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ABSTRACT: The scaling up of fluidized beds has been purposefully pursued for more than
100 years. Yet, over that time, scale-up tools have not significantly changed. Data analysis is
typically a standard analysis of variances statistical exercise, perhaps reinforced with a design of
experimental procedure. Flowsheeting and equipment design are based on institutional
knowledge, albeit graphical user interface-based process flow models make that job more
manageable. Advanced models such as computational fluid dynamics are used but often as a
supplement and not a primary driver. As a result, the scale-up process for a fluidized bed can
take more than 10 years. Fluidized beds remain at the forefront of the present time-critical
sustainability challenges, e.g., carbon capture by particulate sorbents, methane-to-hydrogen,
plastic-to-chemicals, etc. In view of the exigency toward net zero, today’s scale-up efforts need
to be accelerated, leveraging the advanced new tools that have become readily available. The
problem is that such tools are often neglected, inadequately implemented, ineffectively
resourced, and/or poorly understood. This motivated the current effort, which is targeted at
reviewing how scale-up tools have evolved over the years and the promising new tools,
addressing some of the barriers of these tools in the design and scale-up of fluidized beds, as well as contemplating what can be done
to circumvent these barriers. As a follow up, a companion part 2 (Cocco, R. A.; Chew, J. W. Ind. Eng. Chem. Res., submitted for
publication) proposes a new scale-up path leveraging the advanced tools to achieve timely implementation of the new green fluidized
bed processes.

■ INTRODUCTION
The year 2022 represents a significant milestone in fluidization,
namely, the 100th anniversary of the commercial fluidized bed
reactor.1 The persistent interest today in using the fluidized
bed to tackle time-critical sustainability challenges (e.g., carbon
capture by particulate sorbents, methane-to-hydrogen, plastic-
to-chemicals, etc.) is not surprising, considering the proven
efficacy of such unit operations over 100 years in wide-ranging
applications (Figure 1).

With today’s urgent climate-change-related processes and
the need for sustainability and circularity, expediting the
commercialization of these new concepts is all the more
critical. Carbon-zero goals have been set for as soon as 2025,2

so the timeline is akin to the same urgency during World War
II that drove the operation of 35 commercial fluidized catalyst
cracking units (FCCUs) within five years from conception.1

We need to move faster without compromising today’s and
tomorrow’s energy conservation, safety, waste reduction, and
emissions reduction objectives.

Fluidized bed technology and scale up play a pivoting role in
this need. As shown in Figure 2, new green-transition
technologies with biomass gasification and pyrolysis, plastic

pyrolysis, photovoltaics, batteries, and methane pyrolysis are
based on fluidization. Fortunately, current capabilities now
allow scale-up efforts to move beyond the cost- and time-
consuming Edisonian approaches of the past. Concept tools
such as Design for Six Sigma,3 TRIZ (Theory of Inventive
Problem-Solving),4 NICE (Nature-Inspired Chemical Engi-
neering),5 SCAMPER (Substitute, Combine, Adapt, Modify/
Magnify, Purpose, Eliminate/Minimize, and Rearrange/
Reverse),6 CPS (Creative Problem Solving),7 SWOT
(Strength, Weaknesses, Opportunities, and Threats),8 RAP
(Risk Assessment Process),9 and Flowsheet Synthesis10 have
become available to get the design team on the optimized track
in a much shorter time. Modeling tools such as computational
fluid dynamics (CFD), computational fluid dynamics−discrete

Received: November 23, 2023
Revised: January 3, 2024
Accepted: January 4, 2024
Published: February 5, 2024

Reviewpubs.acs.org/IECR

© 2024 The Authors. Published by
American Chemical Society

2519
https://doi.org/10.1021/acs.iecr.3c04146

Ind. Eng. Chem. Res. 2024, 63, 2519−2533

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

C
H

A
L

M
E

R
S 

U
N

IV
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Fe

br
ua

ry
 2

8,
 2

02
4 

at
 0

7:
52

:4
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/page/virtual-collections.html?journal=iecred&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ray+A.+Cocco"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jia+Wei+Chew"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.3c04146&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/iecred/63/6?ref=pdf
https://pubs.acs.org/toc/iecred/63/6?ref=pdf
https://pubs.acs.org/toc/iecred/63/6?ref=pdf
https://pubs.acs.org/toc/iecred/63/6?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.iecr.3c04146?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


element method (CFD-DEM), and hybrid multiphase particle-
in-cell (MP-PIC) have been refined over the past 30 years for
fluidized bed applications.11−14

Today’s codes can model commercial-scale units (including
chemical reactions and heat transfer) in weeks, often much
faster than setting up and collecting data from a lab-scale unit,
and certainly faster than pilot units or process development
units. Advanced statistics, along with artificial intelligence and
machine learning, all have a role to play here as well. However,
it is more than just having access to these tools; how, when,
why, and how often need to be defined at the very start of the
scale-up project. Here, the tools and the scale-up path for using
those tools are defined in two parts, with this first part giving a
perspective on tools and the subsequent part15 focusing on the
path.

■ HISTORICAL TOOLS (<1990)
The success of the FCCU process during World War II
garnered keen interest in the new gas−solid contacting
method. As a damper on the success, shortly after in 1950,
two 5 m diameter Fischer−Tropsch reactors (i.e., bubbling
fluidized beds) in Texas were found to have much lower yields
than that in the pilot 0.3 m diameter pilot reactors, which has
been tied to slugging at the pilot reactor that led to much
shorter gas residence time in the nonslugging commercial
reactor.16 This failure underscores the need for judicious scale
up to leverage the benefits of fluidized bed reactors, leading to
extensive studies to bridge the gaps. The first phenomenon
earnestly studied was the gas−solid heat transfer rate, followed
by drawing analogies to plug versus mixed flow models,
resulting in at least 34 models by 1970 that contradict one
another.17 The scale up of this era was largely Edisonian, as
extensive efforts in the background proceeded in parallel to
contribute toward more mechanistic understanding.

Figure 1. Key milestones of fluidization. Details taken from ref 1. Copyright 2022 Elsevier B.V.

Figure 2. Time-critical sustainability challenges.
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Figure 3 illustrates a typical traditional scale-up procedure.
The first step is the bench-scale unit, typically a fixed bed with
a diameter of 0.025−0.05 m. Conventionally, this has been a
trial-and-error process to establish the efficacy of the desired
reaction at this scale, including preliminary data on the
reaction kinetics, product mixture, yield, selectivity, and
catalyst type. The cost incurred at this stage is approximately
$0.5 MM. In about 1−2 years, a lab-scale unit is tested using a
more practical fluidized bed with a diameter of about 0.15−0.2
m. Validation of the chemical reaction is obtained at this point,
and the behavior and properties of the catalyst are critically
assessed and improved upon. As with the bench-scale test, this

step costs similarly $1 MM. In another 2−3 years, a pilot-scale
fluidized bed with a diameter of about 0.3−0.45 m is set up
and used to validate the technology and economics, as well as
develop models for catalyst attrition and scaling up. The price
tag of this stage is much steeper at $20 MM due to the larger
scale. Then, 3−5 years later, the demonstration unit, which is a
0.5−1 m diameter fluidized bed, is used to provide proof-of-
concept at the targeted operating conditions and integrated
with associated unit operations. Catalyst attrition and scaling
models are further validated. The economics of the process
and predicted market penetration are analyzed at this stage.
The demonstration step is estimated at upward of $40 MM but

Figure 3. Historical tools (<1990): Stochastic (Edisonian) scale up.

Figure 4. Yesterday’s tools (1990−2005): Semi-deterministic scale up.
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is a cost considered necessary as a final check before
commercialization. Finally, in about 2−3 years, the commercial
fluidized bed with a diameter of more than 1 m is built at a cost
of more than $200 MM. Beyond this, further refinements and
design iterations continue.

The risk involved is different at each step, with the scaling
from small to large reported to be relatively more risky than
that from large to larger.18 From bench scale to commercial
scale, the total duration is approximately 10−12 years, and the
total cost is upward of $500 MM. The time-critical climate-
change challenges cannot wait 10 years.

Clearly, the scale-up of this era is driven by expensive (time-
wise and cost-wise) experiments. It was highlighted in 1985
that, although the oil and chemical industries have successfully
transformed chemistry concepts into commercial technology
and products, chemical plants processing solids have been
underperforming with respect to that designed for the past two
decades.19 This deficiency was attributed to the focus of
industrial research and development (R&D) on chemistry
rather than physics. In particular, the lack of focus on
fluidization hydrodynamics significantly diminished the scale-
up ratio at each step.1 Specifically, when plug-flow reactors
(PFRs) and continuous stirred tank reactors (CSTRs) scaled
at 1000−10000 times, fluid catalytic cracking (FCC) reactors
and fluid coking scaled at roughly 20−150 and 40 times,
respectively, from pilot to commercial scales in the 1940−
1950s. Correspondingly, the demand for faster and cheaper
scale up catalyzed extensive academic research on more
fundamental mechanisms, representative efforts of which are
bubble hydrodynamics models in the 1960s,20−23 entrainment
and transport disengaging heights in the 1970s and 1980s,24−27

and scaling laws28−31 and compartment models32−34 in the
1990s.

As Gidaspow’s 1986 review35 indicated, hydrodynamic
models programmed on supercomputers of that time have
become available to predict bubbles, heat transfer coefficients,
and product distributions in various fluidization regimes.
However, simulation tools are not involved in scale up yet due
to the lack of maturity of the models, lack of computational
capacity to obtain results expeditiously, and lack of confidence
in any of the results generated.36 At that point, no multiphase
reactor model is adequate to either enhance existing units or
scale up new ones, which is tied to the poor understanding of
the macroscale structures that impact interphase contact, and
thus unsurety of heat and mass transfer, and pressure and
temperature effects.37

■ YESTERDAY’S TOOLS (1990−2005)
Figure 4 represents an update of Figure 3 based on the
advances made. In particular, although the number of units and
durations remained the same, the red fonts in Figure 4
highlight the advent of better models (namely, computational
chemistry, CFD, attrition) and better testing methods (e.g.,
attrition38) to enhance the information obtained at each step.
Nonetheless, seven decades since the first commercial fluidized
bed reactor back in the 1920s, scale up remained “that mix of
mathematics, witchcraft, history and common sense which we
call engineering” such that managing the uncertainties was
deemed more crucial than improving calculation accuracy.39

The challenges related to scaling up the fluidization behavior
have been highlighted as different phenomena between the
scales, including particle sintering, erosion, solids flow, particle

size distribution (and evolving changes due to growth,
attrition, etc.), and entrainment (and thus particle losses).

CFD modeling remained limited.40 Stemming from the U. S.
Department of Energy’s (DOE) Technology Vision 2020 in
the mid-1990s,41 the Chemical Industry laid out the goals for
reliable simulation tools with detailed chemistry and transport
models, including that for granular-fluid unit operations. Part
of that effort was the Multiphase Fluid Dynamics Research
Consortium (MFDRC), which consisted of universities
(namely, University of Colorado at Boulder, Iowa State,
Illinois Institute of Technology, University of Michigan,
Princeton, Purdue, and Washington University at St. Louis),
industries (namely, Dow, Dow Corning, DuPont, Millennium,
Fluent, Chevron, AEA, ExxonMobil, Siemens, and PSRI),
national laboratories (namely, Ames, National Energy
Technology Lab, Los Alamos, Oak Ridge, Pacific Northwest,
and Sandia), and government agencies targeted at fundamental
multiphase fluid dynamics research to answer the call for
experimentally validated computational tools. MFDRC set out
a three-pronged research approach: (i) numerical methods, (ii)
phenomenology and constitutive relations, and (iii) exper-
imental validation. The specific goals were that CFD tools
need to be versatile, fundamentally based, experimentally
verified, computationally efficient, and user-friendly. Its five
year charter in 1999 focused on developing CFD models that
could address deficiencies in fluidized beds and circulating bed
risers. This resulted in full algebraic and differential granular
temperature equations in the Fluent and AEA CFX
commercial CFD codes, as well as advanced experimental
techniques, including γ-ray tomography, capacitance tomog-
raphy, computer-aided radioactive particle tracking, and
millimeter wave velocimeter for riser hydrodynamics.42

Also based on the U. S. DOE Technology Vision 2020
platform that calls for reliable simulation tools,41 1999 brought
a dedicated initiative named “Technology Roadmap for
Computational Fluid Dynamics” targeted at chemical indus-
tries.43 MFDRC identified the path forward for designing
fluidized beds. At that time, CFD was a relatively
straightforward modeling approach based on the two-fluid
model, whereby each phase is treated as a continuum and
continuity and momentum equations are solved using closure
equations. To enhance the resolution of the particle phase at a
reasonable computational cost, a multiphase particle-in-cell
(MP-PIC) technique was developed for fluidized bed
applications by ArenaFlow (now CPFD-Software). The fluid
phase is handled similarly to the two-fluid model, but the
particle phase is mapped on a Lagrangian framework.44

Particles or parcels of particles could be tracked, but collisions
are handled as in the two-fluid model whereby the solids
stresses are numerically determined from a packing fraction
model or the kinetic theory of granular flow.45

Toward improving predictive capability, this era brought
about efforts directed at first-principles understanding under-
pinning the governing equations that describe the various
fluidization phenomena,46 particularly with respect to bridging
the microscale phenomena to the macroscale challenges in
practical applications.47 The overarching goal has been to
achieve a fully specified model that runs efficiently. As evident
in the discrepancies among empirical correlations for various
phenomena (e.g., entrainment rate,48 transport disengaging
height,49 and minimum fluidization velocity50) of multiple
orders of magnitude, many deficiencies still exist that
compromise confidence in the predictions and thereby the
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models. For instance, although the particles are inevitably
nonmonodisperse, the understanding of the effect of
polydispersity was and remains somewhat imperfect. Extensive
efforts were directed to the corresponding incorporation of
polydispersity into the models.51,52 As another example, the
convention was homogeneous grids, which may not be as
accurate. Specifically, each set of equations describes a grid
whose size is chosen based on the resolution targeted. It is now
well-known that subgrids can be used to resolve small
mesoscale structures (i.e., bubbles and clusters), which are
constantly evolving. However, subgrid models were not
available yet in 2000,37 and thus, smaller grids have to be
used throughout the system to factor in the smaller structures.
Coupled with energy and species balances, the magnitude of
the task is not trivial and thus not commonly carried out back
then.

■ TODAY’S TOOLS (2005−2020)
As models improved and confidence in model predictions
grew, the possibility of eliminating a step in the scale up of
fluidized bed processes became a reality. Figure 5 shows that
the maturation of multifaceted models (i.e., economics,
computational fluid dynamics, and attrition) has allowed for
reduced tests needed at the lab and pilot cales as well as the
bypassing of a step (e.g., the pilot plant or the market
development unit (MDU)), resulting in savings of approx-
imately three years and $25−50 MM.

Leveraging more stringent scaling laws and similitude of
incoherent output power spectral density (IOP) of pressure
fluctuations, successful scale up from lab scale to PDU scale
has been proven.53 Advanced analysis methods made possible
the extraction of more valuable information from pressure data.
For example, while pressure data are typically only used for
extracting information on bed density or for calculating
standard deviation as an imprecise indicator of fluidization

Figure 5. Today’s tools (2005−2020): Semi-deterministic scale up.

Figure 6. Summary of hydrodynamic models. The number of particles specified is based on current capabilities. Reproduced with permission from
ref 1. Copyright 2022 Elsevier.
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state, more sophisticated tools like wavelet decomposition of
pressure signals made possible a direct indicator of fluidization
quality in a commercial fluidized bed application.54 A sectoral
scaling method has also been shown to work well to scale up
bubbling fluidized beds from the lab scale to market
development unit (MDU) scale.53

In a 2017 article, a poll of CFD and CFD-DEM champions
from various industries showed that 39% of respondents
consider CFD-DEM to be a valuable industrial tool, and that
percentage ballooned to 83% by 2022.55 Regarding the
simulation of hydrodynamics, Figure 6 presents the trade-off
between resolution and computational cost;1 readers are
referred to a recent review for more details on the various
methods.56 Direct numerical simulation (DNS), which resolves
the gas phase at the required spatiotemporal scale and tracks
the particle motion individually, gives high-resolution
information but can only simulate 103 particles at present.
While the number of particles is inadequate to match even that
of bench-scale tests, it is an important technique for enhancing
correlations (e.g., drag, heat, and mass transfer) and providing
mechanistic understanding. Compared to DNS, the computa-
tional fluid dynamics−discrete element method (CFD-DEM)
accounts for at least 4 orders of magnitude more particles, i.e.,
107 particles, through using averaged equations for the gas
phase. Various coarse-graining methods allow for 109 particles
to be simulated by using parcels to represent numerous similar
particles, thus reducing the computation load. This is still
insufficient for the pilot scale, much less the commercial scale.
The two-fluid model (TFM), which presumes the gas and
particle phases to be interpenetrating continua, compromises
particle-phase resolution to enable pilot-scale fluidized beds to
be simulated. The earlier embodiments of TFM assume
homogeneity within each computation grid, which thus
requires smaller grids to resolve gradients of instabilities,
which in turn increases the computational load. To address
this, subgrid models were devised to account for local
variations in particle concentration and velocity within each
grid, thereby facilitating the use of larger grids, and hence
lower computation costs. Well-established embodiments are
the filtered-TFM and energy minimization multiscale system
(EMMS), almost permitting commercial-scale fluidized bed
behaviors to be predicted.

All of these developments directly or indirectly led to the
general embracing of commercial software by around 2005 due
to significant improvements to hardware that made possible
simulations of commercial units for the simulations of
commercial fluidized bed reactors. Figure 7 shows the steep

increase in publications at this transition. The two most
popular ones are arguably Fluent and Barracuda, both of which
are based on similar coarse-graining CFD-DEM principles to
enable the simulation of fewer particles, use of larger time
steps, and using force terms to represent parcel−parcel
interactions. Fluent’s method is termed dense discrete particle
model (DDPM), while Barracuda’s is the multiphase particle-
in-cell (MP-PIC), whose theoretical foundation is the kinetic
equation for the particle phase. Due to the retention of the
discrete nature of the particle phase, the actual particle size
distribution can be used to enhance the accuracy of the
predictions.

Since ca. 2010, CFD has been undergoing rapid advances in
three key areas,57 namely, (i) algorithm with more accurate
description of the physical phenomena that leverages the state-
of-the-art processor speed and capacity; (ii) computer
architecture evolving from single CPU (central processing
unit) to 100s of CPUs to 1000s of graphical processing units
(GPUs) to grid or cloud computing and massive parallel
systems with multicore processors; and (iii) CFD as an
embedded application to focus on specific design functions
rather than on CFD per se. However, the limitations plaguing
CFD highlighted in 201257 were acknowledged to have
persisted:58 (1) grid selection, (2) ease of use, (3)
computation speed, (4) robustness, (5) incomplete physics,
(6) accounting for uncertainty, and (7) confidence in
predictions.

Typical tools used for fluidized beds are two-fluid CFD
models (TFM), CFD-DEM models, or hybrid MP-PIC
models.56,59 Today’s CFD models are sophisticated and robust
and able to provide simulation results of a commercial process
in a few weeks or less.60 Most commercial CFD models
directed toward granular-fluid flow can capture the particle size
distribution instead of using one “representative” particle
size,61 which is inherent in the Lagrangian framework of CFD-
DEM and MP-PIC codes. For the two-fluid model, moments
can be used to represent that particle size distribution.62,63

Commercial codes have been shown to be accurate within
the confines of the code’s capabilities.64 Indeed, both well-
established engineering companies65,66 and start ups67 have
embraced such commercial tools. It should be noted that these
codes are limited when other factors such as shape,
interparticle forces, agglomeration, clustering, attrition, and
particle growth or shrinkage come into play. Capturing these
effects requires adaptations to the constitutive equations
involving the drag and the collisional stresses, along with
numerical operations with spatial and temporal resolution.

Drag. There are several issues with drag. First, it assumes all
particles are independent and not interacting with each other.
For Geldart Group A and C particles, this is often far from
true. Second, many drag correlations were developed from a
single-particle terminal velocity or packed-bed pressure drops
where solids concentration in fluidized beds is between these
two limits. Efforts have been dedicated to using direct
numerical simulation (DNS) to determine the corresponding
drag relationship.68−72 While much of this work is promising,
many of the DNS models have their own limitations such as
stationary particles, nonrotating particles, dynamic clustering,
frictionless surfaces, etc. More recent studies have addressed
some of these issues.70,72 Nevertheless, this means that grid
resolution can affect the calculated drag if grid resolution is not
resolved enough.73 Details of these drag models and how

Figure 7. Number of CFD publications on fluidization through the
years. Search term = “CFD fluidiz*” in “All fields”. Source = Web of
Science. Date retrieved = October 21, 2023.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Review

https://doi.org/10.1021/acs.iecr.3c04146
Ind. Eng. Chem. Res. 2024, 63, 2519−2533

2524

https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04146?fig=fig7&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c04146?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


clustering and grid resolutions matter are addressed in a recent
review.74

Still, many of today’s commercial codes do not capture
interparticle forces. These forces are presumed to play roles in
the particle clustering in fluidized beds. Whether it is van der
Waals forces, Coulombic forces, or liquid bridging is still up for
debate.75−77 This omission can be significant with Geldart
Groups A and C particles,78−80 especially with respect to
predicting the entrainment rates. Indeed, even the wall material
can have a pronounced effect on the hydrodynamics in a
fluidized bed.81 Addressing interparticle forces is complex and
dependent on the environment to which van der Waals,
Coulombic, and/or adsorbate bridging forces are sensitive too.
It is known that Coulombic forces tend to decrease with
increasing temperature due to a lower conductivity (i.e.,
increased electron scattering).82−85 LaMarche et al.86 showed
experimentally that the electric field created by a tribocharged
Teflon sheet was enough to cause significant dielectrophoretic
interactions and suggested that triboelectrification present in
granular flows would be enough to cause similar effects. In
contrast, van der Waals forces increase with increasing bed
temperatures.87 Adsorbates (i.e., hydroxyl groups) on the
particle’s surface may change in concentration or functionality,
which affects a particle’s behavior. All of this can lead to
increased or decreased particle clustering or microclustering
(i.e., on the order of 10s of particles loosely held together88), a
known factor affecting scale-up behavior.89

Waitukaitis et al.90 quantified such particle interactions on a
microscopic scale. Their research showed that surface
roughness significantly reduced particle clustering, as deter-
mined by adding fumed silica nanoparticles to 300 μm glass
spheres. Cocco et al.91 hypothesized that changes in surface
roughness lead to different particle rotational and collision
dynamics. A later study92 showed that the degree of particle
clustering correlated to the consolidation index and the basic
flowability energy was determined from powder rheometer
measurements (i.e., FT4 powder rheometer). Similarly, Mishra
et al.93 found that the characteristic velocities obtained from
powder rheometry provided a relative gauge to particle-level
cohesion. Affleck et al.94 measured the over- and undershoot
with the pressure drop and bed voidage curves obtained from
fluidization and defluidization experiments to determine the
granular Bond number. Soleimani et al.95 were able to quantify
the degree of interparticle forces with a dynamic Hausner ratio
(i.e., tapped bulk density to freely settled bulk density), which
is an extension of the work of Manuel Valverde et al.96

Tenneti and Subramaniam97 used DNS of granular fluid
flow to develop a fluid−particle and particle−particle drag
force, which was then applied to CFD models. Sundaresan98

proposed that DNS can be used to formulate a particle-phase
stress model that captures the PSD and interparticle forces via
the Bond number. Even pure CFD-DEM models are limited.
Drag is still approximated with the same single-particle or
packed-bed models as that used with CFD. Collisional stresses
are captured on a singular particle-to-particle or particle-to-wall
event, but rigorously capturing that collision is CPU-
prohibitive for large commercial applications. For large DEM
computation domains, collisions are soft and captured with a
collision stress model of some combination of elasticity and
viscous dissipation. Still, it does allow for cohesion directly
using a Johnson−Kendeal−Roberts (JKR)-type model. Yet,
the JKR needs a value for the Hamaker constant, which is
difficult to measure in the presence of particle rotation.99,100

Collisional Stresses. Commercial CFD codes capture
collisional stresses using a packing fraction relationship101 or
the kinetic theory of granular fluids (KTGF).102−104 For lower-
velocity fluidized beds, the hydrodynamics is drag-dominated
and collisional stress models have less impact on the modeling
results. For circulating fluidized bed risers, the duality of
particle concentrations between the wall and core105 requires a
sufficient collisional stress model, typically using the differential
form of the granular temperature equation.106−109

The KTGF formulation requires the coefficient of restitution
and the specularity coefficient as inputs. The coefficient of
restitution captures the elasticity of normal particle impact
(particles or walls) while the specularity coefficient captures
the shear impact of a particle with the wall. Both are
complicated to measure. Marinack et al.110 determined the
coefficient of restitution using a particle drop test with high-
speed video images. A similar method was used by Tang et
al.111 Jiang et al.112 extended this technique to capture the
coefficient of restitution of irregular particles (i.e., maltodex-
trin). Oesau et al.113 used magnetic particle tracking for
paramagnetic particles with a similar particle-drop procedure.
Measuring the specularity coefficient is not much different than
that used for coefficient of restitution. Instead of a particle
drop, particles are ejected at an angle to the surface, and the
resulting speed and angle of impact were captured with high-
speed videoing.114 Given the complexity of these experiments,
numerical solutions have been tested. Gu et al.115 used CFD-
DEM OpenFOAM solver with LIGGGHTS integration (i.e.,
two-way coupling) to obtain the required inputs for the
particle phase stress model. However, the model is limited to
smooth, spherical particles.

Thus, the collisional stress input parameters are often
relaxed to technical experience or used as a tuning parameter at
the model validation step. For lower-velocity fluidized beds,
this may be effective; but, for riser simulations, such efforts
should be done with caution. For most CFD simulation efforts,
this remains a gap.

Grid Resolution. Grid resolution is an important
parameter in CFD simulations of fluidized beds. First, grids
should be configured to a 3D computational domain. The
asymmetric characteristics of fluidized bed hydrodynamics can
only realistically be obtained in a 3D framework. Notably, 3D
simulations have been shown to obtain solution convergency
faster (normalized) than that of 2D simulations.116 To
sufficiently capture particle drag, grid size should be on the
order of 10 times the particle size.73,117 For Geldart Group A
particles are on the order of 1 mm, which is unrealistic for
commercial-scale simulations. Thus, numerical assumptions
also need to be considered with large-scale simulations, mainly
by using subgrid models to accelerate solution times. As a
result, a filtered drag expression has been used where drag is
first evaluated in a much smaller, more resolved computational
domain gridded in accordance with this filtered size. In the
filtered model, the drag coefficient is obtained by filtering fine-
grid simulations. Presumably, the filtered drag accounts for the
less resolved grids in the larger computational domain.118,119 A
dynamic grid adjustment approach, whereby the impact of
unresolved scales is predicted from the large resolved scales,
has also been demonstrated;120,121 this still remains within
academic realms.

Coarse Graining. For Lagrangian-based models, the
number of particles in a commercial-scale simulation is
prohibitive. Today, CFD-DEM or MP-PIC models are capable
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of modeling O(107) particles whereas commercial fluidized
bed systems have O(1014) particles.55 Thus, numerical coarse-
graining assumptions are typically used for CFD-DEM and
MP-PIC simulations of commercial-scale computational
domains. The number of particles and the equations tied to
them can be reduced by grouping similar particles in a cell into
one larger or more dense particle or both. As long as the
particle properties are similar, they can be grouped within a
computational cell. The level of this grouping, called a cloud or
parcel, needs to be resolved much like the grid resolution.
Interestingly enough, the effects of this type of coarse-graining
could be minimized by using a cluster-based drag model.122

■ TOMORROW’S TOOLS (>2020)
Artificial Intelligence (AI) has become the tool for everything.
Currently, that is a stretch, but its usefulness in the concept
and development stages can also be valuable. A perspective
article in 2019 pointed out that AI in chemical engineering is
about 40 years old.123 Notably, the first AIChE (American
Institute of Chemical Engineers) session on AI was in 1985,
and the first articles on AI in process engineering appeared in
1986. More importantly, AI has already been implemented in
industry with respect to process operations and diagnosis, and
thus is a proven tool. For example, British Petroleum (BP) and
General Electric monitor oil wells using ML to augment
performance.124

With enhanced computational power and advanced
algorithms, AI, particularly machine learning (ML), has gained
significant traction in recent years. Tomorrow’s tools for scale
up will rely heavily on AI. As AI (especially ML and deep
learning) proliferates in nearly all disciplines of science and
technology,125−129 including chemical engineering,123,130 fluid
mechanics131,132 and multiphase flow,133−136 AI is expected to
lead significant changes in the research and development of
gas−solid fluidization, specifically in data analysis, generative
equipment design, flow sheet synthesis, modeling, and even
risk analysis.

ML, a subfield of AI, focuses on developing algorithms and
statistical models that enable computers to learn and make
predictions or decisions without being explicitly programmed
to perform a specific task. In other words, it is a computational
approach to teach machines how to learn and improve from
data, allowing them to recognize patterns, make decisions, and
adapt to new information. No physical governing equation is
needed, which cautions against use without sufficient domain
knowledge.

The fundamental idea behind ML is to use available data
sets to train a ML model, which learns to recognize patterns
and relationships in the data and can then generalize from that
data to make predictions or decisions about new, unseen data.
The data sets typically include input features and correspond-
ing target labels or outcomes. During training, the model
adjusts its internal parameters to minimize the difference
between its predictions and the target values. A separate data
set is then used to validate the predictions of the first training
set and the ML model. Common evaluation metrics include
accuracy, precision, recall, and F1-score (i.e., model accuracy),
depending on the specific problem. ML encompasses a wide
range of techniques and algorithms, including supervised
learning (whereby models are trained on labeled data) and
unsupervised learning (whereby models discover patterns and
structures in unlabeled data). Principle component analysis is a

good simple example of unsupervised learning where data
clusters are the product.

AI encompasses ML but has additional components such as
reinforcement learning, deep learning, natural language
processing, image recognition, expert systems, etc. Reinforce-
ment learning uses agents to make decisions by taking actions
in an environment and receiving rewards or penalties based on
those actions. It is commonly used in applications like game-
playing and robotics. Data are classified, the classification is
tested, and the cycle repeats if it is incorrect. Deep learning is a
specialized form of ML that uses artificial neural networks
(ANNs) inspired by the structure of the human brain. Deep
learning has been particularly successful in tasks like pattern
recognition, data mining, image recognition, and natural
language processing. Accurate physical models, together with
supercomputing and the capability of handling big data, will
enable the virtual reality of gas−solid fluidization technol-
ogy.137

Data Analysis. Data analysis can now readily reveal
multidimensional relationships and trends using ML tools
such as self-organizing map (SOM), neural nets, and Gaussian
process reduction.138 For example, Patel et al.139 used the ML
tools of SOM and random forest (RF) to discern key
parameters tied to macroclusters and streamers in a CFB
riser with 1188 data sets. The data’s multidimensional aspect
precluded traditional statistical models from being useful.
Notably, SOM revealed that broad particle size distributions or
bimodal distributions may hinder the growth of macroclusters
and streams. A similar study was done with bubble hydro-
dynamics in a fluidized bed of Geldart Group B powders,
further revealing the importance of polydispersity.140 Fu et
al.141 used an ANN model to predict the best conditions (i.e.,
pressure drop and expansion ratio) for fluidized bed reactors.
Kim et al.142 used RF and ANN to optimize syngas production
from a fluidized bed biomass gasifier. A similar approach was
employed by Lian et al.143 for the production of hydrogen
from a fluidized bed reactor. Indeed, ML methods for process
monitoring, fault detection, and soft sensing are already
commercially implemented.144 In short, ML tools could very
well highlight key scale-up relationships missed by a more
traditional data analysis process.

Design of Experiments. The first step of this stage is to
get reactor data such as productivity, extrinsic kinetics, bed
density profile, entrainment rates, and attrition rates. It would
also be advantageous to characterize the unit with respect to
the bubble hydrodynamics and the gas residence time
distribution. Although the sizes of fluidized bed lab-scale
units are typically too small to contribute to realistic scale-up
parameters, it is advisible to have such characteristic properties
to relate the finding of the lab-scale unit with future larger test
units. It also provides a higher level of validation data for any
mathematical models. Test factors include varying temper-
ature, pressure, feed concentration, and superficial gas velocity,
and could involve 100s of experiments in a full factorial
configuration. Design of experiments (DOEs) can reduce the
number of experiments needed while still maintaining
statistical significance with a predetermined confidence level
(e.g., 95%). However, new DOE tools can make that easier and
faster.

AI-assisted DOE is available today. A Latvian start up has
developed an artificial intelligence-driven Design of Experi-
ments (DOE) software called xT SAAM.145,146 This adaptive
DOE with deep learning assesses the data as it is being
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collected, instead of having all the experiments completed
before such an assessment is performed. The result is a faster
turnaround without compromising the data integrity. In short,
the process development stage uses AI to augment solutions
around previous obstacles. Leveraging AI-directed DOEs,
experiments can now be more focused and require fewer
resources.147,148

Generative Equipment Design. Using the optimization
algorithms with AI, components can be designed and then
tested with a model. AI is even being used to “simulate” kinetic
and equilibrium patterns even if enough data is not available to
develop a kinetic model.149 A design engine starts with a CAD
which is then submitted to a CFD or CFD-DEM model to
calculate the grade efficiency curve and corresponding solids
loss rates and the cyclone pressure drop. If those results meet
the predefined objective function, a new design is generated by
the AI engine. One such engine is Siemens’ Simcenter HEEDS,
which can interface with just about any software, thereby
allowing for automation. In addition, HEEDs uses a hybrid-
adaptive search framework (SHERPA) that can distinguish
local versus global maxima or minima, something gradient-
based methods are less effective at. Dow and Siemens used
such a methodology for the design and operation of a
distillation column.150 Similarly, Roach and Eldridge from
University of Texas with Barsotti of Siemens PLM used
HEEDS for the optimization of a dividing wall distillation
column.151 Mihailova et al.152 used Star CCM+ with HEEDS
for optimizing the design of a helical ribbon mixer, results of
which were validated with electrical resistance tomography.

For lower-velocity fluidized bed design, CFD integrated with
a HEEDS or similar optimizer could address the design of the
gas distributor, liquid injection points, bed internals, and
cyclone. For circulating fluidized beds, such efforts would be
beneficial with aeration strategies, especially with standpipe
design and operations.153

Flowsheet Synthesis. Flowsheet synthesis accelerates the
development of a process flowsheet using AI.123 What
traditionally takes weeks can be done in hours, thereby
allowing a flowsheet to be developed early in the scale-up
process using a minimal amount of data. Using a generative
flowsheet transformer, a simple but incomplete flowsheet can
be readily optimized into a completed process flow diagram, as
illustrated in Figure 8.154 The Aspen Hybrid Modeler is a good
example of this capability. In 2021, Dow and Siemens PLM
coupled ASPEN Plus with HEEDs to optimize condensation

polymerization reactors that produce polydimethylsiloxanes
(PDMSs for sealants, adhesives, coatings, and emulsions.150

Such an exercise is even more critical for fluidized bed
processes, which can have less flexibility than the more
traditional reactors (e.g., superficial gas velocities, turn-downs,
and particle emissions).

Thus, even in the conceptional stage, a detailed flowsheet
can be obtained for mass and thermal flows. This useful tool is
available to explore several strategies that could affect the
fluidized bed reactor design, performance, turn-down,
emissions, etc. at this early stage and illuminate gaps, limits
with systems integrations, and limits with reliability. Such
information is valuable for the first-stage estimation of
economics along with subsequent economic evaluations.

Risk Assessment Process. The Risk Assessment Process
(RAP) stems from Quantitative Risk Assessments (QRA) with
the quantifying environmental and safety risks. However, QRA
has been leveraged toward process risks as related to reliability
and asset management.155 The failure mode probability for
each component is documented within the team and perhaps
with external experts. The likelihood of failure and the
consequence of that failure is quantified within the team. It
is important that this process has a systems integration
approach whereby how the failure affects up- and downstream
performance is considered. For each operation, a matrix of
probabilities can be used in an AI Bayesian network model to
quantify the process reliability.156 AI can add anomalies to the
model, further test the perceived risks, as well provide
advanced analysis to understand the underlying causes of any
anomaly.157,158 This exercise will define weak links in the
process flow and equipment design. With RAP being done
early and frequently, any weakness can be addressed much
earlier in the scale-up path.

Assisted CFD. In a book chapter divining CFD for 2025
and beyond,58 it is stated that deep machine learning will be
used to improve the speed, accuracy, and user-friendliness of
CFD software and be routinely used to generate digital twins/
reduced order models that will profoundly impact the
utilization of CFD.

Constitutive equations needed to capture the microscale
physics for CFD can be refined with AI-directed experiments
and experimental fitting.159 With the state of technology today,
developing the constitutive equations and the parameters for
those constitutive equations will likely result from well-tailored
experiments coupled with AI or, at the least, the ML part of AI.
Sundaresan et al.133 suggested that the scale dependency of
multiphase flows can be quantified through deep learning
methods to improve constitutive models for momentum,
species, and energy transfer. Furthermore, Sundaresan98 noted
that modeling efforts would start with the experimental
measurements of the PSD along with proxy experiments for
the calibration of constitutive equations. Direct measurements
of the actual particulate system may not be resource-effective.
For instance, fluidization and defluidization tests have been
used to calibrate drag models.160 Rheological and flow testing
can be used to validate the collisional stress model.93,161

Jiang et al.136 gave an example using a neural network ML
tool for optimizing a filter drag constitutive model for fTFM
(filtered two-fluid model), which for gas-particle flows require
closures for the subfilter scale corrections to interphase drag
force and stresses, the former being more significant. It allowed
them to verify that an algebraic drift flux model can be used to
capture the micromixing observed in the highly resolved, fine-

Figure 8. Flowsheet completion with the generative flowsheet
transformer. Adapted with permission from ref 10. Copyright 2021
Wiley.
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grid simulations. Yang et al.162 coupled neural network with
the EMMS drag model for predetermining the heterogeneity
index. Similarly, Lu et al.163 used ANN in PyTorch coupled
with MFiX to develop a filtered drag expression.

The time step and grid resolution can be made more
adaptive with AI, as proposed by Lorsung and Fairimani.164

Existing methods for adaptive meshing need additional
functionality out of solvers and/or many training simulations.
Their Mesh Deep Q Network (MeshDQN) is designed as a
general-purpose deep reinforcement learning framework to
coarsen meshes while preserving target property calculation
iteratively. A neural network-based deep Q network (deep
learning neural network) is used to selectively remove mesh
vertices, while solution interpolation bypasses costly simu-
lations at each step during the improvement process.
MeshDQN needs one simulation before mesh-coarsening
without any assumption about flow regime, mesh type, or
solver, and only requiring the ability to modify meshes directly
in a CFD pipeline.

AI Reactor Models. Mutlu and Yucel165 employed AI
methods to predict syngas composition from downdraft
biomass gasification. The conclusion that the temperature
distribution is more influential than fuel parameters informs
that optimizing syngas composition relies on controlling the
temperature well. Krzywanski et al.166 developed AI-based
models for hydrogen production through calcium oxide (CaO)
sorption in two types of gasifiers, namely, bubbling fluidized
bed (BFB) and circulating fluidized bed (CFB). The results
indicate that CFBs are more effective than BFBs, and the
developed model can be further used for optimization. In both
cases, the use of AI significantly reduced the development and
possible optimization of a preliminary process model.

The question here is, how can AI play a role in speeding up
the scale up of fluidized beds? Purely data-driven models may
fall short because chemical engineering systems are governed
by fundamental laws and principles, which are valuable in
making sense and imposing rigor on data-driven models.30

Also, the large amount of high-quality fluidization data needed
for these black-box models may not be practical. To address
this, gray-box physics-informed ML and AI have been quickly
gaining traction.

PINN (Physics-Informed Neural Network) Reactor
Models. AI models are black boxes that work according to a
regression of the input factors to an unspecified, hidden layer
or layers of weights. The model results are only as good as the
quantity and quality of the data used in the training and testing
sets. In a way, ANN may be too good at approximating
functions that they can overfit the training sets. As a result, for
them to be effective at generalizing and not just learning the
training set, one needs lots and lots of data as well as some
clever tricks such as batching.167 To address this shortcoming,
PINN regularizes a neural network to conform to physics by
having both parts contribute to a loss function, as depicted in
Figure 9. An additional layer is added that relates to the
expression for the physics.168 Essentially, the physics layer
helps the neural network function have the right physics-
governed trend. To do this, the ANN is embedded with
information in the form of a differential equation. For example,
if a model was being developed for a convection−diffusion
problem using the Burgers’ equation, that extra layer would
consist of nodes for the time gradient (

t
), the axial gradient (

x
), and the gradient of the axial gradient (

x

2

2 ).
169

A similar approach can be taken with the Navier−Stokes
equations. Sun et al.171 used PINN to model and optimize the
flow around an airfoil to maximize the lift to drag ratio. The
parameters related to the airfoil shape were input to the PINN,
and the multidimensional search space of shape parameters
was populated with collocation points to satisfy the Navier−
Stokes equations as much as possible throughout. Amalinadhi
et al.172 used PINN for solving the velocity, pressure and stress
tensor for Poiseuille, Couette, and lid-driven cavity flows.
Eivazi et al.173 used PINNs to model incompressible turbulent
flow without a specific turbulence model. They only used the
data from the boundary domain and reported good accuracy
even for the Reynolds stress component.

Qiu et al.174 applied PINNs to two-phase flows. The Cahn−
Hillard equation and Navier−Stokes equations were encoded
directly into the residuals of a fully connected neural network.
Lu and Christov175 used PINNs for modeling particle
migration in a non-Brownian suspension from Couette flow,
with results revealing that the inferred values of the empirical
model’s parameters vary with the shear Peclet Number as well
as particle bulk volume fraction of the suspension.

All these applications of PINNs suggest that such a model
may soon be possible for the hydrodynamics and reactions in
fluidized beds. At the very least, PINN-based models are
possible for the constitutive equations used with granular-fluid
CFD or CFD-DEM models. The benefit would be a more
robust and accurate drag and collisional stress model while
relaxing the grid and time step resolution needed for the more
traditional models. Also, before the possibility for accurate
quantitative descriptions of the various fluidization phenom-
ena, PINN promises to supersede the current empirical
correlations that have been known to make predictions that
are different orders of magnitude (e.g., entrainment48). In
particular, symbolic regression hybridized with genetic
programming has been shown to provide analytical equations
from data.176

■ CONCLUDING REMARKS
The vast resources and time needed to scale up fluidized beds
represent a key obstacle in tackling time-critical sustainability
challenges. AI with other modeling efforts (ROM, PBM, CFD,
CFD-DEM, generative design, flowsheet synthesis, risk analysis
process) offer invaluable tools to circumvent this limitation.
While many of these tools may already be in place for some

Figure 9. PINN construct for the Euler equations. The neural
network is hybridized to satisfy laws of conservation and entropy
conditions. Reproduced with permission from ref 170. Copyright
2022 Elsevier.
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recent scale-up projects, such tools are not used typically, used
too infrequently, or only used in a reactive setting. This
restricts the effectiveness of the tools, and scale-up decisions
remain primarily based on traditional methods merely because
this has been the way for decades. For instance, many scale-up
programs for lower-velocity fluidized beds or circulating
fluidized beds rely on large-scale cold-flow experiments instead
of more well-tailored, lab-scale experiments coupled with
effective modeling efforts. Often, these cold-flow models are
only implemented after an unexplained result in the mini plant
or pilot plant, if not even later. This can significantly
compromise the economics of the project. Large cold-flow
experiments take months (6−12 months) and are expensive (>
$500 MM), plus a wide range of physics can be convoluted in
the data collected. Specific physics, such as wall stresses, shear
stresses, interparticle forces, wetting, attrition, etc., are difficult
to capture in such units, limiting the information obtainable
with such a big time and financial investment.

A more systematic approach whereby experiments are
integrated with models to capture specific physics should be
used, with the results subjective to additional flowsheeting, risk
analysis, and financial analysis. This will provide a higher
confidence level with respect to the unit and process model,
provide better understanding of the dominant physics
involved, and lay the foundation for process control (i.e.,
feedforward, real-time optimization, AI) and troubleshooting
for the commercial plant. This is not to say that large cold flow
experiments are not valuable; it is just that the value-add may
not be as significant as well-tailored, lab-scale experiments
coupled with AI (including ML), ROM, PBM, CFD, DEM,
generative design, flowsheet synthesis, risk analysis process
tools. Much of this is already part of many scale-up programs,
but these modeling efforts need to be formalized early in the
project and managed proactively, not reactively. These
advanced tools were not readily available before, but they are
now well within reach to significantly expedite the scale up of
fluidized beds for today’s urgent sustainability goals.

Leveraging the advanced tools that have become readily
available, a companion part 215 aims to put forth a new
pathway for scale-up to enable confident exploitation of the
benefits of fluidized beds more swiftly and economically.
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