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Göteborg, Sweden, 2023



Making and identifying quantum resources
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Abstract

This thesis aims to investigate the properties of quantum systems that serve as
valuable resources for information processing and their advantages over classical
systems in specific tasks. While quantum computers have shown the ability to
solve certain problems faster than classical computers, understanding the precise
reasons behind this advantage remains a challenging task. The focus of this
research lies in identifying and generating the quantum states that contribute
to achieving quantum advantages.

The study begins by examining the distinctive characteristics of quantum
systems in comparison to classical systems. Specifically, the thesis explores
continuous-variable quantum computing, where quantum information is stored
in continuous quantum variables. This stands in contrast to the more widely
studied discrete-variable quantum processing in qubits. The investigation seeks
to elucidate the potential of continuous-variable quantum computing and shed
light on the specific states and operations that can provide quantum advantages.

The research explores the conversion of different quantum states through
classical operations, investigating the feasibility of transforming tri-squeezed
states into cubic phase states (Paper A), converting binomial states into re-
source states for universal quantum computing (Paper B), and creating two-
photon states from single-photon states without single-photon detectors (Paper
C). These studies reveal the possibility of achieving high-fidelity conversions with
moderate success probabilities, uncovering valuable insights into the potential
of these states as quantum resources.

Additionally, the thesis expands the research scope to encompass quantum
advantage in random walks (Paper D). Random walks are fundamental to al-
gorithms solving diverse computational problems, and the investigation aims to
understand how quantum walkers can outperform classical walkers in certain
scenarios. The analysis examines the behavior of quantum walkers, utilizing
superposition states that occupy multiple nodes simultaneously. The study
investigates the potential application of neural networks in identifying graph
structures where quantum walkers exhibit advantages, with the goal of enhanc-
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ing accuracy and understanding the underlying mechanisms.
By exploring the properties of quantum states and measurement techniques,

this thesis contributes to a deeper understanding of quantum resources and
advantages in computing.

Keywords: Quantum computing, continuous variables, universality, cubic phase
state, photon number states, trisqueezed state, binomial states, Gottesman–
Kitaev–Preskill states, Gaussian protocols, random walks, quantum walks, ma-
chine learning, neural networks, quantum advantage, quantum resources
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1 Introduction

Quantum physics: the only field where particles can teleport, spooky
action is real, the only thing certain is the uncertainty, and scientists
are okay with it!

— ChatGPT

1.1 The essence of quantum physics

Quantum physics deals with the behavior of particles and energy at very small
scales. What we can learn from quantum physics is quite profound and has
implications for various aspects of understanding the universe. We can list a
series of phenomena that occur in quantum mechanics and are counter-intuitive:

• Observer effect: The act of measuring a quantum system can change its
state. This highlights the importance of the way of observation itself in
physical processes.

• Non-locality: Quantum mechanics shows that particles can interact in-
stantaneously over vast distances, which is known as quantum non-locality
or “spooky action at a distance”.

• Wave-particle duality: Quantum physics teaches us that particles can ex-
hibit both wave-like and particle-like properties. This duality is at the
heart of quantum mechanics and demonstrates the limitations of our clas-
sical understanding of the world.

• Reality is probabilistic: Quantum mechanics shows that reality is fun-
damentally probabilistic, not deterministic. Particles exist in a state of
superposition, where they can be in multiple places or states simultane-
ously until they are measured.

• Complementarity: Quantum mechanics teaches us that some properties
of particles are complementary, meaning that they cannot be measured
simultaneously with complete accuracy.
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1. Introduction

After an in-depth exploration of quantum properties, our curiosity naturally
leads us to the enigma of their real-world implications. These properties, rich in
counter-intuitive behaviors, stand in stark contrast to classical physics and spark
a fascinating proposition: could we harness these peculiarities for advanced com-
puting [1] or other technologies, like quantum communication [2] and quantum
sensing [3]? Such a prospect piques our interest not just in the mere possibility
but in the practicality of it all. Given the quantum realm’s bizarre and often
elusive nature, one has to wonder about the quantum resources required to ef-
fectively tap into this potential. How might we quantify these resources [4]?
And to what extent must we leverage them to achieve a significant edge over
classical computational methods? As we stand at this crossroads of theoretical
physics and practical computing, the journey ahead promises a confluence of
challenges and revelations, pushing the boundaries of what we know and what
we can achieve.

1.2 Approaches to quantum computing

There are generally two approaches to quantum information processing: one
that encodes quantum information in systems with discrete variables (DVs) that
have a finite number of degrees of freedom and another that encodes information
in continuous variables (CVs) with an infinite number of degrees of freedom.
Continuous-variable quantum systems are particularly promising for quantum
computation due to their adaptability, and are the focus of this thesis.

In continuous-variable systems [5], quantum information is stored in wave
functions of a continuous quantum variable. Continuous-variable quantum com-
putation can be performed in a variety of physical settings, including optical
systems [6], microwave radiation [7–10], trapped ions [11, 12], opto-mechanical
systems [13–15], and atomic ensembles [16–19].

Significant advantages of CV systems include scalability [20–22], exemplified
in the generation of one-million-mode cluster states [23], and noise resilience
yielding a long lifetime of quantum information encoded in continuous vari-
ables [24].

Another attractive property of CV systems is the infinite Hilbert space that
can be associated with a single bosonic mode. It means that quantum infor-
mation can be encoded in a single bosonic mode to protect against errors at
a logical level. One of the bosonic codes for suppression of logical errors, the
Gottesman-Kitaev-Preskill (GKP) code [25, 26], has recently been experimen-
tally achieved [27].

In addition to the well-studied DV and CV approaches, another notable ap-
proach to quantum computing is quantum walks [28]. Quantum walks form
a unique intersection between CV systems and the dynamics of quantum me-
chanics. Classical random walks [29] have found widespread applications in al-
gorithms [30–33], optimization, and statistical physics, and quantum walks are
their quantum-mechanical counterparts, with even more fascinating and richer
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1.3. MOTIVATION FOR GENERATING AND IDENTIFYING RESOURCE
STATES

dynamics.
In stark contrast to the somewhat predictable nature of classical walks, quan-

tum walks leverage the principles of quantum superposition and interference, re-
sulting in a walk that exhibits a different probability-distribution profile. This
provides the potential for quantum advantage in the form of faster search algo-
rithms and more efficient simulations [34].

A salient feature of quantum walks is their capability to perform universal
quantum computation. This means that, in theory, any computational problem
that can be addressed by a traditional quantum circuit can also be mapped
onto a quantum walk framework [35–37]. This universality property of quan-
tum walks expands the horizon for quantum computation overall, offering new
paradigms for algorithm design and implementation.

Several experimental platforms, many of which overlap with the CV sys-
tems discussed earlier, have been employed to realize quantum walks [38–43].
Notably, optical systems are a prevalent choice, due to their inherent controlla-
bility and adaptability. The experimental demonstration of quantum walks in
these systems stands as a testament to their practical relevance and potential.

1.3 Motivation for generating and identi-
fying resource states

A critical question regarding these approaches to quantum computing is de-
termining the resources needed to make CV quantum computers, or quantum
random walks, more efficient than classical ones [44].

In CV systems, Gaussian processes correspond to bosonic interactions that
are restricted to the second order of the position and momentum operators [45–
47]. This implies that they are relatively easy to implement in many experi-
mental platforms, but Gaussian operations alone cannot achieve computational
universality [44]. This means that quantum non-Gaussianity is required as a
resource [48, 49].

To promote Gaussian operations towards universal fault-tolerant quantum
computation, one can, for example, introduce GKP states as the non-Gaussian
resource [25, 50, 51], or introduce non-linearity through a cubic phase state [25,
52] to unlock universality regardless of the use of a specific encoding [44, 53].

In general, how a resource state can be obtained, starting from a non-
Gaussian state via Gaussian protocols, has not been studied thoroughly yet.
In this thesis, we will show feasible solutions to obtain non-Gaussian resource
states that remain hard to achieve, by starting from non-Gaussian states that
has been recently obtained experimentally. In Papers A, B, and C, we explore
the dynamics of Gaussian protocols and the transformation pathways that en-
able the conversion of recently obtained experimental non-Gaussian states into
viable non-Gaussian resources. By unveiling a coherent methodology and intro-
ducing novel techniques, we aspire to understand the intricate balance between
Gaussian operations and non-Gaussian resources.

3



1. Introduction

To better understand the necessary resources for quantum advantage, we
also investigated, in Paper D, the conditions under which quantum walks can
outperform classical random walks, a question for which analytical results ex-
ist only some types of graphs [54–64]. Specifically, we delve into the nuances
of various graph structures—ranging from simple linear and cyclic graphs to
more complex, irregular topologies. Additionally, the positioning of the initial
and target nodes of the walks within these graph structures is another critical
variable we examine. This aspect is particularly significant because the relative
location of these nodes can drastically affect the efficiency and speed of both
quantum and classical walks.

By exploring these details, we aim to draw broader parallels between the
specific advantages observed in quantum walks and the general concept of quan-
tum advantage in computing. Understanding these advantages in the context of
simpler systems, like random walks on graphs, could provide valuable insights.
These investigations serve as a microcosmic study that can help elucidate the
more complex and overarching question: Under what conditions can quantum
computing systems reliably outperform their classical counterparts?

1.4 Overview of the thesis

This thesis is dedicated to generating critical non-Gaussian resources, e.g., the
GKP state, essential for universal quantum computation within CV quantum
systems. We aim to study foundational tools pivotal to the field of CV quantum
information. Understanding these elements can not only help us assess the
current state of quantum information research, but also aid in mapping out its
future directions.

In Chapter 2, we introduce the foundational concepts of CV quantum com-
puting, with a focus on the significance of Gaussian operations and homodyne
measurements. In Chapter 3, we present the resource states used as initial states
and identify the target resource states, including photon states, tri-squeezed
states, cubic phase states, as well as binomial and GKP states. In Chapter 4,
we elucidate the general model and circuit architecture of the protocol employed
for state conversion.

Moreover, this work aspires to demonstrate the practical application of ma-
chine learning in quantum systems. Specifically, we showcase a machine-learning
method tailored to identify the quantum resources in continuous quantum walks.

To facilitate the understanding of Paper D, in Chapter 5, we delve into the
dynamics of classical and quantum walks, drawing comparisons between the
two through their implementations on a cyclic graph. This helps us understand
how different types of walks behave in constrained environments. In Chapter 6,
we dissect the architecture of neural networks by looking at their basic build-
ing blocks. We offer a comprehensive walkthrough that outlines the specific
functionalities and roles of each component within the network.

In Chapter 7, we provide an overview of the key findings and contributions
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1.4. OVERVIEW OF THE THESIS

of the appended papers, followed by a summary and future outlook in Chapter 8
to contextualize the research and suggest avenues for further study.

In essence, this thesis seeks to contribute valuable insights into both the
theoretical aspects of continuous-variable quantum systems and quantum walks,
particularly in relation to quantum computation and information processing.
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2 Continuous-variable approach
to quantum computation

Particles, each described by a small finite number (six) of parameters
(three positions and three momenta); and fields, requiring an infinite
number of parameters. At equilibrium, the energy is spread evenly
among all the degrees of freedom of the system. Since the fields have
infinitely many degrees of freedom, the poor particles get left with none
at all.

— Roger Penrose, The emperor’s new mind

Quantum computing is traditionally associated with qubits that corresponds
to discrete two-level systems, e.g., the spin of an electron. However, recent im-
provements in experiments dealing with continuous variables in various plat-
forms encourage the quantum-information community to also explore CV quan-
tum computing [23, 24, 27, 65–67].

In this chapter, we will review the background of CV quantum computation
starting from the quantized harmonic oscillator. This is followed by an intro-
duction to general Gaussian operations in a CV quantum system. Then, we
will show some important tools used in this thesis: position measurement and
measurement-based gate teleportation. In the end, we will introduce Completely
positive trace-preserving Gaussian maps.

2.1 The quantized harmonic oscillator

The concept of quantum implies that a physical property can be quantized. The
first quantization method, canonical quantization, is established by expanding
classical mechanics.

In quantum optics, the quantized electromagnetic modes correspond to quan-
tum harmonic oscillators [68]. We begin with the classical Hamiltonian of a
single-mode field, which is formally equivalent to a harmonic oscillator of unit
mass:

H =
1
2

(p2 + ω2q2), (2.1)

7



2. Continuous-variable approach to quantum computation

where the real and imaginary parts of the quantized electromagnetic field play
the roles of the canonical position q and momentum p, and ω is the angular
frequency of the oscillator [69].

The dynamics of classical systems is determined by the canonical Poisson
brackets {q, p}. After Heisenberg found that one could not measure the mo-
mentum and position of a system simultaneously, Dirac made the connection
with Poisson brackets [70]. The structure of the Poisson brackets is only par-
tially preserved in canonical quantization as the commutator [q̂, p̂] is equivalent
to the Poisson bracket {q, p} result multiplied by the constant −i�, where � is
the reduced Planck constant.

It is convenient to introduce the definition of creation and annihilation op-
erators as â = (q̂ + ip̂) and â† = (q̂ − ip̂), which satisfy the bosonic commutation
relation [â, â†] = 1. Note that here the convention is � = 1/2, which we use in
the rest of this thesis.

The vector of canonical coordinates operators for N bosonic modes can be
written as �̂r = (q̂1, p̂1...q̂N , p̂N )T

, where q̂i and p̂i are the position and the
momentum operators of the ith modes, respectively.

In CV systems, an important representation is the Wigner function, which
is a quasiprobability distribution in phase space [71]:

W (q, p) =
1
h

∫
e−ipy/�ψ∗(q + y/2)ψ(q − y/2)dy, (2.2)

where

h =
1∫ ∫

W (q, p)2dqdp
. (2.3)

Comparing with classical statistical mechanics where the Boltzmann factors
contain energies, the factors are expressed as functions of both position q and
momentum p in the Wigner function [71]. Because of the restriction of the un-
certainty principle, it can shed light on the classical limit of quantum mechanics.

A pure state with positive Wigner function is a Gaussian state [72], whose
wave function is an exponential function of a quadratic polynomial. Any quan-
tum process can be simulated efficiently on a classical computer if it begins
with Gaussian states, only performs transformations generated by Hamiltoni-
ans, and is followed by measurements also positively represented in terms of the
Wigner function [73]. It has been proved that initial states or operations includ-
ing measurements characterized by negative Wigner functions are necessary for
quantum speed-up [74, 75]. Thus, Wigner negativity is a necessary resource for
quantum advantage. Unlike the entanglement property, Wigner negativity is
invariant under a change in the choice of basis.

To quantify the resource of a quantum state, one can calculate the Wigner
logarithmic negativity, also known as mana [48, 76]

M(ρ) = log

(∫
d�r|Wρ(�r)|

)
, (2.4)

where Wρ(�r) is the Wigner function of the state ρ, and where the integral runs
over the whole phase-space.

8



2.2. GAUSSIAN OPERATIONS IN CONTINUOUS VARIABLES

2.2 Gaussian operations in continuous vari-
ables

The definition of quantum computing universality is that one can achieve any
unitary transformation, with an arbitrarily fixed accuracy, stemming from Hamil-
tonians that are polynomial in the quadrature operators [44].

We can first recall the definition of Gaussian universality. Consider an op-
erator Û that is at most a quadratic polynomial in q̂ and p̂ (linear unitary
Bogoliubov transformations). The evolution generated by Û can then be char-
acterized as [77]

Û†�̂rÛ = S�̂r + �̂c, (2.5)

where �̂c is a displacement and S is a symplectic matrix that satisfies SΩST = Ω,
and thus preserves the anti-symmetric symplectic form Ω under congruence [5],
with

Ω =
[

In 0
0 −In

]
, (2.6)

where In is the n × n identity matrix.

Gaussian universality for a single mode can be attained with some basic
operations in continuous-variable systems, for instance, the squeezing Ŝ(ξ), dis-
placement D̂(β), and phase rotation Ûp(γ) operators; see their definitions below.

• Displacements:

A displacement in phase space is described by the displacement operator

D̂(β) = eβâ†−β∗â, (2.7)

where â† and â are the creation and annihilation operators, respectively,
and β ∈ C is a complex number that defines the magnitude and direction
of the displacement. The displacement operator acts on a state to move
it in phase space without changing its shape.

• Squeezings:

Squeezing modifies the uncertainties in the complementary variables (quadra-
tures) of the system. The squeezing operator is

Ŝ(ξ) = e
ξ∗
2 â2− ξ

2 â†2
. (2.8)

Here, ξ ∈ C is the squeezing parameter. When this operator acts on a
state, it will modify the uncertainties of the position and momentum (or
the two quadratures in the case of light fields) such that the product of
their uncertainties still respects the Heisenberg uncertainty principle.

9



2. Continuous-variable approach to quantum computation

• Rotations:

A rotation in phase space is described by the operator

Ûp(γ) = e−iγn̂, (2.9)

where γ ∈ R is the rotation angle and n̂ = â†â is the number operator.

2.3 Universal operations in continuous vari-
ables

We know that Gaussian operators only allow the construction of any Hamilto-
nian that is quadratic in q̂ and p̂, and of no Hamiltonian of a higher order [44].
The latter can be achieved with the help of a non-Gaussian operation, for ex-
ample, a cubic phase gate eirq̂3

.
Given an input state, any unitary transformation can be achieved to an

arbitrary degree of accuracy by some non-Gaussian operations combined with
universal Gaussian operations on a single mode. Multi-mode universal transfor-
mations can be obtained by adding a two-mode Gaussian interaction, such as
the ĈZ gate [44, 78]

ĈZ = eiq̂⊗q̂. (2.10)

Let us elucidate why Gaussian operators only permit the formulation of
Hamiltonians quadratic in q̂ and p̂, while excluding the possibility of Hamilto-
nians of higher orders. In quantum mechanics, Gaussian operators are those
that evolve the system via a linear combination of the position operators (q̂)
and momentum operators (p̂), often accompanied by a displacement term. The
term “Gaussian” often implies that the evolution of the state remains within
the realm of Gaussian states, which are fully described by their first and second
moments in q̂ and p̂. When we focus on Hamiltonians that are quadratic in q̂
and p̂, the equations of motion derived from the Schrödinger equation (or the
Heisenberg equation) remain linear differential equations. This linearity ensures
that Gaussian states evolve into Gaussian states, and it keeps mathematical ma-
nipulations relatively tractable.

Once higher-order terms are introduced into the Hamiltonian, these proper-
ties no longer hold. The resulting equations of motion become nonlinear differen-
tial equations, making the system significantly more complex to analyze. More-
over, higher-order Hamiltonians can evolve Gaussian states into non-Gaussian
states, breaking the elegant properties associated with Gaussian operations.

When the Hamiltonian H is quadratic in position and momentum, it takes
a form that can usually be written as Eq. (2.1) with linear terms added to the
right-hand side. Hamilton’s equations of motion, derived from the Hamiltonian,
are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2.11)

10



2.4. POSITION MEASUREMENT

For a quadratic Hamiltonian, these partial derivatives will yield terms that are
linear in q and p. As a result, the equations of motion will be linear differential
equations.

In summary, Gaussian operators allow for the construction of Hamiltonians
that are quadratic in q̂ and p̂ because this ensures that the equations of motion
are linear, tractable, and preserve the Gaussian nature of the initial states.
Higher-order Hamiltonians introduce complexities that go beyond the scope of
what Gaussian operators can handle.

2.4 Position measurement

In quantum systems, measuring the position of a particle is not just a passive
act; it can fundamentally change the state of that particle. This ”collapse” of
the quantum state allows us to know the particle’s position with certainty, but
at the same time, makes its momentum more uncertain due to the quantum rule
known as the Heisenberg uncertainty principle.

This changing of a quantum state through measurement does not have to
be detrimental — it can be useful. The idea is that by entangling a primary
quantum system with an ancillary one and then measuring the position of the
ancillary system, we can actually alter the state of the main quantum system
in a useful way. Depending on the result of the position measurement, different
operations can be applied to further steer the primary system into a desired
state. Such ideas can be important for tasks like quantum computing. For
example, we use such measurements in Papers A, B, and C, where we apply
them in protocols for converting between states that are resources for quantum
computing.

It is crucial to note, however, that while position measurements can be po-
tent tools for state conversion, they also introduce randomness due to the prob-
abilistic nature of quantum mechanics. Therefore, in practice, state conversion
using position measurement often requires repetition, error correction, or post-
selection to achieve high fidelity.

2.5 Measurement-based gate teleportation

Unlike the quantum gate array that expanded from the classical gate array
and quantum random walks that are inherited from classical random walks,
measurement-based quantum computing is a novel method [79] based on gate
teleportation. This method for quantum computing makes use of measurements
as discussed in Chapter 2.4; it was discovered by Gottesman and Chuang [80]
to illustrate how entanglement can be used to reduce the resources needed in
quantum circuits.

Let us look at this method by discussing how a cubic phase gate can be
implemented with a cubic phase state, which is also a motivation for Paper A.
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2. Continuous-variable approach to quantum computation

|ψ〉 • p̂

|r〉 • Ĉ eirq̂3|ψ〉

Figure 2.1: A gadget representing the cubic phase gate on an input state |ψ〉
implemented by means of the cubic-phase state |r〉 = eirq̂3

Ŝ(ξ) |0〉, where r is
the cubic phase gate strength. Ĉ is a Gaussian correction. Figure adapted from
Ref. [25].

As shown in Fig. 2.1, the control-Z gate ĈZ will entangle an arbitrary state |ψ〉
and a cubic phase state |r〉, which is defined as [52]

|r〉 = eirq̂3
Ŝ(ξ) |0〉 , (2.12)

where ξ is the squeezing parameter, and r yields the cubic interaction strength,
called the cubicity.

By measuring the mode of the first rail in the p̂ basis with outcome m, we
obtain a state onto which has been applied a cubic phase gate after applying
a Gaussian correction (rotation, displacing, or squeezing). The heart of this
approach consists in transforming the resource from one state to another state
with the help of measurement and entanglement operations.

2.6 Completely positive trace-preserving
Gaussian maps

The unitary Gaussian transformations that we have defined above belong to the
broad class of Gaussian maps. By adding the restrictions of such a map being a
completely positive, trace-preserving linear map from density matrices to density
matrices [5], a completely positive trace-preserving Gaussian transformation is
defined. These maps are described by the symmetrically ordered characteristic
function [45]

χρ(�̂r) = Tr
{

D̂(−�̂r)ρ
}

, (2.13)

with �r the vector of canonical coordinates operator and the arbitrary displace-
ment operator being

D̂(−�̂r) = e−i(�̂rT Ω�̂r), (2.14)

with �̂r ∈ R
2N and Ω given in Eq. (2.6).

Any Gaussian completely positive trace-preserving map Φ on the character-
istic function can then be written as [81]

χρ(�r) → χΦ(ρ)(�r) = e− 1
4 �rT ΩT Y Ω�r+i�lT Ω�rχρ(ΩT XT Ω�r), (2.15)
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with X, Y being 2N × 2N real matrices, �l a 2N real vector, and Y being sym-
metric and fulfilling the following positive semi-definite matrix constraint:

Y ± i(Ω − XΩXT ) ≥ 0 . (2.16)

The fidelity between a state ρ and a target state ρtarget, a measure which we
use in several papers, can be defined in terms of characteristic functions:

F(ρ, ρtarget) = Tr{ρρtarget} =
1

4π

∫
d�̂r χρ(�̂r) χρtarget(−�̂r), (2.17)

where χρ and χρtarget are the characteristic functions of the states ρ and ρtarget,
respectively.
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3 Resource states

A photon is a bosonic mode. You can keep shoving them into the
same state, and they love it.

— Frank Wilczek

This chapter is dedicated to an exploration of various resource states that
we aim to convert between using Gaussian protocols. These resource states are
all non-Gaussian states, i.e., they are characterized by a non-Gaussian Wigner
function. As we noted in Chapter 1.3, non-Gaussian states or operations are
required for achieving universal CV quantum computation, but Gaussian oper-
ations are usually easier to implement in experiments.

We begin by discussing the photon-number states, which we encounter in
Paper C. These states serve as a straightforward starting point for understanding
the resources at our disposal. Following that, we delve into more complex states,
specifically, the trisqueezed states and cubic phase states, that are the focus of
Paper A. These states are particularly interesting because they are connected
to Hamiltonians that incorporate cubic terms. Finally, we shift our attention to
binomial states and GKP states, as elaborated upon in Paper B. These states
represent another layer of complexity in our study of resource states and offer
unique opportunities for quantum computation and information processing.

At the outset, it is important to underscore the critical significance of the
indistinguishability property for bosonic entities like photons. When two in-
distinguishable photons hit a beam splitter, we get a specific type of quantum
interference where the photons ”stick together” and exit the beam splitter from
the same port, and we cannot label one as “the photon that came in from the
left” and the other as “the photon that came in from the right”. This is known
as the Hong–Ou–Mandel effect [82]. The photons have to be identical in every
measurable way — polarization, frequency, timing, etc. — for the interference
to occur. For bosons, the wave function is symmetric under the exchange of par-
ticles, whereas for fermions, it is antisymmetric. These symmetries produce the
observed statistical behaviors, leading to the vastly different properties and be-
haviors of bosons and fermions even though both are indistinguishable particles
of their respective types.
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Figure 3.1: Wigner functions of (a) the one-photon state and (b) the two-photon
state.

3.1 Photon number states

Photon number states embody the quantization of light, where the energy of
electromagnetic radiation is quantized into discrete packets called photons. Fig-
ure 3.1 shows the Wigner functions of the one-photon state and the two-photon
state. Any photon number state, often called Fock state, is orthogonal to Fock
states with different photon numbers. The concept of photon number states
highlights the particle-like nature of light and its fundamental quantum behav-
ior. They allow for the precise measurement and counting of photons. Even the
simplest single-photon states can exhibit remarkable interference effects, such
as the famous double-slit experiment. When a single photon passes through a
double-slit apparatus, it interferes with itself, creating an interference pattern
that demonstrates the wave-particle duality of light.

A two-photon Fock state is a quantum state of light where exactly two pho-
tons are present in a single mode of the electromagnetic field. The two photons
in the two-photon Fock state are indistinguishable, which leads to specific kinds
of quantum interference effects, like the Hong–Ou–Mandel interference [82] (dis-
cussed above) when interacting with beam splitters, which is often considered a
manifestation of the bosonic nature of photons. Creating an exact two-photon
Fock state is experimentally challenging [83], but can be done using methods
like parametric down-conversion (in a controlled manner), or through a single-
photon source operated in a particular way to generate two photons [84]. These
challenges motivate one conversion protocol, studied in Paper C, to create two-
photon states.
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3.2 The trisqueezed state

In this thesis, we address conversion protocols from experimentally available
states to states that are known to be pivotal for quantum computation (see
Chapter 1). The input state discussed in Paper A is the trisqueezed state,
defined as [85, 86]

|Ψin〉 = ei(t∗â3+tâ†3) |0〉 . (3.1)

In the ensuing discussion, we will use the term triplicity, denoted by the complex
parameter t, to quantify the strength of the tri-photon interaction as represented
in Eq. (3.1).

Figure 3.2(a) presents the Wigner function for a trisqueezed state charac-
terized by a triplicity value of t = 0.055. This state exhibits several intriguing
symmetries. First, it is symmetric with respect to the momentum axis q = 0.
Secondly, the state possesses a 2π/3-rotational symmetry. This rotational sym-
metry originates from the Hamiltonian that generates the state, as described
in Eq. (3.1). This symmetry is also mirrored in the Fock-space expansion of
the trisqueezed state, where only Fock states with photon numbers divisible
by three are present [87]. This symmetry gives rise to a highly non-Gaussian
Wigner function, exhibiting a distinct three-pointed star shape. The three arms
of the star display triangular symmetry.

3.3 The cubic phase state

The cubic phase state is known for its significance in achieving universality in CV
quantum computing [52]. It introduces nonlinear dynamics into the quantum
realm, which in turn can enable powerful computational abilities beyond the
scope of Gaussian states.

The wave function of a cubic phase state |r〉 from the definition in Eq. (2.12)
can be computed by projecting into the position basis:

Ψtarget(q) = 〈q|Ψtarget〉 =
(

2
π

) 1
4

eξtarget/2e−e2ξtargetq2
eirq3

, (3.2)

where ξtarget is the squeezing parameter of target cubic phase state and r is the
cubicity.

The distinctive feature of the cubic phase state is its phase shift, which is
directly proportional to the cube of the position. This phase relationship intro-
duces non-linear characteristics and non-Gaussian behavior into the quantum
state.

From Fig. 3.2(b) we can see that the presence of quantum interference in a
cubic phase state is evidenced by the nontrivial negative regions in its Wigner
function [88]. These features underscore its utility as a valuable resource for
quantum computing applications. Additionally, it is worth noting that the state
exhibits symmetry with respect to the position axis, just as the trisqueezed state
in Fig. 3.2(a).
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Figure 3.2: Wigner functions of (a) the trisqueezed state with triplicity t = 0.055
and (b) the target cubic phase state with squeezing parameter ξtarget = 0.5 and
cubicity r = 0.05.

Figure 3.3: Wigner functions of (a) the binomial state with N = 2 and K = 3,
and (b) the target qunaught state in Paper B, with 4.95 dB effective squeezing.

3.4 Binomial states

The binomial and Gottesman–Kitaev–Preskill (GKP) states are quintessential
examples of non-Gaussian states that play pivotal roles within the realm of
continuous-variable quantum computing [10, 89–91].

The binomial states, as the name suggests, find their roots in the binomial
theorem. They are superpositions of Fock states with binomially distributed
photon numbers, and can be used in quantum error correction codes. In the
family of N -fold binomial codes, the 0-logical code-word is mathematically de-
fined as [89, 92]

|0N 〉 =
�K/2�∑
k=0

√
1

2K−1

(
K

2k

)
|2kN〉 , (3.3)

where �K/2� is the floor function of K/2 and K serves as the truncation param-
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eter to limit the sum. The term N represents the order of rotation symmetry,
meaning that the state remains unchanged when rotated by an angle of π/N .
This rotational symmetry lends the state useful properties for specific quantum
protocols.

As an illustration, let us consider a specific example with parameter values
K = 3 and N = 2, which was the focus of Paper B:

|ψ0〉 ≡ |02〉 =
1
2

|0〉 +
√

3
2

|4〉 . (3.4)

Here, the state |ψ0〉 emerges as a weighted superposition of |0〉 and |4〉, with
the weights determined by the binomial coefficient for K = 3 and the order of
rotational symmetry, which can be observed in Fig. 3.3(a).

3.5 Gottesman–Kitaev–Preskill states

Gottesman–Kitaev–Preskill (GKP) states [90] are named after their discoverers,
Daniel Gottesman, Alexei Kitaev, and John Preskill. These states are designed
to serve as a bridge between discrete-variable and continuous-variable quan-
tum computing by encoding qubits in infinite-dimensional harmonic oscillator
systems. The canonical GKP state, or sensor state, can be used as a tool for
detecting minuscule displacements in phase space [93]. It is formally defined by
the equation [90]

|ψ〉 ∝
∞∑

t=−∞
e−πΔ2t2

D̂(t
√

π)Ŝ(Δ) |0〉 , (3.5)

In this equation, the operator Ŝ(Δ) represents squeezing [cf. Eq. (2.8)], which
transforms q̂ into q̂Δ and p̂ into p̂/Δ, and D̂(β) is the displacement operator
[cf. Eq. (2.7)]. An example of a qunaught state, the target of the conversion
protocol in Paper B, is shown in Fig. 3.3(b).

The GKP states serve as a remarkable exception to the usual implications of
the Heisenberg uncertainty principle, which constrains simultaneous precision
in complementary variables like position (q̂) and momentum (p̂). Specifically,
GKP states are crafted to be approximate eigenstates of both q̂ and p̂, modulo
some integer multiples of

√
π, thereby subverting the naive interpretation of the

uncertainty principle. Additional interesting properties of GKP states are

• Quasi-classical behavior: In a classical sense, specifying a state with near-
simultaneous precision in q̂ and p̂ is equivalent to pinpointing a point in
phase space. GKP states achieve a quantum version of this by localizing
around lattice points in phase space.

• Quantum robustness: Despite this quasi-classical localization, GKP states
maintain inherent quantum features, such as superposition. These quan-
tum properties make them suitable for quantum error correction, which
requires the manipulation of quantum states.
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• Built-in fault tolerance: The lattice structure in phase space renders GKP
states inherently robust against small Gaussian noise and displacements,
which are common types of errors in CV quantum systems. This fault-
tolerant nature is crucial for practical quantum computation, as it reduces
the overhead for additional error correction.

• Bridge to universal quantum computing: Their resilience to specific er-
rors and their capability to approximate forbidden eigenstates make GKP
states an invaluable resource for constructing more sophisticated error-
correcting codes. This feature paves the way for their use in universal
quantum computing schemes.

In summary, GKP states occupy a unique niche in the quantum state space,
blending classical-like determinism with quantum flexibility and robustness,
thereby offering a promising avenue for fault-tolerant quantum computation.
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4 Gaussian conversion
protocols

Quantum circuits are the brushstrokes of the quantum artist, painting
a canvas of entanglement and uncertainty. They reveal the intricate
dance of particles, challenging our intuitions and inviting us to explore
the mysteries of the quantum realm.

— Alain Aspect

In Papers A, B, and C, we explore the relationship between different families
of quantum codes and states by leveraging transformations between distinct
bases. One example (Paper B) is the generation of GKP codes (see Chapter 3.5),
translationally symmetric codes, from binomial codes (see Chapter 3.4), which
are rotationally symmetric codes. Other examples are conversion protocols going
from multiple copies of one non-Gaussian resource state to one copy of another
non-Gaussian resource state (Paper C) and the generation of the cubic phase
state from a trisqueezed state (Paper A). In the last example, the trisqueezed
state involves cubic powers of the creation and annihilation operators â† and
â. The cubic phase state is characterized by a phase term the cube of the
position â3. Both states involve the cube of an operator or position variable,
demonstrating their non-linear relationship with the photon number or position.
Two key transformations in the protocol govern the relationship between the
initial and target states.

The first transformation involves the relationship between the Fock basis
and the position basis. This basis change has some connection to the wave-
particle duality of quantum systems. In the Fock basis, we describe the states
in terms of photon numbers, representing the energy levels of the quantum
harmonic oscillator. Conversely, the position basis characterizes states through
electric field amplitudes, offering a spatial interpretation of the system. Within
our protocols, the focus predominantly rests on the position basis, and with
good reason. By subjecting the system to measurements in a position basis, a
transformation unfolds. The quantum state elegantly condenses into a position
eigenstate, corresponding to a particular position within the spatial domain.
Spatial stabilization can thus be implemented through this measurement.
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The second crucial operation involves the transformation between the mo-
mentum basis and the position basis in the measurement, encapsulating the
essence of the Heisenberg uncertainty principle. In quantum mechanics, the
position and momentum of a particle are represented by non-commutative op-
erators, resulting in this uncertainty principle, which imposes a trade-off be-
tween precise knowledge of both properties simultaneously. By implementing
measurements in both the momentum and position directions in a sequence of
circuits, we achieve a symmetry of uncertainty in both basis, especially when
targeting symmetrical states like the GKP state.

In Papers A, B, and C, we thus explore the intricate connections between
diverse families of quantum codes and states while making connections to foun-
dational concepts in quantum mechanics, such as wave-particle duality and the
Heisenberg uncertainty principle. In the subsequent sections of this chapter, we
detail three specific quantum circuits integral to our resource-state conversion
protocols in these three papers. While these circuits exhibit interdependencies,
each provides distinct advantages tailored to optimize the conversion process in
individual scenarios.

4.1 General considerations

The utilization of beamsplitters and position detection in quantum state gener-
ation unveils a captivating interplay between fundamental quantum phenomena
and ingenious experimental techniques.

Beamsplitters, represented by unitary operators, facilitate the controlled
splitting and recombination of quantum states. Their inherent ability to dis-
tribute quantum information across multiple paths enables the creation of intri-
cate superpositions, a cornerstone of quantum computing and communication.

Position detection (see Chapter 2.4), on the other hand, brings the ethereal
concept of wavefunction collapse into tangible reality. By measuring the position
of a quantum particle, the probabilistic nature of quantum states manifests
itself. The outcome of a position measurement collapses the wavefunction onto
a specific position eigenstate, yielding information about the particle’s spatial
distribution.

Beamsplitters create intricate quantum superpositions, while position detec-
tion transforms abstract probability amplitudes into concrete spatial informa-
tion. The use of two input states and beam splitters highlights the importance
of quantum interference and entanglement in state generation, showcasing the
application of quantum effects in generating valuable quantum resources.

4.2 Circuit for generating cubic phase states

In this section, we will show a protocol, from Paper A, for generating cubic phase
states (see Chapter 3.3), characterized by a phase shift proportional to the cube
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GOTTESMAN–KITAEV–PRESKILL STATES

|Ψin〉
UR
BS(2θ)

q̂

|Ψξ,β〉 Up(γ) D(d) |Ψq
out〉

Figure 4.1: The circuit of our probabilistic Gaussian conversion protocol in
Paper A. We start from two states and mix them in a beam-splitter UR

BS(2θ).
After a rotation Up(γ), we post-select the homodyne measurement on the first
mode to value q = 0 and displace the second mode with D(d).

of the position variable. This will be achieved starting from a trisqueezed state
(see Chapter 3.2), which itself involves the cube of the photon position operator.

As sketched in Fig. 4.1, our conversion protocol takes two states as input,
which include non-Gaussian resources and are similar to the target states but
easier to achieve in general in experiments. These are mixed by a beam-splitter
corresponding to the symplectic transformation

UR
BS(2θ) =

(
cos θ sin θ

− sin θ cos θ

)
. (4.1)

The next step is to perform a phase rotation on the lower rail, and that is
followed by a homodyne measurement. We post-select the result q = 0 on the
upper rail and apply a displacement on the state on the lower rail in the end
when it is necessary.

Let us calculate explicitly the output state of the circuit sketched in Fig. 4.2.
To simplify the calculation, we consider the output state before the displacement
as it is equivalent to displacing the target state in terms of fidelity. The output
state, which corresponds to an ideal measurement outcome q, is expressed as

|Ψq
out(ξ, β, θ, γ)〉 =

1
π

∫
dq2 dαΨin(q cos θ + q2 sin θ)

Ψξ,β(−q sin θ + q2 cos θ)〈α|q2〉|αe−iγ〉,
(4.2)

where the squeezing parameter ξ and the displacement β ≡ qβ +ipβ are complex
numbers, while the angle θ of the beam-splitter and the phase rotation γ are
real numbers.

4.3 Circuit for generating
Gottesman–Kitaev–Preskill states

In this section, we introduce a protocol for generating Gottesman-Kitaev-Preskill
(GKP) states (see Chapter 3.5), known for their translational symmetry, from
binomial states (see Chapter 3.4) characterized by rotational symmetry. We
detail an iterative procedure to transform between these two types of quantum
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Figure 4.2: Sketch of our Gaussian conversion protocol with two iterations. Two
binomial states |Ψ0〉 are combined in a real balanced (50:50) beam-splitter. We
then use a homodyne detector to measure the first modes’ q̂ quadrature. In
the second iteration, we instead measure the p̂ quadrature of one of the beam-
splitter outputs.

codes—specifically, GKP states and four-fold symmetric binomial states that
encode a zero-logical qubit—utilizing solely Gaussian operations.

Our iterative conversion protocol for transforming initial binomial states
into the target qunaught state is inspired by the breeding protocol outlined in
Ref. [94]. Unlike the original approach, which starts from squeezed cat states,
our method commences with binomial states as delineated in Eq. (3.4). Addi-
tionally, we adopt a strategy of alternating measurements in the position (q̂)
and momentum (p̂) quadratures.

The circuit depicted in Figure 4.2 implements two cycles of our conversion
protocol. In the initial cycle, two pairs of binomial input states |ψ0〉 are entan-
gled through real balanced beam-splitters, followed by measurements of the q̂
quadrature on the first modes. The resulting state of the second mode from each
beam-splitter serves as the input for the next cycle. Each q̂ and p̂ measurement
induces a squeezing effect on the output state in the respective quadratures. To
equalize the squeezing strength in both directions, the second cycle incorporates
a p̂ measurement.

4.4 Generating two-photon states
with homodyne detection

In Paper C, we investigate protocols converting multiple copies of resource states
into another resource state. Here, we focus on the particular case of one- and
two-photon states (see Chapter 3.1). It is well known that a beam-splitter can
be used to mix two excited modes. If we initially have one photon in each of
the input modes, the state |1, 1〉, then the state after the beam splitter is a
superposition of two photons propagating together in one of the mode [82]. The
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two photons are bunched in the same mode after the beam-splitter:

|Ψout〉 =
1√
2

(|2, 0〉 + |0, 2〉) . (4.3)

It is very obvious that we in this way can obtain a two-photon state with photon
detection (a non-Gaussian operation). But what if we use a position measure-
ment (a Gaussian operation) instead?

Let us consider photon-number states in the q̂ basis to explore the spatial
distribution and quantum interference effects of these states. This analysis helps
understand how the displacement parameter d affects the spatial behavior of the
single photons and how correlations between the two copies of the states manifest
in position space.

First, we have two copies of displaced single-photon states ψ1(q + d) and
ψ2(q − d). These states can be written in the q̂ basis as follows [83]:

ψ1(q1 + d) = 2
(

2
π

) 1
4

e−(q1+d)2
(q1 + d), (4.4)

ψ2(q2 − d) = 2
(

2
π

) 1
4

e−(q2−d)2
(q2 − d). (4.5)

Then, ψ1(q1 +d) and ψ2(q2 −d) are fed into the real balanced beam-splitter.
The two-mode output state can be written as (ignoring normalization)

|ψ12〉 ∝
∫

dq1dq2ψ1(q1 cos θ + q2 sin θ)ψ2(−q1 sin θ + q2 cos θ) |q1〉 |q2〉

∝
∫

dq1dq2e−(
√

2
2 (q1+q2+d))2

[√
2

2
(q1 + q2 + d)

]
e−(

√
2

2 (−q1+q2−d))2
[√

2
2

(−q1 + q2 − d)
]

|q1〉 |q2〉 .

(4.6)

We do a homodyne detection on the first mode and post-select the case when
q1 = 0. The output state can then be written as

〈q1 = 0|ψ12〉 =
∫

dq1dq2ψ12(q1, q2) 〈q1 = 0|q1〉 |q2〉

∝
∫

dq2e− (q2+d)2
2 e− (q2−d)2

2
(q2 + d)(q2 − d)

2
|q2〉

∝
∫

dq2
1
2

e−q2
2−d2

(q2
2 − d2) |q2〉

∝
∫

dq2
1
2

e−q2
2 (q2

2 − d2) |q2〉

(4.7)

The two-photon states can be written in q basis as

ψ1(q) ∝ e−q2
(

q2 − 1
4

)
. (4.8)
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We can see that when d = 1
2 , the output state of Eq. (4.7) will be a two-photon

state. We also perform numerical simulations to validate this state-generation
protocol. The result shows perfect agreement with the analytical calculation.
With these displacements, the interference of two states will generate an output
state with 0.1077 probability and 0.99999 fidelity to the two-photon state.
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5 Classical and quantum ran-
dom walks

In the preceding chapters, our discussions have revolved around Gaussian op-
erations and their interplay with non-Gaussian resources, but in this thesis, we
wish to address a broader context of quantum advantage. Specifically, what con-
ditions must be satisfied for quantum systems to outperform classical systems
in computational tasks?

To this end, this chapter introduces the concept of quantum walks, which
serve as an enlightening probe into the nature of quantum advantage. Quantum
walks are the quantum analogs of classical random walks, and they can offer
performance benefits over their classical counterparts under certain conditions,
as we study in Paper D. But what are these conditions? And how do they relate
to the more general query of quantum advantage in quantum computing?

This chapter aims to provide a comprehensive understanding of random
walks, beginning with an exploration of classical random walks. Following this,
we introduce the concept of quantum walks as a quantum analog to the classical
version. Our investigation culminates in a comparative analysis of both classical
and quantum walks on a simple cyclic graph.

5.1 Classical random walks

Random walks on graphs serve as a vital link between discrete mathematics and
probabilistic studies, extending their influence well beyond abstract theory [95].
Starting from a specific vertex, the walker traverses the graph, adhering to a
uniform probability distribution [96].

We consider an undirected graph G = (V, E), where V is the set of vertices
and E is the set of edges. The graph is represented by its adjacency matrix A
of dimensions n × n, where n = |V |.

A particle starts its walk at the initial node i = 0 and aims to reach the
target node i = 1. The particle is allowed to move from node i to node j if and
only if Aij = 1. To ensure that the particle remains at the target node upon
reaching it, we introduce a self-loop by setting A11 = 1.
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The master equation governing the continuous-time random walk (CTRW)
in this setup is given by

dpi(t)
dt

= (Tij − I)pi(t), (5.1)

with pi(t) the probability of being in node i at time t and Tij defined as

Tij =
Aij

d(j)
, (5.2)

where d(j) is the degree of node j [97, 98].
One goal in the study of random walks is to find the “hitting time,” which

is defined as the time t at which the particle first reaches the target node.
Specifically, for the mean hitting time, we look for the time step τ at which the
probability p(target, τ) exceeds a predefined threshold pth, i.e.,

p(target, τ) > pth. (5.3)

For random graphs, the characteristic path length scales with log n, which in-
forms the choice of pth [99].

5.2 Continuous-Time quantum walk

Quantum walks extend the concept of classical random walks into the quan-
tum realm. Just like a classical walk is described by a probability distribution,
a quantum walk is characterized by a quantum state that evolves over time
according to the rules of quantum mechanics.

Here, we describe a continuous-time quantum walk (CTQW) on the same
graph G = (V, E), but extend the Hilbert space to include a “sink” node. This
auxiliary node is used to trap and detect the quantum particle in the target node
without collapsing its wave function [100]. We denote the modified adjacency
matrix, with the sink node included, by Aq

ij .
The dynamics of the CTQW can be described using the Lindbladian equation

for the density matrix ρ:

dρ(t)
dt

= − i

�
[Ĥ, ρ(t)] + γ(Lρ(t)L† − 1

2
{L†L, ρ(t)}), (5.4)

where L = |sink〉 〈target| is the jump operator, dictating the decay from the tar-
get to the sink node with rate γ, and Ĥ = �Aq

ij serves as the Hamiltonian [101].
Similar to the classical case, we are interested in the mean hitting time of

the quantum walk, defined as the time τ when the probability of finding the
particle in the sink node exceeds pth, i.e.,

ρsink, sink(τ) > pth. (5.5)
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Figure 5.1: (a) A four-node cyclic graph with the initial node 0 in yellow, the
target node 1 in red, and other nodes in blue. (b) Dynamics of a classical walk
on this graph. (c) Dynamics of a quantum walk on the same graph. The green
dashed line shows the population of the sink node 4, which is connected to the
target node.

5.3 Classical and quantum walks on a cycle

Examining the distinctions between classical and quantum continuous walks
on simple cyclic graphs is not only intriguing, but also opens a window into
the subtleties of quantum phenomena, particularly in terms of hitting times.
A simple cyclic graph consists of a closed loop of n nodes, where each node
is connected to its immediate neighbors. This structured setting provides an
excellent backdrop to explore whether quantum walks outperform classical walks
in the realm of hitting times.

Figure 5.1 visually illustrates these concepts. In classical walks, the probabil-
ity distribution of the particle evolves naturally, free from interference between
different paths. The quantum realm is markedly different: due to the inter-
ference of quantum states, the resulting probability distribution showcases a
complex landscape of peaks and valleys.

This brings us to an essential aspect of quantum walks: the introduction
of “dark” and “bright” states within the Hilbert space. A “dark” state is a
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quantum state that remains undetected due to destructive interference effects.
Conversely, “bright” states are those that are orthogonal to the dark space and
are always detected. The presence of a detector partitions the entire Hilbert
space into these two mutually exclusive sectors.

The probability of detection in the limit of long time, denoted as Pdet, can be
understood as the overlap between the initial state and the bright space. This
overlap can be further constrained by considering the number of states that
are “equivalent” in terms of their detectability. Mathematically, this constraint
manifests as an upper bound on Pdet, given by the inverse of the number of
equivalent states. The more equivalent states present, the lower the upper bound
becomes, serving as a metric for the challenge inherent in detecting a specific
state.

Cyclic graphs demonstrate unique behavior based on their nodal count. For
graphs with an odd number of nodes, Pdet remains a constant 1

2 . In even-
numbered graphs, a notable exception arises: at the node diametrically opposite
to the target, Pdet reaches unity, guaranteeing the detection of the desired state.

In the four-node cyclic graph of Fig. 5.1, the total detection probability is 1
2

due to symmetry. However, quantum walks show oscillatory behavior between
symmetric initial nodes, eventually leading to energy localization in the target
node (which leaks into the sink node) and in a superposition of nodes 0 and 3,
which are symmetric with respect to the target node [Fig. 5.1(c)].
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Identifying instances where quantum walks genuinely offer a speedup over their
classical counterparts remains a complex task. It involves intricate analysis
and simulations that often become infeasible due to computational limitations.
This raises an inevitable question: Can we use machine learning, specifically
neural networks, to predict or even discover the scenarios where quantum walks
exhibit a speedup? In this chapter, we delve into the biological inspirations and
historical background of neural networks, explore various activation functions,
and discuss critical learning rules. By doing so, we lay the groundwork for
employing neural networks as a robust tool to shed light on the elusive question
of quantum speedup in quantum walks, as we do in Paper D.

6.1 Biological inspiration and history

In 1943, Warren McCulloch and Walter Pitts published a seminal paper [102]
that proposed a mathematical model for artificial neurons, which transmit in-
formation through electrical and chemical signals. To bridge the gap between
neuroscience and computational models, the McCulloch-Pitts model simplified
the complex structure of biological neurons, representing them as binary thresh-
old units that receive input, process it, and generate an output. It can perform
basic logical operations such as AND, OR, and NOT, which are essential build-
ing blocks of digital computing. This capability demonstrated that artificial
neural networks could be used to replicate complex decision-making processes
and perform computations. The model is Turing-complete as it can compute
any computable function given enough neurons and an appropriate configura-
tion. This universality established the potential of artificial neural networks as
general-purpose computational models.

In 1958, Frank Rosenblatt [103] introduced the perceptron, an early type of
artificial neural network. The perceptron was designed as a single-layer network
that could learn to classify linearly separable patterns, where all data points
belonging to the same category or class lie on the same side of a dividing line,
plane, or hyperplane, through a process of supervised learning which is trained
on a labeled data set.

The backpropagation algorithm, popularized by David Rumelhart, Geoffrey
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Figure 6.1: Illustration of a feedforward neural network with annotated neurons.
The input layer neurons are denoted x1, x2, x3, the hidden layer neurons are
h1, h2, h3, and the output layer neurons are y1, y2, y3.

Hinton, and Ronald Williams in 1986 [104], but originally introduced by Paul
Werbos in his 1974 Ph.D. thesis [105], allowed neural networks like the one
shown in Fig. 6.1 to learn complex, non-linear patterns by adjusting the weights
of the connections between layers. This breakthrough enabled the development
of more powerful neural networks and expanded the scope of their applications.

6.2 Activation functions

Activation functions play a critical role in neural networks by introducing non-
linear properties to the system. This non-linearity allows the network to learn
from the error back-propagated and to perform tasks beyond just linear regres-
sion or classification. Mathematically, the activation function f(x) operates on
the weighted sum of the inputs z at each neuron to produce an output a, which
serves as the input for the next layer in the network. The process is represented
as

a = f(z), where z =
n∑

i=1
wixi + b. (6.1)

Here, wi are weights associated with the connections between neurons, xi are
the input features, b is a bias term that allows the activation function to be
shifted horizontally, and z is the weighted linear combination of inputs. The
output a, also known as the activation, is then forwarded to subsequent layers,
where it serves as the input for the next layer of neurons.

Different types of activation functions like sigmoid, ReLU (rectified linear
unit), and tanh (hyperbolic tangent) introduce different types of non-linearities
into the system, as illustrated in Fig. 6.2. The choice of activation function can
impact the efficiency of training, the convergence speed, and the performance
of the neural network.

In the following subsections, we discuss some commonly used activation func-
tions employed in neural networks, elaborating on their mathematical formula-
tions and properties.
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Figure 6.2: Common Activation Functions

Sigmoid activation function

The sigmoid activation function, also known as the logistic function, is defined
mathematically by the equation

σ(x) =
1

1 + e−x
(6.2)

This function maps any input x to a value between 0 and 1, thus providing
a probabilistic interpretation. The sigmoid function is differentiable, and its
derivative is given by

σ′(x) = σ(x) · (1 − σ(x)) (6.3)

Its derivative lies in the range (0, 1), making it smooth and differentiable. The
sigmoid function is often used in binary classification problems, as it outputs val-
ues that can be interpreted as probabilities. However, it suffers from vanishing-
gradient problems when the input is either too large or too small, which can
hinder learning in deep networks.

Rectified linear unit (ReLU)

The ReLU function is defined as

f(z) = max(0, z) (6.4)

ReLU has gained popularity for its computational efficiency and its ability to
mitigate the vanishing-gradient problem, especially in deep networks.

In recent years, researchers have introduced these and other modifications
to activation functions to further improve the adaptability and performance of
neural networks.
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Hyperbolic tangent (tanh)

The hyperbolic tangent function is defined as

f(z) = tanh(z) =
ez − e−z

ez + e−z
. (6.5)

The derivative of the tanh function lies in the range (0, 0.25). Like the sigmoid,
it is smooth and differentiable, but can suffer from vanishing gradients.

6.3 Learning rules in neural networks

In neural networks, learning rules guide the network to improve over time [106].
These rules adjust the internal parameters, known as weights and biases, during
training. The main goal is to minimize a predefined metric called a “loss func-
tion,” which quantifies the discrepancy between the network’s predictions and
the actual target values [107].

One of the most popular learning rules is gradient descent [108]. Imagine
you are on a hill and aim to reach the bottom as quickly as possible but can only
see a limited distance around you. Gradient descent is similar to choosing to
walk in the direction where the hill slopes down the most. Mathematically, this
involves updating the weights and biases to minimize the loss function. Each
update is guided by the formula:

New Setting = Old Setting − (Learning Speed × Slope of the Hill) (6.6)

Here, “Learning Speed” is a hyperparameter that dictates the size of each step,
and the “Slope of the Hill” is computed as the gradient of the loss function [109].

Gradient descent is favored because it is straightforward and versatile, ca-
pable of optimizing a variety of complex, high-dimensional functions [110]. It
employs the gradient of the loss function to identify the most rapid descent
direction, making it computationally efficient.

Several variants of basic gradient descent have been developed to enhance
its efficacy. For instance:

• Stochastic gradient descent (SGD) employs smaller, more frequent updates
using a subset of the data, thereby accelerating, but somewhat randomiz-
ing, the optimization process [111].

• ‘Mini-batch gradient descent strikes a balance by using more data than
SGD but fewer than the classic full-batch method [106].

More advanced optimization algorithms like Adam, RMSProp, and AdaGrad
build on gradient descent by introducing adaptive learning rates and momentum,
making the optimization landscape easier to navigate [112–114].

Choosing the appropriate learning rule and its variant is crucial for efficient
and effective neural network training [106].
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6.4 Types of neural networks

Feedforward neural networks (FNNs) [107], convolutional neural networks (CNNs) [115],
recurrent neural networks (RNNs) [116], and Transformer networks [117] are
among the most commonly used architectures in the field of neural networks.
We tested several of them in Paper D for the task of identifying quantum ad-
vantage in random walks. Each network type has its own unique characteristics
and best-use cases. The key differences between these network architectures is
summarized in Table 6.1 [118, 119].

Type Best For Data Flow Special Features
FNN General-Purpose Feedforward None
CNN Image, Grid Data Feedforward Convolutional Layers
RNN Sequence Data Cyclic Hidden State

Transformer NLP Tasks Feedforward Self-Attention

Table 6.1: Comparison of neural-network types.
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7 Paper overview

This chapter aims to offer an exhaustive synthesis of the four cornerstone papers
that collectively undergird the intellectual scaffolding of our research. It merits
special attention that the papers appended herein are not solo endeavors but the
fruits of concerted collaborative efforts. The pluralistic insights and specialized
know-how contributed by multiple researchers have been instrumental in honing
the theoretical paradigms expounded across these works.

7.1 Paper A — Gaussian conversion pro-
tocols for cubic phase state generation

In Paper A, we tackle a significant challenge in the realm of universal quantum
computing with continuous variables: the creation of a cubic phase state (see
Chapter 3.3), a non-Gaussian resource essential for such computing. Despite
its theoretical importance, achieving a cubic phase state experimentally has
been difficult. To overcome this, the paper introduces two Gaussian conversion
protocols aimed at converting a trisqueezed state (see Chapter 3.2), which has
been realized experimentally, into the elusive cubic phase state.

The first protocol is deterministic and employs active (inline) squeezing.
After numerical optimization, we achieve fidelities of 0.971, which reach the
theoretical upper limit for deterministic Gaussian protocols.

The second approach, described in Chapter 4.2 of this thesis, is probabilistic,
leveraging an auxiliary squeezed state to eliminate the need for inline squeezing,
while still, after optimization, yielding high probabilities of success and even
greater fidelities. A fidelity as high as 0.997 can be achieved with a success
probability of 5%; the fidelity can be pushed above 0.999 if one is willing to
accept a success probability of around 1%.

These protocols, therefore, offer compelling evidence for the viability of using
trisqueezed states as practical resources for universal quantum computing.
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7.2 Paper B — Gaussian conversion proto-
col for heralded generation of general-
ized Gottesman– Kitaev–Preskill states

With Paper B, the thesis delves into the complex terrain of fault-tolerant quan-
tum computing, focusing on the use of continuous-variable systems and bosonic
codes for noise resilience. Bosonic codes, which map qubit-like quantum in-
formation onto a more expansive bosonic Hilbert space, come in two main
types: translational-symmetric codes like GKP (Gottesman–Kitaev–Preskill)
codes (see Chapter 3.5), and rotational-symmetric codes such as cat and bi-
nomial codes (see Chapter 3.4). The paper seeks to clarify the understood
relationship between these two families of codes.

We introduce an iterative protocol capable of converting between GKP states
and four-fold-symmetric binomial states, using only Gaussian operations. The
protocol is described in Chapter 4.3. This groundbreaking conversion not only
hints at the universal applicability of binomial states for all-Gaussian quantum
computation but also paves the way for a new, heralded preparation technique
for GKP states.

Numerical simulations reveal that GKP states (technically, generalized GKP
states called qunaught states, which do not store quantum information but can
be used to produce logical GKP states) with over 98% fidelity and a success
probability of around 3.14% can be obtained in just two steps of the iterative
process, although further iterations improve fidelity at the expense of success
probability. The fall-off in success probability with more iterations is sharp: a
slight increase in fidelity is only gained at the expense of orders of magnitude
lower success probability.

We also show that binomial states with other parameters (rotational sym-
metry N and truncation K; see Chapter 3.4) do not yield as high fidelities as
the states with N = 2 and K = 3 that we focused our study on.

7.3 Paper C— Gaussian protocol for multi-
mode states conversion

The study in Paper C expands the scope of research from the preceding two
papers by introducing additional conversion protocols and investigating possible
input and output states more systematically. The main contribution for this
paper in this thesis is the protocol discussed in Chapter 4.4, which facilitates the
generation of a two-photon state from separate one-photon states through the
use of only Gaussian operations, thereby eliminating the need for photon-number
detection, which is a non-Gaussian operation. It further demonstrates that wave
packets are precisely matched in both spatial (mode matching) and temporal
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WITH MACHINE LEARNING

dimensions for the generation of a two-photon state. With this protocol, we
are able to generate a two-photon state with 0.99999 fidelity with a success
probability exceeding 10%. We also explored using many other input states for
this protocol, but did not find such high fidelities for any other non-Gaussian
target states.

7.4 Paper D—Detecting quantum speedup
of random walks with machine learning

In Paper D, we investigate the potential of machine learning, particularly neural
networks (see Chapter 6), for detecting quantum speedup in random walks on
graphs (see Chapter 5). It evaluates the efficacy of three different neural-network
architectures — variations of fully connected and convolutional networks — in
identifying various types of graphs (linear, cyclic, and random) where quantum
speedups manifest in hitting times. Hitting time refers to the time it takes to
reach a specific target node after starting from another node in the graph.

In this study, we find that while carefully curating a good training-data set
can improve neural-network performance, all tested architectures face difficul-
ties in classifying large random graphs and generalizing their learning from one
graph size to another. We speculate that a possible reason for this somewhat
disappointing performance is that the neural networks can have trouble han-
dling the sparse input data that is the adjacency matrix of the graph. Despite
these limitations, the research suggests that if classification accuracy could be
improved, neural networks may provide valuable insights into quantum advan-
tage, not just in the context of random walks but also for broader applications
in quantum computing and quantum transport.

39



7. Paper overview

40



8 Summary and outlook

In summary, this thesis encapsulates an in-depth exploration at the nexus of
machine learning and quantum mechanics, featuring four papers that serve as
its bedrock. These papers collectively address the utilization of machine learn-
ing and other optimization methods for identifying and transforming quantum
resources across various applications.

The first three papers, A–C, dealt with conversion between resource states
for CV quantum computation. Chapters 2–4 gave the background for this field,
an overview of the resource states, and a description of the conversion protocols,
respectively. Paper D investigated how neural networks, discussed in Chapter 6,
perform on the task of classifying whether a quantum speed-up is possible com-
pared to a classical random walk on a graph, described in Chapter 5.

The findings presented in this thesis pave the way for several promising
avenues for future research:

• The observed challenge of low success rates in probabilistic Gaussian pro-
tocols, as highlighted in Papers A and B, opens up a fertile ground for
further optimization. Potential solutions could be facilitated through ad-
vanced machine-learning algorithms.

• The groundbreaking revelation in Paper B, where binomial states were
found to function as standalone quantum resources, raises intriguing ques-
tions about other states that could similarly serve this purpose.

• Paper C hints at the exciting possibility of generating complex multi-
photon states via Gaussian operations. This warrants a detailed follow-up
study to evaluate their potential utility in various quantum-computing
architectures.

• The progress demonstrated in Paper D, where machine learning was em-
ployed to identify quantum advantage in random walks, suggests that
further fine-tuning of neural networks could lead to more accurate predic-
tions. This represents a compelling frontier for subsequent research.

In summary, this thesis not only broadens our understanding of the synergis-
tic role machine learning can play in the discovery and optimization of quantum
resources, but also sets the stage for pioneering advancements in the rapidly
evolving field of quantum computing.
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