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Abstract 8 
The Gothenburg Half Marathon is one of the world’s largest half marathon races 9 
with over 40 000 participants each year. In order to reduce the number of runners 10 
risking over-straining, injury, or collapse, we would like to provide runners with 11 
advice to appropriately plan their pacing. Many participants are older or without 12 
extensive training experience and may particularly benefit from such pacing 13 
assistance. Our aim is to provide this with the help of machine learning. We first 14 
analyze a large publicly available dataset of results from the years 2010 – 2019 (n 15 
= 423 496) to identify pacing patterns related to age, sex, ability, and temperature 16 
of the race day. These features are then used to train machine learning models for 17 
predicting runner’s finish time and to identify which runners are at risk of making 18 
severe pacing errors and which ones seem set to pace well. We find that prediction 19 
of finish time improves over the current baseline, while identification of pacing 20 
patterns correctly identifies over 70% of runners at risk of severe slowdowns, albeit 21 
with many false positives. 22 

KEYWORDS: HALF-MARATHON, RUNNING, PACING PATTERNS, RESULTS 23 
DATA, MACHINE LEARNING  24 

Introduction 25 

The Gothenburg Half Marathon is one of the world’s largest half-marathons. Most participants 26 
are recreational runners of all ages and fitness levels, and many return to participate each year. 27 
By supporting runners to pace well, fewer runners may have to abandon the race due to fatigue, 28 
injuries or in extreme cases even collapse. A well-paced race will likely be a more pleasant 29 
experience which encourages continued running and return participation and contributes to 30 
public health (Lee et al., 2017). 31 
We base our work on ten years of public results data (2010 – 2019) from the Gothenburg Half 32 
Marathon (n = 423 496) where finish times and 5 km split times are recorded. To our knowledge 33 
this is the largest investigation of pacing patterns for half-marathon running. Our goal is to 34 
investigate if we can use this large, easily accessible, public database to analyze and predict what 35 
is indicative of both good and bad pacing performance for recreational runners. Furthermore, it 36 
allows us to compare results on the same course with temperatures ranging between 13-25°C. 37 
As an immediate outcome, this will enable the Gothenburg Half Marathon race organizers to 38 
inform participants of risk factors related to pacing. In the longer run this work can be used in 39 
the development of tools for aiding pacing. For example, personalized pacing apps could help 40 
participants find a pace suitable for their fitness level and the conditions on the day of the race. 41 
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We formulate two connected research questions which we will aim to answer in this paper: 42 
Research Question 1 (RQ1): Can we (a) use machine learning to predict half-marathon 43 
runners’ finishing time? Furthermore, can we (b) predict which runners are at high and low risk 44 
of experience a severe slowdown during the second half of the race?  45 
For machine learning models to even have a chance of working effectively, there needs to be 46 
statistical patterns in the data, features, from which the model can learn. This leads us to the 47 
second research question: 48 
Research Question 2 (RQ2): What features from our dataset affect pacing patters and should 49 
be provided as inputs to the machine learning models?  50 
To answer the first question, we first need to define what constitutes good and bad pacing. 51 
Optimal pacing depends on many factors (Roelands, de Koning, Foster, Hettinga, & Meeusen, 52 
2013). As our focus is on recreational runners, the aim is not necessarily to encourage people to 53 
run as fast as possible, but rather to pace in a way to promote finishing the race in a safe manner, 54 
with low risk of overexertion or injury. In short, we optimize for long-term health benefits rather 55 
than finish time. Half-marathon runners are commonly advised to run an even or negative split: 56 
to maintain a controlled pace during the first half, and if possible then increase the pace during 57 
the second half. Whether or not an even or negative split really is the optimal pacing strategy for 58 
a half-marathon is however somewhat unclear (Abbiss & Laursen, 2008). Some earlier studies 59 
suggests that many runners in fact slow down throughout but also that half-marathon runners 60 
pace more evenly than full marathon runners (Nikolaidis, Cúk, and Knechtle 2019).  61 
For our purposes it is sufficient to identify approximate thresholds for good and bad pacing. We 62 
adapt a definition for severe pacing errors, originally developed for the full marathon distance 63 
by Smyth (2021), as a severe drop in pace during a 5 km segment. Conversely, we assume that 64 
runners managing an even or negative split are unlikely to have overexerted themselves and use 65 
this as a sufficient approximation of good pacing. 66 
To answer the second question, we need to establish which characteristics of runners could be 67 
indicative of different pacing patterns and risks, and thus useful for machine learning methods. 68 
The Gothenburg Half Marathon has been the subject of several previous studies which provides 69 
a starting point: Knechtle and Nikolaidis (2018) investigated age differences in finishing times 70 
on Gothenburg Half Marathon between 2014-2016 and found the relatively fastest finishing 71 
times for female runners aged below 40, and males between 35-39. Other studies have 72 
investigated the incidence and characteristics of runners collapsing, requiring medical assistance 73 
or ambulance transport, showing a higher incidence in warm years, and among runners younger 74 
than the average age (Carlström et al., 2019; Khorram-Manesh et al., 2020; Lüning, Mangelus, 75 
Carlström, Nilson, & Börjesson, 2019). For half-marathons in South Africa, older female runners 76 
were found to be less likely to finish races and females over the age of 50 were at higher risk of 77 
medical complications (Schwabe, Schwellnus, Derman, Swanevelder, & Jordaan, 2014a, 78 
2014b). In an analysis of the Vienna half-marathon in 2017, results pointed toward younger and 79 
male runners being more at risk of slowdowns, while female and older runners generally paced 80 
more evenly. (Cúk, Nikolaidis, & Knechtle, 2020; Cúk, Nikolaidis, Markovic, & Knechtle, 81 
2019). Similar patterns have been reported for the full marathon distance (Berndsen, Lawlor, & 82 
Smyth, 2020; Deaner, Carter, Joyner, & Hunter, 2015; March, Vanderburgh, Titlebaum, & 83 
Hoops, 2011; Smyth, 2021). On the full marathon distance, Ely, Cheuvront, Roberts, and 84 
Montain (2007) investigated the impact of weather and temperature and found trends towards 85 
slowing with increased wet-bulb globe temperature. Trubee, Vanderburgh, Diestelkamp, and 86 
Jackson (2014) find that for non-elite full marathon runners, female runners pace better than 87 
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male, and that this is magnified in higher temperature.  88 
As our dataset is larger than the above-mentioned studies of various half-marathons, we first 89 
conduct an exploratory data analysis to validate if the expected patterns and features from 90 
previous work is supported by our data. We investigate pacing patterns based on sex, age groups 91 
and different fitness levels (we use finish time as a proxy), as well as the effect of temperature.  92 

Methods 93 

We first present our dataset, followed by the metrics and definitions used to categorize good and 94 
bad pacing patterns. We then briefly summarize the statistical analysis applied to the dataset and 95 
introduce the machine learning models trained using this information as features.  96 
Data 97 
Our data consists of results from Gothenburg Half Marathon from the years 2010 – 2019 (earlier 98 
years did not have split times available). This data is publicly available from the race organizers 99 
website1, we work with a snapshot of the underlying results database retrieved on 2 November 100 
2021. Each runner is identified by a unique numeric ID and relevant to our analysis are finish 101 
time, split times at 5, 10, 15 and 20 km, year of birth and sex. In addition, we added information 102 
about the measured temperature on the race day each year, obtained from the Swedish 103 
Meteorological and Hydrological Institute. Runners start in different groups throughout the 104 
afternoon, but we simply used the temperature measured at 3pm. Note that the average daytime 105 
top temperature for Gothenburg in the month of May (when the race is held) is 17°C.  106 
After pre-processing to remove entries with missing or obviously faulty information (e.g., 107 
missing/incorrect split- and finishing times) we obtained a dataset of 423 496 records (female = 108 
140 409; male = 283 087). The dataset contains 184 890 unique individuals, on average 109 
participating 2.3 times in the ten-year period.  110 
Pacing Metrics 111 

To identify and compare pacing patterns we use the metrics defined below:  112 
Split Difference. The split difference (SD) captures time gained or lost during the second half 113 
of the race. A half marathon is 21 097.5 meters (Gothenburg Half Marathon has been measured 114 
exactly by World Athletics). Thus, as no exact mid-point split is available, we introduce a 115 
corresponding constant2 by which we multiply the 10 km split and define SD as:  116 

SD = FinishTime – 10kmSplit * 2.10975 117 
SD < 0 indicate that the runner was faster on the second half (a negative split), while SD > 0 118 
indicate they slowed down (a positive split).  119 
Severe Pacing Error. We slightly adapt the operational definition for the full marathon 120 
distance by Smyth (2021), as a 25% slowdown on a segment, compared to an initial base-pace. 121 
Note that what we call a severe pacing error (SPE), Smyth refers to as “hitting the wall” 122 
(HTW).  123 
We denote the pace of segments between split times as pace(5 km) for the pace of the 0-5km 124 
segment, pace(10 km) for the pace of the 5-10 km segment, etc. We first define the base-pace 125 

 
1 https://reg.goteborgsvarvet.se/sok/resultatlista.aspx  
2 1 / (10 000 / 21 0975.5) = 2.10975 

https://reg.goteborgsvarvet.se/sok/resultatlista.aspx
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(BP) as the average pace over the 5 and 10 km splits. Here, the runner establishes their pacing, 126 
and the risk of severe slowdowns this early in the race is low.  127 

𝐵𝑃 =
𝑝𝑎𝑐𝑒(5	𝑘𝑚) + 𝑝𝑎𝑐𝑒	(10	𝑘𝑚)

2  128 

The BP is then used to compute the Degree of Slowdown (DoS) for the segments between split 129 
times in the second half of the race defined as the ratio of segment pace and base pace. For 130 
each segment s in 𝑆𝑒𝑔𝑠 = {10 − 15	km, 15 − 20	km, 20 − 21	km}, the degree of slowdown 131 
is thus: 132 

𝐷𝑜𝑆(𝑠) =
𝑝𝑎𝑐𝑒(𝑠) − 	𝐵𝑃

𝐵𝑃 =
𝑝𝑎𝑐𝑒(𝑠)
𝐵𝑃 − 1 133 

Finally, we define a SPE on a segment 𝑠 ∈ 𝑆𝑒𝑔𝑠 as: 𝑆𝑃𝐸(𝑠) = 𝐷𝑜𝑆(𝑠) ≥ 0.25. A runner has 134 
thus made a sever pacing error if for some segment 𝑠 ∈ 𝑆𝑒𝑔𝑠, SPE(s) = True.  135 
Successful Pacing. In contrast to runners making severe pacing errors, we define successful 136 
pacing as runners managing a negative or even split, as these can be assumed to be at lower 137 
risk of overexertion. As we compute SPE’s only after the 10 km mark, we do the corresponding 138 
for successful pacing and denote by pace(start – 10km) the pace during the up until the 10km 139 
split and pace(10km – finish) the pace from there to the finish, and the define the split ratio:  140 

𝑆𝑝𝑙𝑖𝑡𝑅𝑎𝑡𝑖𝑜 =
𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡 − 10	𝑘𝑚)
𝑝𝑎𝑐𝑒(10	𝑘𝑚 − 𝑓𝑖𝑛𝑖𝑠ℎ) 141 

A split ratio of  £ 1 means the runner has managed a negative (or even) split. Note that the 142 
distance in the denominator is slightly longer, as there is no split time at the exact mid-point of 143 
the race.  144 
Statistical Analysis 145 
For analysis of the different features affecting the risk of making sever pacing errors, we use 146 
Python and the scipy.stats library. Our code is available online3.  147 
To make comparisons between pairs of groups (e.g. if male/female runners are more likely to 148 
make a SPE), we use a Fisher Exact test, provided by the Python library function 149 
scipy.stats.fisher_exact4, which takes a 2 ´ 2 contingency table as input, and outputs the 150 
resulting p-value and Odds Ratio (OR). For comparisons between multiple groups (e.g. age 151 
groups) we use a chi-square test, provided by the Python scipy.stats.chi2_contingency5, which 152 
similarly takes a n ´ 2 contingency table as input and provides a resulting p-value. ORs are 153 
then computed between consecutive pairs of groups. Finally, for comparisons of the effect of 154 
temperature on finishing times and proportion of runners making severe pacing errors we use 155 
a standard linear regression provided by the Python library function scipy.stats.linregress6  156 

 157 
 158 

 
3 https://github.com/atjaoan/PacingProject/tree/main/PythonNotebooks 
4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html 
5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html 
6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html 

https://github.com/atjaoan/PacingProject/tree/main/PythonNotebooks
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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Machine Learning Models 159 
We consider two machine learning problems. First, a regression problem of predicting the 160 
finish times of runners at different points in the race. Second, a classification problem 161 
predicting which runners will make severe pacing errors, or conversely, run a negative split. 162 
The source code is written in Python using open-source libraries and is available online7.  163 
Finish Time Prediction. Predicting the finishing time will be easier the further the runner has 164 
progressed through the race. We thus expect more accurate predictions when the model has 165 
access to more information. Therefore, for each method, four separate models were trained to 166 
make predictions, simulating how the runner progress through the race with the following 167 
inputs: a) pace at 5km split b) pace at 5 and 10km splits c) pace at 5, 10 and 15 km splits, and 168 
d) pace for all splits, including the one at 20km. Three machine learning methods for predicting 169 
finish time are compared: 170 
1) A baseline model currently used for Gothenburg Half Marathon live results which simply 171 
predicts that runners will maintain their most recent 5 km pace for the remainder of the race.  172 
2) Linear regression from the sklearn.linear_model Python library8 (Buitinck et al., 2013). As 173 
we want to compare the accuracy at different points in the race, we train one linear regression 174 
model for each split, i.e., four in total as described above. 175 
3) A small feed forward neural network model consisting of one hidden layer with 40 nodes, 176 
implemented using the Tensorflow library (Abadi et al., 2016). This model can capture non-177 
linear relationships between its inputs and the finish time should such relationships be present. 178 
As with the linear regression model, we train four variants each predicting finish time at 179 
different points in the race as it progresses. We then also experiment with adding additional 180 
features such as age, sex, daytime temperature and prior finishing time for repeat participants.  181 
Pace Category Prediction. We also investigate if it is possible to predict which runners will 182 
make SPEs before they do so, and conversely which runners seem on track for a negative split. 183 
We phrase this as a classification problem with three classes: SPE, Neg Split and those in 184 
between, labelled Other. These classes are not balanced: there are roughly the same number of 185 
runners making SPEs as running negative splits, but the majority is in between. This poses a 186 
challenge as there will be less training data in the SPE and Neg Split categories. Therefore, 187 
after some preliminary experiments with standard machine learning models, we opted for a 188 
balanced Random Forest model (Lemaître, Nogueira and Aridas, 2017), which is designed for 189 
imbalanced datasets such as this. We use the implementation from the imbalanced-learn Python 190 
library9.  191 

Results 192 

Pacing Patterns 193 
Table 1 summarizes the data year by year. Overall, 9.8% of participants ran a negative or equal 194 
split, while 8.6% of runners experienced a SPE on some segment, most commonly between 195 
15-20 km. As expected, this is a smaller proportion than in studies on the full marathon 196 

 
7https://github.com/atjaoan/PacingProject/tree/main/MachineLearningofPacingPatternsforHalfMarathon 
8 https://scikit-learn.org/stable/modules/linear_model.html 
9 https://imbalanced-learn.org/stable/ 

https://github.com/atjaoan/PacingProject/tree/main/MachineLearningofPacingPatternsforHalfMarathon
https://scikit-learn.org/stable/modules/linear_model.html
https://imbalanced-learn.org/stable/
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distance, where there is an increased prevalence of slowdowns due to glycogen depletion. For 197 
half-marathons, slowdowns are instead more likely due to lactate buildup or simply fatigue 198 
from overexertion during the first half.  199 
Table 1. Summary of the data by year, number of runners, percentage of female runners, average finishing times 200 

and percentage of runners having experienced a SPE or run a negative split respectively. The 201 
warmest year was 2013 (25°) and the coldest 2012 (13,6°).  202 

Year Runners %Female Temp 
°C 

Average time % SPE % Neg 
Split 

M F M F M F 

2010 37 982 29.0 21.7 02:03:59 ± 
00:19:35 

02:15:45 ± 
00:19:22 

16.7 5.7 5.3 6.7 

2011 42 838 30.8 16.6 01:57:06 ± 
00:18:27 

02:09:59 ± 
00:18:46 

6.2 3.8 14.6 12.1 

2012 42 838 31.2 13.6 01:56:04 ± 
00:19:01 

02:09:10 ± 
00:19:05 

7.1 4.4 15.1 12.5 

2013 44 919 33.0 25.0 02:05:22 ± 
00:19:53 

02:16:46 ± 
00:20:00 

16.8 7.6 6.0 8.0 

2014 47 187 34.6 18.9 01:59:38 ± 
00:20:24 

02:13:10 ± 
00:20:18 

12.4 7.2 6.8 6.5 

2015 46 207 34.8 14.7 01:57:43 ± 
00:20:00 

02:10:45 ± 
00:19:44 

8.4 4.9 11.8 9.9 

2016 44 972 34.8 15.1 01:57:38 ± 
00:20:00 

02:11:16 ± 
00:19:47 

6.6 3.7 9.7 10.2 

2017 42 252 34.5 13.9 01:57:27 ± 
00:19:43 

02:10:49 ± 
00:20:03 

6.0 3.8 14.3 12.6 

2018 39 911 34.5 20.0 02:00:24 ± 
00:21:17 

02:14:40 ± 
00:21:42 

10.7 5.9 8.0 7.5 

2019 33 134 34.0 19.4 01:59:58 ± 
00:22:24 

02:14:26 ± 
00:22:05 

11.1 6.7 8.2 5.4 

Overall 423 496 33.2 17.9 01:59:28 ± 
00:20:14 

02:12:33 ± 
00:20:15 

10.2 5.4 10.1 9.2 

 203 
The average runner in our analysis started the race at a faster pace than they could maintain, and 204 
gradually slowed down by each 5 km split, until the 20 km mark, when they managed to increase 205 
their speed with the goal in sight (Figure 1). Runners who made severe pacing errors displayed 206 
the same pacing pattern, but with an even faster start and larger drop in pace between 10-20 km. 207 
Runners who managed a negative split started slower in the first 5 km to then maintain a very 208 
even pace until the finishing sprint.  209 
Most runners lost time in the second half of the race (Figure 2). An average runner, finishing in 210 
120 minutes, lost just over 4 minutes on the second half.  The fastest runners, finishing in less 211 
than 90 minutes lost less, on average around 1:30 minutes. In the groups with slower finishing 212 
times there were much more spread, but in general, slower finishers lost more on the second 213 
half.  Note that among the very fastest, it seems few ran a negative split, possibly due to race 214 
tactics.  215 
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Average split differences were very similar between male and female runners. Grouping by 216 
finishing time however shows that female runners generally lost less time, see Appendix (Figure 217 
A1). Older runners (50+) had slower average finish times and larger split differences. However, 218 
grouping by finish time showed no differences except among the slower runners (finish time > 219 
150 minutes), where the younger age-groups in fact lost more time see Appendix (Figure A2). 220 

 221 

 222 
Figure 1: Relative pace for each segment 223 

 224 

 225 
Figure 2: Average split difference (time lost on second half) as a function of finish time (all 226 

runners) showing 10th, 25th, 50th, 75th and 90th percentile in finish time grouped at 10-227 
minute intervals.  228 

Next, we investigated which runners, based on sex, age, and finishing time (as a proxy for runner 229 
fitness), applied a pacing strategy with a negative or equal split, and conversely, which runners 230 
experienced severe slowdowns.  231 
Sex. Male runners were twice as likely to make a SPE: 10.2% of did so compared to just 5.4% 232 
of female runners (OR = 2.0; p < 0.001), see Table 1. Most runners slowed down during the 233 
second half of the race (Figure 1), but among runners managing a negative or equal split, male 234 
and female runners performed similarly: 10.1% of male runners and 9.2% of female runners (OR 235 
= 1.1; p < 0.001).  236 
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Age. Gothenburg Half Marathon is open for participants aged 17 and above, with most runners 237 
between 30-49 years of age, see Table 2. Age information was missing or incorrect for 3173 238 
datapoints, which were excluded from analysis.  239 
Table 2. Percentage of runners experiencing severe pacing errors or managing a negative split by age group. 240 

Age #Runners %Female % SPE % Neg 
Split 

M F M F 

17 – 29 89 032 44.1 13.1 7.0 14.7 12.3 

30 – 39 125 484 32.9 10.2 4.7 11,6 10,1 

40 – 49 124 275 31,3 9.0 4.2 9.0 7.7 

50 – 59 62 261 26.5 9.3 5.5 6.3 4.7 

60 + 19 272 17.3 9.9 5.4 4.4 3.0 

 241 
The increased risk of SPEs for male compared to female runners was consistently high across 242 
all age groups: 1.74 ≤ OR ≤ 2.29; p < 0.001 (Figure 3). For both sexes, the youngest runners (17-243 
29 years old) were most likely to make SPEs, while the 40–49-year-olds were least likely 244 
(female: OR = 0.59; male: OR = 0.66; p < 0.001). Differences between consecutive age groups 245 
within sex are statistically significant except for the female runners in their 50’s vs. 60’s (p = 246 
0.74).  247 
Younger participants were more likely to run a negative split, with males slightly higher than 248 
females consistently across age groups (1.17 ≤ OR ≤ 1.49; p < 0.001). This decreased for each 249 
older age group, (Figure 3), pairwise between consecutive age groups of same sex, female: 0.58 250 
≤ OR ≤ 0.80; male: 0.68 ≤ OR ≤ 0.76; p < 0.001. The younger age groups are where we expect 251 
to find the elite or near-elite runners, who have the experience and fitness level to keep a 252 
consistent pacing for a full half-marathon, but perhaps also many inexperienced recreational 253 
runners who start too fast and later experience severe slowdowns.  254 
 255 

 256 
Figure 3: Proportion of male and female runners, by age group, (left) making SPEs and (right) 257 

running a negative split. 258 
Finish Time. A larger proportion of runners made SPEs among those with slower than average 259 
finish times, both among males and females, see Appendix (Figure A3). For male runners, the 260 
proportion increased sharply for finish times above average (120 minutes), from less than 5% to 261 
over 30% among those finishing in over 150 minutes. The increase was less steep for female 262 
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runners: for finish times below average (~135 minutes) less than 3% made SPEs, increasing to 263 
25% for those finishing in over 180 minutes.  264 
Conversely, the percentage of runners managing a negative split was highest among those 265 
finishing in 75-104 minutes for males (15-16%) and 90-119 minutes for females (14%). This 266 
then drops to 2-3% among the slowest runners. Note that among the very fastest group very few 267 
(<5%) ran a negative split, possibly because of race tactics and placement being more important 268 
than finish time.  269 
Effect of Temperature. With higher temperature there was a trend towards both slower finish 270 
times and a larger proportion of SPEs. The average finish time and proportion of runners making 271 
SPEs was lower in the five coolest years studies (<18° C, small variation between years). In 272 
warmer years, many runners managed to compensate by reducing their tempo (Figure 4), female: 273 
r2 = 0.90; male: r2 = 0.91; p < 0.001. The difference in average finish time between the coldest 274 
(2012: 13,6° C) and the warmest (2013: 25° C) years was 7:36 minutes for female runners, and 275 
9:18 minutes for males. 276 
In warmer years, an increased proportion of male runners made SPEs, r2 = 0.85; p < 0.001 277 
(Figure 5). For female runners, temperature appeared to be less of a factor (r2 = 0.66, p = 0.004). 278 
Regarding negative splits, the data fell into two clusters representing the five cooler years (<18°) 279 
and the five warmer years (> 18°). Runners were about twice as likely (female: OR = 1.74; male: 280 
OR = 2.07) to manage a negative split in the five cooler years, see Appendix (Figure A4).  281 

 282 

 283 
Figure 4: Average finish times for male and female runners per year. Each datapoint represent 284 

one year. 285 
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 286 
Figure 5: Temperature and percentage of male and female runners making SPEs per year. Each 287 

datapoint represent one year. 288 

Predicting Finishing Time 289 

For evaluation of the finishing time models, we compared the fixed pace baseline model with 290 
our linear regression and neural network models (Figure 6, left). We did a 5-fold cross 291 
validation with an 80-20% random split in training and test and computed the average mean 292 
absolute error (MAE) over all folds. We compared the predictions at each intermediate split, 293 
expecting the models with access to additional splits to perform better the closer to the finish 294 
we get. Both the linear regression models and the neural networks outperformed the baseline 295 
at all intermediate splits, with the neural network slightly outperforming the linear regression 296 
model at the 10 and 15 km splits. The largest absolute improvement over baseline was found 297 
at the 10 km split where the neural network had a 2:09 minute lower MAE than baseline. 298 
 299 

 300 
Figure 6. Left: Mean absolute error for the Baseline, Linear Regression and Neural Network 301 
models at all intermediate splits. Right: Mean absolute error for neural network models with 302 

and without additional features. 303 

 304 
To further improve results, we experimented with adding additional input features to the neural 305 
network based on factors from the exploratory data analysis: age, sex and daytime temperature, 306 
as well as prior finishing time and pacing for repeat participants. To avoid data leakage, we used 307 
the 2019 race as our test set (25 443 samples), and data from earlier years for training (213 133 308 
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samples). Thus, the resulting prediction values cannot be directly compared to the method 309 
comparison analysis above. Adding additional features improved performance slightly, 310 
especially for predictions early in the race, where combining all features resulted in a MAE 311 
decrease of 33 seconds (Figure 6, right).  312 

Predicting Pacing Categories 313 

To learn about which runners are at risk of making an SPE, we needed to also include some 314 
information approximating their capacity. However, as we did not have access to much data 315 
about the participants, beyond the results for the ten years under investigation, we opted to run 316 
these experiments on a subset of 238 576 data points, including only runners who had 317 
participated several times. The previous finish times was used as a proxy of the runners’ 318 
presumed fitness and capacity. The input features selected through data analysis and initial 319 
experimentation were thus: age, sex, pace(0-5 km), pace(5-10 km), previous finish time and 320 
split ratio, number of previous races (a proxy for experience), and temperature. 321 
As mentioned, the dataset is highly imbalanced, with 8.4% of data points belonging in the SPE 322 
and Neg Split categories respectively, and over 80% thus in the remaining category of runners 323 
making a moderate slowdown (labelled Other). As before, the data was divided into 80% for 324 
training (190 860 samples) and 20% for testing (47 716 samples), using stratified sampling to 325 
ensure a representative number of datapoints in each category, and downsampling the large 326 
Other class. 327 
The balanced random forest model was fitted with a random parameter search 328 
(RandomizedSearchCV), based on average results for a 3-fold cross validation, maximizing the 329 
F1 score of the Neg Split and SPE classes. This was experimentally found to be optimal as it 330 
maximized the score for the difficult classes, with the results for the overall best model shown 331 
in Table 3. The model did a reasonable job of identifying the runners set to pace badly or well: 332 
at the 10 km split, it correctly identified 72% of those who will experience a severe slowdown, 333 
and 73% of those who managed a negative split (Table 3, Recall column). However, it did so at 334 
the cost of mislabeling many runners that in fact belong in the Other category, precision is only 335 
0.20 and 0.22 respectively for the SPE and Neg Split categories, contributing to the relatively 336 
low F1 score. 337 

Table 3. Metrics for classification of runners into those who made a severe pacing error (SPE), ran a negative 338 
split or did neither, predicted after the 10 km split. 339 

 Precision Recall F1 Score 

SPE 0.20 0.72 0.32 

Neg Split 0.22 0.73 0.33 

Other 0.92 0.47 0.62 

 340 
From the confusion matrix (Table 4) we can see that the most common misclassifications were 341 
indeed runners belonging in the Other category. For the SPE and Neg Split categories, the most 342 
common mistake was to classify them as belonging to the Other category. We tried to explore if 343 
these misclassifications potentially lay close to the decision boundary, i.e., was close to make a 344 
SPE or manage a negative split but did not detect any clear patterns. 345 
Table 4. Confusion matrix for the three pacing categories. Values along the diagonal show proportion of correct 346 

classifications for each class (recall). 347 
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True Label 

 

 

SPE 0.72 0.08 0.20 

Neg Split 0.09 0.73 0.18 

Other 0.27 0.26 0.47 

 SPE Neg Split Other 

                 Predicted Label 

Finally, by computing the permutation feature importance score, we measured which features 348 
were most important for the model. Unsurprisingly, the 5 and 10 km paces were by far the most 349 
important, followed by the previous finishing time. Sex, temperature, previous split ratio and 350 
age were less important. The number of previous runs was not important for the model, and we 351 
also did not find any statistically significant patterns connecting this feature to an increased or 352 
decreased risk of SPEs. It could therefore have been removed from the machine learning model 353 
without affecting the results.   354 

Discussion 355 

Increased digitalization and availability of results and weather data allow for easier large-scale 356 
studies of pacing patterns of recreational races. Large datasets also allow training of machine 357 
learning methods. In our work, we demonstrated this methodology to answer whether machine 358 
learning could successfully: (RQ1a) predict the finishing time of runners at each split time and 359 
(RQ1b) identify, at the 10 km mark, which runners were at risk of making SPEs and which ones 360 
were following a low-risk pacing strategy. Via statistical analysis (RQ2), we investigated which 361 
features were potentially useful for such machine learning models, and if the trained models used 362 
these effectively. 363 
For RQ1a, we found that a linear regression model performs better than the baseline model at 364 
every split time. An additional small improvement is obtained from the neural network model, 365 
but it seems the relationship between pace and finish time is largely linear, apart for a small 366 
subset of data which exhibits non-linear relationships. The neural network improvement was due 367 
to capturing these cases better. Adding the additional features from our statistical analysis to the 368 
neural network produced additional improvements in predictions, especially at early stages of 369 
the race, as expected.  370 
Predicting which runners were at risk of making pacing errors (RQ1b), or conversely which 371 
runners were pacing within their limits proved to be a harder problem based on the current 372 
dataset. First, we had to reduce the dataset to a subset of runners having participated at least 373 
twice, to get some measure of their ability, as no personal data (such as PR) was available. 374 
Fortunately, many runners participated multiple times, so this was not considered such a large 375 
limitation. Secondly, the classification problem was unbalanced, with the SPE and Neg Split 376 
categories being much smaller than the category of runners losing a moderate amount of time 377 
(the Other category). We therefore used a balanced random forest model, which is designed for 378 
these cases. The model correctly identified 72-73% of the runner pacing badly and well 379 
respectively, but also mistook many that ought to have been in the Other category. As the 380 
training data undersampled the Other category, we believe the model learnt to expect a more 381 
even split between classes. Devising a better training procedure for this model was left as future 382 
work. We do however think that overclassifying SPEs is preferable over the converse, as the aim 383 
is to encourage recreational runners to keep a pace with low risk of overexertion. Regarding 384 
feature importance, the model learned to put more weight on the pace at the first two splits. This 385 
seem reasonable, as many runners who later make an SPE often have already started to slow at 386 
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the 10 km mark, while runners pacing well are more even at this stage. Previous finish time was 387 
also a good indicator, consistent with the data analysis, as most SPEs were among slower 388 
runners. Somewhat surprising, the model did not put as much relative importance on sex and 389 
temperature, which in the data analysis showed large effect sizes, especially for male runners in 390 
warmer temperatures. This could have been due to there being relatively few female runners in 391 
the dataset (only around 30%), and that there were only a few years where temperatures were 392 
exceedingly high. Balancing the dataset with respect to these features could have had a positive 393 
effect.       394 
In addition to our machine learning results, our statistical analysis on this very large dataset over 395 
10 years provided additional support for patterns seen in smaller studies. We found a higher 396 
proportion of male and younger runners making SPEs (age-group 17-29 years), and the lowest 397 
percentage among middle aged female runners (40-49 years), which is consistent with previous 398 
smaller studies on the marathon and half-marathon distance (Deaner et al., 2015; Smyth, 2021; 399 
Cúk et al., 2020, 2019). Carlström et al. (2019) found increased incidence of cases needing 400 
ambulances in years with temperatures above 17°C. Our analysis finds the same patterns 401 
mirrored in the much larger cohort of runners that make SPEs during the race with the same 402 
notable peaks in 2010 and 2013, see Appendix (Figure A5). This supports the conclusion of 403 
Carlström et al. (2019) that low-risk temperatures for half-marathons range between 13 – 18°C. 404 
Limitations 405 
Our definitions of good and bad pacing are estimates and do not include any personal metrics 406 
such as heart rate, hence the reasons for slowdowns are unknown. Similarly, the threshold for 407 
what constitutes a SPE could be tweaked. Still, we believe these definitions served as a good 408 
enough proxy for revealing trends in pacing, also seen in other studies. With access to more fine-409 
grained data e.g., GPS traces (Berndsen et al., 2020), HR monitors and training history, the 410 
models can be made more exact. However, this incurs a cost of more involved data collection, 411 
and a risk of skewing data towards ambitious runners, who are more likely to carry appropriate 412 
devices and record their training history.  413 
We note that our dataset contains the same individuals running multiple times. We choose not 414 
to filter out repeat participants, as it would be difficult to decide which results to drop, and which 415 
to keep. Many runners may also have participated in years before those covered in our dataset. 416 
Including repeat participants was also useful for the machine learning models, where prior results 417 
could be used as a proxy for fitness level.  418 

Conclusion 419 

The Gothenburg Half Marathon is one of the words largest and attracts many recreational 420 
runners. Through analysis of a large publicly available dataset of 10 years of results and split 421 
times, we show that there is room for improvements in pacing as most runners slowed down 422 
throughout the race. Our goal with this work was to investigate if machine learning could help 423 
recreational runners with pacing, where we considered two tasks: predicting finishing time and 424 
identifying which runners were at risk of making a severe pacing error. We have taken a public 425 
health perspective, emphasizing running a safe race which avoids overexertion, rather than 426 
necessarily optimizing finish time under all conditions. We demonstrated improved accuracy 427 
over the current baseline on predicting runners finishing times, especially at the early stages of 428 
the race. Our model also demonstrated reasonable success in identifying which runners were at 429 
risk of experiencing a severe slowdown after the 10 km split, and conversely which runners were 430 
set to pacing evenly, with low risk of overexertion. As the finish time model was more successful 431 
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than the pacing category prediction, treating the latter as a regression problem seems more 432 
suitable. Predicting how much time will be lost/gained as a numeric quantity, and comparing to 433 
a threshold is however left as future work. 434 
Future work towards developing personalized pacing aids should investigate improving 435 
accuracy by including additional personal data, e.g., heart rate, training history and GPS. Until 436 
then, we expect our results may guide race organizers and recreational runners to mitigate 437 
common risks and assist in running a more enjoyable half-marathon. 438 
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Appendix: Supplementary Material 509 
This appendix contains additional figures illustrating the pacing patterns in various situations. 510 
Data tables for generating the figures are available online10.  511 

 512 

 513 
Figure A1: Average split difference by finishing time for male and female runners. For runners 514 

with the same finishing time, female runners generally lost less time on the second half than 515 
males. 516 

 517 

 518 
Fig A2: Average split difference by finishing time for different age groups. There was little or 519 

no difference among the faster runners. However, among the slower runners, with finishing 520 
times above 150 minutes, older runners lost less time than younger runners. 521 

 
10 
https://github.com/JohanAtterforsStudent/PacingProject/blob/714310d61b6f456e98db76ff88d0b74e671ccb92/T
ables_and_Data.pdf 

https://github.com/JohanAtterforsStudent/PacingProject/blob/714310d61b6f456e98db76ff88d0b74e671ccb92/Tables_and_Data.pdf
https://github.com/JohanAtterforsStudent/PacingProject/blob/714310d61b6f456e98db76ff88d0b74e671ccb92/Tables_and_Data.pdf
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 522 
Fig A3: Percentage of runners making SPEs or managing a negative split grouped by finishing 523 

time in minutes. The percentage of SPEs gradually increase with finishing time, while the 524 
percentage of negative splits is higher among faster runners. 525 

 526 

 527 
Fig A4: Percentage of male and female runners managing a negative or equal split per year. 528 

Data roughly fell in two clusters, where the five cooler years (< 18°C) had a larger proportion, 529 
and the warmer years (> 18°C) had a smaller. 530 

 531 

 532 
Figure A5: The percentage of runners making SPEs each year varies with temperature. 533 


