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Abstract:We consider a special class of Galton–Watson theta-processes in a varying environment fully defined
by four parameters, with two of them (θ, r) being fixed over time n, and the other two (an , cn) characterizing
the altering reproduction laws. We establish a sequence of transparent limit theorems for the theta-processes
with possibly defective reproduction laws. These results may serve as a stepping stone towards incisive general
results for the Galton–Watson processes in a varying environment.
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1 Introduction

The basic version of the Galton–Watson process (GW-process) was conceived as a stochastic model of the popu-
lation growth or extinction of a single species of individuals [3, 7]. TheGW-process {Zn}n≥0 unfolds in the discrete
time setting, with Zn standing for the population size at the generation n under the assumption that each indi-
vidual is replaced by a random number of offspring. It is assumed that the offspring numbers are independent
random variables having the same distribution {p(j)}j≥0.

By allowing the offspring number distribution {pn(j)}j≥0 to depend on the generation number n, we arrive
at the GW-process in a varying environment [4]. This more flexible model is fully described by a sequence of
probability generating functions

fn(s) =∑
j≥0

pn(j)sj , 0 ≤ s ≤ 1, n ≥ 1.

Introduce the composition of generating functions

Fn(s) = f1 ∘ ⋅ ⋅ ⋅ ∘ fn(s), 0 ≤ s ≤ 1, n ≥ 1.

Given that the GW-process starts at time zero with a single individual, we get

E(sZn ) = Fn(s), P(Zn = 0) = Fn(0).

The state 0 of the GW-process is absorbing and the extinction probability for the modeled population is deter-
mined by

q = lim Fn(0)
(here and throughout, all limits are taken as n →∞, unless otherwise specified). In the case of proper repro-
duction laws with fn(1) = 1 for all n ≥ 1, we get

E(Zn) = Fn(1) = f 1(1) ⋅ ⋅ ⋅ f

n(1), E(Zn|Zn > 0) =

Fn(1)
1 − Fn(0)

.
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In [5], the usual ternary classification of the GW-processes into supercritical, critical, and subcritical pro-
cesses [1], was adapted to the framework of the varying environment. Given 0 < f n(1) <∞ for all n, it was shown
that under a regularity condition (A) in [5], it makes sense to distinguish among four classes of the GW-processes
in a varying environment: supercritical, asymptotically degenerate, critical, and subcritical processes. In amore
recent paper [10] devoted to the Markov theta-branching processes in a varying environment, the quaternary
classification of [5] was further refined into a quinary classification, which can be adapted to the discrete time
setting as follows:
∙ supercritical case: q < 1 and lim E(Zn) =∞,
∙ asymptotically degenerate case: q < 1 and lim inf E(Zn) <∞,
∙ critical case: q = 1 and lim E(Zn|Zn > 0) =∞,
∙ strictly subcritical case: q = 1 and a finite lim E(Zn|Zn > 0) exists,
∙ loosely subcritical case: q = 1 and lim E(Zn|Zn > 0) does not exist.
Our paper is build upon the properties of a special parametric family of generating functions [9] leading to
what will be called here the Galton–Watson theta-processes or GWθ-processes. The remarkable property of
the GWθ-processes in a varying environment is that the generating functions Fn(s) have explicit expressions
presented in Section 2. An important feature of the GWθ-processes is that they allow for defective reproduction
laws. If the generating function fi(s) is defective, in that fi(1) < 1, then Fn(1) < 1 for all n ≥ i. In the defective
case [6, 11], a single individual, with probability 1 − fi(1)may force the entire GW-process to visit to an ancillary
absorbing state Δ by the observation time n with probability

P(Zn = Δ) = 1 − Fn(1).

In Sections 3 and 4, we state ten limit theorems for the GWθ-processes in a varying environment. These
results are illuminated in Section 5 by ten examples describing different growth and extinction patterns under
environmental variation. The proofs are collected in Section 6.

2 Proper and Defective Reproduction Laws

Definition 1. Consider a sequence (θ, r, an , cn)n≥1 satisfying one of the following sets of conditions:
(a) θ ∈ (0, 1], r = 1, and for n ≥ 1, 0 < an <∞, cn > 0, cn ≥ 1 − an ,
(b) θ ∈ (0, 1], r > 1, and for n ≥ 1, 0 < an < 1, (1 − an)r−θ ≤ cn ≤ (1 − an)(r − 1)−θ ,
(c) θ ∈ (−1, 0), r = 1, and for n ≥ 1, 0 < an < 1, 0 < cn ≤ 1 − an ,
(d) θ ∈ (−1, 0), r > 1, and for n ≥ 1, 0 < an < 1, (1 − an)(r − 1)−θ ≤ cn ≤ (1 − an)r−θ ,
(e) θ = 0, r = 1, and for n ≥ 1, 0 < an < 1, 0 ≤ cn < 1,
(f) θ = 0, r > 1, and for n ≥ 1, 0 < an < 1, 0 ≤ cn ≤ 1.
A GWθ-process with parameters (θ, r, an , cn)n≥1 is a GW-process in a varying environment characterized by
a sequence of probability generating functions (fn(s))n≥1 defined by

fn(s) = r − (an(r − s)−θ + cn)−
1
θ , 0 ≤ s < r, fn(r) = r, (2.1)

for θ ̸= 0, and for θ = 0, defined by

fn(s) = r − (r − cn)1−an (r − s)an , 0 ≤ s ≤ r. (2.2)

Definition 1 ismotivated by [9, Definitions 14.1 and 14.2], which alsomentions a trivial case of θ = −1not included
here. Observe that in the setting of varying environment, the key parameters θ ∈ (−1, 1] and r ≥ 1 stay constant
over time, while the parameters (an , cn) may vary. The case θ = r = 1 is the well studied case of the linear-
fractional reproduction law.

This section contains two key lemmas. Lemma 1 gives the explicit expressions for the generating functions
Fn(s) in terms of positive constants An , Cn , Dn = Dn(r) defined by

A0 = 1, An =
n
∏
i=1

ai , Cn =
n
∑
i=1

Ai−1ci , Dn =
n
∏
i=1
(r − ci)Ai−1−Ai .
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Lemmas 2 presents the asymptotic properties of the constants An , Cn , Dn leading to the limit theorems stated in
Sections 3 and 4.

Lemma 1. Consider a GWθ-process with parameters (θ, r, an , cn). If θ ̸= 0, then

Fn(s) = r − (An(r − s)−θ + Cn)−
1
θ , 0 ≤ s < r, Fn(r) = r, n ≥ 1,

and if θ = 0, then
Fn(s) = r − (r − s)AnDn , 0 ≤ s ≤ r, n ≥ 1.

Here:
(a) for θ ∈ (0, 1], r = 1,

0 < An <∞, Cn > 0, Cn ≥ 1 − An , Fn(1) = 1, Fn(1) = A
− 1θ
n , n ≥ 1,

(b) for θ ∈ (0, 1], r > 1,

0 < An < 1, (1 − An)r−θ ≤ Cn ≤ (1 − An)(r − 1)−θ , Fn(1) ≤ 1, n ≥ 1,

with Fn(1) = 1 if and only if ck = (1 − ak)(r − 1)−θ , 1 ≤ k ≤ n, implying Fn(1) = An ,
(c) for θ ∈ (−1, 0), r = 1,

0 < An <∞, 0 < Cn ≤ 1 − An , Fn(1) = 1 − C
− 1θ
n , n ≥ 1,

(d) for θ ∈ (−1, 0), r > 1,

0 < An < 1, (1 − An)(r − 1)−θ ≤ Cn ≤ (1 − An)r−θ , Fn(1) ≤ 1, n ≥ 1,

with Fn(1) = 1 if and only if ck = (1 − ak)(r − 1)−θ , 1 ≤ k ≤ n, implying Fn(1) = An ,
(e) for θ = 0, r = 1,

0 < An < 1, 0 < Dn ≤ 1, Fn(1) = 1, Fn(1) =∞, n ≥ 1,
(f) for θ = 0, r > 1,

0 < An < 1, (r − 1)1−An ≤ Dn ≤ r1−An , Fn(1) ≤ 1, n ≥ 1,
with Fn(1) = 1 if and only if ck = 1, 1 ≤ k ≤ n, implying Fn(1) = An .

Lemma 2. Denote the limits A = lim An , C = lim Cn , D = lim Dn , whenever they exist, whether finite or infinite.
(a) If θ ∈ (0, 1], r = 1, then C ∈ [1,∞], and if C <∞, then A ∈ [0,∞].
(b) If θ ∈ (0, 1], r > 1, then A ∈ [0, 1) and (1 − A)r−θ ≤ C ≤ (1 − A)(r − 1)−θ .
(c) If θ ∈ (−1, 0), r = 1, then A ∈ [0, 1) and 0 < C ≤ 1 − A.
(d) If θ ∈ (−1, 0), r > 1, then A ∈ [0, 1) and (1 − A)(r − 1)−θ ≤ C ≤ (1 − A)r−θ .
(e) If θ = 0, r = 1, then A ∈ [0, 1) and D = ∏n≥1(1 − cn)An−1−An with D ∈ [0, 1].
(f) If θ = 0, r > 1, then A ∈ [0, 1) and D = ∏n≥1(r − cn)An−1−An with (r − 1)1−A ≤ D ≤ r1−A .

3 Limit Theorems for the Proper GWθ-Processes

Theorems 1–5 deal with the GWθ-process in the case θ ∈ (0, 1], r = 1, when by Lemma 1,

E(Zn) = A
− 1θ
n , P(Zn > 0) = (An + Cn)−

1
θ .

Putting Bn = Cn
An
, we obtain

E(Zn|Zn > 0) = (1 + Bn)
1
θ .

These five theorems fully cover the five regimes of reproduction in a varying environment and could be sum-
marized as follows. Let θ ∈ (0, 1], r = 1,
∙ given C <∞, the GWθ-process is

– supercritical if An → 0, see Theorem 1,
– asymptotically degenerate if An → A ∈ (0,∞), see Theorem 2,
– strictly subcritical if An →∞, see Theorem 4,
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∙ given C =∞, the GWθ-process is
– critical if Bn →∞, see Theorem 3,
– strictly subcritical if Bn → B ∈ [0,∞), see Theorem 4,
– loosely subcritical if the lim Bn does not exist, see Theorem 5.

This section also includes Theorem 6 addressing the proper case θ = 0, r = 1. Notice that Theorem 6 deals with
the case of infinite mean values, when the above mentioned quinary classification does not apply.

Theorem 1. Let θ ∈ (0, 1], r = 1, and C <∞. If An → 0, then q = 1 − C− 1θ and A
1
θ
n Zn almost surely converges to

a random variableW such that
E(e−λW ) = 1 − (λ−θ + C)−

1
θ , λ ≥ 0.

Theorem 2. Let θ ∈ (0, 1], r = 1, and C <∞. If An → A ∈ (0,∞), then

q = 1 − (A + C)−
1
θ , E(Zn)→ A−

1
θ ,

and Zn almost surely converges to a random variable Z∞ such that

E(Z∞) = A−
1
θ , E(sZ∞ ) = 1 − (A(1 − s)−θ + C)−

1
θ , 0 ≤ s ≤ 1.

Theorem 3. Let θ ∈ (0, 1], r = 1, and C =∞. If Bn →∞, then q = 1,

P(Zn > 0) ∼ C
− 1θ
n , E(Zn|Zn > 0) ∼ B

1
θ
n ,

and with λn = λB
− 1θ
n ,

E(e−λnZn |Zn > 0)→ 1 − (1 + λ−θ)−
1
θ , λ ≥ 0.

Theorem 4. Let θ ∈ (0, 1] and r = 1. If An →∞ and Bn → B ∈ [0,∞), then q = 1,

P(Zn > 0) ∼ (1 + B)−
1
θ A−

1
θ

n , E(Zn|Zn > 0)→ (1 + B)
1
θ ,

and
E(sZn |Zn > 0)→ 1 − ((1 + B)(1 − s)−θ + B + B2)−

1
θ , 0 ≤ s ≤ 1.

Theorem 5. Let θ ∈ (0, 1], r = 1, and assume that lim Bn does not exist. Then q = 1 and letting

Bkn → B ∈ [0,∞]

along a subsequence kn →∞, we get:
(i) if B =∞, then

P(Zkn > 0) ∼ C
− 1θ
kn , E(Zkn |Zkn > 0) ∼ B

1
θ
kn ,

and with λn = λB
− 1θ
n ,

E(e−λkn Zkn |Zkn > 0)→ 1 − (1 + λ−θ)−
1
θ , λ ≥ 0,

(ii) if B ∈ [0,∞), then Akn →∞,

P(Zkn > 0) ∼ (1 + B)−
1
θ A−

1
θ

kn , E(Zkn |Zkn > 0)→ (1 + B)
1
θ ,

and
E(sZkn |Zkn > 0)→ 1 − ((1 + B)(1 − s)−θ + B + B2)−

1
θ , 0 ≤ s ≤ 1.

Theorem 6. Suppose θ = 0 and r = 1. Then P(Zn > 0) = Dn , so that q = 1 − D, with D given by Lemma 2 (e). Fur-
thermore:
(i) if A = 0 and D = 0, then q = 1 and

P(An ln Zn ≤ x|Zn > 0)→ 1 − e−x , x ≥ 0,

(ii) if A = 0 and D > 0, then q < 1 and

P(An ln Zn ≤ x)→ 1 − e−xD, x ≥ 0,
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(iii) if A ∈ (0, 1) and D = 0, then q = 1 and

E(sZn |Zn > 0)→ 1 − (1 − s)A , 0 ≤ s ≤ 1,

(iv) if A ∈ (0, 1) and D > 0, then q < 1 and Zn almost surely converges to a random variable Z∞ such that

E(Z∞) =∞, E(sZ∞ ) = 1 − (1 − s)AD, 0 ≤ s ≤ 1.

Remarks

Wemake the following observations.
(i) It is a straightforward exercise to check that the above mentioned regularity condition (A) in [5] is valid for

the GWθ-process in the case θ ∈ (0, 1], r = 1.
(ii) The limiting distribution obtained in Theorem 3 coincides with that of [12] obtained for the critical

GW-processes in a constant environment with a possibly infinite variance for the offspring number.
(iii) Statement (ii) of Theorem 6 is of the Darling–Seneta-type limit theorem obtained in [2] for GW-processes

with infinite mean.
(iv) Part (iv) of Theorem6presents the pattern of limit behavior similar to the asymptotically degenerate regime

in the case of infinite mean values. The conditions of Theorem 6 (iv) hold if and only if

∑
n≥1
(1 − an) <∞ (3.1)

and
∑
n≥1
(1 − an) ln

1
1 − cn
<∞. (3.2)

4 Limit Theorems for the Defective GWθ-Process

In the defective case, there are two kinds of absorption times:
(i) τ0 the absorption time of the GWθ-process at 0,
(ii) τΔ the absorption time of the GWθ-process at the state Δ.
Let τ = min(τ0 , τΔ) be the absorption time of the GWθ-process either at 0 or at the state Δ. Let us recall that
q = P(τ0 <∞) and denote

qΔ = P(τΔ <∞), Q = P(τ <∞) = q + qΔ .

Clearly,
P(τ ≤ n) = P(τ0 ≤ n) + P(τΔ ≤ n) = Fn(0) + 1 − Fn(1),

implying
P(τ > n) = Fn(1) − Fn(0).

Furthermore,
E(Zn; τΔ > n) = Fn(1), E(sZn ; τΔ > n) = Fn(s), 0 ≤ s ≤ 1,

so that

E(Zn|τ > n) =
Fn(1)

Fn(1) − Fn(0)
, E(sZn |τ > n) = Fn(s) − Fn(0)Fn(1) − Fn(0)

, 0 ≤ s ≤ 1.

Theorems 7–10 present the transparent asymptotical results on these absorption probabilities and the limit
behavior of the GWθ-process in the four defective cases. Corollaries of Theorems 7–9 deal with the proper sub-
cases, where τ = τ0. All three corollaries describe a strictly subcritical case, when A = 0, and an asymptotically
degenerate case, when A ∈ (0, 1).
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Theorem 7. Consider the case θ ∈ (0, 1], r > 1. Then

q = r − (Ar−θ + C)−
1
θ , qΔ = 1 − r + (A(r − 1)−θ + C)−

1
θ ,

where A ∈ [0, 1) and (1 − A)r−θ ≤ C ≤ (1 − A)(r − 1)−θ .
(i) If A = 0, then

q = 1 − qΔ = r − C−
1
θ ∈ [0, 1],

so that Q = 1. Furthermore,

A−1n P(τ > n)→ ((r − 1)−θ − r−θ)θ−1C−
1
θ −1 ,

E(Zn|τ > n)→
(r − 1)−θ−1

(r − 1)−θ − r−θ
, E(sZn |τ > n)→ (r − s)

−θ − r−θ

(r − 1)−θ − r−θ
, 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then Q ∈ [0, 1),
E(Zn; τΔ > n)→ A(A + C(r − 1)θ)−

1
θ −1 ,

and Zn almost surely converges to a random variable Z∞taking values in the set {Δ, 0, 1, 2, . . . }, with

P(Z∞ = Δ) = 1 − r + (A(r − 1)−θ + C)−
1
θ ,

E(sZ∞ ; Z∞ ̸= Δ) = r − (A(r − s)−θ + C)−
1
θ , 0 ≤ s ≤ 1.

Corollary. Consider the case θ ∈ (0, 1], r > 1 assuming

cn = (1 − an)(r − 1)−θ , n ≥ 1, (4.1)

so that C = (1 − A)(r − 1)−θ implying qΔ = 0.
(i) If A = 0, then q = 1 with

A−1n P(Zn > 0)→ ((r − 1)−θ − r−θ)θ−1(r − 1)θ+1 .

Furthermore,

E(Zn|Zn > 0)→
(r − 1)−θ−1

θ((r − 1)−θ − r−θ)
, E(sZn |Zn > 0)→

(r − s)−θ − r−θ

(r − 1)−θ − r−θ
, 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then
q = 1 − r + (Ar−θ + C)−

1
θ , E(Zn)→ A,

so that q ∈ (0, 1), and Zn almost surely converges to a random variable Z∞ such that

E(Z∞) = A, E(sZ∞ ) = r − (A(r − s)−θ + (1 − A)(r − 1)−θ)−
1
θ , 0 ≤ s ≤ 1.

Theorem 8. Consider the case θ ∈ (−1, 0), r > 1 and put α = − 1θ , so that α > 1. Then

q = r − (Ar
1
α + C)α , qΔ = 1 − r + (A(r − 1)

1
α + C)α ,

where A ∈ [0, 1) and (1 − A)(r − 1) 1α ≤ C ≤ (1 − A)r 1
α .

(i) If A = 0, then
q = 1 − qΔ = r − Cα ∈ [0, 1],

so that Q = 1. Furthermore,

A−1n P(τ > n)→ αCα−1(r
1
α − (r − 1)

1
α ),

E(Zn|τ > n)→
(r − 1) 1α −1

r 1
α − (r − 1) 1α

, E(sZn |τ > n)→ r 1
α − (r − s) 1α

r 1
α − (r − 1) 1α

, 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then Q ∈ [0, 1),
E(Zn; τΔ > n)→ A(A + C(r − 1)−

1
α )α−1 ,

and Zn almost surely converges to a random variable Z∞ taking values in the set {Δ, 0, 1, 2, . . . }, with

P(Z∞ = Δ) = 1 − r + (A(r − 1)
1
α + C)α ,

E(sZ∞ ; Z∞ ̸= Δ) = r − (A(r − s)
1
α + C)α , 0 ≤ s ≤ 1.
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Corollary. Consider the case θ ∈ (−1, 0), r > 1 assuming (4.1), so that C = (1 − A)(r − 1) 1α implying qΔ = 0.
(i) If A = 0, then q = 1 with

A−1n P(Zn > 0)→ α(r − 1)1−
1
α (r

1
α − (r − 1)

1
α ).

Furthermore,

E(Zn|Zn > 0)→
(r − 1)−θ−1

θ((r − 1)−θ − r−θ)
, E(sZn |Zn > 0)→

(r − s)−θ − r−θ

(r − 1)−θ − r−θ
, 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then
q = 1 − r + (Ar

1
α + (1 − A)(r − 1)

1
α )α , E(Zn)→ A,

so that q ∈ (0, 1), and Zn almost surely converges to a random variable Z∞ such that

E(Z∞) = A, E(sZ∞ ) = r − (A(r − s)
1
α + (1 − A)(r − 1)

1
α )α , 0 ≤ s ≤ 1.

Theorem 9. Consider the case θ = 0, r > 1 implying

q = r − rAD, qΔ = 1 − r + (r − 1)AD, Q = 1 − (rA − (r − 1)A)D,

where D is given by Lemma 2 (f).
(i) If A = 0, then Q = 1, and

P(τ > n) ∼ (ln r − ln(r − 1))AnDn .
Moreover,

E(Zn|τ > n)→
(r − 1)−1

ln r − ln(r − 1) , P(sZn |τ > n)→ ln r − ln(r − s)
ln r − ln(r − 1) , 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then Q < 1,

(r − 1)1−A ≤ D ≤ r1−A , E(Zn; τΔ > n)→ A(r − 1)A−1D,

and Zn almost surely converges to a random variable Z∞ taking values in the set {Δ, 0, 1, 2, . . . }, with

P(Z∞ = Δ) = 1 − r + (r − 1)AD, E(sZ∞ ; Z∞ ̸= Δ) = r − (r − s)AD, 0 ≤ s ≤ 1.

Corollary. Given θ = 0, r > 1, assume cn ≡ 1. Then D = (r − 1)1−A implying qΔ = 0.
(i) If A = 0, then q = 1, and

P(Zn > 0) ∼ (ln r − ln(r − 1))AnDn .
Moreover,

E(Zn|Zn > 0)→
(r − 1)−1

ln r − ln(r − 1) , P(sZn |Zn > 0)→
ln r − ln(r − s)
ln r − ln(r − 1) , 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then
q = r − rA(r − 1)1−A , E(Zn)→ A,

so that q ∈ (0, 1), and Zn almost surely converges to a proper random variable Z∞, such that

E(Z∞) = A, E(sZ∞ ) = r − (r − s)A(r − 1)1−A , 0 ≤ s ≤ 1.

Theorem 10. In the case θ ∈ (−1, 0), r = 1 , put α = − 1θ , so that α > 1. Then

q = 1 − (A + C)α , qΔ = Cα , Q = 1 − (A + C)α + Cα ,

where A ∈ [0, 1) and 0 < C ≤ 1 − A.
(i) If A = 0, then q = 1 − qΔ = 1 − Cα , Q = 1, and

A−1n P(τ > n)→ αCα−1 .

Moreover,
E(sZn |τ > n)→ 1 − (1 − s)

1
α , 0 ≤ s ≤ 1.

(ii) If A ∈ (0, 1), then Q < 1,
E(Zn; τΔ > n) =∞,

and Zn almost surely converges to a random variable Z∞ taking values in the set {Δ, 0, 1, 2, . . . }, with

P(Z∞ = Δ) = Cα , E(sZ∞ ; Z∞ ̸= Δ) = 1 − (A(1 − s)
1
α + C)α , 0 ≤ s ≤ 1.
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Remarks

Wemake the following observations.
(i) Theorem 7 (ii) should be compared to the more general [6, Theorem 1], which allows the limit Z∞ to take

the value∞with a positive probability. The convergence results for the conditional expectation should be
compared to the statements of [6, Theorems 3 and 4].

(ii) The conditional convergence in distribution stated in Theorem 7 (i) should be compared to [11, Theo-
rem 2a (k = 0)] in the more general setting under the assumption of constant environment.

5 Examples

The following ten examples illustrate each of the ten theorems of this paper. Observe that given

cn = (1 − an)σ, n ≥ 1, (5.1)

for some suitable positive constant σ, we get Cn = (1 − An)σ, n ≥ 1. Similarly, if

cn = (an − 1)σ, n ≥ 1, (5.2)

for some suitable positive constant σ, then Cn = (An − 1)σ, n ≥ 1.

Example 1. Suppose θ ∈ (0, 1], r = 1, and

an =
n

n + 1 , An =
1

n + 1 , n ≥ 1. (5.3)

If (5.1) holds for some σ ≥ 1, then by Theorem 1,

q = 1 − σ−
1
θ , n−

1
θ E(Zn)→ 1,

and n− 1θ Zn → W almost surely, with

E(e−λW ) = 1 − (λ−θ + σ)−
1
θ , λ ≥ 0.

Example 2. Suppose θ ∈ (0, 1], r = 1, and

an =
n(n + 3)
(n + 1)(n + 2) , An =

n + 3
3(n + 1) , n ≥ 1. (5.4)

If (5.1) holds for some σ ≥ 1, then by Theorem 2,

q = 1 − ( 3
1 + 2σ )

1
θ
, E(Zn)→ 3

1
θ ,

and Zn → Z∞ almost surely, with

E(Z∞) = 3
1
θ , E(sZ∞ ) = 1 − 3

1
θ (2σ + (1 − s)−θ)−

1
θ , 0 ≤ s ≤ 1.

Example 3. Suppose θ ∈ (0, 1] and r = 1. Let

a1 =
1
2 , a2n = 4, a2n+1 =

1
4 ,

c2n−1 = 1, c2n = 2,

A2n−1 =
1
2 , A2n = 2, n ≥ 1.

Then C =∞ and Bn →∞ implying the conditions of Theorem 3. Observe that for this example, lim An does
not exist.
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Example 4. Suppose θ ∈ (0, 1] and r = 1. Recall that Theorem 4 is the only one among Theorems 1–5 which
may hold both with C <∞ and C =∞. For this reason, we present two examples (1) and (2) for each of these
two situations:
(1) Let

an =
n + 1
n

, cn =
1

n2(n + 1)
, n ≥ 1,

implying
An = n + 1, Cn =

n
n + 1 , Bn =

n
(n + 1)2

, n ≥ 1.

In this case, according to Theorem 4,

P(Zn > 0) ∼ n−
1
θ , E(Zn|Zn > 0)→ 1,

and
E(sZn |Zn > 0)→ s, 0 ≤ s ≤ 1.

(2) Let

an =
n + 1
n , An = n + 1, n ≥ 1,

and (5.2) hold for some σ > 0. Then

Cn = σn, Bn =
σn
n + 1 , n ≥ 1.

In this case, according to Theorem 4,

P(Zn > 0) ∼ (1 + σ)−
1
θ n−

1
θ , E(Zn|Zn > 0)→ (1 + σ)

1
θ ,

and
E(sZn |Zn > 0)→ 1 − ((1 + σ)(1 − s)−θ + σ + σ2)−

1
θ , 0 ≤ s ≤ 1.

Example 5. Suppose θ ∈ (0, 1] and r = 1. Let

an =
{{{
{{{
{

n for n = 2k − 1, k ≥ 1,
1

n−1 for n = 2k , k ≥ 1,
1 otherwise,

An =
{
{
{

n for n = 2k − 1, k ≥ 1,
1 otherwise.

Taking

cn =
{
{
{

1 for n = 2k , k > 1,
1
n2 otherwise,

we get

Cn = ∑
k : 2≤2k≤n

(2k − 1 − 2−2k) +
n
∑
k=1

k−2 , n ≥ 1,

implying Ckn ∼ 2n+1, provided 2n − 1 ≤ kn < 2n+1 − 1. Thus, by Theorem 5, for kn = 2n , λn = λ(2n)−
1
θ ,

P(Zkn > 0) ∼ (2kn)−
1
θ , E(e−λkn Zkn |Zkn > 0)→ 1 − (1 + λ−θ)−

1
θ , λ ≥ 0,

and on the other hand, for kn = 2n − 1,

P(Zkn > 0) ∼ (3kn)−
1
θ , E(sZkn |Zkn > 0)→ 1 − (3(1 − s)−θ + 6)−

1
θ , 0 ≤ s ≤ 1.

Example 6. Suppose θ = 0, r = 1, and assume cn = 1 − e−n
σ , −∞ < σ <∞, n ≥ 1, yielding

Dn = exp(−
n
∑
i=1

iσ(Ai−1 − Ai)), n ≥ 1.
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Notice that (5.3) implies A = 0 and

Dn = exp(−
n
∑
i=1

iσ−1

i + 1), n ≥ 1,

on the other hand, (5.4) implies A = 1
3 and

Dn = exp(−
n
∑
i=1

2iσ−1
3(i + 1)), n ≥ 1.

(i) If (5.3) holds and σ ≥ 1, then

An ∼ n−1 , Dn = exp(−
n
∑
i=1

iσ−1

i + 1)→ 0,

so that the conditions of Theorem 6 (i) are satisfied.
(ii) If (5.3) holds and σ < 1, then

An ∼ n−1 , D = exp(−
∞
∑
i=1

iσ−1

i + 1),

so that the conditions of Theorem 6 (ii) are satisfied.
(iii) If (5.4) holds and σ ≥ 1, then

A = 13 , Dn = exp(−
n
∑
i=1

2iσ−1
3(i + 1))→ 0,

so that the conditions of Theorem 6 (iii) are satisfied.
(iv) If (5.4) holds and σ < 1, then

A = 13 , D = exp(−
∞
∑
i=1

2iσ−1
3(i + 1)),

so that the conditions of Theorem 6 (iv) are satisfied.

Example 7. Suppose θ ∈ (0, 1], r > 1 assuming (5.1) with r−θ ≤ σ ≤ (r − 1)−θ .
(i) If (5.3), then the conditions of Theorem 7 (i) hold with An ∼ n−1 and C = σ.
(ii) If (5.4), then the conditions of Theorem 7 (ii) hold with A = 1

3 and C =
2σ
3 .

Example 8. Suppose θ ∈ (−1, 0), r > 1 assuming (5.1) with r − 1 ≤ σα ≤ r, where α = − 1θ .
(i) If (5.3), then the conditions of Theorem 8 (i) hold with An ∼ n−1 and C = σ.
(ii) If (5.4), then the conditions of Theorem 8 (ii) hold with A = 1

3 and C =
2σ
3 .

Example 9. Suppose θ = 0 and r > 1 and assume

cn = σ, 0 ≤ σ ≤ 1, n ≥ 1,

which implies
Dn = (r − σ)1−An , n ≥ 1.

(i) If (5.3), then by Theorem 9 (i), we get in particular,

P(τ > n) ∼ γn−1 , γ = (r − σ) ln r
r − 1 .

(ii) If (5.3), then by Theorem 9 (ii), we get in particular,

q = r − r
1
3 (r − σ)

2
3 , qΔ = 1 − r + (r − 1)

1
3 (r − σ)

2
3 , Q = 1 − (r

1
3 − (r − 1)

1
3 )(r − σ)

2
3 .

Example 10. Suppose θ ∈ (−1, 0), r = 1. Put α = − 1θ and assume (5.1) with 0 < σ ≤ 1.
(i) If (5.3), then by Theorem 10 (i), we get in particular, qΔ = σα and

P(τ > n) ∼ ασα−1n−1 .

(ii) If (5.4), then by Theorem 10 (ii), we get in particular, Q = 1 − ( 13 +
2σ
3 )

α + 2σ
3
α .
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6 Proofs

In this section we sketch the proofs of lemmas and theorems of this paper. The corollaries to Theorems 7–9 are
easily obtained from the corresponding theorems.

Proof of Lemma 1

Relations (2.1) and (2.2) imply respectively

(r − fk ∘ fk+1(s))−θ = ak(r − fk+1(s))−θ + ck = akak+1(r − s)−θ + ck + akck+1 ,

and
r − fk ∘ fk+1(s) = (r − ck)1−ak (r − fk+1(s))ak = (r − ck)1−ak (r − ck+1)(1−ak+1)ak (r − s)akak+1 ,

entailing the main claims of Lemma 1. Parts (a)–(f) follow from the respective restrictions (a)–(f) on (an , cn)
stated in Definition 1.

Proof of Lemma 2

(a) In the case θ ∈ (0, 1], r = 1, the claim follows from the existence of lim Cn and lim(An + Cn), which in turn,
follows from monotonicity of the two sequences. To see that An + Cn ≤ An+1 + Cn+1, it suffices to observe that

An − An+1 = An(1 − an+1) ≤ Ancn+1 = Cn+1 − Cn .

The second part of Lemma 2 is a direct implication of the definition of Cn .
(b)–(f) The rest of the stated results follows immediately from the restrictions (b)–(f) imposed on (an , cn)

in Definition 1.

Church–Lindvall Condition for the GWθ-Process

In [8] it was shown for the GW-processes in a varying environment that the almost surely convergence Zn
a.s.
→ Z∞

holds with P(0 < Z∞ <∞) > 0 if and only if the following condition holds:

∑
n≥1
(1 − pn(1)) <∞. (6.1)

Relation (6.1) is equivalent to
∏
n≥n0

pn(1) > 0 (6.2)

for some n0 ≥ 1. For the GWθ-process, the equality pn(1) = f n(0) implies

pn(1) = an(an + cnrθ)−
1
θ −1 (6.3)

for θ ̸= 0, and for θ = 0,
pn(1) = an(1 − cnr−1)1−an . (6.4)

Lemma 3. In the case θ ∈ (0, 1] and r = 1, relation (6.1) holds if and only if

An → A ∈ (0,∞) (6.5)

and
∑
n≥1

cn <∞. (6.6)



12  S. Sagitov and Y. Zhumayev, Galton–Watson Theta-Processes in a Varying Environment

Proof. In view of (6.3), we have
n
∏
i=1

pi(1) = AnG
− 1θ −1
n , Gn :=

n
∏
i=1
(ai + ci).

Since an + cn ≥ 1, we have
lim Gn = G ∈ [1,∞].

If G =∞, then (6.2) is not valid, implying that (6.1) is equivalent to (6.5) plus G <∞. It remains to verify that
under (6.5), the inequality G <∞ is equivalent to (6.6). Suppose (6.5) holds, and observe that in this case, G <∞
is equivalent to

∏
n≥1
(1 + cnan

) <∞,

which is true if and only if
∑
n≥1

cn
an
<∞.

Since under (6.5), an → 1, the latter condition is equivalent to (6.6).

Lemma 4. In the case θ = 0 and r = 1, relation (6.1) holds if and only if A ∈ (0, 1) and D ∈ (0, 1).

Proof. In view of (6.4), we have
∏
n≥1

pn(1) = A∏
n≥1
(1 − cn)1−an .

It remains to observe that given A ∈ (0, 1) the relation D ∈ (0, 1) is equivalent to

∏
n≥1
(1 − cn)1−an > 0.

Lemma 5. Assume that θ ̸= 0 and r > 1, and consider {Z̃n}, a GW-process in a varying environment with the
proper probability generating functions

̃fn(s) =
fn(s)
fn(1)
=
r − (an(r − s)−θ + cn)−

1
θ

r − (an(r − 1)−θ + cn)−
1
θ
.

Relation (3.1) implies
∞
∑
n=1
(1 − p̃n(1)) <∞.

Proof. Assume θ ∈ (0, 1] and r > 1 together with (3.1). Then An → A ∈ (0, 1), an → 1, and cn → 0. We have

p̃n(1) = ̃f n(0) = anh
− 1θ −1
n k−1n ,

where
hn = an + cnrθ , kn = r − (an(r − 1)−θ + cn)−

1
θ

are such that hn ≥ 1 and kn ∈ (0, 1]. The statement follows from the representation

∏
n≥1

pn(1) = AH−
1
θ −1K−1 ,

where H = ∏n≥1 hn and K = ∏n≥1 kn . It is easy to show that (3.1) and (1 − an)r−θ ≤ cn ≤ (1 − an)(r − 1)−θ yield

∑
n≥1
(hn − 1) ≤ rθ ∑

n≥1
cn ≤ rθ(r − 1)−θ ∑

n≥1
(1 − an) <∞,

implying H ∈ [1,∞). On the other hand, K ∈ (0, 1], since

∑
n≥1
(1 − kn) <∞,

which follows from

1 − kn ≤ (r − 1)(an + cn(r − 1)θ)−
1
θ − 1) ≤ r(1 − (an + cn(r − 1)θ)

1
θ ) ≤ rθ−1(1 − an).

In the other case, when (3.1) holds together with θ ∈ (−1, 0) and r > 1 , the lemma is proven similarly.



S. Sagitov and Y. Zhumayev, Galton–Watson Theta-Processes in a Varying Environment  13

Proof of Theorems 1–5

The proofs of these theorems are done using the usual for these kind of results arguments applied to the explicit
expressions available for Fn(s). In particular, the following standard formula is a starting point for computing
the conditional limit distributions:

E(sZn |Zn > 0) =
E(sZn ) − P(Zn = 0)

P(Zn > 0)
= 1 − 1 − Fn(s)1 − Fn(0)

. (6.7)

Thus in the case θ ∈ (0, 1] and r > 1, Lemma 1 and (6.7) imply

E(sZn |Zn > 0) = 1 −
((1 − s)−θ + Bn)−

1
θ

(1 + Bn)−
1
θ
→ 1 − ((1 − s)

−θ + B)− 1θ

(1 + B)− 1θ
,

proving the main statement of Theorem 4. The almost sure convergence stated in Theorem 2 follows from
Lemma 3 and the earlier cited criterium of [8].

Proof of Theorem 6

Suppose θ = 0, r = 1, in which case A ∈ [0, 1) and D ∈ [0, 1].
(i) Suppose A = D = 0. In this case q = 1 − D = 1, and by (6.7) and Lemma 1,

E(sZn |Zn > 0) = 1 − (1 − s)An .

Putting here sn = exp (−λe−
x
An ), we get as n →∞,

E(sZnn |Zn > 0) = 1 − (1 − exp(−λe−
x
An ))An = 1 − exp(An ln(λe−

x
An (1 + o(1)))→ 1 − e−x .

This implies a convergence in distribution

(Zne−
x
An |Zn > 0)

d
→ W(x),

where the limitW(x) has a degenerate distribution with

P(W(x) ≤ w) = (1 − e−x)1{0≤w<∞} .

In other words,
P(Zn ≤ we

x
An |Zn > 0)→ (1 − e−x)1{0≤w<∞} .

After taking the logarithm of Zn , we arrive at the statement of Theorem 6 (i).
(ii) Statement (ii) follows from Lemma 1 and relation (6.7) in a similar way as statement (i).
(iii) If A ∈ (0, 1) and D = 0, then q = 1 and by relation (6.7) and Lemma 1,

E(sZn |Zn > 0) = 1 − (1 − s)An → 1 − (1 − s)A .

(iv) Let A > 0 and D > 0. Since q = 1 − D, similarly to part (iii), we obtain

E(sZn )→ 1 − (1 − s)AD.

By Lemma 4, the convergence in distribution Zn
d
→ Z∞ can be upgraded to the almost surely convergence

Zn
a.s.
→ Z∞.

Proof of Theorems 7 and 8

In this section we prove only Theorem 7. Theorem 8 is proven similarly.
By Lemma 1,

Fn(0) = r − (Anr−θ + Cn)−
1
θ , Fn(1) = r − (An(r − 1)−θ + Cn)−

1
θ .
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It follows that
P(τ > n) = (Anr−θ + Cn)−

1
θ − (An(r − 1)−θ + Cn)−

1
θ ,

E(Zn|τ > n) =
Fn(1)

Fn(1) − Fn(0)
=

θ−1An(An + Cn(r − 1)θ)−
1
θ −1

(Anr−θ + Cn)−
1
θ − (An(r − 1)−θ + Cn)−

1
θ
,

E(sZn |τ > n) = Fn(s) − Fn(0)Fn(1) − Fn(0)
=
(Anr−θ + Cn)−

1
θ − (An(r − s)−θ + Cn)−

1
θ

(Anr−θ + Cn)−
1
θ − (An(r − 1)−θ + Cn)−

1
θ
.

(i) Assume that A = 0. Then the sequence of positive numbers

Vn = A−1n (C − Cn) = cn+1 + cn+2an+1 + cn+3an+2an+1 + ⋅ ⋅ ⋅

satisfies
r−θ ≤ lim inf Vn ≤ lim sup Vn ≤ (r − 1)−θ .

For a given x ∈ (0,∞), put
Wn(x) = A−1n (C−

1
θ − (Anx + Cn)−

1
θ ).

Since
Wn(x) = A−1n (C−

1
θ − (An(x − Vn) + C)−

1
θ ) = θ−1C−

1
θ −1(x − Vn + o(1)),

the representation
A−1n P(τ > n) = Wn((r − 1)−θ) −Wn(r−θ)

yields the first asymptotic result stated in part (i) of Theorem 7. The other two asymptotic results follow from
the representations

E(Zn|τ > n) =
θ−1(An + Cn(r − 1)θ)−

1
θ −1

Wn((r − 1)−θ) −Wn(r−θ)
,

E(sZn |τ > n) = Wn((r − s)−θ) −Wn(r−θ)
Wn((r − 1)−θ) −Wn(r−θ)

.

(ii) The second claim follows from the equality

E(sZn ; τΔ > n) = r − (An(r − s)−θ + Cn)−
1
θ .

Proof of Theorem 9

If θ = 0 and r > 1, then by Lemma 1

P(Zn = 0) = r − rAnDn , P(Zn ̸= Δ) = r − (r − 1)AnDn .

It follows that
q = r − rAD, qΔ = 1 − r + (r − 1)AD, Q = 1 − (rA − (r − 1)A)D.

(i) If A = 0, then clearly
q = r − D, qΔ = 1 − r + D, Q = 1,

and
P(τ > n) = (rAn − (r − 1)An )Dn ∼ (ln r − ln(r − 1))AnDn .

Furthermore,

E(Zn|τ > n) =
Fn(1)

Fn(1) − Fn(0)
=

An(r − 1)An−1

rAn − (r − 1)An
→
(r − 1)−1

ln r − ln(r − 1) ,

P(sZn |τ > n) = Fn(s) − Fn(0)Fn(1) − Fn(0)
=
rAn − (r − s)An

rAn − (r − 1)An
→

ln r − ln(r − s)
ln r − ln(r − 1) .

(ii) In the case A > 0, the main claim is obtained as

E(sZn ; τΔ > n) = r − (r − s)AnDn → r − (r − s)AD.
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Proof of Theorem 10

If θ ∈ (−1, 0) and r = 1, then by Lemmas 1 and 2,

Fn(0) = 1 − (An + Cn)α , Fn(1) = 1 − Cαn

and
q = 1 − (A + C)α , qΔ = Cα ,

where α = − 1θ and 0 < C ≤ 1 − A.
(i) Suppose A = 0. Then the sequence of positive numbers Vn = A−1n (C − Cn) satisfies

0 ≤ lim inf Vn ≤ lim sup Vn ≤ 1.

For a given x ∈ (0,∞), put
Wn(x) = A−1n ((Anx + Cn)α − Cα).

Since
Wn(x) = αCα−1(x − Vn + o(1)),

the representation
A−1n P(τ > n) = Wn(1) −Wn(0)

yields the first asymptotic result stated in part (i) of Theorem 10. The other asymptotic result follows from the
representation

E(sZn |τ > n) = Wn(1) −Wn((1 − s)
1
α )

Wn(1) −Wn(0)
.

(ii) Claim (ii) is derived as

P(sZn ; τ > n) = 1 − (An(1 − s)
1
α + Cn)α → 1 − (A(1 − s)

1
α + C)α .
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