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Repulsive Markovian Models for Opinion Dynamics*

Carl-Johan Heiker1,†, Elisa Gaetan2, Laura Giarré2 and Paolo Falcone1,2

Abstract— We consider the problem of modeling a decision-
making process in a network of stochastic agents, each de-
scribed as a Markov chain. Two approaches for describing
disagreement among agents as social forces are studied. These
forces modulate the rates at which agents transition between
decisions. We define similarity conditions between the two
disagreement models and derive a method for obtaining two
model instances that fulfill this property. Moreover, we show
that a condition for significantly reducing the state-space
dimension through marginalization can be derived for both
models. However, using a counterexample, we also demonstrate
that similarity is not generally possible for models that can be
marginalized. Finally, we recommend which disagreement model
to use based on the results of our comparison.

Index Terms— Opinion dynamics, Agent-based systems,
Markov processes

I. INTRODUCTION

In many areas, from market economy and politics to
vehicular traffic, groups of individuals need to make col-
lective decisions through communication. Opinion dynamics
[1] can be used to describe and predict the outcome of
these processes. However, for complex systems that evolve
from human interaction, deriving deterministic models may
require more information than what is practically available.
Markov chains can be used in stochastic abstractions of
such systems. For example, [2] models highway traffic as
vehicles that randomly arrive to– and depart from lanes, so
that the number of vehicles in each lane is a Continuous
Time Markov Chain (CTMC). Based on a similar arrival-
and departure process, [3] describes a system of traffic
intersections as interconnected CTMCs. Using a different
approach, [4] models an intersection as a stochastic decision
process to predict road users’ decisions to yield or go
through the crossing. Each road user switches between the
two decision states as a CTMC, according to the Markovian
opinion dynamics framework proposed in [5], where CTMC
agents change each other’s state probabilities by transition
rate modulation. In [6], this framework is used to describe
how stubborn agents induce rifts in community opinion and
how social power develops depending on the interaction
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Fig. 1: Drivers a and b decide between lanes L1 and L2. Indi-
rect repulsion increases the rate of different decisions, while
direct repulsion decreases the rate of identical decisions.

topology. Additionally, [7] showed that a marginalized form
of this Markovian opinion dynamic model can be obtained
analytically. Within this framework, there is a need to de-
velop models of basic interaction forms that can be observed
in applications.

In [4], an indirect repulsion force models disagreement in a
network of Markovian agents by increasing the frequency at
which agents make conflicting decisions. In this paper, we
present the direct repulsion force which instead describes
disagreement as a decrease in the rates at which agents
make identical decisions. The difference between the two
principles is illustrated in the following example.

Example 1: Drivers a and b in Fig. 1 choose between
highway lanes L1 and L2. Indirect repulsion causes a to
choose L2 at a higher frequency since b is not in L2 (Fig.
1a). Conversely, direct repulsion makes a decide L1 at a
lower frequency since b is in L1 (Fig. 1b).

As direct repulsion may seem more intuitive than indirect
repulsion, a technical comparison is necessary to determine
if the two alternative disagreement models can similarly de-
scribe the same decision process. This objective is achieved
with the following four contributions: 1) The direct repulsion
force is defined; 2) It is shown that an agent network D
constructed using direct repulsion can be reduced to a small-
scale model by analytical marginalization; 3) The similarity
property is defined for two general networks, and a method
for obtaining D similar to an agent network I, constructed
using indirect repulsion, is formulated; 4) A counterexample
is derived to show that, in general, the similarity conditions
do not hold for marginalizable networks.

In the following, Section II describes agent- and network
models, Section III covers the repulsion forces, Section
IV shows how to derive the marginalization of D, and
Section V defines similarity between D and I. In Section VI
we construct a counterexample showing that marginalizable
networks cannot always be similar, while Section VII demon-
strates an example in which similarity is obtained when I
is marginalizable. Finally, conclusions are drawn in Section
VIII.



II. BASIC MARKOVIAN NETWORK MODEL

A. Agents as Continuous-Time Markov Chains

Let N denote a set of N agents. We model the isolated
decision process of the n:th member as a time-homogeneous
CTMC over a set S = {s1, . . . , sM} of M decision states.
State transitions si → sj , where i ̸= j, occur at non-
negative real rates Qn[i, j] from the M × M matrix Qn,
in which each diagonal element Qn[i, i] is the negated sum
of the off-diagonal elements in row i. The vector Πn(t) =[
πn
1 (t) πn

2 (t) . . . πn
M (t)

]T
is a probability distribution

over S describing the probability that the agent is in each
state at time t. It is given by solving

Π̇n(t) = QT
nΠn(t), (1)

where Π̇n(t) denotes the first time derivative of Πn(t), from
some initial condition Πn(0). The solution Πn(t), including
the transient behavior, is fully characterized by Qn and
Πn(0) according to [8].

As done in [5] and [4], we assume that Qn is irreducible,
which ensures that the associated CTMC is ergodic. This
implies that the agent has a nonzero probability to visit all
states, and that Πn(t) converges to a unique, stationary state
probability Π̄n.

B. Agent networks

For a general network X of N agents with M decisions
there are MN network states, each defined as a tuple sX =
⟨s1, . . . , sn, . . . sN ⟩, where sn denotes the state of the n:th
agent. The network states are organized in the set

SX = S1 × · · · × Sn × · · · × SN , (2)

where each Sn represents the same decisions as S, but
is indexed to distinguish between agents. The probability
that two agents transition at exactly the same time is zero,
so every possible transition between two network states is
caused by the state transition of a single agent. Hence, X
can be described as a CTMC over SX. The probability that
X is in each state at time t is denoted ΠX(t) and given by
solving

Π̇X(t) = QTΠX(t), (3)

where Π̇X(t) denotes the first time derivative of ΠX(t), from
some initial condition ΠX(0). The network transition rate
matrix is

Q =

N∑
n=1

IMn−1 ⊗Qn ⊗ IMN−n , (4)

where ⊗ represents the Kronecker product, Qn is the rate
matrix of the n:th agent, and I denotes identity matrices
with dimensions Mn−1 and MN−n, respectively. Since the
MN × MN matrix Q describes a CTMC, it obeys the
same definition as in II-A, albeit for a different, larger state
space. As explained in [5], this network CTMC inherits the
ergodicity property of the individual agents.

III. INDIRECT AND DIRECT REPULSION

In the following, we recall the indirect repulsion force
presented in [4] and propose an alternative direct formulation
for modeling disagreement between stochastic agents.

A. Indirect repulsion

The indirect repulsion force is expressed as
+ξnj (Rℓ, γ) = γ

∑
k

ΓA
Rℓ

[n, k]
(
1− 1k

j

)
(5)

and describes how the n:th agent, a member of the group
A, increases the rate of transitions to sj . The increase
is directly dependent on which of the agents, indexed k,
in the group Rℓ are in states different from sj , an event
denoted by the negated indicator function (1 − 1k

j ). A and
Rℓ are disjoint subsets of N that interact according to
the directed graph GA

Rℓ
=

(
N ,ΓA

Rℓ

)
, where ΓA

Rℓ
is an

N ×N row-normalized, non-negative real adjacency matrix
of agent-to-agent influence strength. A group A can be
repulsed by several disjoint groups Rℓ ∈ R with a unique
graph describing each conflict. However, each group can be
repulsed by other groups (assuming the role of A in one
conflict), and repulse other groups (assuming the role of Rℓ

in another conflict), simultaneously.
The parameter γ ≥ 0 sets the magnitude of the repulsion

force in proportion to the weighted average decisions of Rℓ.
It can be a function of both time-independent traits, such as
agent index n and the pair

(
A,Rℓ

)
, but also of the time-

dependent network state sX. However, state independence is
required for analytical marginalization to be possible. We
call this property marginalizability.

To express indirect repulsion in the network model (3), we
define the MN×MN network transition rate matrix R+ with
the same indexing convention as Q. If a network transition
from the a:th to the b:th state in SX, denoted sXa → sXb
where a ̸= b, is caused by the n:th agent’s transition si →
sj , then R+[a, b] =

∑
Rℓ∈R

+ξnj (Rℓ, γ|sXa , sXb ). While the
indicator functions from (5) are random variables, they can
be evaluated deterministically given the network states sXa
and sXb , such that R+[a, b] becomes a nonnegative real scalar.
Each diagonal element in R+, however, is the negated sum
of off-diagonal elements in the corresponding row.

An agent network modeled with indirect repulsion is
denoted I, and its decision probabilities ΠI(t) are found by
solving

Π̇I(t) = (Q+R+)TΠI(t), (6)

where Π̇I(t) is the first time derivative of ΠI(t), from some
initial condition ΠI(0).

B. Direct repulsion

As an alternative form of repulsion, we now describe the
direct repulsion force as

−ξnj (Rℓ, γ) = γ
∑
k

ΓA
Rℓ

[n, k]1k
j . (7)

This force is denoted “−” as it, in contrast to (5) which
is denoted “+”, directly reduces the n:th agent’s transition



rate to sj depending on which agents, indexed k, are in
sj . However, to prevent negative transition rates, γ must be
limited, as shown next.

Given state-independent influence parameters γ, assume
that the n:th agent is maximally repulsed. That is, every
group Rℓ has all its agents in sj so that 1k

j = 1 for all
k and Rℓ. Since each ΓA

Rℓ
is row normalized, the total

rate reduction is
∑

Rℓ∈R
−ξnj (Rℓ, γ) =

∑
Rℓ∈R γ. If this

is less than or equal to the minimal isolated transition rate
qnmin = mini ̸=j Qn[i, j], none of the n:th agent’s transition
rates are negative. Assuming that γ is dependent on n and(
A,Rℓ

)
, we require∑

Rℓ∈R
γ ≤ qnmin, ∀n. (8)

As for indirect repulsion, we define a MN×MN transition
rate matrix R− to describe direct repulsion in the network
model (3). A network transition from the a:th to the b:th
state in SX, where a ̸= b, that is caused by the n:th agent’s
transition si → sj obtains the rate reduction R−[a, b] =∑

Rℓ∈R
−ξnj (Rℓ, γ, |sXa , sXb ). Each diagonal element in R−

is the negative sum of the off-diagonal elements in the cor-
responding row. A network described with direct repulsion
is denoted D, and its decision probabilities ΠD(t) are found
by solving

Π̇D(t) = (Q−R−)TΠD(t), (9)

where Π̇D(t) is the first time derivative of ΠD(t), from some
initial condition ΠD(0).

Remark 1: Unlike indirect repulsion, direct repulsion
needs to be limited, requiring knowledge of qnmin. Addition-
ally, its transition rate reductions may have unwanted effects
on the transient phase of the network decision probabilities.
These disadvantages are important to consider when choos-
ing repulsion model.

IV. MARGINALIZATION WITH DIRECT REPULSION

Through marginalization, the probability distribution of a
single variable can be derived by summation over a joint
probability distribution. This way, MN individual agent
decision probabilities can be derived from an MN network
model. However, [4] showed that a marginalization of I can
be expressed analytically, without using the network model.
This is much more computationally efficient. In the follow-
ing, we show how to analytically derive a marginalization of
D under the same conditions.

Theorem 1: Each row in the marginalized model describes
the probability that the n:th agent is in sj as

π̇n
j =

M∑
i=1

Qn[i,j]πn
i + πn

j

∑
Rℓ∈R

γ−
∑

Rℓ∈R
γ
∑
k

ΓA
Rℓ

[n,k]πk
j .

(10)
Proof: We let E[1(t)] = π(t), where E[·] denotes

the expected value of a random variable, and express the
probability that the n:th agent is in sj after δt time using
the infinitesimal definition of the CTMC. Then,

E
[
1n
j (t+ δt)|sX

]
= 1n

j

(
1− δtQO

)
+
(
1− 1n

j

)
δtQI , (11)

where QO and QI represent the total in- and outgoing rates
from sj . Taking the expected value of the RHS,

E
[
1n
j (t+δt)|sX

]
−E

[
1n
j

]
δt

=E
[
−1n

j

(
QO+QI

)
+QI

]
, (12)

and the LHS approaches π̇n
j as δt → 0. Next, we split QI

and QO into two parts: isolated and repulsive rates. Then,
we derive the contributions to π̇n

j for each part.
First, let QO =

∑
i ̸=j Qn[j, i] and QI =

∑
i ̸=j Qn[i, j]1

n
i

in the RHS of (12), which becomes

E
[
−1n

j

(∑
i̸=j

Qn[j,i]+
∑
i ̸=j

Qn[i,j]1
n
i

)
+
∑
i̸=j

Qn[i,j]1
n
i

]
.

(13)

Since
∑

i ̸=j Qn[j, i] = −Qn[j, j] and 1n
j 1

n
i = 0 for all t,

this is reduced to

E
[
Qn[j,j]1

n
j +

∑
i ̸=j

Qn[i,j]1
n
i

]
=E

[ M∑
i=1

Qn[i,j]1
n
i

]
. (14)

The contribution to π̇n
j from the isolated rates is thus

M∑
i=1

Qn[i, j]πn
i , (15)

which corresponds to the first term in (10).
Second, by setting QO = −

∑
Rℓ∈R

∑
i ̸=j

−ξni (Rℓ, γ)

and QI = −
∑

Rℓ∈R
−ξnj (Rℓ, γ), we evaluate the rate

contributions from the direct repulsion force (7). Assuming
that γ is state-independent, but possibly dependent on n, A
and Rℓ, the RHS of (12) becomes

E
[
1n
j

∑
Rℓ∈R

M∑
i=1

−ξni (Rℓ, γ)−
∑

Rℓ∈R

−ξnj (Rℓ, γ)
]
. (16)

As γ is independent on si and sj , we obtain

E
[
1n
j

∑
Rℓ∈R

γ

M∑
i=1

∑
k

ΓA
Rℓ

[n,k]1k
i −

∑
Rℓ∈R

γ
∑
k

ΓA
Rℓ

[n,k]1k
j

]
.

(17)

If we for each agent in Rℓ, indexed k, sum over the indicator
functions for every possible state i = 1 . . .M , 1k

i = 1 for
exactly one i. Additionally, ΓA

Rℓ
is row normalized. Thus,

E
[
1n
j

∑
Rℓ∈R

γ −
∑

Rℓ∈R
γ
∑
k

ΓA
Rℓ

[n, k]1k
j

]
, (18)

which rewritten in terms of π is

πn
j

∑
Rℓ∈R

γ −
∑

Rℓ∈R
γ
∑
k

ΓA
Rℓ

[n, k]πk
j , (19)

the second and third term in (10).
We use (10) to construct the marginalized model

Π̇m(t) = (Qm −Rm)TΠm(t), (20)

where Qm and Rm are MN × MN matrices constructed
from the terms (15) and (19), respectively.



A. Effects of marginalizability on R+ and R−

Assume that two different network transitions sXa → sXb
and sXc → sXd are caused by the same agent making the
transitions si → sj and sk → sl, respectively. If the same
repulsive agents who are in sj when sXa → sXb , are also
in sl for sXc → sXd , the transitioning agent faces an identical
opposition in both scenarios. Then, the summation term in (5)
(or (7) for direct repulsion) will be identical for both network
transitions. Moreover, if all parameters are state-independent
(a necessary condition for marginalizability) the influence
strength is identical in both scenarios. Consequentially, the
force and thereby the corresponding element in R+ (or R−)
is the same for sXa → sXb and sXc → sXd .

V. SIMILARITY BETWEEN DIRECT AND INDIRECT
REPULSION

To establish if a network D defined with direct repulsion
and a network I formulated with indirect repulsion can be
used to similarly model a decision process, we define two
criteria for similarity between two general networks: 1) the
difference in the networks’ expected decision state holding
time is minimized w.r.t. some criterion (e.g. (22) in this
paper), and 2) the networks have identical stationary decision
probabilities. Next, we define this property formally to derive
a method that finds D similar to I.

A. Minimal difference in expected decision state holding time

Our first criterion for similarity is that the time that
D spends in each decision state should be as close as
possible to that of I. As described in [8], the state holding
time Vi of a state si in a CTMC with rate matrix Q is
exponentially distributed with parameter −Q[i, i]. It follows
that the expectation E[Vi] = −1/Q[i, i]. For a state sXi in
the networks I and D, the cumulative probability distribution
functions of state holding time are

P [V +
i ≤ t] = 1− e

(
Q[i,i]+R+[i,i]

)
t and (21a)

P [V −
i ≤ t] = 1− e

(
Q[i,i]−R−[i,i]

)
t, (21b)

respectively. Thus, I decreases the expected state holding
time, while D increases it. To keep the decision state holding
times of both networks as close as possible, the increase of
E[V −

i ] should be minimized, equivalent to minimizing the
diagonals of R−. For this purpose, we formulate the objective
function

f(r,H) = rTATHAr, (22)

where r is a column vector such that ri represents the
i:th positive R− element found by nested row-wise and
left-to-right iteration. A is a (0, 1)-matrix such that Ar =
−diag(R−), and H is a tuning matrix for emphasizing the
minimization of a subset of diagonal elements.

B. Equal stationary decision probabilities

Our second criterion for similarity between D and I is
that they should reach identical stationary state probabilities.
While the transition rate matrix of an ergodic CTMC maps

to a unique stationary state, several matrices can produce
the same stationary state. We need to find the off-diagonal
elements of R− such that the stationary state equations of
(6) and (9), expressed as

(Q+R+)T Π̄ = 0 and (23a)

(Q−R−)T Π̄ = 0, (23b)

hold given Q, R+ and the shared stationary distribution Π̄.
Since Q becomes redundant in finding R−, (23) reduces to

(R−)T Π̄ = −(R+)T Π̄. (24)

We can rearrange the linear combination (R−)T Π̄ into a
product between a known matrix MΠ̄ constructed from ele-
ments of Π̄ and the vector r of unknown R− off-diagonals.
The rate reductions in r must be positive, but cannot exceed
the transition rates in Q. In total, we require

MΠ̄r = −(R+)T Π̄ (25a)
0 < r < q, (25b)

where q is a vector of Q elements and indexed like r.
All solutions to (25a) are given by

r = −M†
Π̄
(R+)T Π̄ + (I −M†

Π̄
MΠ̄)w, (26)

where † denotes the Moore-Penrose inverse and w is an
arbitrary vector, see e.g. [9]. Solutions exist iff MΠ̄M

†
Π̄

=
−(R+)T Π̄. If the latter holds, the solution is unique iff MΠ̄

has full column rank, and I−M†
Π̄
MΠ̄ is a zero matrix. While

this condition can be used to check the existence of any
solution r, we also require r < q, which in practice is easily
enforced directly in a numerical solver.

C. Obtaining D similar to I by constrained optimization

Minimizing the objective function (22) under the con-
straints in (25) defines the constrained optimization problem

minimize
r

f(r,H) (27a)

subject to MΠ̄r = −(R+)T Π̄, (27b)
0 < r < q, (27c)

which, for any number of agents and decisions, finds the off-
diagonal elements of the matrix R− such that D is similar to
I. In the following, we investigate how the feasibility of (27)
is affected by network structure and additional constraints
for obtaining marginalizable networks.

VI. FEASIBILITY UNDER SIMILARITY- AND
MARGINALIZABILITY CONSTRAINTS

To show that similarity is not generally feasible for
marginalizable networks, we return to Example 1 in the
introduction, and investigate (27) in three cases:

1) No additional marginalization constraints are imposed,
2) D is marginalizable, and
3) D and I are both marginalizable.



In Example 1, N = 2 drivers, a and b, choose between
M = 2 lanes at rates in

Q1 =

[
−qa12 qa12
qa21 −qa21

]
, Q2 =

[
−qb12 qb12
qb21 −qb21

]
, (28)

respectively, so that X has a state space SX = {s11, s12} ×
{s21, s22} according to (2). Its isolated transition rate matrix
is

Q=


−qa12−qb12 qb12 qa12 0

qb21 −qa12−qb21 0 qa12
qa21 0 −qa21−qb12 qb12
0 qa21 qb21 −qa21−qb21

. (29)

Assuming mutual repulsion, the structure of the network
transition rate matrices for indirect and direct repulsion are

R+=


−(ra+12 +rb+12 ) rb+12 ra+12 0

0 0 0 0
0 0 0 0

0 ra+21 rb+21 −(ra+21 +rb+21 )

 , (30a)

R−=


0 0 0 0

rb−21 −(ra−12 +rb−21 ) 0 ra−12
ra−21 0 −(ra−21 +rb−12 ) rb−12
0 0 0 0

 . (30b)

Here, ra/b+ij and r
a/b−
ij denote the rate increase and decrease

for each agent’s transition si → sj as a result of indirect and
direct repulsion, respectively. To formulate the constraints in
(27b) and (27c), we construct

MΠ̄ =


π̄2 0 π̄3 0
−π̄2 −π̄2 0 0
0 0 −π̄3 −π̄3

0 π̄2 0 π̄3

 , (31a)

q =
[
qb21 qa12 qa21 qb12

]T
, (31b)

r =
[
rb−21 ra−12 ra−21 rb−12

]T
, (31c)

Π̄ =
[
π̄1 π̄2 π̄3 π̄4

]T
. (31d)

Fig. 2 shows the CTMC representations of a, b and X.
For the sake of demonstration, X has both the indirect and
direct repulsion rates added to its isolated transition rates,
thus depicting I and D simultaneously. In this special case,
indirect and direct repulsion never affects the same network
transition, which can also be seen in the non-overlapping
sparsity patterns of (30a) and (30b).

s11 s12

s21 s22

qa12

qa21
qb12

qb21

a:

b:

⟨s11, s21⟩ ⟨s11, s22⟩

⟨s12, s21⟩ ⟨s12, s22⟩

X: qb12+rb+12

qa12+ra+12

qb21−rb−21

qa12−ra−12qa21−ra−21

qb12−rb−12

qb21+rb+21

qa21+ra+21

Fig. 2: CTMCs a and b and their network CTMC X.

A. No marginalization constraints

Evaluating the constraints (27b) and (27c) for Example
network 1 yields

0 < rb−21 =
π̄1 r

b+
12 − π̄4 r

b+
21 + π̄3 x

π̄2
< qb21, (32a)

0 < ra−12 =
π̄4 r

a+
21 + π̄4 r

b+
21 − π̄3 x

π̄2
< qa12, (32b)

0 < ra−21 =
π̄1 r

a+
12 + π̄4 r

b+
21 − π̄3 x

π̄3
< qa21, (32c)

0 < rb−12 = x < qb12. (32d)

Thus, the rate x is a free parameter on an interval
(xmin, xmax), such that (32) hold, showing that similarity can
be achieved without marginalization of the networks.

B. D is marginalizable

Following the reasoning in Section IV-A, choosing state-
independent parameters when constructing R− requires the
additional equality constraints ra−21 = ra−12 and rb−21 = rb−12 ,
halving the number of unknowns in (27). The lower bound
of (32) reduces into the constraints

0 < rb−21 =
π̄1 r

b+
12

π̄2
+
π̄4 r

a+
21

π̄2
+

π̄1 r
a+
12

π̄2−π̄3
− π̄4 r

a+
21

π̄2 − π̄3
, (33a)

0 < ra−21 =
π̄4 r

a+
21

π̄2 − π̄3
− π̄1 r

a+
12

π̄2 − π̄3
, (33b)

0 =
π̄1 r

a+
12

π̄3
− π̄1 r

b+
12

π̄2
− π̄4 r

a+
21

π̄2
+

π̄4 r
b+
21

π̄3
. (33c)

The satisfaction of (33c) is determined only by R+ and
Π̄ and cannot be controlled by choosing R−. Hence, this
counterexample shows that similarity between I and D is
not always determined by D, if D is marginalizable.

C. D and I are marginalizable

Marginalizability of I requires that ra+12 = ra+21 and rb+12 =
rb+21 hold, in addition to (33). We can then express rb+12 as a
function of ra+12 in (33c), and substitute rb+12 in (33a). This,
in combination with (33b), first allows us to derive two sets
of conditions

π̄2

π̄3
>

π̄4

π̄1
> 1 or

π̄2

π̄3
<

π̄4

π̄1
< 1, (34)

that account for the existence and positivity of r.
Second, we must verify that the conditions (34) do not

affect the positivity of the entries ra+12 and rb+12 . From (33c),
we assume that ra+12 > 0 by construction. Therefore, rb+12 > 0
iff

π̄3π̄1 − π̄4π̄2

π̄2π̄1 − π̄4π̄3
> 0, (35)

which has two possible sets of solutions,{
π̄3

π̄2
> π̄4

π̄1
π̄2

π̄3
> π̄4

π̄1

or

{
π̄3

π̄2
< π̄4

π̄1
π̄2

π̄3
< π̄4

π̄1
.

(36)

Finally, the constraints (34) for the existence and positivity
of the solution must be merged with those for the positivity
of the entries of matrix R+, (36). However, none of these



merged sets has a solution, since for both cases there is
a conflict between inequalities. This means that it is not
possible to find any combinations of Π̄ entries such that all
the constraints hold. Thus, N = M = 2 is a counterexample
showing that similarity according to (27) is not generally
feasible when both D and I are marginalizable.

VII. NUMERICAL RESULTS

In Example 1, the similarity objective function (27a) can-
not be minimized as the diagonal elements of (30b) become
independent on the free rate rb−12 due to (32). However, in
the following large-scale example, we show that (27) can be
solved when I is marginalizable, and that minimizing (27a)
can lead to a shorter probability transient in D.

Example 2: Assume that N = 8 driver agents c, d . . . j
choose between M = 2 lanes at rates Q1[1,2]=1, Q2[1,2]=
2, . . .Q8[1,2]=8 and Q1...8[2,1]=5, producing a 256× 256
Q according to (4). Groups are disregarded, assuming fully
connected repulsion between all agents so that ΓA

Rℓ
in (5)

and (7) always describes repulsion between two agents. For
I, we choose state-independent parameters 0.14≤ γ ≤ 0.71
so that (8) holds for all agents and I is marginalizable.
The objective is to find a D similar to I by solving (27)
for the vector r containing the 2032 unknown rates in R−.
We assume that R− is the result of state-dependent γ-
parameters so that D is not marginalizable. The matrix H
in (27a) is set to identity for an unweighted minimization
of all diagonal elements in R−. Moreover, to show that the
diagonal elements of R− can indeed be minimized, we find
and compare two networks, D1 and D2. For D1, we require
r ≥ 0.4, which is unnecessarily high. For D2, r ≥ 0.001,
which is closer to the necessary positivity constraint.

We simulate I, D1 and D2 to obtain the network proba-
bility trajectories from t = 0 to t = 1. By post-summation
over network decision probabilities, we extract the decision
probabilities of each agent c. . . j and compare them in Fig.
3. In the first eight plots, it can be seen that I, D1, and

Fig. 3: Agent decision probabilities and eigenvalues.

D2 all produce the same stationary decision probability for
each agent, confirming that the second similarity criterion
in Section V holds. In the plot of agent c, we also show
the network rise time until 95% of the stationary probability.
Importantly, I has the fastest rise time t1 ≈ 0.35, followed
by D2 with t2 ≈ 0.55 and lastly D1 with t3 ≈ 0.87. The
eigenvalue plot shows that a higher spectral gap, obtained
by minimizing the difference in expected state holding time,
corresponds to a shorter transient time in this particular case.

Remark 2: In the above, we show a case in which we
find D similar to a marginalizable I. When marginalization
constraints are enforced also on D, no solution is found.

VIII. CONCLUSIONS

We introduce the direct repulsion force as an alternative
to the indirect repulsion force for modeling group-wise
disagreement in a decision process among Markovian agents
in a network. To see if both methods can similarly describe
a decision process, similarity is defined as a property be-
tween two network models, requiring equality between their
respective stationary decision probabilities and a minimal
(w.r.t. the cost (27a)) difference between their expected
decision state holding times. We show that the state-space
dimension of a network defined with direct repulsion also can
be significantly reduced using marginalization, and for two
networks D and I defined with direct and indirect repulsion
respectively, we demonstrate an example of when D similar
to a marginalizable I can be obtained. However, we also
derive a counterexample to show that the existence of D
similar to I cannot generally be guaranteed when D and/or I
are marginalizable. Moreover, direct repulsion requires more
information and may increase the time until the decision pro-
cess becomes stationary. Therefore, we recommend indirect
repulsion as a model for disagreement in decision processes
among Markovian agents. Future work includes learning
indirect repulsion parameters from decision processes in
traffic scenarios, such as lane changing.
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