positions and energies of pseudo-particles are
stored at times t0 + n∆T , which are called time snaps and do not necessarily have to be equal
to the simulation time step ∆t. With the assumption of continuous injection, the solution at
time t is constructed by summing over all time snaps to approximate the time-integrated
solution. This approach is valid given that the solution does not change too much during one
time interval ∆T . The time intervals ∆T can be chosen linearly or to increase with time,
when the solution undergoes smaller changes. The resulting time evolution of the spectrum
at the shock and number density integrated over momentum are shown in figure 3 compared
to the solutions obtained by the integration of the Fokker-Planck equation (1.1) using the
same parameters. For the integration of the partial differential equations VLUGR3 [37, 38] is
used. The spectra are weighted by energy so that the predicted slope lies horizontally in the
plot. The resulting spectra and number densities are in good agreement. Differences may
result from binning in energy and space for the CRPropa3.2 simulation and from resolution
in energy and time for the VLUGR3 simulation.

The time evolution can be interpreted in the following ways: The shock is active from
time t = 0 on and accelerated particles entering the shock region with energy E0. The longer
the shock is active the higher the maximum energy the particles can reach and the cut-off of
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Figure 3. Time evolution of spectrum at the shock, x̃ = [0, 2] (left) and number density, n =
∫

N dp,
in the acceleration region, here defined by the free escape boundaries L± (right). Particles with
energy E0 are continuously injected at the shock from time t̃ = 0. Upstream speed is ũ1 = 1 with a
compression of q = 4 at the shock. The diffusion coefficient is constant in space and energy, κ̃ = 1.
Free escape boundaries are at L̃± = ±100. Spectrum and number density resulting from simulation
with CRPropa3.2 (dots) are compared to the solutions obtained by integrating the transport equation
with VLUGR3 (lines).

the spectrum moves to higher and higher energies. Having an infinite acceleration region, the
stationary solution of a planar one-dimensional shock with compression q = 4 is a power-law
with slope s = −2. With increasing simulation time, the approximation of the stationary
solution gets better and the solution relaxes to the power-law for ever higher energies. In
figure 3 the stationary solution at t̃ = 200 is reached for energies E < 103E0. Theoretically
there is no limit for the maximal energy, due to the infinitely large shock front every n-th
crossing there will always be a nonzero number of particles to cross the shock an (n + 1)-th
time for t → ∞. Considering a spherical geometry as discussed in section 4.3, the maximal
energy that can be reached depends on the diffusion coefficient and shock radius.

In order to evaluate the approximation of the stationary solution the spectrum is fitted
at t̃ = 500 (not shown in figure 3) for energies below 104E0. Up to that energy candidates are
splitted by the CandidateSplitting module. The resulting spectral slope of −2.054 ± 0.003
matches the expected value s = −2 nicely.

The time evolution of the number density shows how particles gradually migrate into
the downstream region due to the advection field. At t̃ = 200 the stationary solution is
reached close to the shock, x̃ < 30, at later times also further into the downstream region.
The free-escape boundary at x̃ = 100 does not influence the number density profiles at the
shock. In principle, free escape boundaries are only needed if the acceleration region has
a finite size. In figure 18 we show how the resulting spectrum is affected by free-escape
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boundaries. Only a fraction of particles makes it into the upstream region x < 0 against the
advection flow. Acceleration is efficient for a constant, low diffusion coefficient as assumed
here, however, particles are unlikely to escape upstream.

The analytical solution by [53] is only for the special case of v2/κ = const. across the
shock, resulting in a drop of spatial diffusion by 1/16 for a strong shock. Forman and
Drury [54] give an approximate solution for momentum dependent κ, which is exact if
v2/κ = const.. Such spatial dependence of the diffusion coefficient is not considered here,
since the resulting drift term which adds to the advective step in eq. (2.1) is currently not
implemented in CRPropa3.2. For SDEs the strong additional drift term that is expected
at the shock may also lead to numerical difficulties [44]. The integration of the transport
equation using VLUGR3 is verified against existing analytical solutions in earlier works [8]
and by comparisons of the acceleration time scale [25, 54]. In appendix D the approximate
time-dependent solution from [54] is compared to the solution obtained with VLUGR3.

3.2 Constraints

In order to reproduce the predicted spectrum the simulation set-up must fulfill constraints
on the integration step length and shock width. For SDEs Achterberg and Krülls [52] and
later Achterberg and Schure [44] present a thorough analysis of the choice of shock width
and step length and the resulting spectral slope. The simulations resulting in figure 3 take
their findings into account. In the following we show that DSA simulations with CRPropa3.2
are subject to the same constraints. These constraints are not purely numerical but can
also be motivated from physics.

Considering a diffusion coefficient constant in space and energy, the advective step length,
diffusive step length and shock width must fulfill the inequality

u∆t < Lsh ≲
√

κ∆t, (3.3)

to obtain the correct spectral index [52].
The first inequality ensures that pseudo-particles experience the gradient of the advection

field and therefore gain energy. Numerically, the time step must be chosen sufficiently small
to resolve the shock region. On the other hand, the diffusive step length

√
κ∆t — a measure

for the stochastic step — must be larger than the shock width to increase the likelihood of
pseudo-particles to cross the shock front multiple times in finite simulation time. Depending
on the chosen shock width, diffusion coefficient and advection field it may not be possible
to fulfill the inequality. In that case, acceleration can be under- or even overestimated. In
appendix A the resulting spectral slopes for various shock widths and time steps are shown,
with the physical parameters, advective speed and diffusion coefficient, being held constant.

Constraints on the time step come from the numerical method, however, not all combina-
tions of u, Lsh and κ can be physically motivated. For instance, if diffusion is low compared
to the advective speed there will be negligible acceleration.

Obeying eq. (3.3) alone is not sufficient to reproduce the ideal shock spectra. If the shock
width is too large, pseudo-particles experience a smoothly changing advection field instead of
a discrete shock. For diffusion independent on space and energy Krülls and Achterberg [52]
calculated the expected spectral slopes for such smooth velocity gradients. In figure 17 we
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show analogous to [52] that the expected spectral slopes for such smooth shock waves are
met if the time step is sufficiently small.

Also, when a finite acceleration region is considered, diffusion must not only be large
enough so that particles are able to diffusive back to the shock but also low enough so that
they are contained in the acceleration region and do not escape too quickly. The effect on a
finite acceleration region on the resulting spectral index is shown in figure 18.

In the following we show the effect of the chosen time step and shock width as well as
the diffusion coefficient. We aim to reproduce the predicted spectral slope s = 2 − 3q/(q − 1)
for compression ratios q = 2 and q = 4.

Advective step. Acceleration at shocks of different widths Łsh is simulated with decreasing
time steps ∆t. The normalized diffusion coefficient is κ̃ = 1 and the upstream velocity
ũ1 = 1. The shocks compression ratio is q = 2 leading to a spectral slope s = −4 in order to
compare with the predictions from [52]. The slope is determined by linear fits in log-space
up to the maximum energy of the CandidateSplitting module. Time is chosen such that
the cut-off of the spectrum has minimal impact on the slope approximating the stationary
solution. The results are shown in figure 4.

The expected spectral slopes depending on the shock widths are indicated by lines. With
increasing resolution the simulated spectrum well approximates the predicted stationary
solution. For sufficiently small shock widths, here L̃sh = 0.008, a spectral slope close to that
of an ideal shock is obtained. The larger the shock width, the less efficient the acceleration
which leads to steeper spectra. Depending on the shock width, with decreasing time step, the
simulation approaches the predicted stationary solution from steeper (L̃sh = 0.128) or flatter
(L̃sh = 0.008) spectra. Thus, the compression ratio of the shock is over- or underestimated.

We show a more detailed figure with entangled information about the shock width and
time step in the appendix in an analogous way to [52].

Diffusive step. A similar analysis can be done for the dependence of the diffusion coefficient
in relation to the shock width. The larger the diffusive step, the better becomes the
approximation of an ideal shock. If the diffusive step however is too large, pseudo-particles
may miss the shock region and acceleration is underestimated as a consequence.

For a constant shock width of L̃sh = 0.004 the diffusion coefficient was varied over several
simulation runs. The resulting spectral slope was fitted in the energy range [E0, 103E0]
given by the CandidateSplitting. The results are shown in figure 4 in comparison to the
results from [44]. With large diffusive step length the spectrum may also be affected by
free-escape boundaries. For the simulations boundaries were chosen such that they do not
influence the time evolution of the spectrum for the simulated diffusion coefficients. Likely,
that is why we do not find the spectral slope to decrease again for ϵ < 0.04. In the appendix
we show how the free-escape boundaries influence the spectrum at the shock depending
on the diffusion coefficient.

We conclude that for the simulation of ideal shocks, the shock width must be small
compared to the advective field and the time step should be chosen such that the advective
step is at most as large as one fourth of the shock width. The diffusive step must be larger
than the shock width, but not too large to still contain particles in the acceleration region.
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Figure 4. Left: Resulting spectral slope depending on the time step ∆t in relation to the shock width
Lsh. The upstream speed ũ1 = 1. The compression ratio is q = 2, thus for an ideal shock we expect
s = −4. With larger shock widths, the shock produces steeper spectra as calculated by [52]. Slopes of
the predicted stationary solutions are indicated by the colored lines for the respective shock width.
Right: Resulting spectral slope depending on the ratio of upstream velocity and shock width to the
diffusion coefficient. Data from [44] is shown for comparison. Here ũ1 = 1, q = 4 and L̃sh = 0.004 with
∆t̃ = 0.001 is used while κ is varied. The free escape boundaries are L̃± = 10. With higher diffusion
coefficient the spectral slope approaches the predicted value s = −2. We already show the results
for a transversal shock wave and taking perpendicular diffusion into account, which is discussed in
section 4.1.

Those constraints may be difficult to fulfill when modeling a physical scenario and may
require very small time steps close to the shock.

3.3 Finite lifetime

We model two scenarios that lead to a shock spectrum that is not stationary: Either the
source of particles reaching the shock is only active for a short period of time or the shock
itself has a finite lifetime. Considering the GWTS, the CR flux that reaches the shock from
the Galactic disk can be assumed to be stationary. The GWTS itself however cannot be
maintained for an infinite time since too much mass would be advected out of the Galaxy.

To model a burst-like particle source, candidates are injected at t = 0 and propagated
until they leave the acceleration region through the free-escape boundaries L±. The time
evolution depending on the source duration can be derived similar to the stationary spectrum
in section 3.1. Energy and position of candidates are stored in time intervals ∆T and the
resulting spectrum is approximated by summing of those time snapshots from [t − ∆Tsrc, t]
with ∆Tsrc being the source lifetime. For more details we point to [12]. Figure 5 shows the
time dependent spectrum at the shock for two different source duration ∆Tsrc.

Considering a finite lifetime of the shock, we already know the time dependent spectrum
at the shock from section 3. In order to assess the contribution to the overall cosmic-ray
spectrum, not only the spectrum at the shock, but also the spectrum of particles escaping
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Figure 5. Candidates are injected at t̃ = 0 and simulated until they leave the acceleration region
through free-escape boundaries L̃± = ±100. A finite lifetime ∆T̃scr = 20 (left) and ∆T̃scr = 80 (right)
of the particle source is assumed. The spectrum at the shock x̃ = [0, 2] is shown.

downstream, or even upstream is of interest. Figure 6 (left) shows the time evolution of
the downstream spectrum, x̃ = 50, assuming continuous injection at the shock. Compared
to figure 3 the spectrum evolves later, since particles need time to get from the shock to
the downstream position. Considering now a free-escape boundary at L̃+ = 100, figure 6
(right) shows the time-dependent spectrum of particles escaping with a lifetimes of the shock
∆T̃sh = 100. For the first time steps, the spectrum still evolves up to the quasi-stationary
solution (t̃ = 450). Particles that stay long in the acceleration region, defined by the free
escape boundaries L±, reach higher energies than particles that escape quickly. Thus, at late
times (t̃ = 620, 860), the spectrum gets flatter since low energy particles already escaped.

With a constant, low diffusion coefficient κ̃ = 1 acceleration is efficient but particles do
not escape upstream. In the following section we introduce energy-dependent diffusion: With
increasing energy, diffusion is higher and particles are more likely to escape upstream.

3.4 Energy-dependent diffusion

So far, a diffusion coefficient constant in energy was considered. A more realistic description of
diffusive motion takes energy-dependence into account. Assuming that the diffusion coefficient
is proportional to (E/E0)α and α > 0, the diffusive step becomes larger with increasing
energy. At first glance it is then easy to satisfy the inequality in eq. (3.3). However, the
analysis in section 3.2 revealed that the diffusive step should not become too large and
free-escape boundaries should be dropped or must be set far away from the shock, otherwise
high-energy particles escape too quickly.

In order to keep the diffusive time step within a reasonable range, an energy-dependent
adaptive time step is implemented in the DiffusionSDE module. Within a range of specified
time steps [dtmin, dtmax], it is chosen such that the advective step is smaller than 1/4 Lsh
and the diffusive time step smaller than 100 Lsh. This also leads to better performance
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Figure 6. Left: Assuming continuous injection of candidates, the time evolution of the downstream
spectrum at x̃ = 50 is shown. Right: Candidates are injected at t̃ = 0 and simulated until they leave
the acceleration region through free-escape boundaries L̃± = ±100. A finite lifetime ∆T̃scr = 100 of
the shock is assumed. The spectrum of particles escaping through the downstream boundary is shown.

in case of the energy independent diffusion coefficient (α = 0), since the time step in the
downstream region can be chosen higher than in the upstream region by a factor of the
shock compression ratio q.

Figure 7 shows the time evolution of the spectrum at the shock and number density in
the acceleration region. Again the compression ratio is q = 4 and the predicted spectral
slope s = −2. The diffusion coefficient is κ(E) = κE0 (E/E0)α with α = 1 and κ̃E0 = 1.
The results obtain with the diffusion approach applied in CRPropa3.2 are compared to the
simulations using VLUGR3. The same times as in figure 3 are used.

With α > 0 the diffusion coefficient κ(E) is equal or greater than in the energy-
independent case shown in section 3.1. With that the acceleration time scale gets larger. The
cut-off of the energy spectrum at the shock is at lower energies compared to figure 3.

With higher diffusion at high energies, more particles make it in the upstream region
against the advection flow. Since high energies are only reached at later times, the upstream
number density also evolves over time in contrast to figure 3 for energy-independent diffusion.
Thus, the likelihood of escaping upstream gets higher with energy, thus acceleration time,
and increasing α.

The cut-off energy for a planar shock is still only determined by the free-escape boundaries
and acceleration time. Here no free escape boundaries are used, so that the finite acceleration
region does not influence the spectrum at the shock. In physical scenarios, high energy
particles are likely to escape the acceleration region.

In figure 8a the spectra at the shock for different values of α are compared at time
t̃ = 200. The stronger the energy dependence, the higher the diffusion at high energies and
the longer it takes to accelerate particles to the same energy.

In case of energy-dependent diffusion, the upstream spectrum differs from the downstream
spectrum. In figure 8b we show the time evolution of the upstream spectrum at x̃ = −5
for α = 1.
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Figure 7. Time evolution of the spectrum (right) at the shock and the number density (left) close
to the shock with energy-dependent diffusion coefficient κ = κE0 (E/E0) compared to the results
obtained by integrating the transport equation using VLUGR3.
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Figure 8. Left: Spectrum at the shock at time t̃ = 200 with energy-dependent diffusion κ =
κ0 (E/E0)α and different values of α. Energy spectrum obtained with CRPropa3.2 (dots) is compared
against those resulting from VLUGR3 (lines). Right: Upstream spectrum, x̃ = [−6, −5], with energy-
dependent diffusion (α = 1). For energy-dependent diffusion the upstream spectrum differs from the
downstream spectrum. Again CRPropa3.2 results are compared to VLUGR3.
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Figure 9. Top: Mean acceleration time up to momentum p for diffusion coefficients with energy-
dependence α = 0 (solid line), α = 1 (dashed line) and α = 2 (dash-dotted line). Results obtained
from CRPropa simulations are plotted for comparison. Error bars show the error of the mean time. To
calculate the mean acceleration time up to t̄ = 200 t0, simulations were run until T = 500 t0. Bottom:
Relative deviation of the simulated acceleration time to the prediction. With higher momentum the
deviation gets larger due to finite simulation time, especially for energy-dependent diffusion.

3.5 Acceleration time scale

The average time to accelerate up to momentum p is compared to the expression for the
mean acceleration time [25]

t̄ = 3
u1 − u2

∫ p

p0

(
κ1
u1

+ κ2
u2

) dp′

p
(3.4)

for energy-independent and energy-dependent diffusion coefficients κ1 = κ2 = κ.
To estimate the mean acceleration time, candidates are injected at t̃ = 0 at the shock

and accelerated up to a simulation time T and energy and position are stored in time steps
∆T . Candidate splitting is used to increase the statistics at high energies. At the shock,
x̃ = [0, 1], for bins in momentum pi = Ei/c2, the average times t̄(pi) are calculated. Figure 9
compares the calculated mean acceleration time from simulations with energy-dependence
α = 0, 1, 2 of the diffusion coefficient with the expectation derived from eq. (3.4).

In general, the mean acceleration time increases with momentum. With momentum
dependent diffusion coefficient, acceleration gets slowed down over time, leading to different
dependencies of the mean acceleration time on momentum

t̄(p) ∝


τacc ln

(
p
p0

)
, α = 0

τacc
(

p
p0

− 1
)

, α = 1

τacc

[(
p
p0

)2
− 1

]
, α = 2,

(3.5)
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Figure 10. Time evolution of the spectrum at the shock x̃ = [0, 2] with injected spectra of slope
s = −1 (left) and s = −3 (right). The injected spectra have a hard cut-off at 102E0. For s = −1
up to 102E0 the spectral slope remains the same, for higher energies the spectrum evolves to the
one produced by the shock, s = −2. For s = −3 the spectrum converges to the shock spectrum for
all energies.

with τacc = 3/(u1 − u2)(κ1/u1 + κ2/u2). In general, the mean acceleration time fits the
expected behavior. In appendix D we also compare the time-dependent shape of the spectrum
obtained with VLUGR3 to the approximation derived by [54].

3.6 Injection of pre-accelerated spectra

So far mono-energetic pseudo-particles of energy E0 have been injected at the shock. In
a physical scenario of particle acceleration at the GWTS, particles are assumed to arrive
with an energy distribution of a power law [11]. Depending on the acceleration process a
range of spectral slopes is possible.

We injected different spectra at the shock and investigated the impact on the resulting
re-accelerated spectra. According to [25] steeper spectra than the one produced by the
shock converge to the shock spectrum. When, on the other hand, the shock produces a
steeper spectrum than the one continuously injected, the injected spectrum does not change.
This results in broken power-law spectra when the injected spectrum has a finite cut-off
energy as shown in figure 11.

In figure 10a a flatter spectrum than produced by the shock is continuously injected up to
the maximum energy 102 E0. Up to that energy, the injected spectrum prevails. At the shock,
particles are accelerated independent on their energy and the time evolution of the spectrum at
the shock becomes visible for E > 102 E0. In figure 10b a steeper spectrum than produced by
the shock is continuously injected up to the maximum energy 102 E0. The spectrum converges
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Figure 11. Spectra at t̃ = 400 at the shock for different injected spectra from 10−1E0 up to 102E0.
For s < −2 the spectrum converges to the shock spectrum. For s > −2 the spectrum breaks at 102E0.

to the one produced by the shock over time, since all particles independent on their energy
experience acceleration. Thus, at the shock particles are re-accelerated to higher energies.

In case of flatter injected spectra, broken power-law spectra may emerge. In case of
steeper spectra, the spectrum converges to the shock spectrum. If the injected spectrum is
the same as produced by the shock it remains the same. This is summarized in figure 11:
The stationary spectrum up to 104E0 at the shock with different injected spectra from
10−1E0 − 102E0 is shown. It is more likely that the injected spectrum has an exponential
cut-off. In that case, the cut-off behaves as a steep spectrum and will simply accelerated
up to the shock spectrum.

4 Anisotropic diffusion, oblique shocks and spherical symmetry

In the following, we extend our analysis to anisotropic diffusion, oblique planar shocks and
spherical symmetry. The diffusion coefficient is held constant in space and energy. Note
that since the diffusion coefficient is defined in the local magnetic field coordinates, diffusion
changes with the direction of the magnetic field even when κ is held constant. In section 4.3
a spherical shock profile with a spiral magnetic field is modeled.

4.1 Perpendicular shock wave

We consider a perpendicular shock wave with the magnetic field perpendicular to the advection
flow. If only parallel diffusion is considered, particles would not be able to cross the shock
and, therefore, do not experience acceleration. The advective field is still given by eq. (3.1),
the magnetic field now points in y-direction, B⃗ = B0e⃗y.
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The perpendicular diffusion coefficient now simply takes the role of parallel diffusion.
We can find the same dependency between perpendicular diffusion κ⊥ = ϵκ∥ and shock
width as shown in figure 4 in section 3.2. The parallel part of the diffusion tensor does
thus not influence the acceleration process.

4.2 Oblique shock wave

First, only the advection field is considered to be oblique and the magnetic field remains
parallel to the shock normal. Only the parallel component to the shock normal of the
advection field, ux, is shocked, so that it is now given by

ux = ux,1 + ux,2
2 − ux,1 − ux,2

2 tanh
(

x

Lsh

)
, (4.1)

uy = const. (4.2)

The y-component is varied from ũy = 0 (one-dimensional case) to ũy = 5ũx,1, while ũx,1 = 1.
The angle θ between shock normal and advection flow varies from θ1 = 0 to θ1 ≈ 0.44π. Here,
the electric field is neglected, which results from the advection field and magnetic field being
at an angle. In the SDE approach, the electric field would contribute to a drift in momentum
which adds to eq. (2.2). Such drifts are currently not implemented in CRPropa3.2.

From theory, the spectrum still depends only on the shock compression ratio q =
u1cosθ1/u2cosθ2 until the shock vanishes for θ → π/2. Considering the constraints on the
time step and shock width, particles now experience varying “effective” shock widths when
they cross the shock with different angles to the shock normal. Thus, it becomes difficult
to obtain the expected shock spectra for large angle θ. The effective shock width can be
written as Lsh,eff = Lsh/cosθ. With a shock width of L̃sh = 0.001 and adaptive time step
∆t ∈ [Lsh/4, Lsh/16] the predicted spectral slope s = −2 is obtained. The time evolution of
the spectrum at the shock is independent on the angle between the shock and advection field
and the amount of perpendicular diffusion to the magnetic field. Candidates are now injected
upstream x̃src = −1, so that they are not trapped inside the shock for large angles of θ.

Now the magnetic field is considered to be parallel to the advection field. Both the
advection field and magnetic field break at the shock. Here, curvature drifts due to the
bent magnetic field lines at the shock are neglected. Currently drift terms are not included
in the implementation of the diffusion coefficient in CRPropa3.2. Still, we expect to see
acceleration at the shock up to the predicted spectrum. Figure 12 shows that with parallel
diffusion only for large angles between magnetic field and shock normal, the spectral slope
at the shock is steeper than predicted as acceleration is less efficient. However, introducing
diffusion perpendicular to the magnetic field, particles are again able to cross the shock even
if the magnetic field is almost perpendicular to the shock normal. A spectral slope s = −2
is obtained even for almost perpendicular shocks.

4.3 Spherical symmetry

We construct a simplified model of the GWTS, namely a spherical symmetric shock with
spiral magnetic field that takes the findings of the previous sections into account. With
large shock radii astrophysical shocks can in principle be approximated by planar shocks
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Figure 12. Resulting spectra at the shock for different angles between advection field and shock
normal at t̃ = 400. The magnetic field is considered parallel to the advection field. With parallel
diffusion only (left) and increasing angle between magnetic field and shock normal, efficient acceleration
becomes difficult and the predicted spectral slope s = −2 is only obtained for small angles. Introducing
a small amount of perpendicular diffusion (right) with κ̃⊥ = 0.2 leads to the predicted spectral slope.

with all implications described previously. However, for sufficiently small shock radii e.g. [25]
showed, that the spectral slope in spherical geometry is influenced by the energy- and spatial
dependence of the diffusion coefficient. In contrast to the one-dimensional planar shock,
for spherical shocks a limit for the maximum energy is expected, since the shock front is
not infinitely large.

In the following, the advection field is assumed to be constant upstream, r < rsh, and
to decrease with r−2 downstream, r > rsh, modeled by

u⃗(r) = u1

1 +

(
Rsh
2r

)2 1

1 + e− r−Rsh
Lsh

 e⃗r. (4.3)

Analogous to eq. (3.1), a finite shock width Lsh is considered. Similar profiles were also used
in other studies of spherical DSA [55] and applied to the GWTS [12, 20]. After acceleration,
the wind expands with constant speed u(r). Particles experience adiabatic cooling upstream,
r < Rsh. Downstream, r > Rsh the wind is subsonic and decreases with u(r) ∝ r−2 without
cooling. The advection field is shown in figure 13 for different shock widths.

For the magnetic field, analogous to [12], an Archimedean spiral is considered. It is
given by

B⃗ = ±B0

[(
r0
r

)2
e⃗r − Ωr2

0 sin θ

rvw
e⃗ϕ

]
(4.4)

with the constant wind velocity vw and Ωr0 sin θ being the rotational velocity at a reference
radius r0 at latitude θ. The magnetic field lines for different values of Ω are illustrated in
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Figure 13. Radial shock profile. The advective field is constant upstream u(r) = u1, drops by 1/q at
the shock and decreases downstream with r−2 for r > Rsh.
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Figure 14. Face on view of the Archimedean Spiral magnetic field for increasing values of Ω =
[0.1, 1.0, 10] from left to right. For small angular velocities the magnetic field is parallel to the shock
normal, for high angular velocity magnetic field lines become perpendicular.

figure 14. For Ω = 0 the magnetic field is parallel to the shock normal and the advection field.
For Ω ̸= 0 the magnetic field is not parallel to the wind profile and the break of the magnetic
field at the shock is neglected. For high values of Ω the magnetic field is almost perpendicular
to the shock normal and resembles the transversal shock wave investigated in section 4.1.

In figure 15 spectrum and number density are shown for Ω = 10. Here, perpendicular
diffusion was also taken into account to achieve sufficient acceleration. In both simulations
the stationary shock spectrum matches the predicted spectral slope s = −2 for a strong
shock. Due to the decelerating flow for r > Rsh the number density profile differs from
the planar scenario.

Figure 16 shows the time evolution of the spectrum at the shock and the number density
in the acceleration region for Ω = 1. Different values for the perpendicular diffusion are
considered. Introducing diffusive motion perpendicular to the magnetic field, leads to higher
diffusion in total. The time evolution of the spectrum at the shock is slower with higher
perpendicular diffusion.
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Figure 15. Time evolution of the number density (right) and spectrum at the shock, r̃ = [r̃sh, r̃sh + 2]
(left). Free escape boundary is downstream R̃+ = 200. Both parallel and perpendicular diffusion
are considered κ̃∥ = 1, κ̃⊥ = 0.8 and the magnetic field is almost perpendicular to the shock
normal, Ω = 10.
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Figure 16. Time evolution of the spectrum at the shock, r̃ = [r̃sh, r̃sh + 2] for different values
of perpendicular diffusion, ϵ = [0, 0.2, 0.8] from left to right. Free escape boundary is downstream
R̃+ = 200. The lower the perpendicular diffusion, the slower the time evolution at the shock.
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5 Summary and outlook

In this paper we present a thorough analysis of modeling DSA with the DiffusionSDE module
of CRPropa as a basis for future studies of the GWTS. CRPropa3.2 provides solvers for both
transport regimes, and thus offers the opportunity to model acceleration at the GWTS and
propagation back to the Galaxy in a coherent framework. Taking into account the constraints
discussed in section 3.2, time-dependent acceleration at shocks in three dimensions can be
simulated with CRPropa3.2. Arbitrary magnetic field and advection field configurations can
be used. Diffusion can be constant or energy-dependent as well as anisotropic. The new
CandidateSplitting module speeds up the simulation significantly.

We validated the resulting time-dependent spectra at a one-dimensional planar shock
against those obtained from integrating the Fokker-Planck equation with the finite difference
solver VLUGR3 and presented first applications introducing energy-dependent and anisotropic
diffusion as well as spherical shock geometry.

With the Acceleration module, CRPropa3.2 also offers the possibility to model DSA in
the test-particle regime. This was first introduced for second-order Fermi acceleration [56] and
later extended to DSA [35]. Each time a particle crosses the shock front, the module calculates
the energy gain performing Lorentz transformations from the particle frame to the rest frame
of the scatter centers, the upstream or downstream background flow. However, this approach
is less flexible than the simulation based on the transport equation or the corresponding SDEs.

In section 3 we show that considering a one-dimensional planar parallel shock, simulations
lead to the expected spectral slope at the shock. We validated the correct time evolution of
the spectrum at the shock by comparing with simulations based on the integration of the
transport equation (see [8]). In section 3.2 we summarize constraints on the shock width,
diffusion and time step first described by [52] and [44]. We find the same dependence between
spectral slope, shock width and advective step, as well as diffusive step. Likewise we found
that depending on the shock width for too small time steps, the compression ratio of the
shock is over- or underestimated (see figure 4 and figure 17). Presumably, this is due to the
pseudo-particles only meeting the shock region by chance: The smaller the shock width the
stronger the velocity gradient they encounter. This leads to harder spectra at least for those
pseudo-particles experiencing acceleration. Section 3.2 explains in detail how to set up DSA
simulations using SDEs in general and CRPropa3.2 specifically.

Based on the findings in section 3.2 for DSA an alternative adaptive time step was
implemented in the DiffusionSDE module. This ensures that within a user specified range
the largest possible time step based on the inequalities (eq. (3.3)) for advective and diffusive
step is used. Another extension to CRPropa3.2 is the CandidateSplitting module. High
energies are only reached by a small fraction of candidates. For better statistics at high energies,
candidates crossing energy boundaries are split into n copies depending on the expected
spectral slope. This way of importance sampling significantly reduces computation time.

We approached more physical scenarios by considering energy-dependent diffusion, pre-
accelerated spectra and shocks with finite lifetime. Depending on the life-time of the shock,
the spectrum seen by a downstream observer differs from the stationary spectrum. Energy
or spatial dependence of the diffusion coefficient would further modulate the downstream
spectrum over time. The effects on the shock spectrum discussed in sections 3.3 to 3.6 were
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deliberately considered separately and are the basis for future combined studies, potentially
adding spatial dependent diffusion.

In section 4 we took anisotropic diffusion into account and showed that planar oblique
shocks produce decent results, when diffusion parallel to the shock normal is high enough. A
prototype for simulating the GWTS was presented in section 4.3: A radial shock profile and
a Archimedean spiral magnetic field. The time-dependent spectrum obtained at the GWTS
as well as at the upstream and downstream escape boundaries can be used in further studies,
investigating the portion of particles that is able to propagate back to the Galaxy (as done
for a stationary shock spectrum by [12]). Only high-energy CRs are able to propagate against
the outflowing wind, so that energy-dependent diffusion must be considered. We already saw
in section 3.4 that energy-dependent diffusion leads to a higher fraction of particles being
able to diffusive back into the upstream region against the wind.

For particles leaving the acceleration region the diffusion approximation might not be
valid, depending on the escape time, magnetic field of the IGM and the particles’ energy.
At this point we stress again the advantage of CRPropa3.2: Follow up simulations can be
done using both diffusive and ballistic propagation depending on the candidates energy
within the same framework.

Not only energy-dependent diffusion but also a spatial dependence might impact the
acceleration process as well as the cosmic-ray transport in the Galactic magnetic field. A
spatially varying diffusion tensor, however, induces an additional drift term to eq. (2.1) which
is not yet implemented in CRPropa3.2. Also, this term adds to the left-hand side of the
inequality in eq. (3.3) discussed in section 3.2. This makes it more difficult to choose a valid
time step for a given shock width. Achterberg and Schure [44] even found that a second-order
scheme might be necessary for handling the strong drift terms that would occur at the shock
when the diffusion coefficient drops over the shock.

The GWTS is most likely not a perfect sphere but like the termination shock of the
heliosphere a spheroid. Also, it does not necessarily enclose the complete Galaxy. With
a more variable wind profile CRs may even propagate back to the Galaxy more easily. A
more realistic wind profile presumably changes the time evolution of the spectrum produced
by the shock itself. When a finite shock lifetime is considered this may have an impact on
the contribution to the shock spectrum at Earth.

With the radial wind profile and Archimedean spiral magnetic field we modeled a quasi
three-dimensional shock configuration. For the Galaxy, there exist more realistic magnetic
field models, like [57, 58] or [59]. The magnetic field structure certainly has a great impact
on the possibility of CRs travelling back to the Galaxy. Merten et al. [12] showed that the
length of the magnetic field lines and the amount of diffusion parallel to the magnetic field
lines is critical for a contribution of CRs re-accelerated at the GWTS to the spectrum. The
magnetic field also has an impact on the arrival direction of CRs. With CRPropa3.2 the
magnetic field can easily be exchanged and the impact on the spectrum and arrival direction
on Earth can be studied for various magnetic fields.
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Figure 17. Spectral slope of the stationary solution at the shock depending on the time step
(indicated by color) and the ratio of upstream advective step and shock width n. The expected spectral
index for finite shock widths is indicated by horizontal lines (data from [52]).

A Advective step

In section 3.2 the constraints of the SDE approach are discussed. Figure 17 is a detailed
version of figure 4 where shock width and time step are entangled. Analogously to [52], for
different simulation time steps ∆t (or advective steps ∆xadv,1, with ũ1 = 1) the shock width
Lsh is varied. Going along the dotted lines, the shock width increases from left to right.
Depending on the shock width, the expected spectral slope according to [52] is indicated. In
general, the smaller the time step, the better the predicted spectral slope is met.

B Diffusive step

One advantage of the SDE approach is that there is no need for boundary conditions. However,
free escape boundaries can impact the acceleration process and with that the spectral slope.
Free escape boundaries are also set in the work of [44]. Figure 18 shows how free escape
boundaries impact the resulting spectra, depending on κ analogous to figure 4. The higher
the diffusion coefficient, the better would be the approximation of the ideal shock spectrum.
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Figure 18. Slope of the stationary spectra at the shock depending on the diffusion coefficient κ

for different free-escape boundaries L±. With the diffusion coefficient too large compared to the
acceleration region, acceleration is less efficient and the spectral slope decreases.

The smaller the acceleration region, defined by L±, the more particles leave through the
free escape boundaries which leads to steeper spectra.

C VLUGR3 specification

We compared the SDE approach with a finite-difference method using VLUGR3 [37, 38]. The
computational domains were chosen to be x ∈ [−75x0, 75x0] and s = ln

(
p
p0

)
∈ [−7.5, 15.0].

The resolution was chosen to be 600 × 450 grid points. The time steps were self-determined
by VLUGR3 with a given minimal time step of δmin = 10−9t0. The δ−functions for the
monoenergetic injection at the shock were approximated by Gaussian functions of the form
δapprox (y) = 1√

πdy
exp

{
− y2

dy2

}
. For both δapprox (p) and δapprox (x) it was dp = dx = 0.01. At

last the boundary conditions on the computational domain were given as ∂f
∂x = 0 at x ± 75x0

and ∂f
∂s = at s = −7.5 v s = 15.0, so vanishing gradients on all four boundaries.

D Approximation of time-dependent solution

In section 3.5 we compare the mean acceleration time (e.g. [25, 54]) with the mean acceleration
time calculated from CRPropa3.2 simulations. We use the approximation given by [54] to
also compare the shape of the spectrum over time. The approximation is exact in case of
κ/u2 = const., which is the solution derived by [53]. Currently, this cannot be handled by
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Figure 19. Solution obtained with VLUGR3 (solid line) compared to the approximation of the
time-dependent spectrum by [54] (dashed-line) for different diffusion coefficients κ = κ0(x) (p/p0)α.
For κ/u2 = const. acceleration is so fast that the stationary spectrum is already reached at t̃ = 50 for
p < 103 p0. The more the diffusion coefficient deviates from κ/u2 = const., the greater the difference
between approximation and numerical solution.

CRPropa3.2 and we only compare the solution obtained with the grid-based method VLUGR3.
Figure 19 shows the time evolution of spectra spatial dependence of the diffusion coefficient
and spatially constant diffusion, with both energy-independent, α = 0, and energy-dependent
diffusion, α = 1. The approximation and VLUGR3 solution for constant diffusion is in good
agreement. With energy-dependent diffusion our results diverge from the approximation.
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