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Abstract

Mathematical modeling is an integral part of the drug development process.
Models are developed to describe tumor dynamics or drug concentration to
answer questions such as: What concentration is required to reach the desirable
treatment outcome? What drug dose and frequency should a drug prescription
specify to achieve this concentration? Models are also used for simulation,
reducing the need to perform additional animal trials.

In this thesis, we consider how to model dynamical systems that incorporate
biologically relevant phenomena such as drug elimination, tumor growth,
and the effect of combination therapies consisting of anticancer drugs and
radiation treatment. Survival analysis and time-to-event modeling are also
discussed as well as how to combine these types of probabilistic models with
the dynamical system models in a so-called joint model. All discussed models
contain parameters that must be estimated using experimental data and how
this estimation is done is considered along with how to deal with variability
on different levels, e.g., between individuals and between species.

Furthermore, appended are five papers/manuscripts where this is applied to
real-world problems. (I) concerns modeling of radiation therapy in combina-
tion with radiosensitizers, (II) presents a translational approach for predict-
ing clinical results using a preclinical model, and (III) focuses on predicting
progression-free survival using joint modeling. The last two are in manuscript
form and (IV) presents a parametric model for sample size calculations and (V)
considers how predictions of progression-free survival are distributed under
different models.

Keywords: Mathematical Modeling, Nonlinear Mixed Effects, Pharmacomet-
rics, Oncology, Combination Therapy, Radiation Therapy
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Prologue

This prologue serves as a short introduction to mathematical modeling in
pharmacology and aims to give readers who either are clinicians or in similar
professions a soft introduction to the mathematics that is discussed in this
thesis. Terms such as equations, model parameters, and parameter estimation
are explained in a pharmacological context and after reading through this part,
the reader has hopefully a slightly better idea of what a mathematician or
engineer means with these words.

Ordinary differential equations, or ODEs for short, describe how variables
such as drug concentration or distance change with respect to another variable,
which often is time, and a mathematical model is often a set of these equations
used to portray some real-world scenario. To illustrate, consider a model
consisting of an equation detailing how the concentration of an intravenously
administered drug changes in patients’ blood plasma over time. This equation
could take the following form,

C(t) = C0e
− Cl

VD
t, (1)

or equivalently,

C(t) = C0 exp

(
− Cl

VD
t

)
. (2)

Here C and t are variables that represent the drug concentration in the blood
and the time, respectively, and e is Euler’s number, which approximately is
2.72. The equation also contains a number of parameters, namely: C0 the
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initial concentration, Cl the clearance, and VD the volume of distribution. In
pharmacological terms, the equation can be seen to represent the purification
of the bloodstream from the drug by the liver. Moreover, this equation is the
solution to an ODE that we consider in the third chapter of the thesis but
for now, it suffices to point out that the equation is known as an exponential
function and an illustration of it is shown in Fig. 1
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Figure 1: An illustration of an exponential function describing how the drug concentra-
tion decreases after an intravenous injection due to the purification of the bloodstream
by the liver.

In general, for our model to adequately characterize the concentration dy-
namics in different organs, processes such as drug absorption, distribution,
metabolism, and elimination must all potentially be considered. In the example
above, only drug elimination was included, but if the drug instead was given
orally, both absorption and distribution would have had to be considered,
potentially resulting in the inclusion of more pharmacological parameters and
equations. All the parameters included in the model must be estimated using
experimental data before the model can be used for the intended purpose. This
is known as parameter estimation or model calibration, and in this thesis, we
introduce the reader to how these estimations can be performed using vary-
ing levels of mathematical sophistication. The need for the most advanced
quantitative techniques arises as a result of the high variability often observed
in various experiments as well as the wish to minimize sample sizes, e.g., the
number of test animals or patients.

Variability can come from many different sources such as different scientists
taking measurements, imperfections in the measurement tools, and natural
differences between patients. Most mathematical techniques used for analyzing
experimental data come from the two closely related fields of probability
and statistics and are used to answer questions such as "Is a new treatment
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significantly better than the current standard of care?". The word "significant"
here, has a special meaning in statistics and the question really posed is, "How
certain can we be that the apparent success of one treatment over the other was
not caused by random chance". This analysis often relies on post-hoc approaches,
such as estimating survival curves or performing various statistical tests after
the study has been completed. However, the predictive capability of these
approaches is limited, e.g., if we modify our question somewhat to be "What is
the effect on the survival curve if the treatment schedule changes?" is typically
not a question that can be answered using standard statistical techniques. Here
is where mathematical modeling provides a powerful predictive approach.
By quantifying the relationship between drug concentration, in-vivo efficacy,
and dropout, a model can be created that can be utilized to e.g., explore how
different treatment scenarios are expected to change the trial results. Thus, one
purpose of mathematical modeling is to provide a tool for testing hypotheses
in-silico (in a computer). Hence, it can be an effective approach for reducing the
number of real-world experiments that have to be performed. This can both
increase the success of treating human patients and also reduce the need for
animal testing.
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Estimated parametersComputer Simulations

Model calibrationModel 

Parameters

…

Experimental dataExperiment

Conclusions

New experiment?

Figure 2: The figure illustrates the modeling process. This example starts with an
experiment where a drug is given intravenously to three individuals. Experimental
data is obtained by monitoring and repeatedly recording the drug concentration levels
at some time point after the injection. A mathematical model is proposed based on
prior biological knowledge and by inspecting the data. With the help of a computer,
this model is calibrated and parameter estimates are obtained for each individual. By
simulating the model, new treatment scenarios, e.g., different dosing schedules can
be tested. These simulations can then be used to support conclusions and inform the
design of new experiments if such are deemed to be necessary.



1 Introduction

Mathematical modeling is an iterative process that aims to inform researchers
about a solution to real-world problems. A research question is posed, such
as what is the best dose to give to a patient? Then, a mathematical model, a
system of equations, is constructed to allow the phenomena to be studied in a
simplified environment [1]. The model can be tested with experimental data to
evaluate if it mirrors the real world sufficiently well. If not, the construction
and evaluation phases are iterated between until a satisfactory model has been
found. The model can then be used to make predictions, which, if possible,
should also be validated by new experiments. Through the use of simulations,
one can also evaluate if the original question was correctly posed. Perhaps
one realizes that what time the drug is given is a crucial aspect that was not
originally considered.

Pharmacology, from the Greek words pharmakon (drug) and logia (knowledge
of), is the scientific study of medical drugs and how to medicate patients.
Mathematical pharmacology, or pharmacometrics, is the interdisciplinary field
where mathematical modeling is used to make inferences in pharmacology
[2]. In this thesis, pharmacometrics is used as a guiding tool in the drug
development process in oncology, which is the study of tumors or cancer.
Cancer is a class of diseases that is characterized by uncontrolled cell growth
and metastasis, i.e., spreading to nearby tissues [3], and is a leading cause of
death worldwide resulting in approximately one in six deaths [4]. This problem
is only predicted to increase as the global population continues to age.

To combat cancer several treatment modalities are standard practice including
different types of radiation treatment, surgery, and chemicals. Often a combi-
nation of different treatment modalities is required to achieve sufficient high
treatment efficacy, i.e., successfully treat a patient. This could take the form of
neoadjuvant and adjuvant treatment, where the patient is given an additional
treatment before or after the main treatment, respectively. It can also be that
the patient is given several treatment modalities simultaneously and this is

5



6 1. Introduction

called combination therapy. The benefits of this type of treatment can be syner-
gistic effects between the drugs, longer time for the patient to develop drug
or radioresistance, and the ability to harness patient variability in response
[5, 6, 7]. An example of this is when radiation therapy is combined with a
class of anticancer drugs called radiosensitizers. As the name implies, this type
of drug causes the tumor tissue to be more sensitive to radiation and thus, a
lower radiation dose can be given while still achieving the desired treatment
outcome [8, 9]. Another example of a combination therapy currently in use
is the concomitant treatment with the two anticancer drugs encorafenib and
binimetinib, inhibitors of the BRAF and MEK gene, respectively, for patients
with cutaneous melanoma [10].

In the last decades, there has been a growing interest in this field and many
anticancer drugs are nowadays used in combination [11]. However, there is still
a lack of appropriate tools for identifying drug combinations demonstrating
adequate clinical efficacy early in the drug development process [12]. Before
anticancer drugs are tested in clinical (human) trials, preclinical (animal or in
vitro) studies first have to be conducted. Mice implanted with human tumor
tissue, commonly referred to as patient-derived xenografts (PDXs), serve as a
common choice for this purpose. These mice function as a disease model and,
hence, in this context, the word "model" can refer to both a system of equations
and a particular PDX. Studies using PDXs are structured in such a way as
to closely mirror a clinical trial and two study objectives are to measure how
tumor size and drug concentration change over time. These measurements
result in time series that often display high variability and appropriate tools
are required to analyze these.

A major problem in the drug development process is estimating clinical efficacy
from preclinical studies [13, 14]. Commonly, drugs with sufficient preclinical
efficacy fail to show similar efficacy in a clinical setting [15]. Although this is
the case, studies have also found a correlation between preclinical and clinical
efficacy [16]. This highlights the need for new and improved methods of anal-
ysis and concepts that can facilitate the translation of preclinical information
for clinical use. Mathematical modeling is such a method of analysis that
is especially suitable for combination therapies, as all possible combinations
cannot be tested experimentally [17].

Compartment models are mathematical models, where each compartment
represents a distinct part of a larger system and the movement of some quan-
tity of interest between the compartments is governed by a set of differential
equations. This is the go-to type of model in many areas of pharmacometrics
and this thesis considers compartment models based on ordinary differential
equations (ODEs). These ODEs are formulated using Lipschitz continuous
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functions with potential discontinuous jumps at certain times to incorporate
treatment schedules. The initial value problems are only considered on fixed
time intervals with a single jump occurring at specified times, thus, the exis-
tence and uniqueness theorem guarantees a unique solution to them. These
solutions are piece-wise continuous functions with potentially a discontinuity
at the time of the jumps.

In this thesis, we explore concepts such as pharmacodynamics, time-to-event
modeling, and parameter estimation to better understand how they can be
used to guide drug development and research. The primary focus of the
parameter estimation is on quantifying different forms of variability and how
this knowledge can be leveraged to perform more robust model prediction.
The focus is on oncology and combination therapies, yet, the methods and
techniques have broader applicability beyond this specific context.

1.1 Research Questions

The research discussed in this thesis aims to answer the following questions, in
the context of pharmacometrics and oncology.

• How can advanced modeling techniques be used to better optimize study
design?

• What is the role/importance of different levels of variability when per-
forming predictions?

• In what way can mathematical modeling provide translational insights?

1.2 Limitations and Scope

The research encompasses preclinical, clinical, and translational aspects with
a focus on in vivo efficacy. No in vitro research is considered and modeling of
toxicological effects is only touched upon lightly. Moreover, the dynamical
modeling is based on ordinary differential equations and neither partial nor
stochastic differential equations are considered.

Furthermore, new and improved algorithms have been developed and imple-
mented, in Mathematica. However, these are not used for the estimation of
the model parameters. Instead, previously developed software for this has
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been used, including both a Mathematica package developed at Fraunhofer-
Chalmers Centre and Monolix [18, 19]. While the thesis delves into the al-
gorithms within these softwares, the level of detail and implementation is
constrained.



2 Pharmacometrics

The two essential branches of pharmacology are pharmacokinetics (PK) and
pharmacodynamics (PD). In short, PK describes what the body does to the
drug, and PD what the drug does to the body [20].

2.1 Pharmacokinetics

PK describes how drugs are absorbed, distributed, metabolized, and eliminated
by the body. The aim is often to develop a model that describes how the
concentration of a drug changes over time at the target tissue, which is more
commonly known as the site of action. Measurements at the site of action are
often invasive and it is therefore common to use the concentration in the blood
plasma as a proxy. This can be estimated by taking a blood sample and using
LC-MS/MS, an analytical technique for detecting compounds in liquid samples
by combining liquid chromatography (LC) and mass spectrometry (MS) [21].
Performing such a measurement would give the total drug concentration.
However, as a drug enters the bloodstream, a fraction of it binds to the plasma
and tissue proteins. These bound drug molecules are not able to interact with
the pharmacological target proteins, such as receptors and enzymes, and it
is therefore only the unbound drug concentration that is of interest when
quantifying the drug’s efficacy. Estimating the unbound drug concentration
requires additional analysis using methods such as equilibrium dialysis and
ultrafiltration [22]. Additional analysis can be expensive and time-consuming,
thus, depending on the purpose of the model the total drug concentration (in
the blood plasma) might be sufficient to carry out the intended analysis. An
example of typical PK time series data is shown in the right part of figure 2.1.

To give a concrete example of a PK compartment model, we consider the case
where a patient is prescribed a drug that is to be taken orally and how to

9
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Figure 2.1: Two examples of typical time series data obtained from experiments. Each
colored line represents how the tumor volume (left) or drug concentration (right)
changes for a specific individual throughout a study.
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build a model for the total drug concentration in the blood plasma. Once
the drug has been ingested, its first destination is the gut, from whence it is
later absorbed into the blood plasma. The blood plasma is constantly being
cycled through the liver, where it is purified from toxins and other exogenous
(external) substances. Thus, we identify two essential processes that have to
be taken into consideration when we attempt to model how the concentration
of this drug changes over time in the patient’s blood plasma, namely drug
absorption and elimination.

In this case, the compartments are the gut and blood plasma and we denote
the drug concentration in these compartments as CA and CB , respectively. The
absorption and elimination can be modeled as first-order processes with rate
parameters ka and ke, respectively. The system of ODEs that describes this is

dCA

dt
= −kaCA, CA(0) =

D

Vd
,

dCB

dt
= kaCA − keCB , CB(0) = 0,

(2.1)

where D denotes the drug dose and Vd is the volume of distribution and an
illustration of the model is shown in Figure 2.2. This system of ODEs can be
solved analytically by e.g., first solving the first row separately and then using
the technique of integrating factors for the second row.

CA(t) =
D

V d
exp(−ka t),

CB(t) =
D ka

V d(ke − ka)
(exp(−ka t)− exp(−kb t)).

(2.2)

We can see that only a single equation is required to describe the drug con-
centration in the blood plasma and, therefore, this model is said to be a one-
compartment PK model.
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Figure 2.2: An illustration of a one-compartment PK model. D is the drug dose and
CA and CB are the drug concentration in the gut and blood plasma, respectively. After
the drug is ingested, it is absorbed from the gut to the blood plasma from where it is
eliminated by the liver. Both processes are modeled as first-order processes with rate
parameters ka and ke, respectively. This leads to the concentration dynamics being
described by the exponential functions shown in Eq. 2.2.

The model is, as all models are, a simplification of what happens in the real
world and one important assumption we have made is that the drug is equally
distributed through the body. However, this is not necessarily true since some
tissues, such as muscle are poorly perfused when compared with e.g., the kid-
neys [23]. This would lead you to expect the drug concentration to be lower in
the muscles in comparison with more perfused tissues. The one-compartment
model can easily be extended to account for this by splitting the CB compart-
ment into two distinct compartments, one describing the concentration in the
poorly perfused tissues and another in the well-perfused tissues. We called
these two new compartments the peripheral and central compartments and
denote the concentration in each by CP and CC , respectively. The movement
between these two compartments is again modeled as first-order processes
with rate parameters k12 and k21. The system of ODEs that describes the drug
concentration then becomes,

dCA

dt
= −kaCA, CA(0) =

D

Vd
,

dCC

dt
= kaCA − (ke + k12)CC + k21CP , CC(0) = 0,

dCP

dt
= k12CC − k21CP , CP (0) = 0.

(2.3)
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In the two models we have investigated, we have assumed that a drug is
given with dose D at time t = 0. However, to increase the probability of
tumor eradication it is more likely that the drug has to be given on multiple
occasions. Therefore, another important PK aspect that must be considered is
the treatment schedule of the administered drugs. The ODE model presented
in Eq. 2.3 can be extended to consider a treatment schedule by including a sum
of Dirac delta functions. Consider τ and D to be vectors that represent the time
that the drug is given and the corresponding dose. The model is then extended
as,

dCA

dt
= −kaCA +

N∑
n=1

Di

Vd
δ[τi − t], CA(0) =

D0

Vd
,

dCC

dt
= kaCA − (ke + k12)CC + k21CP , CC(0) = 0,

dCP

dt
= k12CC − k21CP , CP (0) = 0.

(2.4)

The presented PK models can be used to simulate the concentration profile of
drugs, which in turn can be used in the quantification of the drugs’ efficacy.
When considering drugs given repeatedly, a significant concentration level
may still be present in the body when the next dose is given. Therefore, some
time may pass before a steady-state level is reached. Simulations of a model
can be of use to give an idea of what drug dose to give to achieve a specific
steady-state concentration.
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Figure 2.3: Simulations of plasma concentrations for two repeatedly administered
drugs. The red line indicates the steady-state average concentration. In the left figure,
the drug elimination is not quick enough for the concentration to decrease to zero
before the next dose is given. This leads to an initial period where the concentration
dynamics differ from the steady-state behavior, the maximum concentration before
the second dose is even below the average steady-state concentration. The opposite
is true for the illustration in the right figure. Thus, these types of simulations can be
useful for determining what dosing schedule to prescribe to achieve a target steady-state
concentration.

Depending on the situation it might suffice to use a concentration metric such
as the integral of the concentration function i.e., the area under the curve (AUC)
or the average concentration instead of the simulated concentration profile.
These metrics are easily estimated from the model as,

AUC0−τ (τ) =

∫ τ

0

CC(x) dx,

Cavg(τ) =
AUC0−τ (τ))

τ
.

(2.5)

Again, depending on the elimination rate of the drug, the transient and steady-
state metrics might differ and simulations can help find an appropriate dosing
schedule to achieve the desired concentration.
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2.2 Pharmacodynamics

In oncology, PD typically describes how tumor volumes are affected by a given
treatment. Compartment models are often also used here, but the compart-
ments consist of different types of tumor cells, such as proliferating or damaged
cells. An example of PD time series data is shown in the left part of figure 2.1.

2.2.1 Tumor Growth Modeling

One of the simplest ways of modeling tumor growth is by assuming that the
growth is proportional to the current tumor size, i.e.,

dV

dt
= (kg − kk)V, V (0) = V0, (2.6)

where kg and kk are growth and kill rate parameters, respectively, V is the
tumor volume, and V0 the initial tumor volume [16]. Using the separation
of variables method, it can be seen that this results in an exponential growth
function with an exact solution,

V (t) = V0 exp((kg − kk)t). (2.7)

One flaw of this model is that there is no limitation on how large the tumor
can grow and we see that if kg − kk > 0, V (t) → ∞ as t → ∞, which, of course,
is not realistic. Another tumor growth model that solves this is the logistic
growth model, where the dynamics are described by,

dV

dt
= (kg − kk)(1− V

Kc
)V, V (0) = V0, (2.8)

where Kc is the carrying capacity, i.e., the largest sustainable tumor size. Here
the tumor initially exhibits exponential growth, but as the size of the tumor
increases, the available space and nutrients diminish, resulting in reduced
growth. When the tumor volume reaches Kc a steady-state solution is reached.
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Another common model with changing growth behavior is the Gompertz
growth model, where the tumor cells are assumed to initially be in a phase of
exponential growth, which is followed by a phase of linear growth. The model
is described by,

dV

dt
= λ0V, V ≤ VS ,

dV

dt
= λl, V > VS ,

V (0) = V0,

(2.9)

where λ0 and λ1 are the exponential and linear net growth rate parameters,
respectively, and VS is the tumor size where the switch between the two phases
occurs. For computational reasons, it can be useful to use a single ODE to
describe the model. The following ODE is useful in approximating the original
system,

dV

dt
=

λ0V(
1 +

(
λ0

λ1
V
)p)1/p

,

V (0) = V0.

(2.10)

These models have all assumed that the tumors are made up of homogenous
cells, all behaving in the same manner. However, this is, again, a simplification.
Tumors are often seen as having a geometry similar to an ellipsoid with a
necrotic core, consisting of dead and dying cells, and outer layers of prolif-
erating cells. Therefore, a more biologically reasonable model differentiates
between proliferating and non-proliferating cells. This can be accomplished by
introducing a chain of transit compartments to the model [24]. We do this for
the exponential growth model, eq. 2.7, and end up with,
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dV1

dt
= (kg − kk)V1,

dV2

dt
= kkV1 − kkV2,

dV3

dt
= kkV2 − kkV3,

dV4

dt
= kkV3 − kkV4.

Vi(0) = V0

(
kk
kg

)i−1

i = 1, 2, 3, 4,

(2.11)

where V1 is the volume of proliferating cells, V2, V3, and V4 the volume of
non-proliferating cells, kg the growth rate, and kk the natural kill rate. The total
tumor volume, Vtot is given by,

Vtot = V1 + V2 + V3 + V4. (2.12)

The initial conditions are chosen such that in the absence of treatment, the
tumor cells have strictly exponential growth [25]. Furthermore, any number of
transit compartments could be considered, but studies have shown that three
often is sufficient to explain observed data.
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Figure 2.4: An illustration of a compartment tumor model. V1 contains proliferating tu-
mor cells that are growing and dying with rates kg and kk, respectively. Compartments
V2, V3, and V4 represent damaged and dying cells that have lost the ability to proliferate.
These additional compartments are included based on the biology of tumors and the
total tumor volume is the sum of all compartments. Furthermore, they also allow for a
delay in treatment effect to be incorporated into the model.

In the next section, we consider how to model treatment effects. For simplicity’s
sake, we use the exponential growth model as an example, but the same
extensions apply to all introduced models. We also note here that the transit
compartment models can be used to describe a delay in treatment effect.

2.2.2 Combination of Anticancer Drugs

As previously mentioned, it is only the unbound drug molecules at the target
site that can bind to the target protein and have a therapeutic effect. How
molecules bind to protein is a well-studied topic in biochemistry and one way
of describing the fraction of receptor protein (θ) that is bound by a ligand (L) is,

θ =
Ln

Ln +Kn
A

=
1

1 + (KA

L )n
, (2.13)

where n describes the degree of interaction between ligand and binding sites
and KA is the ligand concentration where half of the receptors are bound.

The ligands in this case are the drug molecules, leading to the expectation that
there is a nonlinear relationship between drug concentration and efficacy. Thus,
when quantifying this relationship the following sigmoid function is useful,

E(CB) = Emax
Cn

B

ECn
50 + Cn

B

, (2.14)
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where Emax is the maximum efficacy and EC50 is the concentration where half
of the efficacy is reached. This is generally known as an Emax function and can
be seen to be a parameterization of the Hill equation. Another useful sigmoid
function is,

I(CB) = 1− Imax
Cn

B

ICn
50 + Cn

B

, (2.15)

where Imax is the maximum inhibition and IC50 the concentration leading to a
inhibition of 50%. This is known as a maximum inhibitory (Imax) function and
is typically used to describe drug inhibition.

It can be important to take the mechanism of action of the modeled drug
into consideration when formulating the model. Often a distinction is made
between growth inhibitors, such as cetuximab and encorafenib, and cytotoxic
agents such as cisplatin and fluorouracil. In general, growth inhibitors function
by disrupting the tumor cell’s growth by e.g., inhibiting the production of an
important protein whereas cytotoxic agents more directly kill the cells by e.g.,
interfering with DNA replication. For modeling purposes, an Emax function
might be a good choice for modeling the efficacy of a cytotoxic drug and an
Imax for an inhibitor. A potential model for describing the tumor dynamics
when one cytotoxic agent is coadministered with a growth inhibitor is,

dV

dt
= (kgI(C1)− E(C2)kk)V, V (0) = V0, (2.16)

where C1 and C2 are the blood plasma concentrations of the cytotoxic agent
and growth inhibitor, respectively.

As different drugs are given simultaneously there is the possibility of both
synergistic (beneficial) and antagonistic (detrimental) combinatory effects. For
example, if two concomitant given drugs bind to the same protein receptor
they must compete with each other to achieve the binding, potentially resulting
in antagonism. These types of interaction effects can be modeled in different
ways and one approach is to add an interaction term, that is a function of the
concentration of both drugs.
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dV

dt
= (kgI(C1)− E(C2)kk + γ(C1, C2))V, V (0) = V0. (2.17)

Here γ is the interaction function and if we assume it to be a quadratic equation,
e.g., γ = γ0C1C2, then an antagonistic combination has γ0 < 0, a synergistic
combination γ0 > 0 and an additive combination γ0 = 0.

2.2.3 Radiation and Radiosensitizer Treatment

Radiation therapy is another very important treatment modality used against
cancers. High doses of ionizing radiation are applied to the area where the
tumor is located causing damage to it and surrounding tissue. The most
important damage is double-stranded DNA breaks, although single-stranded
DNA breaks can also occur. The DNA damage leads to apoptosis and mitotic
catastrophe, which are thought to be two of the main responses of tumor cells
to irradiation.

The so-called linear-quadratic equation is typically used to quantify cell damage
as a result of radiation [26, 27]. The proportion of cells that are damaged after
one radiation application with radiation dose, DR, is given by

F (DR) = 1− exp(−α DR − β D2
R), (2.18)

where α and β are radiosensitivity parameters.

In addition to the more instantaneous effect, repeated exposure to radiation
can cause long-term damage to the tumor as well. For example, reductions in
growth rates have been observed after longer periods of radiation treatment
and it is theorized that this is due to mutations and/or reduced vascularization
in the tumor, as well as changes in the tumor microenvironment [28]. One
approach to modeling this inhibition after m applications of radiation with
dose DR is once again by using an Imax function,

I(DR) = 1− Imax

∑m
i=1 DR

ID50 +
∑n

i=1 DR
, (2.19)
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where ID50 is the radiation dose leading to a 50% growth inhibititon.

To model both the reduction in growth rate and the direct killing of tumor cells
simultaneously the following model could be a choice,

dV

dt
= (kgI(DR)− kk)V, t �= ti, V (0) = V0.

V (t+i ) = V (t−i )− F (DR)V (ti), t = ti

(2.20)

where ti denotes the time of each radiation application and t−i and t+i the time
immediately before and after each radiation application, respectively.

Radiosensitizers belong to a class of anticancer drugs that are given in combina-
tion with radiation treatment to make tumor tissue more sensitive to radiation
[8]. Cells in a hypoxic state are more resistant to radiation treatment and an
important class of radiosensitizers, Oxygen Mimetics, function by reducing the
population of them [9]. Another important class of radiosensitizers includes
those that regulate crucial pathways, such as inhibitors of enzymes involved
in the repair mechanism of DNA for both single- and double-stranded breaks
[29]. The emergence of nanotechnology has opened up new possibilities in the
development of radiosensitizers. Heavy-metal nanomaterials, such as gold
and silver particles, show promise as radiosensitizers because of their capacity
to absorb, scatter, and emit radiation energy [30, 31]. Moreover, it is possible
to tailor the physical characteristics of these particles to, e.g., enhance their
accumulation at the tumor target site [32]. Thus, through the utilization of
radiosensitizers, it becomes possible to lower the radiation dose to reduce
harmful side effects while still achieving a sufficiently high anticancer efficacy.

To model the effect of adding a radiosensitizer to radiation treatment we can
extend both the Imax and linear quadratic function in the following manner,

F (DR, C) = 1− (1 + b C) exp(−α DR − β D2
R),

I(DR, C) = 1− Imax

∑m
i=1(1 + a C)DR

ID50 +
∑m

i=1(1 + a C)DR
,

(2.21)
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where a and b describe the radiosensitizer’s ability to increase the long-term
and short-term damages, respectively. For a full dynamical model Eq. 2.20
could again be used after replacing the regular efficacy functions with these
extended ones.

V

Figure 2.5: A schematic representation of the long-term radiation and radiosensitizer
model. V consists of proliferating tumor cells with growth rate and natural kill rate
denoted by kg and kk, respectively. After each radiation application, with dose DR,
a proportion of proliferating cells are instantly killed. The radiation treatment also
inhibits the growth rate. CB denotes the concentration of radiosensitizer at the instant
of radiation application and increases the effect of both types of radiation damage.

2.2.4 Tumor Static Exposure

It is often of interest to find a threshold for drug or radiation exposure that,
when surpassed, yields the desired treatment outcomes such as tumor shrink-
age. A visual tool for this purpose is the isobologram, which is a curve that
describes all exposure pairs with equivalent effects. Tumor Static Exposure
(TSE), originally referred to as Tumor Static Concentration is an isobologram
that describes all combinations of exposure levels that, when maintained at
a constant level, induce tumor stasis, effectively partitioning the space of
potential exposures into regions of tumor growth and tumor shrinkage. Ad-
ministering doses yielding exposures above the TSE curve is predicted to cause
tumor shrinkage, possibly leading to complete eradication. The TSE curve for a
model is obtained by solving the right-hand side of the tumor volume derivate
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equal to zero. The TSE curve based on Eq. 2.16 is shown in Fig 2.6.
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Figure 2.6: An illustration of a TSE curve. Concentration pairs on the blue line are
predicted to result in tumor stasis. Hence, concentration pairs below and above the line
are predicted to lead to tumor growth and tumor shrinkage, respectively. This can be
used as a visual tool for evaluating combination therapies.

An advantage of deriving analytical expressions for the TSE directly from
the mathematical model describing the tumor dynamics is that insights are
obtained into how various model parameters influence TSE. However, in
cases where the tumor dynamics are described by complex models, obtaining
analytical expressions for TSE may be impractical without simplifications. A
workaround involves turning to numerical methods and simulations.

2.3 Survival Analysis and Time-to-event Modeling

2.3.1 RECIST and Progression-free Survival

Overall survival is defined as the proportion of patients still alive at a certain
time point after the start of a clinical trial and is the golden standard for
comparing treatments in oncology. However, this metric often takes years to
establish and it is therefore important to also have other metrics that can be
established earlier.

The Response Evaluation Criteria In Solid Tumors (RECIST) is a framework for
assessing tumor size in clinical studies and classifying disease status. The goal
of these guidelines is to have a unified method of reporting results from clinical
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studies to enable objective comparisons. RECIST states that all tumor lesions
have to be accounted for by a combination of target and non-target lesions. The
non-target lesions are qualitatively monitored, whereas the target lesions are
quantitatively monitored by measuring the sum of the longest diameters of the
target lesions (SLD). Based on both of these evaluations the overall response
(disease status) of patients can be determined. Overall response is divided into
four categories: complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD). Treatments could be compared to each
other by considering the proportion of patients classified as CR and PR.

Based on SLD measurements CR is achieved if all target lesions disappear, PR
if the SLD decreases by 30% from baseline, PD if the SLD increases by 20% and
at least 5 mm from the nadir value, and SD otherwise. If non-target lesions are
present their status must also be taken into consideration. Furthermore, the
appearance of new lesions automatically leads to PD classification.

Besides overall response, another important clinical efficacy metric derived
from RECIST is progression-free survival (PFS). PFS describes the proportion
of patients not categorized as progressive disease at a specific time point and
can be used as a proxy for overall survival.

The models we have previously discussed have all been used to describe
longitudinal data. However, to adequately make clinical predictions based on
RECIST, our model must be able to handle probabilistic events such as patient
death or the appearance of new lesions. In the rest of this section, we consider
how this is done using time-to-event modeling.

2.3.2 Time-to-event Modeling

In survival analysis, one is often interested in knowing how many patients
have not experienced an event, e.g., disease progression, at different time points.
This can be done using time-to-event modeling, where the aim is to quantify
the probability that the event occurs as a function of time. If we let T be a
random variable and the time of the event, its cumulative distribution function
(CDF) is PT (t) = p(T < t) and describes the probability that the event has
occurred before time t. The probability that the event has not occurred must be
one minus the CDF, i.e.,

S(t) = 1− P (T < t) = p(T > t), (2.22)
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Figure 2.7: (Left) Kaplan-Meier plot showing the probability of survival as a function of
time. (Right) Kaplan-Meier plots for two different treatment groups. Drug 1 seems to
be more beneficial for patient survival based on this plot. These types of plots can be
used to evaluate the efficacy of different drugs.

and this is known as the survival function.

In a real clinical study the actual time of the event is not necessarily known
for all patients and to handle this a technique called censoring is used. If a
patient leaves the study before the event occurs that patient is said to be right-
censored. The idea of right-censoring is that instead of removing patients with
unknown event times, they are kept for as long as possible. A nonparametric
estimate of the survival function that accounts for this type of censoring is the
Kaplan-Meier estimator,

Ŝ(t) =
∏

i:ti≤t

(
1− di

ni

)
, (2.23)

where di and ni are the number of events that occurred and the total population
remaining at the i’th time point [33]. The main limitation of this estimator is its
ability to handle covariates [34].

Covariates, or patient characteristics, are variables that potentially affect the
treatment outcome. A differentiation is made between categorical covariates,
such as sex or treatment arm, and continuous covariates such as age or height.
To evaluate if women and men respond differently to a drug the Kaplan-Meier
estimator could be used to estimate the two groups separately and then com-
pare the resulting survival curves. However, as the number of categorical
covariates increases, the sample size of each subpopulation decreases, lead-
ing to lower precision of the estimated curves. Furthermore, if continuous
covariates, such as age, are of interest, this approach no longer works. This
problem is solved by instead using semi-parametric or fully parametric models
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to describe the data.

It is sometimes preferable to work with a hazard function, h(t), instead of the
survival function because it is generally more informative of the underlying
reasons for the occurrence of the event [35]. The hazard function is defined as
the event rate at time t conditioned on survival until time t or later, i.e.,

h(t) = lim
τ→0

p(t ≤ T < t+ τ | T > t)

τ

= lim
τ→0

p(t ≤ T < t+ τ)

τ

1

S(t)
= −S′(t)

S(t)
.

(2.24)

Any valid hazard function must be non-negative and
∫∞
0

h(τ)dτ = ∞. The
survival function can always be obtained from the hazard function by the
following formula,

S(t) = exp

(
−
∫ t

0

h(τ)dτ

)
. (2.25)

The Cox-proportional hazard model is a semi-parametric approach for survival
analysis that takes covariates into consideration. The hazard function is given
by,

h(t) = h0(t) exp (Xiβ) . (2.26)

where Xi are the observed covariates for individual i and β the influence of the
covariates on the hazard [36]. h0 is the baseline hazard and is estimated using
a nonparametric estimator, such as the Breslow estimator [37], given by,

h0(t) =
∑

∀i:ti≤t

di
exp (Xiβ)

. (2.27)

A parametric model could also be used to specify the baseline hazard, e.g., the
Weibull model, given by,
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h0(t) =
k

λ

(
t

λ

)k−1

, (2.28)

where k and λ are the shape and scale parameters of the Weibull distribution,
respectively.

2.4 Joint Modeling

It may be that the longitudinal data influences the risk for the observed event
and vice versa. For example, one might reasonably assume that the probabil-
ity that a patient dies of cancer increases as the tumor size increases. Such
knowledge is something that can be of importance to incorporate into the
modeling framework. A sequential approach to this could be to first model
the longitudinal data and then e.g., use the estimated tumor doubling time or
tumor volume at a certain time point as a covariate in the time-to-event model.

However, one drawback of this approach is that the effect of the event on the
longitudinal data is not considered. This can potentially lead to survival bias in
the longitudinal model, an overestimation of the precision of the time-to-event
model parameters, and a less efficient estimation of both models. To remedy
this, a joint modeling approach can be utilized where both models are fit to the
data simultaneously. This alleviates the problems with the sequential approach
at the cost of more complex computations. The following model is an example
of a joint model that potentially could describe the tumor volume dynamics
and the probability of disease progression,

dV

dt
= (kg − kk)V, V (0) = V0,

h(t) = max

(
α+ β

dV

dt
, 0

)
,

(2.29)

where α ≥ 0 is the baseline hazard and β ≥ 0 is the coefficient of the effect of
the tumor volume on the hazard. The max function is included to ensure that
h(t) ≥ 0 for all t ≥ 0.
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3 Model Estimation

3.1 Parameter Estimation

All models presented in the previous chapter contain unknown parameters
that must be estimated using experimental data. To do so requires an estimator,
which is a function of the data whose output are estimates of the model param-
eters, θ∗. The most commonly used estimator in this setting is the maximum
likelihood estimator (MLE). This method involves constructing a likelihood
function, representing the probability of the data given the observed data, as
a function of the model parameters. Subsequently, the goal is to identify the
parameters that maximize the likelihood.

3.1.1 Population Modeling

An experiment typically involves more than a single individual and we con-
sider three approaches with increasing sophistication for tackling parameter
estimation when considering the population aspect. The first method is the
naïve pooled approach where it is assumed that all data comes from a single
"hyper" individual that represents the population in large.

We consider a population of N subjects and denote all observed data for
individual i = 1, .., N at each discrete time point tj , j = 1, ...,M by the vector
yi = (yi,1, yi,2, ..., yi,M ). Furthermore, we let the matrix Y = (y1, y2, ..., yN )
contain all observations for all individuals. The aim is to describe the data
using a deterministic output term (model prediction) and a residual error,

yi = g(xi, t, θ, ui) + σ ei, (3.1)

29
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Naïve pooled approach 2-stage approach Nonlinear mixed effects modeling

• Computationally easy

• Information is obtained regarding
the typical individual

• Suitable when population is 
homogenous and sample size is 
large

• Computationally easy

• One set of parameters estimated
for each individual, hence individual
difference are accounted for

• Suitable when sample size is large
since many parameters are
estimated

• Computationally complex

• Individual and population 
parameters estimated
simultaneously

• Suitable for even small sample
sizes since few population 
parameters are estimated

Hyper individual

Figure 3.1: Illustration of the naïve pooled approach, 2-stage approach, and nonlinear
mixed effects (NLME) modeling for parameter estimation. The naïve pooled approach
assumes that all patients are replicates of a "hyper" individual that represents the popu-
lation at large. This allows the general behavior of the population to be investigated,
but limited information regarding the variability in the population is obtained. In the
2-stage approach, a model is first fit to each individual and inferences regarding the
population variability are then obtained by analyzing the individual models’ param-
eters. In the NLME framework, population variability is directly incorporated into
the model equations. Both random effects (individual parameters) and fixed effects
(population parameters) are estimated simultaneously, which allows smaller sample
sizes to be considered in comparison with the other approaches. This comes at the cost
of both computational and theoretical complexity.
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where ei is a standard normal random vector, i.e., ei,j ∼ N(0, 1) and σ the
standard deviation of the residual errors. g could be one of the previously
explored tumor models and θ are the parameters of the model. x are state
variables such as the tumor volume itself or the drug concentration and ui are
patient covariates.

Because of the assumptions of the error model, each observation is also nor-
mally distributed, i.e., yi,j ∼ N(g(xi,j , tj , θ, ui,j), σ). From the probability den-
sity function (PDF) of the normal distribution, we have that the likelihood
function is,

L(θ) =

N∏
i=1

p(yi|θ) =
N∏
i=1

M∏
j=1

1√
2πσ2

exp

(
−1

2

(yi,j − g(xi,j , tj , θ, ui,j))
2

2σ2

)
.

(3.2)

In this model formulation, the covariates are the only thing that differs between
patients, but this is usually not enough to explain the variability stemming
from complex biological processes. Thus, all the (unexplained) inter-individual
variability (IIV) is confounded with the measurement error. Hence, the knowl-
edge gained regarding the population as a whole is limited. This is the main
drawback of the naïve pooled approach. If there are many samples from a ho-
mogenous population and the median behavior of the population is of interest
it can still be useful as it is an easy and computationally inexpensive approach.

The next method we consider, the two-staged approach, solves the problem
of confounding IIV and measurement errors by estimating a set of model
parameters for each individual separately. Each observation is now described
by,

yi = g(xi, t, θi, ui) + σ ei, (3.3)

where θi are the parameters specific to individual i. The first stage consists of
maximizing the total population likelihood,
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L(θ) =
N∏
i=1

p(yi|θi) =
N∏
i=1

M∏
j=1

1√
2πσ2

exp

(
−1

2

(yi,j − g(xi,j , tj , θi, ui,j))
2

2σ2

)
.

(3.4)

Once accomplished, the second stage is to estimate, e.g., the expectation and
variance of θ and use these estimates to describe the IIV. This approach is
suitable for a heterogeneous population but a large sample size is required to
get accurate estimates of the expectation and variance of θ.

The third and final approach, nonlinear mixed effects (NLME) modeling, alle-
viates the need for a large sample size by directly estimating the population
distribution of the parameters from the data. This is done by considering two
types of model parameters, fixed effects parameters, θ, that are the same for
the entire population, and random effects parameters, φ, that are specific to
each individual but are assumed to be drawn from the same distribution.

In the NLME framework, we consider predictive models based on ODEs (or
Stochastic ODEs) that can be written in the following way,

dxi

dt
= f(xi, t,ui, θ, φi), xi(0) = ri(θ, φi). (3.5)

Let gi(xi,j , ti,j , ui,j , θ, φi) be the solution to Eq.3.5

To make the following steps a bit more concrete we consider the exponential
tumor growth model, eq.2.7, as an example. The predictive model has three
parameters, V0, kg, and kk, and if we assume that all three follow lognormal
distributions then φi = (V0,i, kg,i, kk,i) ∼ LN(μ,Ω) and θ = (μ,Ω, σ). Here μ is
the mean vector and Ω is the covariance matrix of the multi-lognormal distri-
bution. Thus, under the assumption of additive normal error, the observations
for individual i are described by,

yi = V0,i exp ((kg,i − kk,i)t) + σ ei, (3.6)

Recall, if X ∼ N(μ, σ), then Y = exp(X) ∼ LN(μ, σ). Thus, we can equiva-
lently consider the model,
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yi = exp(ηi(1)) exp (exp(ηi(2))− exp(ηi(3)))t) + σ ei, (3.7)

where ηi denotes the random effect parameters and follow a multivariate
normal distribution.

The problem in this model formulation is that the random effects parameters are
not an observed quantity, i.e., they are latent variables and, thus, the likelihood
function cannot be evaluated given only θ. A solution to this is to marginalize
the individual likelihoods over φi (or ηi), i.e.,

L(θ) =
∏
i

p(yi | θ) =
∏
i

∫
p(yi, φi | θ)dφi. (3.8)

Using the definition of the conditional probability, we have that,

L(θ) =
∏
i

∫
p(yi, φi | θ)dφi =

∏
i

∫
p(yi, φi, θ)

p(θ)
dφi =

∏
i

∫
p(yi | φi, θ)

p(φi, θ)

p(θ)
dφi =

∏
i

∫
p(yi | φi, θ)p(φi | θ)dφi,

(3.9)

where,

p(yi | φi, θ) =
∏
j

1√
2πσ2

exp(− (yi,j − V0,i exp(kg,i − kk)t)
2

2σ2
), (3.10)

and the PDF of a multivariate lognormal random vector is,

p(φi | θ) =
∏

k φi(k)
−1 exp

(− 1
2 (log(φi)− μ)TΩ−1(log(φi)− μ)

)
(2π)n/2 det(Ω)1/2

. (3.11)

The integral in Eq. 3.9 has to be solved for each individual, but considering Eqs.
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3.10 and 3.11, we quickly realize that this integral lacks a closed-form solution
and is intractable for even this relatively simple model. In the two upcoming
sections, we consider two algorithms for solving this and obtaining estimates
of the parameters.

Once the most likely fixed effects parameters have been estimated, θ∗, the most
likely individual parameters, i.e., the mode of the conditional random effects
density can be found by solving,

φ∗
i = argmax

φi

p(φi | yi, θ∗) = argmax
φi

p(yi | φi, θ
∗)p(φi |, θ∗). (3.12)

These values are commonly known as Empirical Bayes Estimates (EBEs) and in
the η parametrization, the equivalent values are η∗i = log(φ∗

i ).

3.1.2 First Order Conditional Estimation

The Laplace Approximation, approximates the integral in Eq. 3.9 using a
second-order Taylor approximation of the individual log-likelihoods, li =
log(Li). We consider the η parametrized model and perform the Taylor expan-
sion in η around η∗ i.e.,

li(ηi) ≈ li(η
∗
i ) +∇li(η

∗
i )(ηi − η∗i ) + Δli(η

∗
i )

(ηi − η∗i )
2

2
(3.13)

Since ∇li(η
∗
i ) = 0, we have,

L(θ) ≈ LL(θ) = Πi exp(li(η
∗
i ))

∫
exp

(
(ηi − η∗i )

2

2Δli(η∗i )−1

)
dηi, (3.14)

where LL is the approximate total population likelihood. We note that inside
the integral is the unnormalized PDF of a multivariate normal random vector
with mean μ = η∗i and covariance matrix Σ = −Δli(η

∗
i )

−1, which evaluates

to the inverse of the normalization constant of the PDF, i.e., − det
[−Δli(η

∗
i )

2πη∗
i

]−1/2

.
Hence, we obtain the following approximation of the individual log-likelihoods,
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Li(θ) ≈ exp(li(η
∗
i )) det

[−Δli(η
∗
i )

2πη∗i

]−1/2

. (3.15)

The idea for finding the MLE of θ is by iteratively first finding the η∗i for each
individual that maximizes 3.15, given θ, and then given η∗i finding the θ that
maximizes 3.15. For the first iteration, a start guess of θ needs to be specified.
The algorithm is presented below.

Algorithm 1 Maximum Likelihood Estimates of θ

Set initial values θ(1) and k = 1
repeat

Set η∗i = argmaxη li(η, θ
k) for each individual

Set θk+1 = argmaxθ
∑

li(η
∗
i , θ)

k = k + 1
until convergence of θ

To compute 3.15 we have to differentiate li twice with respect to ηi, which can be
a computationally expensive task. The first-order conditional estimation with
interaction (FOCEI) approximates the Hessian matrix by ignoring second-order
derivatives whereas the first-order conditional estimation (FOCE) method also
ignores the dependence of the residual covariance matrix on the random effect
parameters. The rationale behind ignoring the second-order terms is that their
expected value in a correctly specified model is 0. For both a detailed derivation
of the approximations of the Hessian matrix as well as a more detailed MLE
algorithm using FOCE or FOCEI we refer the reader to Almquist (2014) and
Leander (2021) [18, 38]. Finally, we also mention that there are no guarantees
that this algorithm converges, but it often does.

3.1.3 Stochastic Approximation Expectation Maximization

The second algorithm for NLME modeling that we consider is the Stochastic
Approximation Expectation Maximization (SAEM) algorithm. SAEM is an
extension to the Expectation Maximization (EM) algorithm and it is therefore
appropriate to first give a quick overview of this algorithm to understand why
it cannot be applied to the problem at hand. The EM algorithm can be used to
maximize a similar likelihood as in 3.8, but with a discrete latent variable, zi.
We consider how to maximize the following likelihood,
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L(θ) =
∏
i

p(yi | θ) =
∏
i

∫
p(yi, zi | θ)dzi. (3.16)

As previously seen this integral can be difficult to solve and the idea of the EM
algorithm is that instead of maximizing this likelihood we iteratively solve,

Q(θ|θk) =Ezi∼p(.|yi,θ(k))

∑
i

log(p(yi, zi | θ))

=
∑
k

∑
i

log p(zi = k | yi, θ(k)))(p(yi, zi = k)k | θ)),
(3.17)

and

θ(k+1) = argmax
θ

(Q(θ|θk)). (3.18)

The rationale behind this is that it can be shown that,

log(p(yi) | θ)− log(p(yi) | θ(k)) ≥ Q(θ|θk)−Q(θ(k)|θk), (3.19)

i.e., the likelihood function increases with at least as much as Q(θ | θk) for each
iteration and thus maximization of Q implies maximization of the likelihood.

Now, the reason why we cannot apply the EM algorithm straight away to
maximize 3.8 is that ηi is a continuous random vector and thus we end up with
new, often intractable, integrals,

Q(θ|θk) =
∑
i

∫
p(ηi | yi, θk) log(p(yi, ηi | θ))dηi. (3.20)

However, instead of exactly solving the integrals we can use Monte Carlo inte-
gration to make stochastic approximations of them, that is Q(θ|θk) ≈ QL(θ|θk),
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with,

QL(θ|θk) = 1

L

L∑
l=1

log(p(yi, η
∗
i,l | θ) =

1

L

L∑
l=1

log(p(yi, | θ, η∗i,l) log(η∗i,l | θ),
(3.21)

where η∗i,l are samples drawn from the conditional distribution, p(ηi | yi, θk).
This conditional distribution often does not have a closed form but samples
from it can be generated using Markov Chain Monte Carlo (MCMC) methods,
e.g., the Metropolis-Hastings algorithm. Here L is the total number of Markov
chains drawn for each individual and after drawing these samples eq. 3.21
can be maximized in terms of θ. To achieve a sufficiently stable stochastic
approximation a rule of thumb is that the total number of MCMC samples
(N × L) should be at least 50.

To give the SAEM algorithm a chance to explore the parameter space well, it
starts in what is known as the exploratory phase. Here the estimate of θ at
iteration k = 1, ...,K − 1 is entirely based on the current MCMC sample, i.e.,

θk = argmax
θ

QL(θ|θk−1). (3.22)

This means that the algorithm does not retain any information from the previ-
ous iterations. However, to ensure convergence, this changes as it enters the
smoothing phase at k = K − 1. Here the estimates are found by averaging
over previous k ≥ K iterations θ-estimates and the estimate from the current
MCMC sample,

θk = θk−1 +
1

k
(argmax

θ
QL(θ|θk−1)− θk−1). (3.23)

Both phases can be described by,

θk = θk−1 +
1

kα
(argmax

θ
QL(θ|θk−1)− θk−1), (3.24)
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where α is known as the stepsize exponent and determines the memory of the
algorithm. Setting it to 0 and 1 gives eq. 3.22 and eq. 3.23, respectively.

The steps in the SAEM algorithm are summarized below and for a detailed
proof of the convergence of the SAEM algorithm, we refer the reader to Delyon
et al. [39].

Algorithm 2 Maximum Likelihood Estimates of θ using SAEM

Set initial values θ(1) and k = 1
repeat

for i=1:N do
Generate L samples from p(ηi | yi, θk−1) using MCMC

end for
if k < K − 1 then
α = 0

else
α = 1

end if
θk = θk−1 + 1

kα (argmaxθ QL(θ|θk−1)− θk−1),
k = k + 1

until convergence of θ

Since SAEM uses samples from the conditional parameter distributions for
estimation, it necessitates that such distributions exist, meaning that only fixed
effect parameters that are associated with one of the random effect parameters
or the measurement model can be estimated. A workaround for this is to
either introduce small artificial variability to the parameter or run a separate
maximization algorithm in parallel with SAEM, such as the Nelder-Mead.

3.2 Model Selection and Validation

3.2.1 Parameter Uncertainty

One of the first important tasks when validating a model is to ascertain how
certain we can be in the correctness of the estimates, i.e., what is the variance of
the estimates? The observed Fisher information matrix is given by,
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I(θ̂) = −d2 log(p(Y | θ)
dθ2

∣∣∣∣
θ=θ∗

, (3.25)

and describes the curvature of the log-likelihood function in the mode of the
distribution. Thus, it gives a qualitative picture of how well the parameters
have been estimated. A large absolute value indicates that the mode of the
distribution is located in a high-density peak and that a small change of the
parameter results in a large reduction of the likelihood. This in turn means
that the parameter is most likely well estimated. On the other hand, a small
absolute value indicates that the mode is located in a flat-density area and,
thus, most likely less well estimated. This is illustrated in Figure 3.2.
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Figure 3.2: The plot shows two different negative log-likelihood functions that both
have their minimum value in θ∗. The blue log-likelihood has a very high curvature
meaning that a small step ε in θ causes a large increase in its value, with the opposite
being true for the yellow log-likelihood. From this, we can infer that θ∗ in the model
with the blue log-likelihood is better estimated in comparison to the θ∗ in the model
with the yellow log-likelihood.

Moreover, the Cramér-Rao lower bound (CRLB) is the lowest variance an unbi-
ased estimator can obtain and is defined as the reciprocal of I(θ∗). Maximum
likelihood estimators are efficient estimators, i.e., they achieve the CRLB when
the sample size tends to infinity, hence we have equality in the equation above.
The variance of the estimate of k′th parameter can thus be approximated with
I(θkk)

−1 when the sample size is sufficiently large. The precision of the param-
eter estimates is usually presented as relative standard errors % (RSE) and are
estimated as,
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RSEk% = 100%
I(θ∗kk)

−1/2

θ∗
(3.26)

A rule of thumb is that an estimated parameter with an RSE below 25% is well
estimated and up to 50% is acceptable.

3.2.2 Validation and Selection

Before a calibrated model can be used for predictions, its ability to adequately
describe the observed data must be validated. More specifically, we have made
the following three assumptions during the building of the model that must
be evaluated: (1) The deterministic function h can approximately describe the
data. (2) The residuals, êi,j = yi,j−h(ti,j , ...), approximately follows the chosen
error model. (3) The individual parameters (EBEs) can be described by the
chosen distributions.

These assumptions are often assessed by visually inspecting different plots, but
the empirical distributions could also be quantitatively evaluated using e.g.,
the Kolmogorov–Smirnov test. Plotting the observed data versus the model
predictions for the entire population as well as for each individual gives a hint
of how well the model fits on a population and an individual level, respectively.
Fig. 3.3 shows examples of these kinds of plots.

A plot showing the estimated residuals against both time and the state spaces
(e.g., the tumor size) allows one to evaluate if any dependencies have not
been accounted for in the model specification. We show examples of such
plots from two models in Fig. 3.4. In the left plot, the residual does not seem
to be dependent on time, whereas in the middle plot, the residuals seem to
increase with time, indicating some misspecification. The residuals could also
be plotted together with the PDF of the estimated distributions and under
the assumption of normally distributed residuals, a QQ-plot could also be
appropriate. For the EBEs, it is important to verify that there are no obvious
differences in distribution between treatment groups, which could, e.g., be a
sign of drug interaction effects. To test this the η EBEs could, e.g., be plotted
separately for each treatment group to evaluate if they all are approximately
symmetric around the mean. This is illustrated in the right part of Fig. 3.4,
where treatment arm three does not behave like the other arms, which again
indicates a misspecification of the model. Histograms with theoretical PDFs
and QQ plots can be used to evaluate the entire set of EBEs as well.
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Figure 3.3: (Left) Tumor volume observations plotted against model predictions. Dots
on the blue line indicate a perfect prediction. (Right) Individual model predictions
(lines) plotted together with the individual data (dots).
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Figure 3.4: (Left) Residuals plotted against time for a correctly specified model. Here the
variance seems to be constant (homoscedasticity) and the residuals are approximately
symmetrical around 0. (Middle) Residuals plotted against time for a misspecified
model. Here the variance of the residuals increases with time (heteroscedasticity),
which indicates that a different error model might be more suitable. (Right) EBEs
plotted for three treatment arms. Here the third arm seems to differ from arms one and
two, potentially caused by a misspecified interaction term.

A popular method for evaluating the overall fit of the model is by performing
visual predictive checks (VPCs) [40]. Using this technique, new datasets are
generated by simulating the calibrated model. In a regular VPC, the dynamics
of the e.g., 10th, 50th, and 90th percentile virtual individuals are estimated and
since several datasets are generated, confidence intervals for these percentiles
can also be obtained. The simulated percentiles can then be compared with the
same percentiles from the experimental data.

Kaplan-Meier VPCs, are similar to regular VPCs but are used for evaluating
time-to-event models. Here, datasets are again simulated using the model, and
a survival curve is estimated using the Kaplan-Meier estimator for each dataset.
Survival percentiles can then be chosen for time points of interest and linear
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interpolation use to construct the plot. Examples of both types of VPCs are
shown in Fig 3.5.
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Figure 3.5: (Left) VPC for a dynamical model. The black dots are observed data and
grey dashed lines are the predicted 10th, 50th, and 90th percentile virtual individuals.
Colored areas are 95% confidence intervals for the predictions. (Right) Kaplan-Meier
VPC. The black line is the observed data, the grey is the median model prediction, and
the blue area is a 95% confidence interval of the prediction. Both of these types of plots
give a good indication of the overall fit of the model.

Several models could look equally good after using this toolbox of validation
methods. If the models contain the same number of parameters the one with the
lowest likelihood value should be chosen. If the number of parameters differs
one often uses Aikake Information Criterion (AIC) or Bayesian Information
Criterion which considers the likelihood but also penalizes models with many
parameters. They are given by,

AIC = 2k − 2 log(L(θ∗)),
BIC = k log(n)− 2 log(L(θ∗)),

(3.27)

where k is the number of estimated parameters and n is the number of obser-
vations.
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3.3 Additional Levels of Variability

3.3.1 Inter-Study Variability

As studies are carried out by different researchers, at different times, or with
different study designs, it is possible to get considerable differences in data
even for the same experimental setup [41, 42]. This is known as inter-study
variability (ISV) or inter-occasional variability (IOV) and the quantification of
it can be essential for the assumptions in the model to be valid.

To apply ISV to the k’th fixed effects parameter one estimates a unique value
of the parameter for each j’th study (or occasion), i.e.,

θk,i = Izi=jθ
j
k (3.28)

where Izi=j is an indicator function that is 1 if individual i is in study j and
0 otherwise. θk,i can hence be seen as a multinomially distributed random
variable. Moreover, if this parameter is associated with the distribution of the
m’th random effect, we can equivalently see that random effect as following a
mixture distribution with density given by,

p(φm,i) = Σjp(zi = j)p(φj
m,i), (3.29)

with φj
m,i ∼ f(θjk, ...).

3.3.2 Inter-species Variability

Another type of variability, besides the types discussed in the previous chapter,
that is very important when developing drugs, is inter-species variability.
Differences in shape, anatomy, and physiology lead species to react differently
to the same drug [43]. In oncology, this can, e.g., be differences in drug exposure
or tumor growth rate. Translating information from preclinical studies for
clinical use is a tough challenge and it is thought that insufficient knowledge
in this field is a major contributing factor to the high attrition rates seen for
anticancer drugs [14]. Currently, translation from animals to humans is mainly
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based on either replacing or scaling metrics or parameters [44, 45, 46].

3.3.3 Allometric Scaling

Allometry describes the relationship between variables such as heart rate and
body weight and can be applied to account, to some extent, for inter-species
variability [47]. The allometric equation is a power law function given by,

y = k xa (3.30)

where x and y are the two variables, k the proportionality constant and a the
scaling exponent. Studies have shown that the heart rate of an organism is
approximately proportional to its body weight raised to the power of -0.25.
Moreover, the proportionality constant is similar for organisms in the same
taxonomic or functional group [48]. This leads to the following relationship
between the heart rate of humans and mice,

yHuman

BW−0.25
Human

≈ yMouse

BW−0.25
Mouse

, (3.31)

where the parameters yi and BWi denotes the heart rate and bodyweight of
specie i, respectively. Heart rate in turn is correlated with oxygen consumption,
and thus metabolic rate. This gives a rationale for using allometric scaling for
inter-species translation of rate parameters such as the half-life of drugs. In
pharmacometrics, allometric scaling is especially valuable when extrapolating
PK parameters from animals to humans. Moreover, it has come to be the
standard practice of pediatricians for dosing children, based on information
regarding adults. Although attempts have been made to scale PD parameters
as well, e.g., growth rates, how well it works in practice is still up for debate.
When considering inter-species translation, for example, the relationship is
further complicated by the fact that human tumors are growing in a mouse
microenvironment.



3.4. Machine Learning in Oncology 45

3.4 Machine Learning in Oncology

Machine Learning (ML) or artificial intelligence (AI) has emerged during the
last decade as a very popular class of methods for analyzing large data sets that
are used in numerous different fields. However, in essence, ML is parameter
estimation. In this section, we discuss regression-based methods and how they
are used in oncology to both identify important covariates and their influence
on the EBEs from an NLME model [49].

Regression methods are often used to quantify the linear relationship between
observed variables (the EBEs) and a set of explanatory variables (covariates).
This is, of course, not a new problem and classical statistics has had the answer
to how to perform this type of analysis since at least the start of the 19th century,
namely linear regression (LR). The LR model describes the M observations of
individual i, yi ∈ R

M , by a linear equation,

yi = β g(xT
i ) + εi (3.32)

where xi ∈ R
N and β ∈ R

M×N are the N − 1 recorded covariates values of
individual i and their influence on each observation, respectively, and g : RN �→
R

N is a potentially nonlinear function. Thus, the model is linear in the sense of
the coefficients. We also note that the first element of xi is set to 1 to account
for a baseline coefficient and that ε is the same as in the PK/PD models, i.e., the
error between the model prediction and the observation. The β-vector can be
estimated by considering the entire population of n individuals and solving,

min
β

n∑
i=1

||yi − β g(xT
i )||2 (3.33)

After calibrating the model, covariates whose influence cannot be estimated
with high enough precision (often in terms of p-values) can be discarded
and the model recalibration without those. Two similar regression methods
that directly incorporate covariate selection in the model are LASSO (lowest
absolute shrinkage and selection operator) and ridge regression [50]. Both
methods include a penalty (or regularization) term to the minimization problem
that is the lp-norm of the coefficients, i.e., we solve,
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min
β

n∑
i=1

||yi − β g(xT
i )||2 + λ||β||pp, (3.34)

where λ is a hyperparameter. p = 1 and p = 2 give LASSO and ridge regression,
respectively.



4 Summary of Papers

4.1 Paper I

In this paper, published in BMC Cancer, the long-term radiation and radiosen-
sitizer model first proposed by Cardilin et al. [51] was refined and further
analyzed. The model is based on a system of ODEs that was calibrated with
xenograft data from three studies, provided by Merck. The studies evaluated
the efficacy of three separate radiosensitizers in combination with radiation
treatment and the aim was to both fit the model to all data simultaneously and
rank the radiosensitizers based on efficacy.

To accomplish this, both inter-study variability and inter-individual variability
were quantified from the data. Furthermore, a Monte-Carlo-based simulation
method for ranking compounds in terms of population TSE was developed.
The method determines the necessary exposure pairs of radiation dose and
radiosensitizer concentration that lead to tumor stasis for different population
percentiles, e.g., 50% or 95%. Two strengths of the simulation-based method are
that it is suitable for complex models and directly incorporates the treatment
schedule in the predictions. Therefore, it can potentially be used to select what
compounds to proceed with in the subsequent drug development phase.

4.2 Paper II

The second paper was published in Cancer Chemotherapy and Pharmacology.
In it, we investigate how well clinical oncology results can be predicted from a
translated preclinical semi-mechanistic model. To accomplish this, volumetric
xenograft tumor data was first searched for in the literature for combinations
where published clinical data (RECIST response) also was available. Three

47
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such combinations were found and the data was modeled using preclinical
tumor growth inhibition models.

The preclinical models were translated by replacing mouse exposure with
human exposure and allometric scaling of all PD rate parameters. Furthermore,
we estimated optimal scaling parameters given the observed clinical data by
solving an optimization problem. The aim was to find generally applicable
scaling parameters that better describe the differences between human and
xenograft mice models than what allometry proposes. Clinical predictions were
performed using both scaling techniques and through a bootstrap procedure,
95% confidence intervals of these predictions were obtained.

4.3 Paper III

In the third paper, published in Clinical Pharmacology and Therapeutics:
Pharmacometrics and Systems Pharmacology, a joint modeling approach for
describing and predicting progression-free survival was constructed. The joint
model consists of a tumor growth inhibition model in combination with a time-
to-event model. In addition, we also used another parametric time-to-event
model to account for uninformative dropout.

All models were calibrated with data coming from a clinical phase III study.
The joint model in combination with the dropout model was able to describe
the data well, and the predictive power of the models was tested by performing
internal and external validations. For the internal validation, the model was
recalibrated with truncated data and then used to predict the removed data. As
an external validation, we predicted the progression-free survival of a missing
treatment arm. In both cases, the model was shown to have good predictive
capabilities. Regression and decision tree-based machine learning algorithms
were also used to screen for important patient covariates influencing the EBEs.

4.4 Manuscript IV

In this paper, which is in manuscript form, analytical expressions for the prob-
ability that patients are categorized into each RECIST category were derived.
The expressions were used to find an equation that predicts the necessary
sample size of a clinical study to achieve a certain significance level and power.
Thus, we were able to link the tumor growth inhibition model with power anal-
ysis, essentially creating a parametric model that can be used for sample size
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calculations. Moreover, the probabilistic equations were also used to extend
the classical TSE concept to align more with RECIST. By differentiating the
probability functions with respect to the drug concentration, we also derived
an equation that describes what concentration maximizes the probability that a
patient is classified as stable disease.

4.5 Manuscript V

In the fifth manuscript, we investigated how the choice of population model
affects the distribution of progression-free survival. We showed that there are
qualitative differences in distribution between a commonly used preclinical
model and a clinical model. Leveraging the information from this analysis
should increase the translational potential of preclinical tumor models. Further-
more, we also considered how different assumptions of combination therapy
efficacy lead to different distributions. Preclinical data was also modeled to
investigate how well the independent-drug action hypothesis can be used in
dynamical system modeling.
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5 Discussion

In this concluding chapter of the thesis, we explore the primary contributions
to the field and highlight key findings derived from the various appended
papers. The aim is to put the results into a bigger perspective and to give an
idea of how they can influence future research projects.

One of the biggest scientific contributions of this thesis is the continued devel-
opment of the predictive parametric models meant to be used as an alternative
to the nonparametric descriptive analysis methods that are often used today.
The two most prominent examples come from Paper III and Manuscript IV,
where parametric models were explored for both PFS survival curves and
power analysis, respectively. Very important questions can be considered with
the help of these models. For example, by modeling how the required sample
size is affected by different parameters, e.g., the drug dose, predictions can be
made on how a change in treatment schedule changes the number of patients
that has to be recruited for the study. Moreover, the PFS model was shown to
have the potential to predict essential clinical metrics early in the trial period
and to make predictions on the efficacy of new combination therapies. Further
analysis should include validating the model on more data sets and refining
the model with, e.g., individual treatment schedules and dose reductions. The
time-to-event models, which are essential for the model-based PFS approach,
often require more mature data sets for accurate calibration, in comparison
with the tumor growth inhibition models. Thus, an interesting avenue of con-
tinued research regarding this predictive approach could be to investigate if it
is possible to leverage already existing time-to-event models for similar drugs
and the same tumor type for making predictions on new drug candidates. The
hope here is that since the drug-specific parameters are contained in the tumor
growth inhibition model, the parameters of the time-to-event model reflect
relationships of a more general nature, such as the correlation between tumor
size and the probability of patient death.

The quantification of different levels of variability features heavily through-
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out the thesis. In all papers and manuscripts, inter-individual variability is
considered either from a theoretical standpoint or by quantifying it from exper-
imental data. Furthermore, in all but Manuscript IV intra-individual variability,
in terms of measurement error, is quantified. These two varieties of variability
are frequently the minimum that must be considered when analyzing popu-
lation data. However, as mentioned earlier, various other forms of variability
must be taken into account in different situations.

Although inter-study variability and inter-occasional variability are mathe-
matically the same thing, there is a point here to differentiate between them.
Paper I is the only project where inter-study variability was considered and it
turned out to be essential to quantify it to adequately model data from three
different studies. This was surprising as the studies were carried out under
the supervision of the same person, in the same lab, and with the same drug
(although different formulations). The implication of this is that inter-study
variability can be a major factor when comparing different studies to each
other. It also helps to explain why researchers have found it hard to replicate
results from studies carried out by other teams [52]. Due to data limitations,
the influence of inter-study variability was not estimated in any other papers.

Inter-occasional variability is considered in Manuscript V to model the variabil-
ity in replicates of PDXs. However, in practice, it was problematic to quantify
it from the data because only one replicate was assigned to each treatment
arm. It was therefore fixed to either zero or reasonable values taken from the
literature for most parameters. This led to models that fit the data well and
conformed with the expectations based on previous research by other scientists.
This approach opens up further investigation into the individual effects of
drugs when analyzing data from studies where multiple PDXs are created from
several patient’s tumors.

Preclinical studies have to be designed in such a way as to allow the infer-
ence of clinical conclusions. The inference step, i.e., translation, is the final
form of variability that we discuss. Model-based translational tools have been
considered and advanced through the presented research, most notably in
Paper II and Manuscript V. Here quantitative and qualitative inter-species
differences were considered, respectively. The proof-of-concept for finding
optimal translational scaling parameters outlined in Paper II is a good starting
point for larger translational research efforts. However, the research presented
in Manuscripts IV and V should be leveraged to refine the methodology and
practical implementation of the algorithms. The analytical equations derived
in Manuscript IV can be used to alleviate the need for some time-consuming
numerical simulations, which is particularly useful if larger data sets are con-
sidered. Furthermore, considering clinical data with individual tumor size
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time series would allow for the construction of PFS curves based only on target
progression. This should allow a more accurate comparison to PFS curves
estimated from mice. In addition, it enables the comparison of the entire PFS
curve and not just the proportion of patients classified as progressive disease
at week 8, i.e., the PFS curve evaluated at week 8. The qualitative inter-species
differences highlighted in Manuscript V could be essential to consider to allow
for this analysis to be successful. A first step to make this possible would be to
perform an extensive search of publically available preclinical and clinical data
sets, in e.g., ProjectDataSphere [53].
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