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Abstract
Autonomous vehicles (AVs) have the potential to improve both the efficiency
and the safety of road traffic. Vehicles that can plan their routes, anticipate
accidents and communicate open the door to transportation that is nearly
free of human error. However, in the transition toward fully autonomous
transportation systems, AVs must handle the dangers of human road users
(HRUs).

One of the challenges faced by AVs is to accurately interpret and predict
human behavior and decision-making. Due to the vast number of factors that
influence every single individual, precise, deterministic models of decision-
making between humans are practically infeasible. Moreover, while AVs may
exchange explicit, technical information about each other’s decisions, such
communication might be difficult between them and HRUs. As a result, HRUs
introduce an element of uncertainty in traffic scenes.

While many methods for estimating HRU decision-making are based on
data-driven machine-learning methods, model-based approaches that use data
for calibration are advantageous for simulation and prediction due to their
relatively low parameter complexity. However, such models need to describe
decision-making using stochastic abstractions that also capture the effect that
interaction between HRUs has on their decision-making process. In this thesis,
a framework based on Markovian opinion dynamics is suggested for modeling
human decision-making in traffic as a network of continuous-time Markov
chain agents that randomly switch between decisions. Interaction is expressed
as social forces that modulate the rates at which agents change their own
decisions depending on the decisions of others. The probability of intuitive
effects such as group-wise agreement and disagreement can be predicted based
on the modeled interaction within and between groups of agents.

The model can be used to anticipate how traffic scenario probabilities evolve
from an initial observation to a stationary prediction. This thesis suggests how
such a transition can be derived over the horizon of a predictive controller that
determines the acceleration of an AV based on the expected HRU decision-
making process.

Keywords: Autonomous vehicles, human road users, decision-making, opin-
ion dynamics, continuous-time Markov chains, model predictive control
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CHAPTER 1

Introduction

1.1 Motivation

From 2010 to 2019, the number of road deaths in traffic has been on the de-
cline. However, the eight percent reduction during this period is significantly
lower than the 50% goal set by the UN in 2010 [1]. While the decrease in
fatal accidents among human road users (HRUs) traveling in cars is relatively
sharp, the downward trend is less pronounced when it comes to pedestrians
and cyclists, and road deaths among HRUs on powered two-wheelers has in-
creased [1]. Traffic scenarios involving HRUs are thus still dangerous, and
finding how to navigate in them safely is one of the main challenges in the
development of autonomous vehicles (AVs).

The difficulty lies in predicting the behavior of HRUs despite the wide range
of factors that influence their actions and may lead to dangerous scenarios. For
instance, [2] lists distractions, misjudgements and fatigue as common causes
of human error among drivers. However, human drivers are but one class
of HRUs that may be present in a traffic scene. As highlighted by [3], it
is also important to anticipate the behavior of other types of HRUs, such
as pedestrians and cyclists, who are arguably even more unpredictable than
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Chapter 1 Introduction

drivers as they frequently disobey traffic rules.
A popular approach for identifying subtle traits that may cause accidents

in diverse HRU traffic is machine learning methods. These are data-driven
and can, often accurately, capture the effect of more complex behavioral as-
pects, such as the effects of interaction between HRUs [4]–[6]. However, [7]
lists high parameter complexity, changing environments, processing of big
data, accountability, and transparency as challenges for machine learning ap-
proaches. The alternative to machine learning is model-based methods, which
are preferred in simulation applications as their parameters are usually few
and physically meaningful. However, predicting HRU behavior from models
of their physical dynamics cannot always be motivated, as accuracy gains of-
ten come at the price of dramatically increasing the size and complexity of
the model [4]. The question is: Can complex, interactive HRU behavior be
captured in a simple and easily interpretable modeling framework?

Modeling decision-making in traffic
Instead of modeling the physical dynamics of HRUs, there are approaches
that focus on describing HRU decision-making and the effects of social inter-
action. In [8], pedestrian behavioral models are divided into three categories:
interaction-free, pedestrian interaction, and game-theoretic. Interaction-free
models cover obstacle avoidance and basic navigation, which can be affected
by factors such as age, gender, and social aspects. Models of pedestrian inter-
action range from describing microscopic interactions using social forces, to
macroscopic descriptions of crowd dynamics. Game-theoretic models describe
interactive and strategic decision making among HRUs in specific traffic sce-
nario applications, such as lane changing. For instance, game theory has been
used to model decision-making processes between AVs in intersections and on-
ramps in [9] and [10], respectively. Game theoretic approaches commonly use
agent-based descriptions of HRUs, which makes it possible to model decision-
making that follows rules based on social factors, such as in [11]. In [12], HRU
behavior is modeled using an agent based approach that is divided into three
layers. The first layer takes care of obstacle avoidance, the second layer covers
basic behavior using so-called social force models (SFMs), and the third layer
describes complex interaction using game theory. As shown in [11] and [13],
agent based methods can also be calibrated using data, which is important to
achieve accuracy.
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1.1 Motivation

Inspired by the game-theoretical multi-agent modeling approach to traffic
problems, this thesis focuses on how an entire traffic scenario involving differ-
ent classes of HRUs can be described as a decision-making process between
agents. Such a model should capture two important aspects of HRU behavior.
First, the model should describe the influence that interaction has on HRU
decision-making. Second, the decision-making process of each agent needs to
be represented by a stochastic abstraction in order to handle the vast number
of factors that determine their behavior.

Interaction

In a recent survey [14], various forms of pedestrian interaction are suggested
to have a significant effect on decision-making. When a pedestrian decides to
cross a street, studies have shown that drivers are more likely to yield if the
pedestrian is part of a larger group. Other social factors, such as how social
norms affect the interpretation of intentions, imitation between drivers and
pedestrians, and nonverbal communication are also important.

Interaction in behavioral models is sometimes expressed using social forces,
which usually describe how agents affect each other’s motion as a form of
magnetic potential. As in the three-layered model in [12], [15] and [16] de-
scribe basic interaction using SFMs, while decision-making between HRUs is
modeled using game-theory. However, SFMs can also represent more intricate
forms of interaction, such as in [17] and [18], where it is shown how the kine-
matic behavior of pedestrinas can be affected by both vehicle-to-pedestrian
and pedestrian-to-pedestrian interaction. Moreover, an attractive feature of
SFMs is that their interaction parameters can be tuned to data, as in the
model of driver interaction in shared spaces presented in [19]. Because they
are versatile, interpretable and learnable, SFMs are thus suitable for modeling
interaction between different HRUs.

Stochastic decision makers

Due to the many factors that influence HRU behavior, an enormous amount of
information would be required to represent HRUs as deterministic decision-
makers. Instead, complex HRU behavior can be represented by stochastic
abstractions. For example, [20] introduces stochastic terms into a microscopic
driver model, and [21] and uses a dynamic Bayesian network to describe and
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Chapter 1 Introduction

predict the intentions of HRUs. In [22], driver intentions near an intersection
are modeled by estimating the so-called time for action as Gaussian distributed
variables.

However, stochastic behavior can also be modeled as discrete event systems
using Markov chains. For example, [23] partitions the continuous state space
of a kinematic vehicle model into grids that serve as states in a discrete-time
Markov chain (DTMC), so that the probabilities with which HRUs transition
in the grid can be learned and simulated. While state transitions occur at
fixed time intervals in DTMCs, transitions in continuous-time Markov chains
(CTMCs) can take place at any point in continuous time, a property that is
suitable for modeling events that occur in traffic. In [24] and [25], for instance,
traffic scenes are described as CTMC queueing systems that can be used to
predict effects based on arrivals and departures of HRUs.

Markovian models are also popular for representing pedestrian intentions
and decision-making, such as in [26], where partially observable Markov de-
cision processes (POMDPs) are used for this purpose. Here, the probability
of pedestrian intentions change depending on which predefined goal they are
currently heading towards. Because HRU intentions cannot be measured di-
rectly, they are often modeled using Hidden Markov Models (HMMs), see for
example [27] and [28]. The benefit of HMMs is that they assume that an
underlying (hidden) Markov chain generates measurable signals that are ob-
served in continuous time. This implies that the parameters of a Markov chain
model of HRU decision-making in traffic can be learned from observations by
using it in an HMM structure.

1.2 Research questions
To investigate how interactive decision-making among HRUs can be modeled,
the following research questions are posed.

• RQ1 How can the effect of different interaction forms be captured in a
model of decision-making between uncertain HRUs?

• RQ2 How can large-scale traffic scenarios be modeled as decision-making
processes?

• RQ3 How can models of HRU decision-making be used in the control
of AVs?

6



1.3 Contributions

1.3 Contributions
This thesis proposes a framework for modeling decision-making between HRUs
as a multi-agent system of interactive Markovian agents who influence each
other through social force-like functions. Specifically, the following contribu-
tions are made.

• Three social force-like functions describing decision influence between
agents are presented in papers A and B. These functions modulate the
rates at which CTMC agents change their decisions, based on the de-
cisions of others. Attraction raises the probability of agreement within
agents subgroups, while two forms of repulsion increase the probability
of disagreement between agents from different groups.

• A network model describing the transitions between all possible agent
decision configurations is presented. However, this model does not scale
well with the number of agents and decisions. Therefore, papers A and
B show that a marginalized model of significantly lower dimension can
be derived also in the presence of the decision influence forces.

• In papers A and B, disagreement is modeled in two different ways, lead-
ing to different network models. However, two different models of the
same effect should, by intuition, be able to similarly describe a decision-
making process. A definition of similarity between models of decision-
making processes is therefore suggested in Paper B.

• A method for obtaining two similar decision repulsion models through
constrained optimization is formulated in Paper B.

• Lastly, Paper C shows how a model of HRU decision-making can be
used to predict the evolution of decision probabilities over the horizon
of a model predictive controller (MPC). The decision probabilities are
used by the MPC to shape the acceleration of an AV that approaches
an intersection that may be occupied by HRUs.

1.4 Thesis outline
This thesis is organized as follows. In Chapter 2, a unified walk-through of the
modeling framework, originally presented in Papers A and B, is presented. In

7



Chapter 1 Introduction

Chapter 3, a summary of how the three research questions in Section 1.2 are
answered in the included papers is provided. Chapter 4 summarizes the in-
cluded papers, and conclusions and suggestions for future work are formulated
in Chapter 5.
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CHAPTER 2

Modeling

In Chapter 1, stochastic representations of how HRUs make decisions in traffic
were suggested, as exact deterministic models that capture the vastly varying
HRU behavior are unrealistic. At the same time, HRU interaction plays a key
role in determining the probability of every possible HRU decision. To capture
both the stochastic and the interactive aspects of decision-making in traffic,
the model suggested in this thesis is based on Markovian opinion dynamics.

2.1 Markovian opinion dynamics
Classic opinion dynamics describe how agents influence each other to change
opinion [29], [30]. The basic DeGrootian model [31] is, however, a deter-
ministic linear system in which the opinion of the agents at the next time
instance is a weighted average of the opinions that neighboring agents have
currently. The Friedkin-Johnsen model [32] extends the DeGrootian model by
considering stubborn agents, and [33] describes agents that, while changing
their opinions randomly, are influenced by the opinions of their neighbors if
they are within a confidence interval of their own opinion. Some models de-
scribe different forms of interaction, such as antagonism [34], [35] and mixed
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antagonistic and friendly relationships [36].
Different from the classic, deterministic opinion dynamic models, the ap-

proach which is presented in [37]–[40] and based on [41]–[43] describes opinion
dynamics in which agents change their opinions stochastically. Specifically,
each agent changes its opinion in continuous time as a CTMC over a set of
possible opinions. At the same time, the rate of opinion change depends on
the current opinions of their neighbors, describing the interaction. Based on
this modeling principle, this thesis discusses how traffic scenes involving HRUs
can be modeled as decision-making processes between CTMC agents that in-
teract through agreement and disagreement, described as SFMs adapted for
the Markovian opinion dynamic setting.

A suitable starting point when summarising the model developed in papers
A and B is to describe how agents make decisions in isolation.

2.2 Isolated agent model
In its nominal form, the model of a decision-making agent is a CTMC descrip-
tion of its transitions between decisions in isolation, assuming that it does not
interact with other agents.

Decision states and transitions
An agent α can choose between M decisions in the set

S = {s1, s2, . . . sM }. (2.1)

A change of decision is modeled as a transition between the elements in S. In
a CTMC, a transition si → sj can occur at any point in continuous time and
is assumed to be an event that occurs in zero time. In Fig. 2.1, a CTMC de-
scription of an agent αn is shown with arrows representing transitions between

s1 s2

qn
12

qn
21

αn:

Figure 2.1: Decision-making agent αn as a CTMC.
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2.2 Isolated agent model

two possible decision states, s1 and s2.

State holding time

The time until α transitions from a decision state si is called the state holding
time and is denoted Vi. As described in [44], this is an exponentially dis-
tributed random variable, so that the probability that αn stays in si for a
time interval of at most length τ is

P [Vi ≤ τ ] = 1 − eΛiτ , (2.2)

where P denotes probability and Λi is the distribution parameter. It follows
that the expected decision state holding time is

E[Vi] = − 1
Λi
. (2.3)

Transition rates

The state holding time parameter Λi is connected to the instantaneous rates
qij at which transitions from the decision state si to any other state sj occur.
Specifically, Λi is equal to the sum of the rates of all possible transitions out of
si. All transition rates are collected in the transition rate matrix Q ∈ RM×M ,
defined as

Q[i, j] =
{
qij ≥ 0 if i ̸= j,
qii = −

∑M
j=1 Q[i, j] otherwise.

(2.4)

Hence, α’s isolated behavior in terms of decision-making is determined by the
transition rates in Q.

Time-homogeneity

A CTMC with transition rates that are independent of time is called time-
homogeneous, which is the case for isolated agents. This is also the case for
the agent αn seen in Fig. 2.1 which has two transitions, s1 → s2 and s2 → s1,
that both have constant transition rates denoted qn

12 and qn
21.

11
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0 1 2 3

s1

s2
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S
(t

)
Figure 2.2: State changes in continuous time.

2.3 Properties of the isolated agent model
In the following, three important aspects of the isolated agent model are dis-
cussed, beginning with the Markov property.

The Markov property
A CTMC is a class of Markov processes and thus maintains the Markov prop-
erty. As an example, consider the plot in Fig. 2.2 which shows how the CTMC
αn from Fig. 2.1 may transition between its decision states. The state of the
process at time t, denoted S(t), is a random variable that can be observed in
one of the two states, s1 and s2. Starting in t = 0 with S(0) = s1, a transition
to s2 occurs at t = 1.2. Finally, a transition back to s1 is made at t = 2.3.
This process is Markovian if the probability of observing S(t) assuming a spe-
cific state in the future is conditioned only on the latest observation, which
summarizes the entire history of the previous states. Formally, the Markov
property can be written as

P
[
S(tk+1) = xk+1|S(tk) = xk, S(tk−1) = xk−1, . . . S(t0) = x0

]
= P

[
S(tk+1) = xk+1|S(tk) = xk

]
,

(2.5)

where xi denotes a specific state that S(t) assumes at a point in time ti.

State probabilities
Thanks to the Markov property, the probability of observing a CTMC agent
in each of its states can be determined from the transition rate matrix (2.4)
and an initial condition. Specifically, the M × 1 vector of all decision state
probabilities, denoted Π(t), is found by solving the first-order differential equa-

12



2.4 Group-wise agent interaction

tion
Π̇(t) = QT Π(t) (2.6)

from the initial state probabilities Π(0). Here, Π̇(t) denotes the first time
derivative of Π(t). The decision state probability is Π(t) thus a probability
distribution that evolves with time and has positive real elements that sum
to one for any t.

Ergodicity
An important property for the CTMC models used in this work is ergodicity.
An ergodic CTMC can visit all of its states with a nonzero probability and is
guaranteed to converge to a stationary, unique state probability distribution
independent of the initial probability Π(0) [38]. Formally,

lim
t→∞

Π(t) = Π̄, (2.7)

where Π̄ denotes the stationary state probability distribution.

2.4 Group-wise agent interaction
In decision-making processes, such as political campaigns [40], the social na-
ture of the decision-makers can lead them to organize in groups characterized
by internal agreement. Conversely, agents from different groups tend to dis-
agree. To this end, papers A and B explore how these effects can be emulated
through models of group-wise interaction between HRUs in traffic. First, how-
ever, the concept of groups and the topology of agreement and disagreement

Figure 2.3: Three groups of agents with binary decision sets.

13
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is formally defined.

Agent groups
In a set N of N agents, groups are defined as subsets A ⊆ N , intuitively
visualized in Fig. 2.3. These sets are disjoint, meaning that agents are part of
exactly one group. Paper A considers two primary types of group-wise agent
interaction.

Internal agreement

The feature that defines each group is that its members are drawn towards
making the same decisions as one another. Because each agent is part of only
one group, a single graph

GA =
(
N , EA,ΛA

)
, (2.8)

over N can describe the topology of all internal interaction between agents
in each group simultaneously. A denotes “attraction”, and EA represents the
edges that divide agents into groups. Within each group, agents can have
varying levels of influence on each other, and ΛA is introduced as an N × N

row normalized adjacency matrix of weights describing the influence strength
between separate agents within every group.

External disagreement

Contrary to internal agreement, agents disagree with those from opposing
groups. Agents in one or more groups Rℓ from the set of opposing groups R
may induce a subject group A into making decisions that are different from
theirs. Moreover, agent groups can both induce other groups (thus assuming
the role of Rℓ) and be induced by other groups (assuming that of A) at the
same time.

The topology of the repulsion that a group Rℓ exerts on A and can be
described by a graph

GA
Rℓ

=
(
N , EA

Rℓ
,ΓA

Rℓ

)
, (2.9)

where EA
Rℓ

represents the edges defining the repulsion between agents from
different groups. The influence strength of the repulsion between each pair of

14
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conflicting groups is described by the row normalized N×N adjacency matrix
ΓA

Rℓ
.

2.5 Transition rate modulation
While the transition rates of the isolated agent model can be chosen offline
to describe a desired behavior, they are constant and do not describe the
agent’s response to the observed decisions of other agents. To achieve this,
transition rates that are dependent on the states of other agents, and therefore
on time, are introduced. This principle is called transition rate modulation
[37], [38], and is in papers A, B and C used to model group-wise agreement
and disagreement as social force-like functions.

Agreement as an attraction force
Introduced in Paper A, the attraction force induces agreement within a group
A. The force is an additive increase

ψn
j (t) = λ(n,A)

∑
αk∈A

ΛA[n, k]1k
j (t) (2.10)

of the n:th agent αn’s transition rate toward a decision state sj depending on
which agents αk from A are in sj at time t. The indicator function 1k

j (t) is
one if αk has decided sj at time t and zero otherwise. Hence, the summation
over k gives the weighted fraction of agents in A who are in sj at each time
instance. Finally, λ(n,A) determines the strength of the attraction towards
the decision sj . By default, this parameter is assumed to be dependent on
passive traits, such as agent index n or its group membership A. However,
it can in special cases be state-dependent, which implies that it changes with
the time-dependent indicator function.

Disagreement as a repulsion force
Opposite to attraction, the repulsion force models disagreement between agents
in different groups. While an indirect form of repulsion is introduced in Paper
A, Paper B also presents the alternative direct form.

15



Chapter 2 Modeling

Direct form

For an agent αn, the direct repulsion force reduces the transition rates towards
the decision sj depending on the agents αl in the conflicting groups Rℓ who
are also in sj at time t. The reduction is formally expressed as

−ξn
j (t) = γ(n,A,Rℓ)

∑
αl∈Rℓ

ΓA
Rℓ

[n, l]1l
j(t). (2.11)

As λ(n,A) does for attraction, γ(n,A,Rℓ) sets the repulsion strength, and is
also assumed by default to be a function of the same passive traits n and A.
Additionally, as members from A can be repulsed by several groups Rℓ, γ can
be dependent on this group as well. Also like λ, γ can be state-dependent in
special cases.

As the direct repulsion form is a decrease in transition rates, it needs to be
limited to avoid negative rates in the CTMC. As a result, a transition rate
can only be reduced to a degree set by the nominal transition rate, which may
have a limited effect. However, repulsion can also be expressed in an indirect
form, which eliminates this restriction.

Indirect form

Instead of reducing transition rates toward decisions that are popular among
other groups, Paper A presents the indirect repulsion force, which induces
disagreement by increasing rates toward decisions that are unpopular among
agents from other groups. For the agent αn, the transition rate increase toward
sj is

+ξn
j (t) = γ

∑
αl∈Rℓ

ΓA
Rℓ

[n, l]
(
1 − 1l

j(t)
)
, (2.12)

where the negated indicator function 1−1l
j(t) is used to denote when αl ∈ Rℓ

has decided sj .

2.6 Agent networks
When agents change their transition rates over time due to observations of
the decisions of their neighbors, their CTMC representations are no longer
time-homogeneous. However, by defining the decision process as a network
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of CTMCs, a time-homogeneous CTMC representation of the entire network
can be obtained.

Nominal network CTMC

The nominal single-agent CTMC is a description of agent behavior in isolation.
Similarly, the nominal network model is a single-CTMC description of several
isolated agents that are observed simultaneously.

State-space

A state SX(t) in a network formulation X is a random variable that can assume
values denoted as the tuple

sX = ⟨s1, s2, . . . sN ⟩ (2.13)

collecting the states of all N agents in the set N . The state space of the entire
network is the cartesian product of the sets of each agent

SX = S1 × · · · × Sn × . . .SN . (2.14)

Here, each state set Sn is the decision set S that is shared among all agents,
but it is indexed to distinguish between the individual agents in a network
state in (2.14). As S contains M decisions, the network has MN decision
states.

Transitions

Because each single agent is a CTMC, the probability that two agents tran-
sition at the same point in continuous time is zero. Hence, every possible
transition between two network states is defined by the transition of a single
agent, in the context of an otherwise static network. This makes it possible
to define the network X as a continuous-time Markov chain over SX. Further-
more, since every single agent is ergodic, the network CTMC is ergodic, too
[38].
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Isolation

Following the standard definition of a CTMC in 2.2, the probabilities of each
possible network decision configuration in X are collected in the MN ×1 vector
ΠX(t) and are found by solving the first-order differential equation

Π̇X(t) = QT ΠX(t) (2.15)

from the initial condition ΠX(0). Since the network is a CTMC, its MN ×MN

transition rate matrix Q in (2.15) follows the definition (2.4), albeit for the
network state space, and can be constructed from the isolated transition rate
matrices Qn of each agent αn as

Q =
N∑

n=1
IMn−1 ⊗Qn ⊗ IMN−n . (2.16)

Here, IMn−1 and IMN−n denote identity matrices of dimension Mn−1 and
Mn−1, respectively, while ⊗ represents the Kronecker product.

Interaction

For every possible network transition sXi → sXj , the state of all agents is
known. Hence, the indicator functions in each of the forces (2.10), (2.11) and
(2.12) can be evaluated deterministically. This implies that each force can be
represented as a constant, additional transition rate matrix in the network
model.

Attraction

The network form of the attraction force is represented in Paper A as a con-
stant, real-valued transition rate matrix

A[i, j] =
{
ψn

b

(
t|sXi , sXj

)
if i ̸= j

−
∑

j ̸=i A[i, j] otherwise.
(2.17)

Each network transition sXi → sXj is defined by the state transition sa → sb of
some agent αn, for which the attraction force ψ defined in (2.10) is evaluated.
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Direct repulsion

Similar to the attraction case, a network transition rate matrix for the direct
repulsion force is derived in Paper B as

R−[i, j] =
{

− −ξn
j

(
t|sXi , sXj

)
if i ̸= j

−
∑

j ̸=i R
−[i, j] otherwise.

(2.18)

Notably, this matrix represents transition rate reductions resulting from the
direct repulsion force −ξ defined in (2.11) and thus follows the definition of a
negated CTMC transition rate matrix.

Indirect repulsion

Lastly, Paper A defines the network transition rate matrix for the indirect
repulsion form as

R+[i, j] =
{

+ξn
j

(
t|sXi , sXj

)
if i ̸= j

−
∑

j ̸=i R
+[i, j] otherwise,

(2.19)

where +ξ is the indirect repulsion force defined in (2.12). Opposite to the
direct repulsion, this matrix follows the definition of a standard CTMC tran-
sition rate matrix.

Interactive network CTMC
To describe interaction in the network, the isolated network model (2.15)
is extended by adding one or several network transition rate matrix force
representations A, R+ or R− to Q. The state probabilities of the interactive
network decision process I are found by solving

Π̇I(t) = (Q+ I)T ΠI(t) (2.20)

from an initial probability vector ΠI(0). As an example, interaction in the
form of attraction and indirect repulsion is expressed by setting the matrix
I = A+R+.

Remark: In the case of direct repulsion, the transition rates of each net-
work transition are reduced. To ensure a network formulation (2.20) with
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positive transition rates, rate reductions must be upper-limited by the tran-
sition rates in Q. The effects that this has on the behavior of the network are
investigated in Paper B.

2.7 Similarity
When two interaction forces describe the same effect, such as when direct and
indirect repulsion are two ways of modeling disagreement, intuition says that
both models should describe similar decision processes. It is assumed that
strict equivalence between the transient solutions of two CTMC models of the
same dimension, but with different rate matrices, is not necessarily possible.
Therefore, similarity is introduced in Paper B as two conditions for when two
CTMC models Xa and Xb are close to describing the same decision-making
process in practice.

1. The difference between Xa’s and Xb’s decision state holding times (2.2)
should be minimized according to some objective function.

2. Xa and Xb should reach identical stationary decision probabilities.

These conditions can be used to formulate a constrained optimization prob-
lem that, if solved, finds the transition rates of an unknown model, such that it
is similar to a given model. In Paper B, a form of direct repulsion is found so
that it is similar to a given indirect repulsion formulation, and the procedure
is summarized next.

Minimal difference in decision state holding time
In the following, it is assumed that two networks D and I are defined with
direct and indirect repulsion, respectively, but have the same isolated behav-
ior specified by the network transition rate matrix Q. The rate matrix R+

representing the indirect repulsion in I is given, and the objective is to find
a network transition rate matrix R− for D such that D and I become similar
according to the two criteria in Section 2.7.

As the expected value of the state holding time (2.3) is the inverse of the
distribution parameter, the rate increase from R+[i, i] decreases I’s state hold-
ing time. Conversely, R−[i, i] can only reduce transition rates in D, increasing
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the state holding time. Hence, to produce a D similar to I, the diagonal ele-
ments of R−[i, i] should be minimized. To achieve this, a quadratic objective
function

f(r,H) = rTATHAr, (2.21)

where r is a vector of unknown decision variables containing the off-diagonal,
nonzero elements of R−, is chosen in Paper B. A is a matrix that collects
the diagonal elements of each row of R− in terms of the corresponding off-
diagonal elements, and H is a diagonal matrix that can be used for weighting
the minimization.

Identical stationary decision probabilities

When the stationary network decision probabilities Π̄ of D and I are equal,
(2.20) can be used to formulate (R−)T Π̄ = −(R+)T Π̄. The left-hand side of
this expression can be reformulated as a function of r and a matrix MΠ̄ of
elements in Π̄, resulting in

MΠ̄r = (R+)T Π̄, (2.22a)
0 <r < q. (2.22b)

With the vector q containing the off-diagonals of Q taken by the same in-
dexing method as r, the inequality constraint ensures that R− has positive
off-diagonals that do not exceed those of Q.

Minimizing the objective function 2.21 under the constraints in 2.22 defines
a constrained optimization problem

minimize
r

f(r,H) (2.23a)

subject to MΠ̄r = −(R+)T Π̄, (2.23b)
0 < r < q, (2.23c)

for obtaining a network D similar to I. This method is one of the main
contributions of Paper B. While it is described for direct and indirect repulsion
here, it could be generalized for any two forms of network transition rate
modulation by modifying (2.23b) and (2.23c) depending on the structure of
the modulation.
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2.8 Marginalization
The CTMC description of a decision-making process in a network of N agents
with M decisions has MN states representing the probability of every decision
configuration in the network. Hence, this model does not scale well with the
number of agents and the number of decision states that they can assume.
Moreover, the resolution of this model is unnecessarily high in cases when
only the decision probabilities of each agent are of interest.

In general, finding the probability distribution of a single variable from a
joint distribution is called marginalization and can be done by summation
over the joint distribution. For example, the decision probabilities of the
individual agents can always be obtained by summation over the network’s
decision-state probabilities. However, this still requires deriving and operating
on the network CTMC. Fortunately, linear models describing the concatenated
individual decision state probabilities of each agent in the network can be
derived analytically, even in the presence of the three different force functions
introduced in papers A and B.

Marginalized model
The marginalized decision probability state space

ΠM(t) =
[
Π1(t) Π2(t) . . . ΠN (t)

]
(2.24)

consists of the concatenated state probability vectors Πn(t) of each agent αn.
Similar to the network CTMC descriptions, the marginalized model describes
the first time derivative of the probabilities, denoted Π̇M(t), as a linear system.
Due to ergodicity of the individual agents, this system also converges to a
stationary solution [37]. Next follows a description of how marginalized linear
models can be derived for networks of agents that interact through the forces
defined in Section 2.5.

Derivation from the infinitesimal definition

In papers A and B, the marginalized model is as in [37] derived from the
infinitesimal definition of the transition probabilities in a CTMC. The prob-
ability that the agent αn is in state si at some time t can be described as
the expected value of an indicator function, such that πn

i (t) = E[In
i (t)]. The
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infinitesimal definition of a CTMC then states that the probability that the
agent transitions to sj after an infinitesimally small time interval δt, given the
state of the agent network SX(t) at time t is

E
[
In

j (t+ δt)|SX(t)
]

=
(
E

[
In

j (t)
]

·
(
1 − Qout

)
+

+E
[(

1 − In
j (t)

)]
· Qin

)
δt.

(2.25)

Here, Qin symbolizes the n:th agent’s total rates into sj from other states
si ̸= sj . Conversely, Qout represents the total rates out of sj to other states
si ̸= sj . Dividing this expression by δt and subtracting E

[
In

j (t + δt)
]

from
both sides of the equality yields

E
[
In

j (t+δt)|SX(t)
]
−E

[
In

j (t)
]

δt
=E

[
− In

j (t) · Qout+
(
1−Ir

j (t)
)

· Qin
]
. (2.26)

Letting δt approach zero in this expression yields the definition of π̇n
j (t) on

the left-hand side, which is the probability rate of the n:th agents transition
into state sj .

The previous expression corresponds to one row of the marginalized model,
which is the time derivative of the entire vector (2.24). Deriving the marginal-
ized model consists of evaluating (2.26) for all agents and states for both the
isolated rates and the rates originating from the interaction forces.

Isolation

From the definition (2.6), the probability rate of αn’s transition towards sj is

π̇n
j (t) =

M∑
i=1

Qn[i, j]πn
i (t). (2.27)

Hence, the marginalized form of the entire isolated network model, which
defines the nominal marginalized model, is

Π̇M(t) = QT
MΠM(t), (2.28)

where
QM = blkdiag

(
Q1, Q2, . . . QN

)
, (2.29)
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a block diagonal matrix consisting of the transition rate matrices of each agent.

Attraction force

In Paper A, the tuning parameter λ determines the magnitude with which the
attraction force (2.10) acts on αn, and is assumed to be dependent on αn’s
group A, but independent on the state that αn is in. The row corresponding
to the n:th agent and the j:th state in the marginalized attraction force model
can be found by developing the total in-and outgoing attractive forces in the
right-hand side of (2.26), which yields

π̇n
j (t) = λ(n,A)

( ∑
αk∈A

ΛA[n, k]πk
j (t) − πn

j (t)
)
. (2.30)

In vector form, the contribution that 2.30 makes to Π̇M(t) is expressed as
a product between a MN × MN matrix AM constructed from 2.30 and the
concatenated decision probabilities ΠM(t).

Indirect repulsion force

The parameter for determining the influence strength of the indirect repulsion
force, denoted γ in (2.12), is assumed to be state-independent but can depend
on the agent index n and the conflict pair

(
A,Rℓ

)
. In this case, evaluation of

the right-hand side of (2.26) leads to

π̇n
j (t) =

∑
Rℓ∈R

γ(n,A,Rℓ)
(

1 + (M − 1)πn
j (t) −

∑
αl∈Rℓ

ΓA
Rℓ

[r, l]πl
j(t)

)
. (2.31)

Because the indirect repulsion is a function of a negated transition rate func-
tion 1− I l

j(t), a constant term appears in each row of the marginalized model.
Hence, the vector form of (2.31) contributing to Π̇M(t) consists of a product
between a MN ×MN matrix R+

M and ΠM(t), and the addition of a constant
vector EM.

Direct repulsion force

Finally, with the same assumptions regarding state independent tuning pa-
rameters as in the indirect case, Paper B shows that the right-hand side of
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(2.26) can be evaluated also with direct repulsion to find

π̇n
j (t) =

∑
Rℓ∈R

γ(n,A,Rℓ)
(
πn

j (t) −
∑

αl∈Rℓ

ΓA
Rℓ

[n, l]πl
j(t)

)
. (2.32)

The contribution from the direct repulsion to all rows of the marginalized
model Π̇M(t) can be expressed using ΠM(t) and a MN ×MN matrix R−

M.

Marginalizable network formulations
A necessary condition for marginalization is state-independent parameters. If
this is fulfilled, the strength of the influence exerted on an agent toward each
decision is determined only by the configuration in which other agents are in
agreement or disagreement with the transitioning agent’s decision. Hence, the
same configuration can be constructed for every possible transition that the
agent can make, resulting in identical network transition rates. Therefore, one
way of judging if a network is marginalizable is to determine if its transition
rate matrices fulfill the necessary equality conditions.

2.9 Simultaneous similarity and marginalizability
The central question in Paper B is whether or not similarity between two
marginalizable models can be achieved. In other words, does the linear prob-
lem formed by similarity have a solution under the additional equality con-
straints from marginalizability? However, the number of unknowns in the
problem is dependent on the interaction topology, and this makes it difficult
to formulate general conditions that hold for all possible network formulations.
Instead, Paper B presents a counterexample showing that the two properties
do not hold at the same time in general. In the following, the main results of
the counterexample are summarized.

Counterexample
For a minimally sized binary decision-making process between agents a and
b, two networks I and D are formulated with indirect and direct repulsion,
respectively. The CTMCs representing I and D are presented in Fig. 2.4.
These networks are assumed to have identical isolated behavior, described by
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Figure 2.4: Agents a and b and network models formulated between them using
indirect and direct repulsion, respectively.

the known rate matrix Q. Moreover, the transition rates ra/b+
ij representing

the indirect repulsion in I are assumed to be known. The task is to choose the
four unknown network transition rates ra/b−

ij representing the direct repulsion
in D so that D and I are similar. In Paper B, this problem is studied under
the additional constraints of marginalizability.

No network is marginalizable

For D to be similar to I without necessarily being marginalizable, the con-
straints

0 < rb−
21 = π̄1 r

b+
12 − π̄4 r

b+
21 + π̄3 x

π̄2
< qb

21, (2.33a)

0 < ra−
12 = π̄4 r

a+
21 + π̄4 r

b+
21 − π̄3 x

π̄2
< qa

12, (2.33b)

0 < ra−
21 = π̄1 r

a+
12 + π̄4 r

b+
21 − π̄3 x

π̄3
< qa

21, (2.33c)

0 < rb−
12 = x < qb

12 (2.33d)

need to hold for some shared stationary network decision state probabilities
π̄i where i = 1, . . . 4. This is possible since the rate x, can be chosen freely on
an interval.
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D is marginalizable

If D is marginalizable, its state-independent force parameters imply ra−
21 = ra−

12
and rb−

21 = rb−
12 , reducing (2.33) to

0 < rb−
21 = π̄1 r

b+
12

π̄2
+ π̄4 r

a+
21

π̄2
+ π̄1 r

a+
12

π̄2−π̄3
− π̄4 r

a+
21

π̄2 − π̄3
, (2.34a)

0 < ra−
21 = π̄4 r

a+
21

π̄2 − π̄3
− π̄1 r

a+
12

π̄2 − π̄3
, (2.34b)

0 = π̄1 r
a+
12

π̄3
− π̄1 r

b+
12

π̄2
− π̄4 r

a+
21

π̄2
+ π̄4 r

b+
21

π̄3
. (2.34c)

The existence of a solution is now determined only by I and Π̄ according to
(2.34c). Hence, similarity to I cannot be guaranteed by designing D, if D is
marginalizable.

D and I are marginalizable

Lastly, also enforcing marginalizability of I implies introducing the constraints
ra+

12 = ra+
21 and rb+

12 = rb+
21 in (2.34). With this addition, no valid stationary

probability vector or indirect repulsion rates can be chosen to avoid contra-
dictions in (2.34). Hence, this counterexample shows that similarity between
two marginalizable networks is not always possible.
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CHAPTER 3

Decision-making in traffic

Using the modeling framework from Chapter 2, this chapter addresses the
three research questions formulated in Section 1.2. First, agreement and dis-
agreement in a decision-making process among individual HRUs approaching
an intersection is modeled using two different forms of interaction: attraction
and indirect repulsion. After this, a busy intersection is modeled as a macro-
scopic decision-making process between parts of the intersection. Using this
approach, a controller that uses the predicted development of HRU behavior
in the intersection to determine the acceleration of an AV is designed.

3.1 Predicting decisions of individual interacting
HRUs

The first research question asks how the effect of different interaction forms
can be expressed in models of decision-making among uncertain HRUs. In
Paper A, this is examined in an intersection scenario.
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α3 α4 α5

α2α1

α7

α6

North

West East

Figure 3.1: Intersection with cyclists α1, α2, α6 and α7 and drivers α3, α4 and α5.

Problem formulation
Paper A considers three narrow roads heading North, East, and West that
meet in an unsignaled intersection depicted in Fig. 3.1. In total, seven dif-
ferent HRUs are approaching the center. To be safe, it is assumed that they
cannot all pass the intersection at the same time. The objective is to predict
the probability that each HRU decides to go through the intersection, or yield
for the others.

Modeling assumptions

In this scenario, the number of HRUs is assumed to be fixed, and their isolated
behavior is known beforehand. Additionally, the time interval between ap-
proaching and leaving the intersection is long enough for any decision-making
process to converge to a stationary solution.

Model
The scenario is modeled as a decision-making process between HRUs who
decide to either yield or go through the intersection.

Agents

Specifically, Fig. 3.1 shows two cyclists α1, α2 arriving from the West, and
two cyclists α6 and α7 approaching from the North. Drivers α3, α4 and α5
come from the East. With a finite number of road users, each of them can be
described as a separate CTMC decision-making agent. The set of all agents
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3.1 Predicting decisions of individual interacting HRUs

s1 s2

qn
12

qn
21

αn:

Figure 3.2: CTMC model of a road user αn with transition rate matrix Qn.

in the scenario is thus

N = {α1, α2, α3, α4, α5, α6, α7}. (3.1)

Decision states

The two interesting decisions in the problem are represented as the states
s1 = yield and s2 = go, collected in the set

S = {s1, s2}. (3.2)

Transitions

In isolation, each agent αn’s preferences toward either decision are determined
by transition rates qn

ij in the 2×2 transition rate matrixQn. Realistically, most
HRUs approaching an empty intersection lean toward go but could sometimes
decide yield as a safety precaution, albeit at a lower frequency. The CTMC
structure describing each agent is shown in Fig. 3.2.

Groups

Decision-making between cyclists and drivers may not be the same as decision-
making between drivers only, especially if they arrive from different directions.
Hence, the HRUs are divided into three groups, formulated as disjoint subsets
of N , depending on their type of vehicle and direction of origin. The groups

C1 = {α1, α2}, (3.3)
C2 = {α6, α7}, (3.4)
D = {α3, α4, α5}, (3.5)

represent cyclists from the west and the north, and drivers from the east,
respectively.
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α3 α4 α5
α2α1

α7

α6

North

West East

C1

C2

D

Figure 3.3: Interaction topology for the attraction force within each group (solid)
and indirect repulsion between members of different groups (dashed).

Interaction forces

Within each group, agents are assumed to agree on decisions. This is modeled
as attraction forces, summarized in Section 2.5, between the agents. Agent-
to-agent influence strength is equal between agents within each group, and
tuning parameters are state-independent.

Between groups, agents are assumed to disagree, which is modeled as indi-
rect repulsion forces. Cyclists in C1 and C2 exert decision repulsion on drivers
in D, but not on each other, and drivers are more susceptible to change
compared to cyclists. As in the attraction force, all tuning parameters are
state-independent. The topology of the different interaction forces in the in-
tersection scenario is shown in Fig. 3.3.

Network models and marginalization

In Paper A, the effect of different forms of interaction in the intersection
problem is investigated. Three alternative MN = 128 state network CTMC
models of the decision-making process are formulated.

1. X is the nominal isolated network, defined by a rate matrix Q con-
structed using (2.16).

2. A adds attraction forces to the nominal behavior of X. Its transition
matrix is Q+A, where A is obtained through (2.17).
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3.1 Predicting decisions of individual interacting HRUs

3. S extends A with indirect repulsion. Its total network transition rate
matrix is Q+A+R+ where R+ is obtained through (2.19).

Due to the large scale of the network models, marginalized models with
MN = 14 states describing the individual agent decision probabilities are
derived for each network. Specifically, QM describes the isolated behavior
according to (2.29), attraction is represented by the matrix AM found by
formulating (2.30) for every agent and state, and repulsion is described by
R+

M and EM obtained through (2.31). For the three networks, the decision
probabilities of each road user are given by solving

Π̇I
M(t) = QT

MΠI
M(t), (3.6)

Π̇A
M(t) =

(
QM +AM

)T ΠA
M(t), and (3.7)

Π̇S
M(t) =

(
QM +AM +RM

)T ΠS
M(t) + EM, (3.8)

respectively. Each model is simulated numerically, and while details can be
found in Paper A, the main results are summarized next.

Results
As a baseline, Fig. 3.4 shows each road user’s decision probability in isolation
according to I. For every road user, the left- and right-hand bars represent the
stationary probability to yield and go in red and green, respectively. For com-
parison, arbitrary initial decision probabilities are shown as grey bars. Most
agents increase their probability to go, which is solely due to their isolated
rate matrices.

Figure 3.4: Network I, isolated behavior.
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Figure 3.5: Network A, isolated behavior with added attraction.

Figure 3.6: Network S, isolated behavior with added attraction and repulsion.

Compared to this isolated case I in Fig. 3.4, a slight change in the stationary
decision probabilities of A can be observed in Fig. 3.5. Agents α1 and α6
increase their probabilities toward go, the preferred decision of their respective
group members, α2 and α7, whose decision probabilities remain unchanged.
This effect is obtained by the high intensity of the attraction force exerted
on α1 and α6. The force intensity is also high in D, and a slight decrease
in the probability to go can be observed for α3 and α5. However, a more
prominent increase to go is seen in α4. This result shows that attraction
can be used to emulate different levels of an agreement effect between certain
decision-makers.

Decision probabilities according to S are shown in Fig. 3.6. With the inclu-
sion of indirect repulsion, HRUs in D converge to the same high probability
to yield, whereas the probability distributions for those in C1 and C2 remain
unchanged. This disagreement effect is achieved by making D highly reactive
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3.2 Modeling large-scale traffic scenarios as decision-making processes

to decisions made by C1 and C2, but not vice versa.
The results from Paper A summarized here answer the first research ques-

tion posed in Section 1.2. In a Markovian opinion dynamic model of a decision-
making process between HRUs, interaction can be modeled as social forces to
emulate effects such as agreement and disagreement between agents. However,
while marginalized models can be derived to describe traffic scenarios with
increasing numbers of HRUs as decision-making processes, there are traffic
scenarios in which individual HRUs cannot be modeled as separate decision-
making agents. Such a case is covered in the next section.

3.2 Modeling large-scale traffic scenarios as
decision-making processes

Consider the intersection depicted in Fig. 3.7. Compared to the intersection
example in Section 3.1, the vast and varying number of HRUs in the scene
makes it impossible to model the scene as a decision-making process between
individual HRUs. The second research question in Section 1.2 addresses how
decision-making processes in such large-scale traffic scenarios can be mod-
eled. In Paper C, a method for doing so is suggested, and the approach is
summarized in the following.

Z

North

East

South

Figure 3.7: Road users from three directions North, East and South in a four-way
intersection, and a shared zone Z in the center.
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Problem formulation
In the scenario shown in Fig. 3.7, HRUs continuously enter and exit an
intersection in three different directions, North, East, and South. As they
pass, they must all access the shared zone Z, and the task is to predict the
probability that the zone is occupied. However, modeling this scenario as a
decision-making process among individual road is difficult for two reasons.

• At any moment, the scale of any network model becomes too great due
to the number of road users.

• The frequency at which changes in decisions can be observed is lower
than the duration in which road users stay in the intersection.

Modeling assumptions

The exact number of HRUs in the traffic scene is assumed to be unknown,
but varying and high on average. Similar to the scenario in Section 3.1, it is
assumed that HRUs have to consider the actions of others as they pass the
shared zone and that the process can be observed until it becomes stationary.

Model
To handle a scenario with a varying number of HRUs, the approach suggested
in Paper C is to widen the definition of a decision-making agent.

Obstacle-generating agents

Instead of defining individual HRUs as agents, each HRU direction of origin,
North, East and South is considered an agent in the set

N = {α1, α2, α3}. (3.9)

These agents interactively decide whether or not to occupy the shared zone
Z with HRUs, defining the set of decisions

S = {s1, s2}. (3.10)

In Paper C, these agents are referred to as obstacle-generating agents, defined
as CTMCs over S. The nominal behavior of each agent in N is determined
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3.2 Modeling large-scale traffic scenarios as decision-making processes

by a 2 × 2 transition rate matrix Qn. In this low-dimensional example, the
concept of groups is disregarded, and interaction is described as social forces
between individual agents.

Interaction forces

As a simplified representation of the interactions in an intersection, it is as-
sumed that HRUs from each direction prefer to enter Z when road users from
other directions are not there. This is modeled using the indirect repulsion
force (2.12). For αn, the transition rate increase toward a decision state sj is

ξn
j (t) = γ(n, l)

∑
αl

ΓA
Rℓ

[n, l]
(
1 − 1l

j(t)
)
, (3.11)

depending on the state of another agent αl. The agent representation of the
intersection is shown in Fig. 3.8, in which each agent’s transition rates are
sums of an isolated rate and indirect repulsion.

Network model

Given the low number of agents, the network model has only nine states.
Hence, marginalization is not directly necessary, and a network CTMC model
I defined by the transition rate matrix I = Q + R+ is constructed according
to the procedure in Section 2.6. The matrices Q and R+ describe the iso-
lated behavior of α1, α2 and α3 and the influence of indirect repulsion forces,
respectively.

s1 s2

q1
12 + ξ1

2(t)

q1
21 + ξ1

1(t)

α1:

s1 s2

q2
12 + ξ2

2(t)

q2
21 + ξ2

1(t)

α2:

s1 s2

q3
12 + ξ3

2(t)

q3
21 + ξ3

1(t)

α3:

Z

Figure 3.8: Abstract agent representation of the intersection. Through indirect
repulsion, the agents α1, α2, and α3 influence each other’s decisions on
whether or not to occupy Z with HRUs.
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To summarize, Paper C answers the second research question in Section 1.2
by suggesting that traffic scenarios in which the number of HRUs is too high or
varying to be modeled as decision-making processes between individual HRUs
can instead be modeled as decision-making between abstract, geographically
static agents. In the intersection case in Fig. 3.7, these represent HRU di-
rections of origin that decide whether or not to occupy a shared zone in the
intersection. In Paper C, this modeling approach is used to construct a con-
troller for an AV, addressing the final research question of this thesis.

3.3 Decision probabilities in model predictive
control

Finally, the third research question in Section 1.2 addresses how models of
HRU decision-making can be used in the control of AVs. Paper C demonstrates
how a model of decision-making can be applied to a predictive controller that
determines the acceleration of an AV. This control strategy, and the results
from applying it to the intersection scenario from Section 3.2, are summarized
next.

Problem formulation
Assume that an autonomous ego vehicle is approaching the intersection sce-
nario described in Section 3.2. This scenario is depicted in Fig. 3.9, and the
objective is now to design a controller for the acceleration of the ego vehicle

Z

North

East

South

Ego

Figure 3.9: Autonomous ego vehicle approaching the intersection from Section 3.2.
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s1 s2
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1(t)
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q2
21 + ξ2

1(t)

α2:

s1 s2

q3
12 + ξ3
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q3
21 + ξ3

1(t)

α3:

Ego
Z

xk ps pp

Figure 3.10: The ego vehicle approaching the intersection scene, described using
the obstacle-generating agents α1, α2 and α3.

based on the predicted behavior of the intersection. Importantly, collisions
with HRUs need to be avoided, but overly conservative behavior is undesired.

Modeling assumptions

The intersection is assumed to behave according to the network model I de-
fined in Section 3.2, and the traffic scenario described as a decision-making
process between agents can be seen in Fig. 3.10. The position and velocity of
the ego vehicle in the direction of the intersection is described as a discretized
double integrator system. Moreover, the ego vehicle is assumed to follow a
predefined path defined by an onboard system. In Fig. 3.10, ps and pp denote
positions before and after the intersection, respectively.

Controller
Paper C presents an MPC for the acceleration of the ego vehicle. Specifically,
a scenario approach (S-MPC) similar to the method in [45] for avoiding HRUs
described as uncertain moving obstacles is considered. In this strategy, a set
of environment scenarios are formulated, each corresponding to a possible
obstacle mode that may occur with some probability. With knowledge of that
probability, an expected value of the cost function for each scenario can be
formulated. The S-MPC then finds the control action that minimizes the
expected cost of all scenarios simultaneously, subject to the constraints from
each scenario.

In [45], however, the probabilities of each scenario are assumed to be con-
stant. By instead describing the traffic scenario as a CTMC decision-making
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process, a prediction of how the obstacle mode probabilities evolve from an ini-
tial observation over the prediction horizon of the controller can be achieved.
If these probabilities are used to generate the expected cost, the acceleration
of the ego vehicle is determined based on the behavior of the complete traffic
scene.

Decision modes as scenarios

While the network I describes the probability of every decision configuration
in the intersection, the primary concern is the number of agents that are
generating obstacles in Z simultaneously. Four different modes collected in
the set

M = {m0,m1,m2,m3}, (3.12)

where mℓ corresponds to having ℓ different agents generating obstacles in Z
simultaneously. Table 3.1 shows how the probability of each mode can be
obtained by summation over the network decision probabilities ΠI(t).

As the risk of collision with HRUs changes depending on the number ℓ of
active obstacle-generating agents, every modemℓ is associated with a reference
rℓ for the ego vehicle’s position and velocity and a constraint on its maximal
position. In m0 there are no HRUs in Z, and the maximal position is a point
after the intersection, denoted pp in Fig. 3.10. In m1, m2 and m3 there are
HRUs in Z, and the maximal position lies before the intersection, which is
denoted ps in Fig. 3.10. Additionally, the velocity reference decreases and
becomes more conservative as the number of active cluster-generating agents
increases. The position reference is always equal to the position constraint.

Mode mℓ Mode probability πmℓ(t)
m0 πI

1(t)
m1 πI

2(t) + πI
3(t) + πI

5(t)
m2 πI

4(t) + πI
6(t) + πI

7(t)
m3 πI

8(t)

Table 3.1: Decision modes as scenarios in the S-MPC.
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Optimal control problem

The S-MPC solves the following control problem.

min
xℓ,uℓ

k+H∑
h=k

L∑
ℓ=1

πmℓ

h|k

(
(xℓ

h|k −rℓ)TQc(xℓ
h|k − rℓ)+uℓ,T

h|kRcu
ℓ
h|k

)
(3.13)

s.t. xℓ
h+1|k = Aegox

ℓ
h|k +Begou

ℓ
h|k, ∀ mℓ ∈ M, (3.14)

f(xℓ
h|k, u

ℓ
h|k) ≤ 0, ∀ mℓ ∈ M, (3.15)

g(xℓ
h|k, u

ℓ
h|k,m

ℓ
h|k) ≤ 0, ∀ mℓ ∈ M, (3.16)

uℓ
h|k = uo

h|k, ∀ mℓ ̸= mo ∈ M, (3.17)

xℓ
k|k = xk, ∀ mℓ ∈ M. (3.18)

The objective function (3.13) describes the expected stage cost over the pre-
diction horizon of length H as the quadratic cost of reference deviations and
control for each scenario mℓ, weighted by the predicted mode probability πmℓ

h|k.
The evolution of the mode probabilities over the prediction horizon is derived
by simulation of I from an initial observation at tk, and the total expected
cost is obtained by summation over all stages and scenarios.

Minimization of the expected cost is done under several constraints. The
constraint (3.14) specifies the ego vehicle dynamics in each scenario, while
(3.15) represents the state- and input limitations and (3.16) represents the
constraints for each scenario. Equality between inputs and initial states across
all scenarios is ensured by (3.17) and (3.18).

Numerical simulation

Two S-MPCs, Cs and Ct, are compared in two simulations of 6 seconds each.
Cs uses the stationary solution of the decision-making process over the entire
prediction horizon, while Ct uses the transient mode probabilities from an
observation of the intersection at each time step. During the simulation,
four events occur that change the initial mode probability ΠM

k|k. These are
summarized in Table 3.2. Initially, the intersection is in m3 which implies that
agents from all directions send HRUs into Z. As time goes on, the number of
agents who have HRUs in the intersection is decremented until tk = 3, when
the intersection is empty.
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Event Time tk [s] Observation ΠM
k|k

e0 0 All agents in s2.
[
0 0 0 1

]T

e1 1 Two agents in s2.
[
0 0 1 0

]T

e2 2 One agent in s2.
[
0 1 0 0

]T

e3 3 All agents in s1.
[
1 0 0 0

]T

Table 3.2: Events in the simulation.

Results
In Figures 3.11a and 3.11b, the black trajectories are produced by applying
Cs and Ct, respectively, to control the AV. Moreover, these are compared to
controllers generated from each separate scenario, denoted Cℓ

s/t.
As a new event in Table 3.2 occurs, the mode probabilities used by Ct

evolve from a different initial value to the stationary solution, affecting the
performance. Comparing the expected costs of Ct in Fig. 3.11b to those of Cs

in Fig. 3.11a, the initial cost of the most dangerous scenario, m3, has a higher
influence on Ct than on Cs. This is because Ct takes the initial observation
of m3 into account in the transient scenario probabilities. Similar effects on
Ct’s behavior can be seen for all other events. This induces a slow ramp-up in
the velocity of the ego vehicle. In contrast, Cs produces a high initial velocity
before ramping down.

Answering the third and final research question posed in this thesis, one con-
trol application for models of decision-making processes in traffic is scenario-
based model predictive controllers that minimize the expected cost of uncer-
tain traffic scenarios. When the expected cost is based on probabilities from
a model of the behavior of a complete traffic scene, the effect that different
forms of HRU behavior and interaction have on the controller can be simu-
lated. Moreover, the results of Paper C show that the use of transient scenario
probabilities in an S-MPC approach has a significant effect on the performance
of the controller compared to using static probabilities.
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3.3 Decision probabilities in model predictive control

(a) Cs, using stationary mode probabil-
ities.

(b) Ct, using transient mode probabili-
ties.

Figure 3.11: Performance of the controllers Cs and Ct, constructed using station-
ary and transient scenario probabilities, respectively.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Carl-Johan Heiker, Paolo Falcone
Decision Modeling in Markovian Multi-Agent Systems
2022 IEEE 61st Conference on Decision and Control (CDC),
Cancun, Mexico, Dec. 2022.
©2022 IEEE, DOI: 10.1109/CDC51059.2022.9993134.

This paper considers a traffic scenario in which multiple, interactive HRUs
approach a three-way intersection. The objective is to determine a model pre-
dicting which of the HRUs will decide to go through the intersection, and who
will decide to yield for the others. However, an assumption is that determin-
istic models of the future decisions of HRUs are unobtainable. A stochastic
abstraction of the decision-making process is necessary to derive every agent’s
decision probability. Moreover, this model needs to capture how interaction
affects decision-making. The decision-making process between the HRUs is
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modeled as a Markovian multi-agent opinion dynamic network. In this frame-
work, each HRU is an agent that chooses between decisions as a CTMC. In-
teraction is described as modulating the transition rate between each agent’s
decision state, depending on the observed decisions of other agents. As agents
may react to the decisions of others in several different ways, this paper in-
troduces the concept of agent groups into the Markovian opinion dynamic
framework. Interaction within agent groups is modeled as an attractive rate-
modulating social force, drawing group members toward making the same
decisions. Conversely, a repulsion force describes the interaction between sep-
arate agent groups, pushing them toward different decisions. This paper shows
that reducing the network model into a small-scale marginalized form is possi-
ble even when defining interaction through group-wise attractive and repulsive
forces. Lastly, the intersection example is simulated as a decision process be-
tween groups, defined by vehicle type and direction of origin. The model
predicts that all drivers will yield for cyclists with high probability, due to
simultaneous attraction and repulsion.

4.2 Paper B
Carl-Johan Heiker, Elisa Gaetan, Laura Giarré, Paolo Falcone
Repulsive Markovian Models for Opinion Dynamics
Systems & Control Letters,
vol. 185, March 2024.
©2024 Elsevier, DOI: 10.1016/j.sysconle.2024.105720.

This paper extends the framework introduced in Paper A, which describes
a Markovian opinion dynamic model of a decision process in a network of
stochastic agents. In Paper A, disagreement between agents is modeled as a
repulsion force between agent groups. The force increases the rate at which
an agent transitions to each decision state depending on which agents from
conflicting groups are currently in different states. Paper B refers to this as
indirect repulsion and introduces the direct repulsion force as an alternative.
This force instead decreases rates toward a decision state if conflicting agents
are in the same decision state. As direct repulsion appears more intuitive,
it is necessary to determine technically if the two force models can similarly
describe the same decision process. This paper defines the similarity property
between two general networks as them reaching the same stationary decision
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probabilities with minimal difference in expected decision state holding time.
Moreover, this paper shows that the marginalization procedure used to reduce
the model dimension in Paper A can be performed with the suggested direct
repulsion, under the same conditions. However, using a counterexample, it is
shown that similarity is not generally possible if the two models can also be
marginalized. Moreover, numerical simulations show how direct repulsion can
induce a longer convergence time until stationary decisions, compared to in-
direct repulsion. Lastly, the less restrictive indirect repulsion is recommended
as the two disagreement models cannot necessarily describe the same decision
process under the same conditions.

4.3 Paper C
Carl-Johan Heiker, Paolo Falcone
Trajectory Planning Among Interactive Markovian Multi-Modal Obsta-
cles using Scenario-MPC
Submitted to 22nd European Conference on Control (ECC),
Stockholm, Sweden, June, 2024.

In this paper, a traffic scenario in which an autonomous ego-vehicle ap-
proaching an intersection is considered. The intersection has a shared zone,
and three directions from which HRUs can enter at any point in time. To
enable safe navigation through the intersection, the AV needs to plan its ac-
celeration according to the predicted behavior of the complete intersection
scene. To describe the behavior of the intersection independently of the num-
ber of HRUs in the scene, each HRU direction of origin is modeled as an
abstract form of agent that can generate obstacles in the shared zone. Using
the framework introduced and developed in papers A and B, the intersection
is modeled as a decision-making process between the three agents that decide
whether or not to send vehicles into the shared zone. This model thus predicts
the evolution of the probabilities of several obstacle modes from an initial ob-
servation. Each mode enforces different constraints for the ego-vehicle. The
acceleration of the ego-vehicle is determined by an S-MPC that minimizes
the expected cost of all possible obstacle modes. At the same time, the con-
straints from each mode are enforced, ensuring that the vehicle brakes in time.
In numerical simulations of the traffic scenario, it is shown that predicting the
evolution of the mode probabilities over the controller’s prediction horizon
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induces a less conservative braking behavior for the ego-vehicle, compared to
static probabilities.
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CHAPTER 5

Concluding remarks and future work

5.1 Discussion and conclusion
To increase AV’s abilities to interpret and predict their surroundings, this the-
sis presents a framework for how traffic scenarios can be modeled as decision-
making processes between HRUs. The approach relies on two main assump-
tions of how HRUs behave. First, the amount of information necessary for
describing and predicting HRU behavior using deterministic models is as-
sumed to be practically infinite, and any model for how HRUs make decisions
needs to be stochastic. Second, the decisions made by HRUs are assumed to
be affected by both their motives and different forms of interaction with other
HRUs.

Summary of the modeling approach
To capture both the stochastic and interactive aspects of HRU behavior, a
Markovian opinion dynamic framework is suggested for modeling how deci-
sions are made in traffic. Corresponding to the first aspect, decision-makers
are described as CTMC agents that make stochastic transitions between de-
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cisions in a set. To handle the second aspect, two forms of interaction be-
tween agent subgroups are modeled as social forces that modulate the rates
at which agents transition between decisions. Within agent groups, attraction
increases the transition rate toward popular decisions to emulate agreement.
Conversely, two forms of repulsion are proposed to emulate disagreement be-
tween agents in different groups.

A CTMC model of how the network of agents transitions between decision
configurations due to personal motives and interaction is formulated. More-
over, methods for assessing how the dimension of this model can be reduced,
how two different forms of interaction can achieve similar effects, and how the
approach can be applied to MPC are presented in the included papers.

Answers to research questions
In Chapter 1, three research questions were formulated to assess how decision-
making processes between HRUs can be modeled and utilized. Beginning with
a recap of the research questions, this section discusses how they are answered
in the thesis.

• RQ1 How can the effect of different interaction forms be captured in a
model of decision-making between uncertain HRUs?

• RQ2 How can large-scale traffic scenarios be modeled as decision-making
processes?

• RQ3 How can models of HRU decision-making be used in the control
of AVs?

Modelling the effect of interaction in decision-making processes

A challenge for the development of AVs is the difficulty of predicting the be-
havior of surrounding traffic. The lack of information required to construct
deterministic models, and the interactive nature of HRUs, make describing
their decision processes a challenge. This thesis therefore suggests a Marko-
vian opinion dynamics framework for modeling how HRUs change decisions
stochastically while influencing each other through interaction. With this
method, the probability of HRU decisions can be predicted.

The effects of interaction between HRUs in a traffic scene are assumed to
vary. For example, cyclists may see other cyclists pass an intersection and
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follow, while drivers collectively yield for them. Paper A therefore focuses on
modeling two primary effects in a decision-making process in traffic: agree-
ment and disagreement between groups of HRUs, represented as agents.

In Paper A, the agreement effect is achieved through the attraction force,
which increases an HRU’s transition rates toward decisions that are currently
popular in its group. Using a similar form of transition rate modulation, the
effect of disagreement is modeled indirectly by increasing the HRU’s transition
rates toward decisions that are unpopular among other HRU groups. How-
ever, disagreement can also be modeled as a direct decrease of rates toward
decisions that are popular in other groups and is explored in Paper B. While
this introduces time-dependent transition rates in each agent, making them
non-homogeneous, a single CTMC over the decision configurations in the en-
tire network can be constructed. For this structure, all transition rates can
be evaluated as constants, making the network a time-homogeneous CTMC
that can be used to predict the decision probabilities for all HRUs.

The results of Paper A, summarized in Section 3.1, thus answer the first
research question by showing that the stationary HRU decision probabilities
predicted by the model change depending on the interaction type. In the
intersection example, groups of cyclists and drivers diverge from their nominal
behavior and approach similar decision probabilities if the attraction force is
present within their groups. Moreover, repulsion is required to describe an
increased probability that HRU groups disagree. However, the basic forms of
interaction explored here cannot be guaranteed to have a unique effect. As
is shown in Paper B, effects such as disagreement can be achieved by several
forms of interaction. Hence, while any form of interaction can be used to
explain outcomes in traffic scenes, methods for learning the actual interaction
are required to predict them.

Large scale traffic scenarios

In the intersection scenario presented in Paper C, new HRUs are arriving at
a crossing in relatively large numbers, from three different directions. At the
same time, HRUs depart from the scene at a rapid pace. In this scenario,
modeling a decision-making process between individual HRUs as in papers A
and B is difficult, as the approach assumes a constant number of decision-
makers. Moreover, the number of decisions and HRUs may be too much even
for a marginalized version of the network model.
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Throughout this thesis, and in papers A and B, decision-making processes
have been described between agents. In Paper C, it is shown that the con-
cept of a decision-making agent is not necessarily synonymous with a single
HRU. Instead, the intersection itself can be seen as a decision-making pro-
cess between abstract agents. Specifically, Paper C defines each direction in
which HRUs enter and exit as an agent that decides whether or not to send
vehicles into a shared zone in the center. Interaction in the form of forces
between the abstract agents represents the effect of interaction between the
HRUs in the scene. In this approach, HRUs are seen as actors that manifest
the decision-making of a collective.

Using this principle, the framework described in this thesis can be applied
to large-scale traffic scenarios, thus answering the second research question.
Section 3.2 summarizes how the intersection scenario from Paper C can be
modeled as three agents that decide whether or not to occupy a shared zone
with HRUs. This scenario only requires three agents, which suggests that
it is possible to describe even larger scenarios as decision-making between
agents. As a generalization, this process can be seen as a way of modeling
how uncertain agents in infrastructure negotiate shared resources.

Control applications

This thesis aims to improve the capability of AVs to interpret and anticipate
the behavior of their surrounding HRUs. In line with this, the third and final
research question addresses how models of decision-making processes can be
used in the control of AVs.

Continuing with the large-scale intersection scenario, Paper C considers an
AV that approaches the traffic scene and presents an S-MPC determining
the AV’s acceleration based on the decision-making process description of the
HRUs in the intersection. Summarized in Section 3.3, the controller predicts
the evolution of the agent decision probabilities using the intersection model
over a time horizon. As agents decide whether or not to send HRUs into
the intersection, the probability of several obstacle scenarios can be derived
for the AV. Using the scenario probabilities, an optimal control problem for
minimizing the expected cost of the AV’s behavior in all scenarios over the
horizon is constructed. In each time step, the S-MPC then solves this problem
to derive an acceleration that abides by the constraints of all scenarios.

The result of Paper C is a comparison between using stationary versus
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transient scenario probabilities in the S-MPC. While the stationary, constant
probabilities result in an acceleration of the AV that does reflect the inter-
section, transient scenario probabilities express the predicted change in the
probability that each scenario is observed after an initial observation. Hence,
the transient probabilities induce a trade-off in the cost function between the
current observation and the scenarios that will be likely in the future. In the
example presented in Paper C, the intersection model predicts that the most
probable scenarios are when either one or two agents generate obstacles in the
shared zone, whereas it is unlikely that the intersection is either full or empty.
Each possible scenario occurs at some point in the simulation, and it is shown
that the transient probabilities result in a less conservative AV acceleration
compared to when the stationary solution is used.

Challenges
Applying the model presented in this thesis to real traffic scenarios presents
several challenges, and some of them are briefly discussed in the following.

Availability of data

While machine learning methods are among the more popular modern meth-
ods for learning the behavior of HRUs in a complete traffic scene, the approach
described in this thesis is model-based. While the model can be used to simu-
late the effect of different behaviors using relatively few parameters, the model
needs to be calibrated using data. This is an issue, as HRU decisions are not
directly measurable and must be inferred from available data. In the most
optimistic case, motorized vehicles may share detailed data recorded on the
vehicles themselves. Information on how drivers operate the vehicles that is
intuitively linked to decision-making, such as the use of indicator lights, may
also be available. However, the same information is unavailable for other im-
portant HRUs, such as pedestrians and cyclists. Hence, the model needs to
be simple enough to tune using data that is available for all HRUs, such as
position and velocity.

Location dependent models

Parts of the model are dependent on location. While HRUs may have differ-
ent overall driving styles and interaction patterns that are less dependent on
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external factors, separating the effect of interaction from the effect of road ge-
ometry and other local features appears more difficult. While data of isolated
and interacting HRUs could be obtained from a single location and used to
learn the effect of interaction compared to isolation, the validity of the model
is then limited to the particular location.

Several valid interaction models

Paper B deals with the fact that several interaction forms could lead to the
same stationary decision probabilities. This also influences how an interac-
tion model can be learned from data. For instance, an unrealistic interaction
topology could be assumed such that it describes an observed effect for some
set of tuning parameters. To avoid a misleading description of HRU behavior,
identifying the characteristics of the interaction itself is thus preferred over
tuning the model parameters to merely obtain the correct stationary decision
probabilities.

The effect of external disturbances

Lastly, as the model is based on a CTMC, there is no way of describing
the influence that external events may have on the decision-making process.
For instance, it is as of now impossible to describe the influence that an AV
has on a decision-making process as it approaches an intersection. However,
this could be achieved if the CTMC model of the decision-making process
is translated into a controlled Markov chain such as a discrete-time Markov
decision process [46].

5.2 Future work
Inspired by the challenges presented previously, this section suggests some of
the possible research directions for applying the presented model to real traffic
scenarios.

Learning
One of the main challenges with applying this model to traffic scenarios is how
to accurately learn its parameters from data. As discussed earlier, one issue
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is that decisions need to be inferred from available data, a problem that can
be approached in several ways. For instance, by assuming that measurements
are the output of an HMM, a Markov chain representing the decision-making
process could be learned from measurable HRU data. This would however
require that the CTMC model is converted into a DTMC, which introduces
additional assumptions. By instead interpreting the CTMC transition rates
as distribution parameters for decision holding time, it could alternatively be
possible to learn parameters without first converting the CTMC to discrete
time.

Feedback
When a single AV approaches a traffic scenario in which there are many HRUs
present, such as in Paper C, it can be argued that the AV’s influence on the
decision process is negligible. However, there are also traffic scenarios in which
an AV has a greater effect on the behavior of surrounding HRUs, which will
likely influence the decision-making process between them. To model this,
one approach is to introduce AVs as decision-makers who are stubborn to
the point that their decisions approach deterministic ones. Using interaction
forces, their behaviors could be predefined conditionally on the actions of the
HRU agents. A second approach is, as mentioned previously, to construct a
Markov decision process from the model.

Control
While an introductory example of how the model can be used in scenario-based
MPC for AVs navigating uncertain environments is shown in Paper C, the
control strategy is a simplified version of that in [45]. Hence, a more realistic
use case in which a non-simplified scenario MPC utilizing transient scenario
probabilities is suggested. This control strategy could serve as an automatic
tuning of the optimization problem after how probable each scenario is after an
initial observation, and adjust the necessary level of conservative AV behavior
accordingly.
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