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Traffic demands in future elastic optical networks are expected to be heterogeneous with time-varying
bandwidth. Estimating the physical-layer impairments (PLIs) for random bandwidth demands is important
for cross-layer network resource provisioning. State-of-the-art PLI estimation techniques yield conservative
PLI estimates using the maximum bandwidth, which leads to significant over-provisioning. This paper uses
probabilistic information on random bandwidth demands to provide a computationally efficient, accurate,
and flexible PLI estimate. The proposed model is consistent with the needs of future self-configuring
fiber-optic networks and maximally avoids up to a 25% overestimation of PLIs compared to the benchmark
for the cases studied, thus reducing the network design margin at a negligible extra computational cost.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Elastic optical networks (EONs) have been considered a po-
tential solution to meet society’s increasing requirements for
future communication networks [1]. The near future may in-
clude self-configuring EONs [2, 3], which rely on a feedback
scheme in order to configure networks according to the current
network state, thereby providing lower design margins while
using efficient resource management [4]. In these networks,
the traffic will need to be estimated and predicted as statistical
information using probabilistic modeling. While signals tra-
verse long-haul fiber-optic networks, their quality is impaired
because of the accumulated noise and interference, jointly called
physical layer impairments (PLIs) [5]. Considering the PLIs is
essential in network planning and resource allocation because
they directly impact the quality of transmission (QoT) of optical
signals. This paper proposes an analytic model to estimate the
PLIs statistically for time-varying traffic with randomly varying
bandwidth [6, 7]. The resulting PLI estimate has a predictable
performance without resorting to over-conservative, worst-case
assumptions.

Because of the large number of data transmissions and the
variability of human activity, the demand volume across time
and space can vary significantly. The requested data-rates can
change due to many factors such as time, weather, major events,
etc. [8, 9]. However, current network infrastructure and config-
urations (such as regeneration sites and switches) are typically
pre-defined; conventional fiber-optic networks cannot reconfig-
ure resources in response to time-varying traffic. In order to

handle changes in a connection’s data-rate, one of two methods
can be used: 1) change the modulation format and keep the
bandwidth unchanged. 2) change the bandwidth. For the first
method, when a high modulation format is chosen to address
an increase in the data-rate, there is an increase in the required
signal-to-noise ratio (SNR), which shortens the allowed signal
transmission distances; this can result in the need for expensive
regeneration circuits for long-reach traffic. The second option,
which allows the bandwidth to vary, becomes appealing [8].
This would result in a traffic model based on the probability
distribution of the signal bandwidths.

The currently used approaches to PLI estimation provide
accurate and state-dependent estimates in the steady-state, with-
out accounting for random or time-varying traffic parameters.
Many detailed models of the PLIs have been developed for
signal-level analysis [10–14]; these multi-integral expressions
can be extremely accurate but are far too complex to use as part
of a real-time network management task. The so-called Gaus-
sian noise (GN) model provides simple closed-form expressions
of the self-interference and cross-channel interference [15–17].
Many extensions to the GN model have been proposed to im-
prove its accuracy and applicability [17–19], but none is imme-
diately usable when the given demands are time-varying with
random bandwidth. The statistical network assignment process
(SNAP) algorithm based on Monte Carlo simulations to estimate
the PLIs of random bandwidth demands has been proposed re-
cently [20, 21]. It provides a highly accurate PLI estimate when
many simulation trials are used; this can be computationally
demanding, making SNAP more attractive for use in off-line

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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network resource provisioning than for real-time dynamic re-
source allocation. In state-of-the-art network resource allocation
schemes, time-varying demands are typically accommodated by
using their maximum anticipated bandwidth in the GN model.
This PLI estimate, which we refer to as the maximum bandwidth
GN model, can result in network resources being severely over-
provisioned and thus wastes scarce network resources when the
traffic bandwidth is highly variable [20–22].

The probabilistic spectrum Gaussian noise (PSGN) model, first
proposed in [6], can estimate the PLIs for random bandwidth
demands in EONs operating over the C-band based on the statis-
tics of the PLI, resulting in a somewhat conservative estimate. It
derives simple expressions for the expected value and variance
of the self-channel interference (SCI) and the expected value of
the cross-channel interference (XCI) given the probability den-
sity function (PDF) of the demand’s bandwidth. The PSGN
model showed significant improvement in performance and
complexity compared to the SNAP algorithm [6, 7].

In this paper, we derive probabilistic expressions for the PLI,
refine the PSGN model to include the variance of the XCI, and
show how these expressions can be combined in a PLI estimate
with a given degree of reliability. This is achieved using the
outage probability for the PLI based on the derived probability
distributions. The outage probability of a noise estimation model
represents the probability that the actual noise level exceeds the
estimated noise level, and typically ranges from 2% to 10%. It is
a specification that balances the model robustness and design
margin savings. The PSGN model with a guaranteed outage
probability can be used to link the prediction of the traffic and
estimation of the corresponding PLIs needed in self-configuring
networks.

This paper is organized as follows. In Section 2, we present
the PSGN model and derive the outage probability for uniformly
distributed traffic bandwidths. In Section 3, simulation settings
and numerical results are given and discussed. We draw conclu-
sions and describe opportunities for expanding on the proposed
approach in Section 4.

2. PROBABILISTIC SPECTRUM GAUSSIAN NOISE
MODEL

In this section, we introduce our PSGN PLI model for traffic with
randomly defined bandwidth. We start with the conventional
GN model, describe the SNAP algorithm used for comparison,
and then derive the PSGN model mathematically. Lastly, we
present an analytic expression of the outage probability of the
PSGN model.

In continental-scale optical networks, we consider two main
types of PLIs: amplified spontaneous emission (ASE) noise and
nonlinear interference (NLI) noise caused by the interaction of
Kerr fiber nonlinearity and chromatic dispersion. In this work,
only C-band transmission is considered, and, therefore, inter-
channel stimulated Raman scattering is assumed negligible [10,
12].

EDFAs are used as signal amplifiers at the end of each span to
compensate for the transmission loss [16, 23]. Because modern
EDFAs are designed to have an almost flat gain over the whole
C-band, we assume the gain of the EDFA is flat in this work, as
is common in the literature [24, 25]. The optical amplification
process adds ASE noise, which in this case can be modeled as
additive Gaussian noise with constant power spectral density

(PSD) per polarization in one span given as [16]

GASE = (eαL − 1)hνnsp, (1)

where h is Planck’s constant, nsp is the spontaneous emission
factor, α is the fiber power attenuation, ν is the light frequency,
and L is the fiber length per span. As is typically assumed [26],
one EDFA exactly compensates for the loss in one fiber span.
Based on our assumptions, the PSD of the ASE noise depends
only on the transmission length and not the signal bandwidth,
and thus, we omit it from our probabilistic model; the constant
ASE noise added in each span can be accounted for in the final
calculation of the SNR.

A. Gaussian Noise Model
The GN model is used to analytically estimate the NLI PSD, and
is valid for systems adhering to the following main assump-
tions [15, 16, 26]: the fiber links are dispersion uncompensated;
each signal has rectangular PSD, which is the same in both po-
larizations; the fiber loss is totally compensated; the NLI PSD is
accumulated along the lightpath; and the multi-channel interfer-
ence can be neglected.

The NLI effects for each span can be divided into self-channel
interference (SCI) and cross-channel interference (XCI),

GNLI = GSCI +
Mc+1

∑
q=1, q ̸=p

GXCI,q, (2)

where GNLI represents the channel of interest’s NLI PSD per
span, GSCI represents the SCI PSD, and GXCI,q represents the
contribution to the XCI PSD due to the qth interfering channel.
Mc represents the number of channels sharing the fiber span
with the channel of interest, denoted as channel p.

SCI is caused by channel p itself, only varying with the band-
width ∆p of the channel as

GSCI(∆p) = µG3
p arcsinh(ρ∆2

p), (3)

where Gp is the signal PSD of the channel of interest, ρ =

(π2|β2|)/2α, µ = (3γ2)/(2πα|β2|), γ denotes the fiber nonlin-
earity parameter, and β2 denotes the group velocity dispersion
parameter. When ∆p is large (∆p

2 ≫ 2α/(π2|β2|)), the inverse
hyperbolic sine function and the logarithm function are similar.
Equation (3) can thus be replaced by [15]

GSCI(∆p) = µG3
p ln(ρ∆2

p). (4)

The XCI is caused by the interaction between channels. It
depends on the center frequency differences and bandwidths
of neighboring channels sharing the same fiber link with the
channel of interest p. The PSD of the XCI on channel p caused
by the presence of channel q, q ̸= p, can be written as

GXCI,q(∆q) = µGpG2
q ln

( | fp − fq|+ ∆q/2
| fp − fq| − ∆q/2

)
, (5)

where fq represents the center frequency of channel q and Gq is
the signal PSD in channel q.

When the actual signal bandwidths are not known, the GN
model typically upper-bounds the NLI per span by using the
maximum of the random bandwidth over all realizations, result-
ing in

GGN = GSCI(max ∆p) +
Mc+1

∑
q=1, q ̸=p

GXCI,q(max ∆q), (6)
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which we refer to as the maximum bandwidth GN model. GGN

is a conservative estimate of the NLI for random bandwidth
demands.

B. SNAP algorithm

The statistical network assignment process (SNAP) algorithm
is a Monte Carlo based PLI estimate for time-varying bandwidth
demands. It utilizes the GN model implemented in the GNPy
library to estimate the PLIs needed to compute the SNR for the
assigned lightpath at each Monte Carlo trial [20]. Figure 1 in [20]
shows a flow-chart of the SNAP algorithm. The algorithm
requires numerous Monte Carlo trials to comprehensively
simulate the many network states and obtain a statistical
assessment of the network used to compute the demand
blocking probability.

C. PSGN Model

Given the traffic model, the statistics of the random bandwidth
demands can be used to develop a probabilistic NLI model,
which we refer to as the PSGN model. In this section, we derive
analytical expressions for the noise statistics to create the PSGN
model. Again, we assume that the NLI accumulates incoherently
over all spans of the transparent fiber segment.

Both the PSGN model and the SNAP algorithm use the GN
model to estimate the NLI caused by traffic with random band-
width. Unlike the SNAP algorithm, the PSGN model does not
require many trials of Monte Carlo simulations. It instead de-
rives the statistics analytically. Therefore, compared with the
SNAP algorithm, the PSGN model is just as accurate at estimat-
ing the NLI but much more computationally efficient.

In our derivation, for notational simplicity we assume that
the signal of interest is centered at frequency fp = 0 (without
loss of generality). For each demand q sharing the same link
with the channel of interest p, we assume that the bandwidth
PDF is known and denoted as f∆q (δ). The cumulative density
function (CDF) is denoted by F∆q (δ). ∆q is the random variable
representing the bandwidth of demand q with realization δ ∈
[δmin,q, δmax,q].

The SCI for the channel of interest depends primarily on its
own bandwidth. The expected SCI noise becomes

E[GSCI] = µGp
3E
[
ln(ρ∆p

2)
]

= µGp
3
∫ ∞

0
ln(ρδ2) f∆p (δ)dδ, (7)

and its variance is

Var[GSCI] = µ2Gp
6
∫ ∞

0
ln2(ρδ2) f∆p (δ)dδ − E2[GSCI]. (8)

These integrals can be solved exactly for a uniformly distributed
bandwidth demand as done in Section 3, but in general must be
computed numerically.

Using (5), the expected XCI contributed by demand q with
bandwidth ∆q to the channel of interest p is

E[GXCI,q] = µGpGq
2E
[

ln
( | fq|+ δ/2
| fq| − δ/2

)]
= µGpGq

2
∫ ∞

0
ln
( | fq|+ δ/2
| fq| − δ/2

)
f∆q (δ)dδ. (9)

We apply integration by parts to obtain

E[GXCI,q] =
µGpGq

2

2

{∫ δmax,q

δmin,q

[
1

| fq| − δ/2

]
· [1 − F∆q (δ)]dδ

+
∫ δmax,q

δmin,q

[
1

| fq|+ δ/2

]
· [1 − F∆q (δ)]dδ

}
. (10)

Given that the center frequency | fq| > δmax,q/2 is the same for
every realization δ of demand q, and substituting δ = 2(| fq| − f )
for the first integral in (10) and δ = 2( f − | fq|) for the second,
the expected XCI contributed by channel q can be simplified as

E[GXCI,q] = µGpGq
2
∫

δmin,q≤2| f−| fq ||≤δmax,q

1 − F∆q (2| f − | fq||)
f

d f . (11)

The same method used to derive (11) can unfortunately not
be used to simplify the expression for the variance of the XCI,
which must be computed directly as

Var[GXCI,q(δ)] (12)

= µ2Gp
2Gq

4
∫ ∞

0
ln2
( | fq|+ δ/2
| fq| − δ/2

)
f∆q (δ)dδ − E2[GXCI,q].

The proposed PSGN model provides a conservative estimate
of the NLI noise based on a user-set parameter r. The PSGN PSD
is defined as

GPSGN = E[GSCI] + ∑
q, q ̸=p

E[GXCI,q]+

r

√Var[GSCI] +
√

∑
q, q ̸=p

Var[GXCI,q]

 . (13)

When r = 0, the PSGN model gives the expected value of the
total signal nonlinear interference. The model is more conserva-
tive when r increases, and thus the robustness of the whole sys-
tem increases. The estimate might be over-conservative with a
larger value for r, which leads to over-provisioning and resource

wastage. The term
√

∑q, q ̸=p Var[GXCI,q] (ignored in [6]) varies
with the number and the bandwidths of neighboring channels.
The term is smaller than

√
Var[GSCI] but still important to con-

sider. For example, when two neighboring channels, uniformly
distributed from 50 to 100 GHz and with maximum bandwidths
separated by 12.5 GHz, were tested, the contribution from the
XCI variance was found to be 13.4% of the contribution from the
SCI variance.

In modern optical network design and control mechanisms [2,
4], different network models have various reliability require-
ments. There is a trade-off between network design margins
and reliability. Low-margin networks, such as advanced au-
tonomous networks, can dynamically adjust the network config-
uration, including routing and modulation formats. Therefore,
a controllable NLI estimation model can provide more flexibil-
ity for network operators adapting to different scenarios and
providing various customized network services [4].

Note that the proposed PSGN method could account for other
impairments as long as a mathematical relation between the PSD
of the noise due to the impairment and the bandwidth of the
signal is known.
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D. PSGN Outage Probability
The PSGN outage probability measures the probability that the
actual NLI generated by random bandwidth demands exceeds
the NLI PSD estimated by the PSGN model in (13). It measures
the reliability and robustness of the PSGN model. Thus, the
outage probability strongly relates to the parameter r. In our pre-
vious work [6], the outage probability was calculated by Monte
Carlo simulation, i.e., for each trial we randomly selected a band-
width according to the demand’s probability distribution and
then calculated the probability that the simulated NLI exceeds
the PSGN model. In this work, we derive expressions for the
outage probability using NLI equations for one fiber span; if we
consider several spans carrying the same traffic on a fiber link,
the outage probability is the same as for the single span case.

We derive an analytic model for the outage probability under
the assumption that all bandwidths are uniformly distributed
over a known range, which is a common assumption [20, 22, 27].
The technique can be applied to any analytically or numerically
defined bandwidth PDF. An analytical outage model makes the
PSGN model easier to apply to various situations. For example,
a network designer can use the PSGN model to analyze system-
wide design margins with a low computational cost. The results
calculated by the analytic outage probability model are also
more accurate compared to when they are obtained via Monte
Carlo simulations.

Obtaining the PSGN outage probability requires deriving the
PDF of the NLI for the channel of interest p. The CDF of the PSD
for the channel of interest’s SCI can be derived from (4) as

FGSCI (x) = Pr
[
µGp

3 ln (ρ∆2
p) ≤ x

]
= F∆p

(√
exp(x/µGp

3)/ρ

)
. (14)

When ∆p, the random bandwidth of demand p, is uniformly
distributed within [δmin,p, δmax,p], we can write

FGSCI (x) =
0 x ≤ µGp

3 ln (δ2
min,p/ρ)

1 x > µGp
3 ln (δ2

max,p/ρ)√
exp(x/µGp

3)/ρ − δmin,p

δmax,p − δmin,p
ΠSCI(x),

(15)

where

ΠSCI(x)={x|x∈ [µGp
3 ln(δ2

min,p/ρ), µGp
3 ln(δ2

max,p/ρ)]}. (16)

Thus, defining the rectangular function rectA(a) = 1 for a ∈ A
and zero elsewhere, the PDF of the SCI PSD for the channel of
interest p is

fGSCI (x) =
exp(x/2µGp

3)rectΠSCI (x)

2µGp
3√ρ(δmax,p − δmin,p)

. (17)

Similarly, the CDF of the XCI PSD contributed by channel q
onto channel p can be derived from (5) as

FGXCI,q (x) = Pr
[

GXCI,q ≤ x
]

= F∆q

2| fq|
[
exp(x/µGpGq

2)− 1
]

exp(x/µGpGq
2) + 1

 . (18)

Under the same assumptions as above, the CDF becomes

FGXCI,q (x)

=

[
2| fq|[exp(x/µGpGq

2)− 1]

exp(x/µGpGq
2) + 1

− δmin,q

]
1

δmax,q − δmin,q
,

(19)

for

ΠXCI,q(x) =

{
x

∣∣∣∣∣x ∈
[

µGpGq
2 ln

(
| fq|+ δmin,q/2
| fq| − δmin,q/2

)
,

µGpGq
2 ln

( | fq|+ δmax,q/2
| fq| − δmax,q/2

)]}
.

(20)

Therefore, the PDF of the XCI PSD is

fGXCI,q (x) =
4| fq| exp(x/µGpGq

2)/µGpGq
2

[exp(x/µGpGq
2) + 1]

2

rectΠXCI,q (x)
δmax,q − δmin,q

.

(21)
The PSD of the NLI terms is additive, as shown in (2). As-

suming that the SCI and XCI are independent and that the XCI
contributed by different channels are also independent, if all
channels have uniformly distributed bandwidths, we obtain an
expression for the PDF of the NLI as

fGNLI (x) = fGSCI (x) ∗ fGXCI,1 (x) ∗ · · · ∗ fGXCl,p−1
(x) ∗ fGXCl,p+1

(x)

∗ · · · ∗ fGXCl,Mc+1
(x) =

exp(x/2µGp
3)rectΠSCI (x)

2µGp
3√ρ(δmax,p − δmin,p)

∗ · · ·

∗

4 fMc+1 exp(x/µGpGq
2)/µGpGq

2

[exp(x/µGpGq
2) + 1]

2

rectΠXCI,Mc+1 (x)
δmax,Mc+1 − δmin,Mc+1

 ,

(22)

where ∗ denotes convolution. Note that if an operator has statis-
tical data on their network traffic, they can apply this approach
to the histogram of traffic bandwidth data numerically.

The outage probability P , defined as the probability that the
actual noise exceeds the estimated noise GPSGN, is then

P = 1 − FGNLI (G
PSGN) =

∫ ∞

GPSGN
fGNLI (x)dx. (23)

Hence, if a network designer aims to satisfy a given outage
probability P , such as 2% or 5%, the P-outage NLI estimate GP
needs to be found using FGNLI (GP ) = 1 −P . The parameter r,
which controls how conservative the PSGN estimate is, can be
mathematically determined via (13) to yield the desired outage
P using

r =
GP − E[GSCI]− ∑q E[GXCI,q]√

Var[GSCI] +
√

∑q, q ̸=p Var[GXCI,q]
. (24)

3. NUMERICAL RESULTS

In this section, we estimate the span-level NLI in an EON using
the proposed PSGN model, compared with the benchmark, the
maximum bandwidth GN model. The maximum bandwidth
GN model (6), denoted as GGN, uses the maximum bandwidth
of random bandwidth demands to estimate the NLI in order
to guarantee the signal QoT. The system parameters used in
our numerical results are listed in Table 1. The guard band be-
tween neighboring channels is defined as the frequency spacing
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Table 1. System Parameters [15]

β2 −21.7 ps2/km

Gp = Gq 0.015 W/THz

γ 1.32 × 10−3 (W · m)−1

Span length 100 km

nsp 1.58

α 0.22 dB/km

ν 193.55 THz

Guard band 12.5 GHz

Fiber type standard single mode fiber

between the maximum signal bandwidths. To simplify the com-
putation and be consistent with modern optical network settings,
Gp is set to be equal to Gq [28].

Figs. 1 and 2 provide results to verify the accuracy of the
derivation of the NLI PDF for two and five channels, respec-
tively. One span of standard single mode fiber is tested. We
use the SNAP method as the benchmark, where all demand
bandwidths are randomly selected according to a uniform dis-
tribution and applied to each trial of a Monte Carlo simulation.
SNAP has been used before to model random traffic [20–22].
Eq. (22) is evaluated numerically using nested integrals, i.e.,
cascaded convolution, which is computationally simple for uni-
formly distributed random bandwidth demands; we compare
the computational complexity of the various methods in Fig. 4,
discussed below. The NLI PDF obtained by (22) is consistent
with the kernel density estimate [29, 30] obtained from the Monte
Carlo simulation results with 108 trials. Both the expected value
and variance calculated using (22) have less than a 0.01% dif-
ference compared to the results obtained by the Monte Carlo
simulation.

In Fig. 1, two channels transmitted through one span have
random bandwidths distributed from 50 to 100 GHz, and two
channel separations are tested, 100 and 112.5 GHz, correspond-
ing to guard bands of 0 and 12.5 GHz, respectively. The NLI
estimate corresponding to a P = 5% outage, G5% = 1.13× 10−17

W/Hz for a separation of 112.5 GHz and G5% = 1.17 × 10−17

W/Hz for a separation of 100 GHz, are marked with triangle
symbols. The GGN estimate is also shown with a diamond
symbol at the right-most end of the NLI PDF curve; note that
GGN = GP for P = 0% outage probability.

Fig. 1. NLI PDF fGNLI for the channel of interest with one inter-
fering channel, Mc = 1.

In Fig. 2, five channels with bandwidths uniformly dis-
tributed from 50 to 100 GHz and successively numbered as
channel 1 through channel 5, are transmitted on the same
fiber span. In this and subsequent results, guard bands of
12.5 GHz separate the channels’ maximum bandwidths. For
each curve, one channel is considered the channel of interest
placed at fp = 0, as assumed in (22), and the other four chan-
nels are considered interferers in order to verify the proposed
analytic model; for example, when the interference affecting
channel p = 2 is studied, the channels have center frequen-
cies ( f1, · · · , f5) = (−112.5, 0, 112.5, 225, 337.5) GHz. Recall
that only center frequency differences between the interferers
and the channel of interest matter for NLI. Channel 3 is sand-
wiched in the middle of the spectrum and thus experiences the
highest NLI when selected as the channel of interest. Channels
2 and 4 have similar NLI, greater than the NLI seen by channels
1 and 5. The shapes of the NLI PDFs are similar, as expected.
Compared with the two-channel scenario in Fig. 1, the NLI PDFs
for five channels have longer tails, which means that GGN is
larger and farther away from G5%, again marked in the figure
with diamonds and triangles, respectively.

Fig. 2. NLI PDFs fGNLI for five channels transmitting on the
same fiber link, Mc = 4.

The value of r in the PSGN model resulting in a desired
outage probability P = 0%, 0.25%, 1%, 2%, and 5% is shown in
Figs. 3 (a) and (b) as a function of the number of homogeneous
channels on the span with bandwidths uniformly distributed
in [50, 100] GHz and [50, 200] GHz, respectively; note that the
number of channels on the x-axis includes the channel of interest.
When the number of channels increases, r estimated by (24)
decreases for any fixed outage probability P greater than 1%.
However, the estimated r for outage probability less than 1%,
including P = 0% (leading to GGN), increases as the number
of channels increases. Therefore, for P > 1% the PSGN model
with a value for r that gives a desired outage probability for two
channels guarantees that the outage probability is also satisfied
when more channels share the link.1 In subsequent results, we
refer to this r as the guaranteed r, and the r that gives an exact
outage probability as the exact r.

Table 2 shows the impact of parameter r for heterogeneous
traffic. Several heterogeneous traffic scenarios are considered,
showing the values of the exactr and the resulting PSGN NLI
estimate for the shaded channel when a subset of channels is

1It is difficult to state what value of outage probability is acceptable for any
particular optical network as this paper is the first to propose this performance
metric. An outage, however, will cause a traffic request to be blocked, and blocking
probabilities of 1% to 5% are commonly cited in the literature [31, 32].
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Table 2. Impact of Parameter r

Guard band = 12.5 GHz Channels
Exact r GPSGN (×10−17) W/Hz

5% 2% 0% 5% 2% 0%

1, 2 1.317 1.406 1.542 1.188 1.202 1.227

2, 3 1.149 1.321 1.609 1.168 1.184 1.231

1, 2, 3 1.155 1.319 1.701 1.167 1.184 1.247

1, 2 1.240 1.375 1.608 0.946 0.962 0.994

1, 2, 3 1.174 1.351 1.855 0.941 0.964 1.003

1, 2 1.255 1.370 1.571 1.265 1.284 1.308

2, 3 1.160 1.325 1.624 1.244 1.280 1.312

1, 2, 3, 4 1.145 1.324 1.968 1.242 1.280 1.376

considered. Three scenarios are depicted, and in each case a
subset of the channels shown, as indicated in the column labeled
Channels, is accounted for in the computation. In the figures
embedded in the first column, each channel has a bandwidth in
GHz uniformly distributed in the interval indicated below each
spectrum. GPSGN represents the NLI estimated by (13) using the
corresponding exact r.

Table 2 further evidences our conclusion from Fig. 3 that de-
termining the guaranteed r only requires considering the chan-
nel of interest and the one neighboring channel that causes the
most XCI when the desired outage probability is larger than
1%. As expected from Fig. 3, the exact r is smaller when con-
sidering three or four channels than when only considering one
neighboring channel. Thus, instead of performing Mc cascaded
convolutions, (22) can be simplified to the convolution of just
two PDFs to obtain the guaranteed r using (24), and then (13) is
used to obtain the GPSGN estimate of the NLI. Using the guar-
anteed r in the PSGN model saves significant computation time
while still ensuring the desired outage.

Fig. 4 shows the computational advantage of using the PSGN
model with the guaranteed r compared with other approaches.
The computational cost of an algorithm is captured by the
elapsed computation time needed to obtain the result.2 The
state-of-the-art SNAP algorithm described above, which uses
Monte Carlo simulations, is used as a benchmark. It requires
almost 1000 s to estimate the NLI for the channel of interest
when 13 channels share the fiber link. Limiting the number
of channels sharing each link to 13 guarantees that the trans-
mission on each lightpath within the network will not exceed
C-band. For the same scenario, the PSGN model with the exact
r obtains the same result but only requires 471 s, saving 52% of
the computation time. The PSGN model with the guaranteed
r, obtained by assuming only the channel of interest and one
of its closest neighbors, requires even less, 194 s. In some sit-
uations, the PSGN model could use a known value for r from
a previous empirical result (labeled ‘PSGN Empirical r’ in the
figure legend), shrinking the time needed to estimate the NLI
down to a fraction of a second. The GN model is significantly
faster than the PSGN Empirical r, but they both require less than
30 ms per estimation. The PSGN model is sufficiently fast for

2All computations are on a laptop with an 11th Gen Intel(R) Core(TM) i5-11300H
@ 3.10 GHz processor and 8 GB RAM, using a single core.

most applications.
The advantage of using the PSGN model to estimate the NLI

over the overly-conservative maximum bandwidth GN model,
GGN, is shown in Fig. 5. For a channel of interest with uniformly
distributed bandwidth ranging from 50 to 100 GHz, the NLI
estimated by the PSGN model with an outage probability of
5% can avoid up to 10% of NLI overestimation. For demands
with bandwidths uniformly distributed from 50 to 200 GHz,
the GN model overestimates the NLI by 16% compared to the
NLI estimated by the PSGN model, at the cost of 2% outage
probability. The proposed PSGN model can avoid up to 25%
of NLI overestimation for a span with 13 signals with highly
variable bandwidths and 5% outage. Note that this NLI saving
is just for the channel of interest.

4. CONCLUSIONS

The proposed PSGN model estimates the NLI for random band-
width demands. It is applied to guarantee the QoT with a chosen
outage probability and requires only the channel of interest and
one neighboring channel. Compared to the GN model, the PSGN
model avoids significant NLI overestimation without incurring
an excessive computational burden.

Optical network planners use design margins to guaran-
tee a desired performance, but these margins use valuable re-
sources [2]. The proposed PSGN model is simple enough to
be utilized in cross-layer resource management of continental-
scale optical networks to significantly reduce these margins. The
PSGN model is applicable to future communication scenarios
with heterogeneous and time-varying traffic where statistical
information for the traffic is known. Thus, it could be used in
self-configuring networks to guarantee the QoT after reconfigu-
ration [6, 33]. Studying the benefits of using the PSGN model in
self-configuring networks is the subject of future research.

In the numerical results of this work, the channel powers
are assumed to be equal. The proposed PSGN model works
with any launch power scheme. Therefore, the effect of signal
launch power of random bandwidth traffic (including power
optimization) and the resulting accumulated PLI distributions
are also of interest and the subject of future studies.
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channels’ maximum bandwidths are separated by 12.5 GHz
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