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ABSTRACT
Consensus, abstracting a myriad of problems in which processes

have to agree on a single value, is one of the most celebrated prob-

lems of fault-tolerant distributed computing. Consensus applica-

tions include fundamental services for the environments of the

Cloud and Blockchain, and in such challenging environments, ma-

licious behaviors are often modeled as adversarial Byzantine faults.

At OPODIS 2010, Mostéfaoui and Raynal (in short MR) presented

a Byzantine-tolerant solution to consensus in which the decided

value cannot be a value proposed only by Byzantine processes. MR

has optimal resilience coping with up to 𝑡 < 𝑛/3 Byzantine nodes
over 𝑛 processes. MR provides this multivalued consensus object

(which accepts proposals taken from a finite set of values) assuming

the availability of a single Binary consensus object (which accepts

proposals taken from the set {0, 1}).
This work, which focuses on multivalued consensus, aims at the

design of an even more robust solution than MR. Our proposal ex-

pands MR’s fault-model with self-stabilization, a vigorous notion of

fault-tolerance. In addition to tolerating Byzantine, self-stabilizing

systems can automatically recover after the occurrence of arbi-
trary transient-faults. These faults represent any violation of the

assumptions according to which the systemwas designed to operate

(provided that the algorithm code remains intact).

To the best of our knowledge, we propose the first self-stabilizing

solution for intrusion-tolerant multivalued consensus for asynchro-

nous message-passing systems prone to Byzantine failures. Our

solution has a O(𝑡) stabilization time from arbitrary transient faults.
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1 INTRODUCTION
We present in this work a novel self-stabilizing algorithm for multi-

valued consensus in signature-free asynchronous message-passing

systems that can tolerate Byzantine faults. We provide rigorous

correctness proofs to demonstrate that our solution is correct and

outperforms all previous approaches in terms of its fault tolerance
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capabilities, and further analyze its recovery time. Compared to

existing solutions, our proposed algorithm represents a significant

advancement in the state of the art, as it can effectively handle a

wider range of faults, including both benign and malicious failures,

as well as arbitrary, transient, and possibly unforeseen violations

of the assumptions according to which the system was designed

to operate. Our proposed solution can hence further facilitate the

design of new fault-tolerant building blocks for distributed systems.

1.1 Task Requirements and Fault Models
Multivalued Consensus (MVC). The consensus problem is one

of the most challenging tasks in fault-tolerant distributed com-

puting. The problem definition is rather simple. It assumes that

each non-faulty process advocates for a single value from a given

set 𝑉 . The problem of Byzantine-tolerant Consensus (BC) requires
BC-completion (R1), i.e., all non-faulty processes decide a value,

BC-agreement (R2), i.e., no two non-faulty processes can decide

different values, and BC-validity (R3), i.e., if all non-faulty processes
propose the same value 𝑣 ∈ 𝑉 , only 𝑣 can be decided. When the set,

𝑉 , from which the proposed values are taken is {0, 1}, the problem
is called Binary consensus and otherwise, MVC. We study MVC

solutions that assume access to a single Binary consensus object.

Byzantine fault-tolerance (BFT). Lamport et al. [28] say that a

process commits a Byzantine failure if it deviates from the algo-

rithm instructions, say, by deferring or omitting messages that were

sent by the algorithm or sending fake messages, which the algo-

rithm never sent. Such malicious behaviors include crashes and

may be the result of hardware or software malfunctions as well as

coordinated malware attacks. In order to safeguard against such at-

tacks, Mostéfaoui and Raynal [33], MR from now on, suggested the

BC-no-intrusion (R4) validity requirement (aka intrusion-tolerance).
Specifically, the decided value cannot be a value that was proposed

only by faulty processes. Also, when it is not possible to decide

on a value, the error symbol  is returned instead. For the sake

of deterministic solvability [23, 28, 35, 36], we assume that there

are at most 𝑡 < 𝑛/3 Byzantine processes in the system, where 𝑛

is the total number of processes. It is also well-known that no de-

terministic (multivalued or Binary) consensus solution exists for

asynchronous systems in which at least one process may crash (or

be Byzantine) [24]. Our self-stabilizing MVC algorithm circumvents

this impossibility by assuming that the system is enriched with

a Binary consensus object, as in the studied (non-self-stabilizing)

solution by MR [33], i.e., reducing MVC to Binary consensus.

Definition 1.1. The BFT Multivalued Consensus (MVC) prob-
lem requires BC-completion (R1), BC-agreement (R2), BC-validity
(R3), and BC-no-Intrusion (R4).
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Self-stabilization. We study an asynchronous message-passing

system that has no guarantees on the communication delay and the

algorithm cannot explicitly access the local clock. Our fault model

includes undetectable Byzantine failures. In addition, we aim to

recover from arbitrary transient-faults, i.e., any temporary violation

of assumptions according to which the system was designed to

operate. This includes the corruption of control variables, such as

the program counter and message payloads, as well as operational

assumptions, such as that there are more than 𝑡 faulty processes.

We note that non-self-stabilizing BFT systems do not consider re-

covery after the occurrence of such violations. Since the occurrence

of these failures can be arbitrarily combined, we assume these

transient-faults can alter the system state in unpredictable ways.

In particular, when modeling the system, Dijkstra [15] assumes

that these violations bring the system to an arbitrary state from

which a self-stabilizing system should recover [3, 16]. I.e., Dijkstra
requires (i) recovery after the last occurrence of a transient-fault

and (ii) once the system has recovered, it must never violate the task

requirements. Arora and Gouda [5] refer to the former requirement

as Convergence and the latter as Closure.

Definition 1.2. A Self-Stabilizing Byzantine Fault-Tolerant
(SSBFT) MVC algorithm satisfies the requirements of Definition 1.1
within the execution of a finite number of steps following the last
transient fault, which left the system in an arbitrary state.

1.2 Related work
Ever since the seminal work of Lamport, Shostak, and Pease [28]

four decades ago, BFT consensus has been an active research subject,

see [13] and references therein. The recent rise of distributed ledger

technologies, e.g., [1], brought phenomenal attention to the subject.

We aim to provide a degree of dependability that is higher than

existing solutions.

Ben-Or, Kelmer, and Rabin [6] were the first to show that BFT

MVC can be reduced to Binary consensus. Correia, Neves, and

Veríssimo [12, 34] later established the connection between in-

trusion tolerance and Byzantine resistance. These ideas form the

basis of the MR algorithm [33]. MR is a leaderless consensus algo-

rithm [4] and as such, it avoids the key weakness of leader-based al-

gorithms [11] when the leader is slow and delays termination. There

exist self-stabilizing solutions for MVC but only crash-tolerant

ones [9, 18, 25, 29, 30], whereas, the existing BFT solutions are not

self-stabilizing [37]. For example, the recent self-stabilizing crash-

tolerant MVC in [30] solves a less challenging problem than the

SSBFT problem studied here since it does not account for malicious

behaviors. Mostéfaoui, Moumen, and Raynal [32] (MMR in short)

presented BFT algorithms for solving Binary consensus using com-

mon coins, of which [26, 27] recently introduced a self-stabilizing

variation that satisfies the safety requirements, i.e., agreement and

validity, with an exponentially high probability that depends only

on a predefined constant, which safeguards safety. The related work

also includes SSBFT state-machine replication by Binun et al. [7, 8]
for synchronous systems and Dolev et al. [17] for practically-self-
stabilizing partially-synchronous systems. Note that both Binun

et al. and Dolev et al. study another problem for another kind of

system setting. In [19], the problems of SSBFT topology discovery

Byzantine-tolerant 
binary consensus 

validated Byzantine 
broadcast

multivalued Byzantine-tolerant consensus

Byzantine-tolerant reliable broadcast

emulation of state-machine replication 

message-passing system

object 
recycling

Binary-values 
broadcast 

Figure 1: We assume the availability of SSBFT protocols (cf.
Definition 1.2) for Binary consensus and object recycling.
The studied problems appear in boldface fonts. The other
layers, BRB, BV-broadcast, and state machine replication, are
in plain font.

and message delivery were studied. Self-stabilizing atomic memory

under semi-Byzantine adversary is studied in [20].

1.3 A brief overview of the MR algorithm
The MR algorithm assumes that all (non-faulty) processes eventu-

ally propose a value. Upon the proposal of value 𝑣 , the algorithm

utilizes a Validated Byzantine Broadcast protocol, known as VBB, to

enable each process to reliably deliver 𝑣 . The VBB-delivered value

could be either the message, 𝑣 , which was VBB-broadcast, or ⊥
when 𝑣 could not be validated. For a value 𝑣 to be valid, it must be

VBB-broadcast by at least one non-faulty process.

Following the VBB-delivery from at least𝑛−𝑡 different processes,
MR undergoes a local test, which is detailed in Section 3.2. If at least

one non-faulty process passes this test, it implies that all non-faulty

processes can ultimately agree on a single value proposed by at

least one non-faulty process. Therefore, the MR algorithm employs

Byzantine-tolerant Binary consensus to reach consensus on the

outcome of the local test. If the agreed value indicates the existence

of at least one non-faulty process that has passed the test, then each

non-faulty process waits until it receives at least 𝑛−2𝑡 VBB-arrivals
with the same value, 𝑣 , which is the decided value in this instance

of multivalued consensus. If no such indication is represented by

the agreed value, the MR algorithm reports its inability to decide

in this MVC invocation. For further information, please refer to

Section 3.

1.4 Our SSBFT variation on MR
This work considers transformers that take algorithms as input

and output their self-stabilizing variations. For example, Duvignau,

Raynal, and Schiller [22] (referred to as DRS) proposed a transfor-

mation for converting the Byzantine Reliable Broadcast (referred to

as BRB) algorithm, originally introduced by Bracha and Toueg [10],

into a Self-Stabilizing BFT (in short, SSBFT) variation. Another

transformation, proposed by Georgiou, Marcoullis, Raynal, and

Schiller [26, 27] (referred to as GMRS), presented the SSBFT varia-

tion of the BFT Binary consensus algorithm of MMR.

Our transformation builds upon the works of DRS and GMRS

when transforming the (non-stabilizing) BFT MR algorithm into its

self-stabilizing variation. The design of SSBFT solutions requires

addressing considerations that BFT solutions do not need to handle,

as they do not consider transient faults.
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For instance, MR uses a (non-self-stabilizing) BFT Binary con-

sensus object, denoted as 𝑜𝑏 𝑗 . In MR, 𝑜𝑏 𝑗 returns a value that is

proposed by at least one non-faulty process, which corresponds to a

test result (as mentioned in Section 1.3 and detailed in Section 4.1.1).

However, a single transient fault can change 𝑜𝑏 𝑗 ’s value from False,
i.e., not passing the test, to True. Such an event would cause MR,

which was not designed to tolerate transient faults, to wait indef-

initely for messages that are never sent. Our solution addresses

this issue by carefully integrating GMRS’s SSBFT Binary-values

broadcast (in short, BV-broadcast). This subroutine ensures that

𝑜𝑏 𝑗 ’s value is proposed by at least one non-faulty node even in the

presence of transient faults.

The vulnerability of consensus objects to corruption by tran-

sient faults holds true regardless of whether we consider Binary

or multivalued consensus (MVC). Thus, our SSBFT MVC solution

is required to decide even when starting from an arbitrary state.

To achieve this, our correctness proof demonstrates that our so-

lution always terminates. We borrow from GMRS the concept of

consensus object recycling, which refers to reusing the object (space

in the local memory of all non-faulty processes) for a later MVC

invocation. Even when starting from an arbitrary state, the pro-

posed solution decides on a value that is eventually delivered to all

non-faulty processes, albeit potentially violating safety due to the

occurrence of transient faults. Then, utilizing GMRS’s subroutine

for recycling consensus objects, the MVC object is recycled. Starting

from a post-recycling state, the MVC object guarantees both safety

and liveness for an unbounded number of invocations. This is one

of the principal arguments behind our correctness proof.

We clarify that GMRS’s recycling subroutine relies on synchrony

assumptions. To mitigate the impact of these assumptions, a single

recycling action can be performed for a batch of 𝛿 objects, where 𝛿

is a predefined constant determined by the memory available for

consensus objects. This approach allows for asynchronous network-

ing in communication-intensive components, such as the consensus

objects, while the synchronous recycling actions occur according

to the predefined load parameter, 𝛿 .

We want to emphasize to the reader that, although our solution

is built upon the previous works of DRS [22] and GMRS [26, 27]

(which addressed different problems than the one under study),

we encounter similar challenges in the transformation of code

from non-self-stabilizing to self-stabilizing algorithms. Neverthe-

less, achieving the desired self-stabilizing properties in our con-

struction necessitates a thoughtful combination of SSBFT building

blocks and a meticulous analysis of the transformed algorithms.

This combination process cannot be derived from the DRS and

GMRS transformations. The self-stabilizing issues to tackle that

are inherent to the studied algorithms are further explained in Sec-

tion 4.1.1 for the VBB algorithm and in Section 4.2.1 for the MVC

algorithm.

1.5 Our contribution
We present a fundamental module for dependable distributed sys-

tems: an SSBFT MVC algorithm for asynchronous message-passing

systems. Hence, we advance the state of the art w.r.t. the depend-
ability degree. We obtain this new self-stabilizing algorithm via a

transformation of the non-self-stabilizing MR algorithm. MR offers

optimal resilience by assuming 𝑡 < 𝑛/3, where 𝑡 is the number of

faulty processes and𝑛 is the total number of processes. Our solution

preserves this optimality.

In the absence of transient faults, our solution achieves consen-

sus within a constant number of communication rounds during

arbitrary executions and without fairness assumptions. After the

occurrence of any finite number of arbitrary transient faults, the

system recovers within a constant number of invocations of the un-

derlying communication abstractions. This implies recovery within

a constant time (in terms of asynchronous cycles), assuming ex-

ecution fairness among the non-faulty processes. We clarify that

these fairness assumptions are only needed for a bounded time, i.e.,
during recovery, and not during the period in which the system is

required to satisfy the task requirements (Definition 1.1). It is im-

portant to note that when taking into account also the stabilization

time of the underlying communication abstractions, the recycling

mechanism stabilizes within O(𝑡) synchronous rounds.
The communication costs of the studied algorithm, i.e., MR, and

the proposed one are similar in the number of BRB and Binary

consensus invocations. The main difference is that our SSBFT so-

lution uses BV-broadcast for making sure that the value decided

by the SSBFT Binary consensus object remains consistent until the

proposed SSBFT solution completes and is ready to be recycled.

To the best of our knowledge, we propose the first self-stabilizing

Byzantine-tolerant algorithm for solving MVC in asynchronous

message-passing systems, enriched with required primitives. That

is, our solution is built on using an SSBFT Binary consensus object,

a BV-broadcast object, and two SSBFT BRB objects as well as a

synchronous recycling mechanism. We believe that our solution

can stimulate research for the design of algorithms that can recover

after the occurrence of transient faults.

Due to the page limit, some of the proof details appear in the com-

plementary technical report [21]. For the reader’s convenience,

all abbreviations are listed below. Glossary: ACAF: asynchronous
cycles (while assuming fairness); BFT: (non-stabilizing) Byzan-
tine fault-tolerant; BRB: Byzantine-tolerant Reliable Broadcast;

BV-broadcast: Binary-values broadcast; CRWF: communication

rounds (without assuming fairness); DRS: SSBFT BRB by Duvig-

nau, Raynal, and Schiller [22]; GMRS: SSBFT MMR by Georgiou,

Marcoullis, Raynal, and Schiller [26] for Binary consensus and BV-

broadcast;MR: the studied solution by Mostéfaoui and Raynal [33];

MVC: multivalued consensus (Section 1.1); SSBFT: self-stabilizing
Byzantine fault-tolerant; VBB: Validated Byzantine Broadcast, e.g.,
BFT and SSBFT ones in Algorithms 1 and 3, resp.

2 SYSTEM SETTINGS
We consider an asynchronous message-passing system that has no

guarantees of communication delay. Also, the algorithms do not

access the (local) clock (or use timeout mechanisms). The system

consists of a set, P, of 𝑛 nodes (or processes) with unique identifiers.

Any (ordered) pair of nodes 𝑝𝑖 , 𝑝 𝑗 ∈ P has access to a unidirec-

tional communication channel, channel 𝑗,𝑖 , that, at any time, has at

most channelCapacity ∈ 𝑍+ packets on transit from 𝑝 𝑗 to 𝑝𝑖 (this

assumption is due to a known impossibility [16, Chapter 3.2]).

We use the interleaving model [16] for representing the asynchro-
nous execution of the system. The node’s program is a sequence
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of (atomic) steps. Each step starts with an internal computation

and finishes with a single communication operation, i.e., a message

𝑠𝑒𝑛𝑑 or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 . The state, 𝑠𝑖 , of node 𝑝𝑖 ∈ P includes all of 𝑝𝑖 ’s

variables and channel 𝑗,𝑖 . The term system state (or configuration)
refers to the tuple 𝑐 = (𝑠1, 𝑠2, · · · , 𝑠𝑛). We define an execution (or
run) 𝑅 = 𝑐 [0], 𝑎[0], 𝑐 [1], 𝑎[1], . . . as an alternating sequence of sys-

tem states 𝑐 [𝑥] and steps 𝑎[𝑥], such that each 𝑐 [𝑥 + 1], except for
the starting one, 𝑐 [0], is obtained from 𝑐 [𝑥] by 𝑎[𝑥]’s execution.

2.1 The fault model and self-stabilization
We specify the fault model and design criteria.

2.1.1 Arbitrary node failures. Byzantine faults model any fault in

a node including crashes, and arbitrary malicious behaviors. Here

the adversary lets each node receive the arriving messages and

calculate its state according to the algorithm. However, once a node

(that is captured by the adversary) sends a message, the adversary

can modify the message in any way, delay it for an arbitrarily

long period or even remove it from the communication channel.

The adversary can also send fake messages spontaneously. The

adversary has the power to coordinate such actions without any

limitation. For the sake of solvability [28, 35, 38], we limit the

number, 𝑡 , of nodes that can be captured by the adversary, i.e.,
𝑛 ≥ 3𝑡 + 1. The set of non-faulty indices is denoted by Correct and
called the set of correct nodes.

2.1.2 Arbitrary transient-faults. We consider any temporary viola-

tion of the assumptions according towhich the systemwas designed

to operate. We refer to these violations and deviations as arbitrary
transient-faults and assume that they can corrupt the system state

arbitrarily (while keeping the program code intact). The occurrence

of a transient fault is rare. Thus, we assume that the last arbitrary

transient fault occurs before the system execution starts [16]. Also,

it leaves the system to start in an arbitrary state. In other words,

we assume arbitrary starting states at all correct nodes and the

communication channels that lead to them. Moreover, transient

faults do not occur during the system execution.

2.1.3 Dijkstra’s self-stabilization. The legal execution (𝐿𝐸) set refers
to all executions in which the problem requirements hold. A system

is self-stabilizing with respect to 𝐿𝐸, when every execution 𝑅 of

the algorithm reaches within a finite period a suffix 𝑅𝑙𝑒𝑔𝑎𝑙 ∈ 𝐿𝐸

that is legal. Namely, Dijkstra [15] requires ∀𝑅 : ∃𝑅′ : 𝑅 = 𝑅′ ◦
𝑅𝑙𝑒𝑔𝑎𝑙 ∧ 𝑅𝑙𝑒𝑔𝑎𝑙 ∈ 𝐿𝐸 ∧ |𝑅′ | ∈ 𝑍+, where the operator ◦ denotes
that 𝑅 = 𝑅′ ◦ 𝑅′′ is the concatenation of 𝑅′ with 𝑅′′. The part of
the proof that shows the existence of 𝑅′ is called Convergence (or
recovery), and the part that shows 𝑅𝑙𝑒𝑔𝑎𝑙 ∈ 𝐿𝐸 is called Closure.

2.1.4 Complexity measures and execution fairness. We say that exe-

cution fairness holds among processes if the scheduler enables any

correct process infinitely often, i.e., the scheduler cannot (eventu-
ally) halt the execution of non-faulty processes. The time between

the invocation of an operation (such as consensus or broadcast)

and the occurrence of all required deliveries is called operation

latency. As in MR, we show that the latency is finite without as-

suming execution fairness. The term stabilization time refers to the

period in which the system recovers after the occurrence of the last

transient fault. When estimating the stabilization time, our analysis

assumes that all correct nodes complete roundtrips infinitely often

with all other correct nodes. However, once the convergence period

is over, no fairness assumption is needed. Then, the stabilization

time is measured in terms of asynchronous cycles, which we define

next. All self-stabilizing algorithms have a do forever loop since

these systems cannot be quiescent due to a well-known impossi-

bility [16, Chapter 2.3]. Also, the study algorithms allow nodes to

communicate with each other via broadcast operation. Let 𝑛𝑢𝑚𝑏 be

the maximum number of (underlying) broadcasts per iteration of

the do forever loop. The first asynchronous cycle, 𝑅′, of execution
𝑅 = 𝑅′ ◦ 𝑅′′ is the shortest prefix of 𝑅 in which every correct node

is able to start and complete at least a constant number, 𝑛𝑢𝑚𝑏 , of

round-trips with every correct node. The second asynchronous

communication round of 𝑅 is the first round of the suffix 𝑅′′, and
so forth.

2.2 Building Blocks
Following Raynal [37], Fig. 1 illustrates a protocol suite for SSBFT

state-machine replication using total order broadcast. This order

can be defined by instances of MVC objects, which in turn, invoke

SSBFT Binary consensus, BV-broadcast, and SSBFT recycling sub-

routine for consensus objects (GMRS [26, 27]) as well as SSBFT BRB

(DRS [22]).

2.2.1 SSBFT Byzantine-tolerant Reliable Broadcast (BRB). The com-

munication abstraction of (single instance) BRB allows every node

to invoke the broadcast(𝑣) : 𝑣 ∈ 𝑉 and deliver(𝑘) : 𝑝𝑘 ∈ P opera-

tions.

Definition 2.1. The operations broadcast(𝑣) and deliver(𝑘) should
satisfy:
• BRB-validity. Suppose a correct node BRB-delivers message
𝑚 from a correct 𝑝𝑖 . Then, 𝑝𝑖 had BRB-broadcast𝑚.
• BRB-integrity. No correct node BRB-delivers more than once.
• BRB-no-duplicity. No two correct nodes BRB-deliver different
messages from 𝑝𝑖 (which might be faulty).
• BRB-completion-1. Suppose 𝑝𝑖 is a correct sender. All correct
nodes BRB-deliver from 𝑝𝑖 eventually.
• BRB-completion-2. Suppose a correct node BRB-delivers a
message from 𝑝𝑖 (which might be faulty). All correct nodes
BRB-deliver 𝑝𝑖 ’s message eventually.

We assume the availability of an SSBFT BRB implementation,

such as the one in [22], which stabilizes within O(1) asynchro-
nous cycles. Such implementation lets 𝑝𝑖 ∈ P to use the opera-

tion deliver𝑖 (𝑘) for retrieving the current return value, 𝑣 , of the

BRB broadcast from 𝑝𝑘 ∈ P. Before the completion of the task

of the deliver𝑖 (𝑘) operation, 𝑣 ’s value is ⊥. This way, whenever
deliver𝑖 (𝑘) ≠ ⊥, node 𝑝𝑖 knows that the task is completed and the

returned value can be used. There are several BRB implementa-

tions [2, 14, 31] that satisfy different requirements than the ones in

Definition 2.1, which is taken from the textbook [37].

Note that existing non-self-stabilizing BFT BRB implementations,

e.g., [37, Ch. 4], consider another kind of interface between BRB

and its application. In that interface, BRB notifies the application

via the raising of an event whenever a new message is ready to

be BRB-delivered. However, in the context of self-stabilization, a

single transient fault can corrupt the BRB object to encode in its
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internal state that the message was already BRB-delivered without

ever BRB-delivering the message. The interface proposed in [22]

addresses this challenge by allowing the application to repeatedly

query the status of the SSBFT BRB object without changing its

state.

We also assume that BRB objects have the interface function

hasTerminated(), which serves as a predicate indicating when the

sender knows that all non-faulty nodes have successfully delivered

the application message. The implementation of hasTerminated()
is straightforward — it checks the condition in the if-statement on

line 49 of Algorithm 4 in [22]. If the condition is met, it returns

False, otherwise, it returns True.

2.2.2 SSBFT Binary-values Broadcast (BV). This is an all-to-all

broadcast operation of Binary values. This abstraction uses the

operation, bvBroadcast(𝑣), which is assumed to be invoked inde-

pendently (i.e., not necessarily simultaneously) by all the correct

nodes, where 𝑣 ∈ 𝑉 . For the sake of a simpler presentation of our so-

lutions, we prefer 𝑉 = {False, True} over the traditional 𝑉 = {0, 1}
presentation. The set of values that are BV-delivered to node 𝑝𝑖
can be retrieved via the function binValues𝑖 (), which returns ∅ be-
fore the arrival of any bvBroadcast() by a correct node. We specify

under which conditions values are added to binValues().
• BV-validity. Suppose 𝑣 ∈ binValues𝑖 () and 𝑝𝑖 is correct. It
holds that 𝑣 has been BV-broadcast by a correct node.

• BV-uniformity. 𝑣 ∈ binValues𝑖 () and 𝑝𝑖 is correct. Eventu-
ally ∀𝑗 ∈ Correct : 𝑣 ∈ binValues 𝑗 ().
• BV-completion. Eventually, ∀𝑖 ∈ Correct : binValues𝑖 () ≠
∅ holds.

The above requirements imply that eventually∃𝑠 ⊆ {False, True} :
𝑠 ≠ ∅∧∀𝑖 ∈ Correct : binValues𝑖 () = 𝑠 and the set 𝑠 does not include

values that were BV-broadcast only by Byzantine nodes. The SSBFT

BV-broadcast solution in [26] stabilizes within O(1) asynchronous
cycles. This implementation allows the correct nodes to repeat a

BV-broadcast using the same BV-broadcast object. As mentioned

in Section 1.4, this allows the proposed solution to overcome chal-

lenges related to the corruption of the state of the SSBFT Binary

consensus object, more details in Section 4.2.1.

2.2.3 SSBFT Binary Consensus. As mentioned, the studied solution

reduces MVC to Binary consensus by enriching the system model

with a BFT object that solves Binary consensus (Definition 2.2).

Definition 2.2. Every 𝑝𝑖 ∈ P has to propose a value 𝑣𝑖 ∈ 𝑉 =

{False, True} via an invocation of propose𝑖 (𝑣𝑖 ). Let Alg be a Binary
Consensus (BC) algorithm. Alg has to satisfy safety, i.e., BC-validity
and BC-agreement, and liveness, i.e., BC-completion.

• BC-validity. The value 𝑣 ∈ {False, True} decided by a correct
node is a value proposed by a correct node.
• BC-agreement. Any two correct nodes that decide, do so with
identical decided values.
• BC-completion. All correct nodes decide.

We assume the availability of SSBFT Binary consensus, such as

the one from GMRS [26], which stabilizes within O(1) asynchro-
nous cycles. GMRS’s solution might fail to decide with negligible

probability. In this case, GMRS’s solution returns the error sym-

bol,  , instead of a legitimate value from the set {False, True}. The

Algorithm 1: Non-self-stabilizing BFT VBB-broadcast;

code for 𝑝𝑖

1 operation vbbBroadcast(𝑣) begin
2 BRB-broadcast INIT(𝑖, 𝑣);
3 wait |𝑟𝑒𝑐 | ≥ 𝑛−𝑡 where 𝑟𝑒𝑐 is the multiset of

BRB-delivered values;

4 BRB-broadcast VALID(𝑖, (equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡));

5 foreach 𝑝 𝑗 ∈ P execute concurrently do
6 wait INIT( 𝑗, 𝑣) and VALID( 𝑗, 𝑥) BRB-delivered from 𝑝 𝑗 ;

7 if 𝑥 then
8 {wait (equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡); 𝑑 ← 𝑣 }

9 else
10 {wait (differ (𝑣, 𝑟𝑒𝑐) ≥ 𝑡+1); 𝑑 ←  }

11 vbbDeliver(𝑑) at 𝑝𝑖 as the value VBB-broadcast by 𝑝 𝑗 ;

proposed SSBFT MVC algorithm returns  whenever the SSBFT

Binary consensus returns  (cf. line 66 of Algorithm 4).

2.2.4 The Recycling Mechanism and Recyclable Objects. Just as MR,

we do not focus on the management of consensus invocations since

we assume the availability of a mechanism for eventually recycling

all MVC objects that have completed their tasks. GMRS [26, 27]

implement such subroutine. We review their subroutine and explain

how they construct recyclable objects.

GMRS implements consensus objects using a storage of constant

size allocated at program compilation time. Since these objects can

be instantiated an unbounded number of times, it is necessary to

reuse the storage once a consensus is reached. This should occur

only after each correct node received the decided value via result().
To facilitate this, GMRS assumes that the object has two meta-

statuses: used and unused. The unused status indicates the avail-

ability of objects that were either never used or are no longer in

current use. GMRS specifies that recyclable objects must implement

an interface function called wasDelivered(), which returns 1 after

the result delivery. Recycling is triggered by the recycling mecha-

nism, which invokes recycle() at each non-faulty node, setting the

meta-status of the corresponding consensus object to unused.
GMRS defines recyclable object construction as a task that re-

quires eventual agreement on the value ofwasDelivered(). In detail,
if a non-faulty node 𝑝𝑖 reports delivery (i.e., wasDelivered𝑖 () = 1),

then all non-faulty nodes will eventually report delivery as well.

We clarify that during the recycling process, i.e., when at least one

non-faulty node invokes recycle(), there is no need to maintain

agreement on the values of wasDelivered().
GMRS requires us to implement recycle() by locally setting the

algorithm to its predefined post-recycling state, see Sections 4.1.2

and 4.2.2. Also, our solution implements the operation result(),
which facilitates the implementation of wasDelivered() using the
same construction proposed by GMRS in [26, 27]. By implementing

GMRS’ interfaces, we borrow GMRS correctness properties since

the studied problem and the structure of the proposed algorithms

are very similar.

GMRS implements a recycling service using a synchronous SS-

BFT consensus that allows all non-faulty nodes to reuse the object
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immediately after the process returns from recycle(). GMRS’s recy-

cling facilitates the transformation of the non-self-stabilizing BFT

MR algorithm to an SSBFT one. The transformation concentrates

on assuring operation completion since once all objects have been

recycled, the system reaches its post-recycling state, which has no

trace of stale information, i.e., Convergence holds. As mentioned

in Section 1.4, the effect of these assumptions can be mitigated

by letting recycling batches of 𝛿 objects, where 𝛿 is a predefined

constant that depends on the available memory. This way, the

communication-intensive components are asynchronous and the

synchronous recycling actions occur according to a load that is

defined by 𝛿 .

3 THE STUDIED ALGORITHMS
As mentioned, MR is based on a reduction of BFT MVC to BFT

Binary consensus. MR guarantees that the decided value is not a

value proposed only by Byzantine nodes. Also, if there is a value, 𝑣 ∈
𝑉 , that all correct nodes propose, then 𝑣 is decided. Otherwise, the

decided value is either a value proposed by the correct nodes or the

error symbol,  . This way, an adversary that commands its captured

nodes to propose the same value, say, 𝑣𝑏𝑦𝑧 ∈ 𝑉 , cannot lead to

the selection of 𝑣𝑏𝑦𝑧 without the support of at least one correct

node. MR uses the VBB communication abstraction (Fig. 1), which

we present (Section 3.1) before we bring the reduction algorithm

(Section 3.2).

3.1 Validated Byzantine Broadcast (VBB)
This abstraction sendsmessages from all nodes to all nodes. It allows

the operation, vbbBroadcast(𝑣) and raises the event vbbDeliver(𝑑),
for VBB-broadcasting, and resp., VBB-delivering.

3.1.1 Specifications. We detail VBB-broadcast requirements.

• VBB-validity. VBB-delivery of messages needs to relate to

VBB-broadcast of messages in the following manner.

– VBB-justification. Suppose 𝑝𝑖 : 𝑖 ∈ Correct VBB-delivers
message𝑚 ≠  from some (faulty or correct) node. There

is at least one correct node that VBB-broadcast𝑚.

– VBB-obligation. Suppose all correct nodes VBB-broadcast
the same 𝑣 . All correct nodes VBB-delivers 𝑣 from each

correct node.

• VBB-uniformity. Let 𝑝𝑖 : 𝑖 ∈ Correct. Suppose VBB-

delivers𝑚′ ∈ {𝑚, } from a (possibly faulty) node 𝑝 𝑗 . All

the correct nodes VBB-deliver the same message𝑚′ from
𝑝 𝑗 .

• VBB-completion. Suppose a correct node𝑝𝑖 VBB-broadcasts
𝑚. All the correct nodes VBB-deliver from 𝑝𝑖 .

We also say that a complete VBB-broadcast instance includes

vbbBroadcast𝑖 (𝑚𝑖 ) invocation by every correct 𝑝𝑖 ∈ P. It also in-

cludes vbbDeliver() of𝑚′ from at least (𝑛−𝑡) distinct nodes, where
𝑚′ is either 𝑝 𝑗 ’s message,𝑚 𝑗 , or the error symbol, . The latter value
is returned when a message from a given sender cannot be vali-

dated. This validation requires𝑚 𝑗 to be VBB-broadcast by at least

one correct node.

3.1.2 Implementing VBB-broadcast. Algorithm 1 presents the stud-

ied VBB-broadcast.

Algorithm 2: Non-self-stabilizing BFT MVC; code for 𝑝𝑖

12 variables: bcO; // Binary consensus object, ⊥ is the initial

state

13 macro sameValue() do return ∃𝑣 ≠  : equal(𝑣, 𝑟𝑒𝑐) ≥
𝑛−2𝑡∧ 𝑟𝑒𝑐 = {𝑣 ′ ≠  } where 𝑟𝑒𝑐 is a multiset of the (𝑛−𝑡)
values VBB-delivered (line 16);

14 operation propose(𝑣) begin
15 vbbBroadcast EST(𝑣);
16 wait EST(•) messages VBB-delivered from (𝑛−𝑡)

different nodes;

17 if ¬𝑏𝑐𝑂.propose(sameValue()) then
18 return  

19 else
20 wait (∃𝑣 ≠ ⊥: equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡) then return 𝑣

Notation: Denote by equal(𝑣, 𝑟𝑒𝑐) and differ (𝑣, 𝑟𝑒𝑐) the number

of items in multiset 𝑟𝑒𝑐 that are equal to, and resp., different from 𝑣 .

Overview: Algorithm 1 invokes BRB-broadcast twice in the first

part of the algorithm (lines 1 to 4) and then VBB-delivers messages

from nodes in the second part (lines 5 to 11).

Node 𝑝𝑖 first BRB-broadcasts INIT(𝑖, 𝑣𝑖 ) (where 𝑣𝑖 is the VBB-
broadcast message), and suspends until the arrival of INIT() from
at least (𝑛−𝑡) different nodes (lines 2 to 3), which 𝑝𝑖 collects in the

multiset 𝑟𝑒𝑐𝑖 . In line 2, node 𝑝𝑖 tests whether 𝑣𝑖 was BRB-delivered

from at least 𝑛−2𝑡 ≥ 𝑡+1 different nodes. Since this means that 𝑣𝑖
was BRB-broadcast by at least one correct node, 𝑝𝑖 attests to the

validity of 𝑣𝑖 (line 4). Recall that each time INIT() arrives at 𝑝𝑖 , the
message is added to 𝑟𝑒𝑐𝑖 . Therefore, the fact that |𝑟𝑒𝑐𝑖 | ≥ 𝑛−𝑡 holds
(line 3) does not keep 𝑟𝑒𝑐𝑖 from growing.

Algorithm 1’s second part (lines 5 to 11) includes 𝑛 concurrent

background tasks. Each task aims at VBB-delivering a message from

a different node, say, 𝑝 𝑗 . It starts by waiting until 𝑝𝑖 BRB-delivered

both INIT( 𝑗, 𝑣 𝑗 ) and VALID( 𝑗, 𝑥 𝑗 ) from 𝑝 𝑗 so that 𝑝𝑖 has both 𝑝 𝑗 ’s

VBB’s values, 𝑣 𝑗 , and the result of its validation test, 𝑥 𝑗 .

(1) The 𝑥 𝑗 = True case (line 7). Since 𝑝 𝑗 might be faulty,

we cannot be sure that 𝑣 𝑗 was indeed validated. Thus, 𝑝𝑖
re-attests 𝑣 𝑗 by waiting until equal(𝑣 𝑗 , 𝑟𝑒𝑐𝑖 ) ≥ 𝑛−2𝑡 holds.
If this happens, 𝑝𝑖 VBB-delivers 𝑣 𝑗 as a message from 𝑝 𝑗 ,

because this implies equal(𝑣 𝑗 , 𝑟𝑒𝑐𝑖 ) ≥ 𝑡+1 since 𝑛−2𝑡 ≥ 𝑡+1.
(2) The 𝑥 𝑗 = False case (line 10). For similar reasons to the

former case, 𝑝𝑖 waits until 𝑟𝑒𝑐𝑖 has at least 𝑡+1 items that are

not 𝑣 𝑗 . This implies at least one correct note cannot attest

𝑣 𝑗 ’s validity. If this ever happens, 𝑝𝑖 VBB-delivers the error

symbol,  , as the received message from 𝑝 𝑗 .

3.2 Non-stabilizing BFT Multivalued Consensus
Algorithm 2 reduces the BFT MVC problem to BFT Binary consen-

sus in message-passing systems that have up to 𝑡 < 𝑛/3 Byzantine
nodes. Algorithm 2 uses VBB-broadcast abstraction (Algorithm 1).

Note that the line numbers of Algorithm 2 continue the ones of

Algorithm 1.
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3.2.1 Specifications. Our BFT MVC task (Section 1.1) includes the

requirements of BC-validity, BC-agreement, and BC-completion

(Section 1.1) as well as the BC-no-Intrusion property (Section 1.1).

3.2.2 Implementation. Node 𝑝𝑖 waits for EST() messages from

(𝑛−𝑡) different nodes after it as VBB-broadcast its own value (lines 15
to 16). It holds all the VBB-delivered values in the multiset 𝑟𝑒𝑐𝑖
(line 13) before testing whether 𝑟𝑒𝑐𝑖 includes (1) non- replies from

at least (𝑛−2𝑡) different nodes, and (2) exactly one non- value 𝑣

(line 13). The test result is proposed to the Binary consensus object,

bcO (line 17).

Once consensus is reached, 𝑝𝑖 decides according to the consen-

sus result, bcO𝑖 .result(). Specifically, if bcO𝑖 .result() = False, 𝑝𝑖
returns the error symbol,  , since there is no guarantee that any

correct node was able to attest to the validity of the proposed value.

Otherwise, 𝑝𝑖 waits until it received EST(𝑣) messages that have

identical values from at least (𝑛−2𝑡) different nodes (line 20) before
returning that value 𝑣 . Note that some of these (𝑛−2𝑡) messages

were already VBB-delivered at line 16. The proof in [33] shows

that any correct node that invokes bcO𝑖 .propose(True) does so if

all correct nodes eventually VBB-deliver identical values at least

(𝑛−2𝑡) times. Then, any correct node can decide on the returned

value for the MVC object once it also VBB-delivers identical values

at least (𝑛−2𝑡) times.

4 SSBFT MULTIVALUED CONSENSUS
Algorithms 3 and 4 present our SSBFT VBB solution and self-

stabilizing Byzantine- and intrusion-tolerant solution for MVC.

They are obtained from Algorithms 1 and 2 via code transforma-

tion and the addition of necessary consistency tests (Sections 4.1.1

and 4.2.1). Note that the line numbers of Algorithms 3 and 4 con-

tinue the ones of Algorithms 2, and resp., 3.

4.1 SSBFT VBB-broadcast
The operation vbbBroadcast(𝑣) allows the invocation of a VBB-

broadcast instance with the value 𝑣 . Node 𝑝𝑖 VBB-delivers messages

from 𝑝𝑘 via vbbDeliver𝑖 (𝑘).

4.1.1 Algorithm 1’s invariants that transient faults can violate. Tran-
sient faults can violate the following invariants, which our SSBFT

solution addresses via consistency tests.

(1) Node 𝑝𝑖 ’s state must not encode the occurrence of BRB execu-

tion of phase valid (line 4) without encoding BRB execution

of phase init (line 2). Algorithm 3 addresses this concern by

informing that the VBB object has an internal error (line 38).

This way, indefinite blocking of the application is avoided.

(2) Define the phase types, vbbMSG := {init, valid} (line 21) for
BRB dissemination of INIT(), and resp., VALID() messages

in Algorithm 1. For a given phase, phs ∈ vbbMSG, the BRB
message format must follow the one of BRB-broadcast of

phase phs, as in lines 2 and 4. In order to avoid blocking, the

VBB object informs about an internal error (lines 42 and 43).

(3) For a given phase, phs ∈ vbbMSG, if at least 𝑛 − 𝑡 different
nodes BRB-delivered messages of phase phs, to node 𝑝𝑖 , 𝑝𝑖 ’s

state must lead to the next phase, i.e., from init to valid,
or from valid to operation complete, in which VBB-deliver

a non-⊥ value. Algorithm 3 addresses this concern by moni-

toring the conditions in which the nodes should move from

phase init to valid (line 33). The case in which the nodes

should move from phase valid to operation complete is

more challenging since a single transient fault can (unde-

tectably) corrupt the state of the BRB objects. Algorithm 3

makes sure that such inconsistencies are detected eventu-

ally. When an inconsistency is discovered, the VBB object

informs the application about an internal error (line 47), see

Section 4.1.5 for more details.

4.1.2 Local variables. The array brbvbbMSG[vbbMSG] [P] holds BRB
object, which disseminate VBB-broadcastmessages, i.e., brb[init] []
and brb[valid] [] store the INIT(), and resp., VALID() messages

in Algorithm 1. The second dimension of the array brb[] [] allows
us to implement one VBB object per node as this is needed for Al-

gorithm 4. Thus, after the recycling of these objects (Section 2.2.4)

or before they ever become active, each of the 2𝑛 BRB objects

has the value ⊥. For a given 𝑝𝑖 ∈ P, brb𝑖 [-] [𝑖] becomes active

via the invocation of brb𝑖 [-] [𝑖] .broadcast(𝑣) (which also leads to

brb𝑖 [-] [𝑖] ≠ ⊥) or the arrival of BRB protocol messages, say, from

𝑝 𝑗 (which leads to brb𝑖 [-] [ 𝑗] ≠ ⊥). Once a BRBmessage is delivered

from 𝑝ℓ (in the context of phase 𝑝ℎ𝑠 ∈ vbbMSG and VBB broadcast

from 𝑝𝑘 ), a call to brb𝑖 [𝑝ℎ𝑠] [𝑘] .deliver(ℓ) retrieves the delivered
message.

4.1.3 Macros. The macro vbbWait (𝑘,phs) (line 26) serves at if-

statement conditions in lines 47 and 33 when the proposed trans-

formation represents the exit conditions of the wait operations

in lines 3 and 10. Specifically, given a phase, phs, it tests whether
there is a set 𝑆 that includes at least 𝑛−𝑡 different nodes from which

there is a message that is ready to be BRB-delivered. The macros

vbbEq(𝑘,phs, 𝑣) and vbbDiff (𝑘,phs, 𝑣) are detailed versions of the

equal, and resp., differ conditions used in lines 4 and 7, resp., line 10.

They check whether the value 𝑣 equals to, resp., differs from at least

𝑛 − 2𝑡 , resp., 𝑡 + 1 received BRB messages of phase phs.

4.1.4 The vbbBroadcast() operation (line 31). As in line 2 in Algo-

rithm 1, vbbBroadcast(𝑣)’s invocation (line 31) leads to the invo-

cation of brb[init] [𝑖] .broadcast((𝑖, 𝑣)). Algorithm 4 uses line 33

for implementing the logic of lines 3 and 4 in Algorithm 1 as well

as the consistency test of item 3 in Section 4.1.1; that case of mov-

ing from phase init to valid. In detail, the macro vbbWait (𝑘,phs)
returns True whenever the BRB object brb[phs] [𝑘] has a message

to BRB-deliver from at least 𝑛 − 𝑡 different nodes. Thus, 𝑝𝑖 can

“wait” for BRB deliveries from at least 𝑛 − 𝑡 distinct nodes by test-

ing vbbWait𝑖 (𝑖,init) ∧ brb𝑖 [init] [𝑖] .hasTerminated(), where the
second clause indicates that brb𝑖 [init] [𝑖] has terminated (Sec-

tion 2.2.1), and thus, Item 1 in Section 4.1.1 is implemented cor-

rectly. Also, the macro vbbEq() is a detailed implementation of the

function equal() (Algorithm 1).

4.1.5 The vbbDeliver() operation (lines 36 and 48). This operation
(lines 36 to 48) is based on lines 5 and 11 in Algorithm 1 together

with a few of consistency tests (Section 4.1.1).

Line 38 performs a consistency test that matches Item 1 in

Section 4.1.1, i.e., for a given sender 𝑝𝑘 ∈ P, if 𝑝𝑘 had invoked
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Algorithm 3: SSBFT VBB-broadcast; code for 𝑝𝑖

21 types: vbbMSG := {init, valid}; // BRB object phases

22 variables:
23 brb[vbbMSG] [P] // brb[init] [P] and brb[valid] [P] are

the two BRB objects. Upon recycling,

[[⊥, . . . ,⊥], [⊥, . . . ,⊥]] is assigned
24 macros:
25 // exit conditions of wait operations in lines 3 and 10

26 vbbWait (𝑘, phs) := ∃𝑆 ⊆ P : 𝑛−𝑡 ≤ |𝑆 | : ∀𝑝ℓ ∈ 𝑆 :

(brb[phs] [𝑘] .deliver(ℓ) ≠ ⊥)
27 // detailed version of equal condition in lines 4 and 7

28 vbbEq(𝑘, phs, 𝑣) := ∃𝑆 ⊆ P : 𝑛−2𝑡 ≤ |𝑆 | : ∀𝑝ℓ ∈ 𝑆 : ((-, 𝑣) =
brb[phs] [𝑘] .deliver(ℓ));

29 // detailed version of the differ condition used in line 10

30 vbbDiff (𝑘, phs, 𝑣) := ∃𝑆 ⊆ P : 𝑡+1 ≤ |𝑆 | : ∀𝑝ℓ ∈ 𝑆 : (𝑣 ≠

brb[phs] [𝑘] .deliver(ℓ));
31 operation: vbbBroadcast(𝑣) do

brb[init] [𝑖] .broadcast((𝑖, 𝑣)) // cf. line 2
32 do-forever begin
33 if vbbWait (𝑖, (𝑖, init))∧

brb[init] [𝑖] .hasTerminated() then
34 let 𝑣 := brb[valid] [𝑖] .deliver(𝑖);
35 brb[valid] [𝑖] .broadcast((𝑖, vbbEq(𝑖, init, 𝑣))) //

cf. line 4

36 operation: vbbDeliver(𝑘) begin
37 // case (I) of the consistency tests (Section 4.1.1)

38 if brb[init] [𝑘] .deliver(𝑘) = ⊥∧
brb[valid] [𝑘] .deliver(𝑘) ≠ ⊥ then return  ;

39 // wait until 𝑝 𝑗 ’s BRB objects have delivered, cf. line 6

40 if brb[init] [𝑘] .deliver(𝑘) = ⊥∨
brb[valid] [𝑘] .deliver(𝑘) = ⊥ then return ⊥;

41 // lines 42 and 43 are case (II) of consistency tests

(Section 4.1.1)

42 if ∃phs ∈ vbbMSG : brb[phs] [𝑘] .deliver(𝑘) = ( 𝑗, -)∧
𝑗 ≠ 𝑘 then return  ;

43 if ¬((brb[init] [𝑘] .deliver(𝑘) = (𝑘, 𝑣) ∧ 𝑣 ∈
𝑉 ) ∧ (brb[valid] [𝑘] .deliver(𝑘) = (𝑘, 𝑥) ∧ 𝑥 ∈
{False, True})) then return  ;

44 else if 𝑥 ∧ vbbEq(𝑘, valid, 𝑣) then return 𝑣 ; // cf.

line 7

45 else if ¬𝑥 ∧ vbbDiff (𝑘, valid, 𝑣) then return  ; // cf.
line 10

46 // case (III) of the consistency tests (Section 4.1.1)

47 else if vbbWait (𝑘, valid) then return  ;
48 return ⊥ // vbbDeliver(𝑘) is incomplete

brb[valid] [𝑘] before brb[init] [𝑘]’s termination, an error is indi-

cated via the return of  . Line 40 follows line 6’s logic by testing

whether this VBB object is ready to complete w.r.t. sender 𝑝𝑘 ∈ P.
It does so by checking the state of the two BRB objects in brb[-] [𝑘]

since they each need to deliver a non-⊥ value. In case any of them

is not ready to complete, the operation returns ⊥.
The if-statements in lines 42 and 43 return  when the delivered

BRB message is ill-formatted. By that, they fit the consistency test

of item 2 in Section 4.1.1.

The if-statements in lines 44 to 45 implement the logic of lines 7

to 10 in Algorithm 1. The logic of these lines is explained in items 1,

and resp., 2 in Section 3.1.1. Similar to line 7 in Algorithm 1, 𝑥𝑖
(line 43) is the value that 𝑝𝑖 BRB-delivers from 𝑝𝑘 via the BRB

object brb𝑖 [valid]. As mentioned, the macro vbbDiff () is a detailed
implementation of differ () used by Algorithm 1.

The if-statement in line 47 considers the case in which 𝑥𝑖 is

corrupted. Thus, there is a need to return the error symbol,  .
This happens when 𝑝𝑖 VBB-delivered VALID() messages from at

least 𝑛−𝑡 different nodes, but none of the if-statement conditions

in lines 38 to 45 hold. This fits the consistency test of item 3 in

Section 4.1.1, which requires eventual completion in the presence

of transient faults.

4.2 SSBFT multivalued consensus
The invocation of propose(𝑣) VBB-broadcasts 𝑣 . Node 𝑝𝑖 VBB-

delivers messages from 𝑝𝑘 via the result𝑖 () operation.

4.2.1 Algorithm 2’s invariants that transient faults can violate. As
mentioned in Section 1.4, the occurrence of a transient fault can

let the Binary consensus object to encode a decided value that was

never proposed, i.e., this violates BC-validity.
Any SSBFT solution needs to address this concern since the

MVC object can block indefinitely if 𝑏𝑐𝑂 decides True when ∀𝑝 𝑗 :
𝑗 ∈ Correct : sameValue 𝑗 () = False holds. As we explain next, our

implementation BV-broadcasts (line 72) for testing the consistency

of the SSBFT Binary consensus object (line 66). This way, indefinite

blocking can be avoided by reporting an internal error state.

4.2.2 Local variables. Algorithm 4’s state includes the SSBFT BV-

broadcast object, bvO, and SSBFT consensus Binary object, bcO.
Each has the post-recycling value of ⊥, i.e., when bvO = ⊥ (or

bcO = ⊥) the object is said to be inactive. They become active

upon invocation and complete according to their specifications

(Sections 2.2.1 and 2.2.2, resp.).

4.2.3 Macros. The macro mcWait () (line 53) serves in lines 66

and 70 when the proposed transformation represents the exit con-

ditions of the wait operations in lines 16 and 20. Specifically, it tests

whether there is a set 𝑆 ⊆ P that includes at least 𝑛−𝑡 different
nodes from which there is a message that is ready to be VBB-

delivered. The macro sameValue() is an adaptation of the macro in

line 13, which tests whether there is a value 𝑣 ∉ {⊥, } that a set of
at least 𝑛−2𝑡 different nodes have VBB-delivered and there is only

one value 𝑣 ′ ∉ {⊥, } that was VBB-delivered.

4.2.4 Implementation. The logic of lines 14 and 20 in Algorithm 2

is implemented by lines 56 to 71 in Algorithm 4. I.e., the invocation
of propose(𝑣) (line 56) leads to the VBB-broadcast of 𝑣 .

The logic of lines 16 and 17 in Algorithm 2 is implemented

by lines 70 and 71, resp. In detail, recall from Section 4.2.3 that

mcWait () (line 70) allows waiting until there are at least 𝑛− 𝑡 differ-
ent nodes from which 𝑝𝑖 is ready to VBB-deliver a message. Then, if
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Algorithm 4: Self-stabilizing Byzantine-tolerant multival-

ued consensus via VBB-broadcast; code for 𝑝𝑖

49 variables:
50 bvO := ⊥; // Binary-values object. Recycling assigns ⊥
51 bcO := ⊥; // Binary consensus object. Upon recycling,

assign ⊥
52 macros:
53 // exit conditions of the wait operation in line 16

mcWait () := ∃𝑆 ⊆ P : 𝑛−𝑡 ≤ |𝑆 | : ∀𝑝𝑘 ∈ 𝑆 :

(vbbDeliver(𝑘) ≠ ⊥);
54 // adapted version of the same macro in line 13

55 sameValue() do return (∃𝑣 ∉ {⊥, } : ∃𝑆 ′ ⊆ P : 𝑛−2𝑡 ≤
|𝑆 ′ | : ∀𝑝𝑘 ′ ∈ 𝑆 ′ : (vbbDeliver(𝑘′) = 𝑣))∧
(|{vbbDeliver(𝑘) ∉ {⊥, } : 𝑝𝑘 ∈ P}| = 1);

56 operation: propose(𝑣) do vbbBroadcast(𝑣);
57 operation: result() begin
58 // test whether result() is not ready to complete

59 if bcO = ⊥ ∨ bcO.result() = ⊥ then
60 return ⊥
61 else if ¬bcO.result() then // cf. line 18
62 return  

63 else if ∃𝑣 ∉ {⊥, } : ∃𝑆 ′ ⊆ P : 𝑛−2𝑡 ≤ |𝑆 ′ | : ∀𝑝𝑘 ′ ∈ 𝑆 ′ :
(vbbDeliver(𝑘′) = 𝑣) then // cf. line 20

64 return 𝑣

65 // perform a consistency test, cf. Section 4.2.1

66 else if mcWait ()∧True ∉ bvO.binValues() then
67 return  

68 return ⊥; // result() is not ready to complete

69 do-forever begin
70 if mcWait () then // cf. line 16
71 if bcO = ⊥ then bcO.propose(sameValue()); // cf.

line 17

72 bvO.broadcast(sameValue()); // assist with the

consistency test in line 66

bcO = ⊥ (i.e., the Binary consensus object was not invoked), line 71
uses bcO to propose the returned value from sameValue(). Recall
from Section 4.2.3, the macro sameValue() (line 55) implements the

one in line 13 (Algorithm 2), see Section 3.2.2 for details.

Line 72 facilitates the implementation of the consistency test

(Section 4.2.1) by BV-broadcasting the returned value sameValue().
This way it is possible to detect the case in which all correct nodes

BV-broadcast a value that is, due to a transient fault, different than

bcO’s decided one. This is explained when we discuss line 66.

The operation result() (lines 57 to 68) returns the decided value,

which lines 18 and 20 implement in Algorithm 2. It is a query-based

operation, just as deliver() (cf. text just after Definition 2.1). Thus,

line 59 considers the case in which the decision has yet to occur, i.e.,
it returns ⊥. Line 61 considers the case that line 17 (Algorithm 2)

deals with and returns the error symbol,  . Line 63 implements

line 20 (Algorithm 2), i.e., it returns the decided value. Line 66

performs a consistency test for the case in which the if-statment

conditions in lines 59 to 63 hold, there are VBB-deliveries from at

least 𝑛 − 𝑡 different nodes (i.e., mcWait𝑖 () holds), and yet there are

no correct node, say 𝑝 𝑗 , reports to 𝑝𝑖 , via BV-broadcast, that the

predicate sameValue 𝑗 () holds. Whenever none of the conditions

of the if-statements in lines 59 to 66 hold, line 68 returns ⊥.

5 CORRECTNESS
As explained in Section 2.2.4, we demonstrate Convergence (Theo-

rem 5.1) by showing that all operations eventually complete since

this implies their recyclability, and thus, the SSBFT object recycler

can restart their state (Section 2.2.4). For every layer, i.e., VBB-
broadcast and MVC, there is a need to prove the properties of

completion and Convergence before demonstrating the Closure

property. Due to the page limit, the proof of the Closure properties

and the MVC’s Convergence properties appear in the complemen-

tary technical report [21].

5.1 VBB-completion and Convergence
The proof demonstrates Convergence by considering executions

that start in arbitrary states. Theorem 5.1 shows that all VBB objects

are completed within a bounded time. Specifically, assuming fair

execution among the correct nodes (Section 2.1.4), Theorem 5.1

shows that, within a bounded time, for any pair of correct nodes,

𝑝𝑖 , and 𝑝 𝑗 , a non-⊥ value is returned from vbbDeliver𝑗 (𝑖). As ex-
plained in Section 2.2.4, this means that all VBB objects become

recyclable, i.e., wasDelivered𝑖 () returns True. Since we assume the

availability of the object recycling mechanism, the system reaches

a post-recycling state within a bounded time. Specifically, using

the mechanism by GMRS [26, 27], Convergence is completed with

O(𝑡) synchronous rounds. We introduce the CRWF/ACAF notation

since the arguments of Theorem 5.1 can be used for demonstrating

different properties under different assumptions. Specifically, The-

orem 5.1 demonstrates that VBB-completion occurs within O(1)
communication rounds (Section 2.1.4) without assuming execution

fairness but assuming that execution 𝑅 starts in a post-recycling

system state. For the sake of brevity, when the proof arguments

are used for counting the number of Communication Rounds With-

out assuming Fairness (CRWF), we write ‘within O(1) CRWF’.

Theorem 5.1 also demonstrates Convergence within O(1) asyn-
chronous cycles assuming fair execution among the correct nodes

(Section 2.1.4). Thus, when the proof arguments can be used for

counting the number of Asynchronous Cycles while Assuming

Fairness (ACAF), we say, in short, ‘within O(1) ACAF’. Moreover,

when the same arguments can be used in both cases, we say ’within

O(1) CRWF/ACAF’.

Theorem 5.1 (VBB-completion). Suppose all correct nodes in-
voke vbbBroadcast() within O(1) CRWF/ACAF. Then, ∀𝑖, 𝑗∈Correct :
vbbDeliver𝑗 (𝑖) ≠ ⊥ holds within O(1) CRWF/ACAF.

Proof of Theorem 5.1 Let 𝑖 ∈ Correct. Suppose either 𝑝𝑖 VBB-
broadcasts 𝑚 in 𝑅 or ∃phs ∈ vbbMSG : brb 𝑗 [phs] [𝑖] ≠ ⊥ holds

in 𝑅’s starting state. We demonstrate that all correct nodes VBB-

deliver 𝑚′ ≠ ⊥ from 𝑝𝑖 by considering all the if-statements in

lines 38 to 47 and showing that, within O(1) CRWF/ACAF, one of

the if-statements (that returns a non-⊥) in lines 38 to 47 holds.
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Argument 1. Suppose ∃phs ∈ vbbMSG : ∃ℓ ∈ Correct : brb 𝑗 [phs] [𝑖]
≠ ⊥, i.e., brb 𝑗 [phs] [𝑖] is not in its post-recycling state. Within O(1)
CRWF/ACAF, ∀𝑘 ∈ Correct : brb𝑘 [phs] [ℓ] ≠ ⊥ holds. The proof

is implied by BRB-completion-1, BRB-completion-2, and the O(1)
stabilization time of SSBFT BRB, cf. Section 2.2.1.

Argument 2. Suppose in 𝑅, the if-statement condition in line 38 does
not hold. Within O(1) CRWF/ACAF, brb𝑖 [valid] [𝑖] ≠ ⊥ holds. By
the theorem assumption that all correct nodes invoke the opera-

tion vbbBroadcast() within O(1) CRWF/ACAF, the BRB properties

(Definition 2.1), and that there are at least (𝑛−𝑡) correct nodes, the
if-statement condition in line 33 holds within O(1) CRWF/ACAF.

Then, 𝑝𝑖 invokes the operation brb𝑖 [valid] [𝑖]broadcast(-).
Argument 3. Suppose brb𝑖 [valid] [𝑖] ≠ ⊥ holds in 𝑅’s starting
state. Within O(1) CRWF/ACAF, either the if-statement condition in
line 38 holds or the one in line 40 cannot hold. The proof is implied

by Algorithm 4’s code, BRB-completion, and arguments 1 and 2.

Argument 4.Within O(1) CRWF/ACAF, vbbDeliver𝑗 (𝑖) ≠ ⊥ holds.
Suppose the if-statement conditions in lines 38 to 45 never hold. By

vbbWait ()’s definition (line 26), BRB properties (Definition 2.1), the

presence of at least 𝑛−𝑡 correct and active nodes, and arguments

(1) to (3), the if-statement condition in line 47 holds within O(1)
CRWF/ACAF. 2𝑇ℎ𝑒𝑜𝑟𝑒𝑚 5.1

6 DISCUSSION
To the best of our knowledge, this paper presents the first SSBFT

MVC algorithm for asynchronous message-passing systems. This

solution is devised by layering SSBFT broadcast protocols. Our

solution is based on a code transformation of existing (non-self-

stabilizing) BFT algorithms into an SSBFT one. This transformation

is achieved via careful analysis of the effect that arbitrary transient

faults can have on the system’s state as well as via rigorous proofs.

We hope that the proposed solutions and studied techniques can

facilitate the design of new building blocks, such as state-machine

replication, for the Cloud and distributed ledgers.
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