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Abstract: In this paper, we consider centralized traffic signal control policies using the max-
weight algorithm when the queue size measurement is noisy. We first show analytically that the
standard max-weight algorithm is throughput optimal even under noisy queue measurements.
However, the average steady-state queue lengths and subsequently the average delays are
increased. In order to alleviate the effect of these noisy measurements we add filtering to the
max-weight algorithm; more specifically, we propose the Filtered-max-weight algorithm, which
is based on particle filtering. We demonstrate via simulations that the Filtered-max-weight
algorithm performs better than the standard max-weight algorithm in the presence of noisy
measurements.
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1. INTRODUCTION

Traffic conditions in major cities have become an im-
portant issue, since congestion results in delays, carbon
dioxide emissions, higher energy expenditure and accident
risks (see, for example, [Bigazzi and Figliozzi 2012] and
references therein). Control and coordination of traffic
movements has been at the epicenter of intelligent trans-
portation networks from different angles. One approach
is to introduce traffic adaptive signaling at intersections,
since a fixed-cycle control system might be an inevitable
waste of precious green time/phase without incoming
traffic demand, i.e., queues. Towards this end it is ob-
served that urban network throughput can be significantly
improved if traffic light algorithms are orchestrated to
serve major flows. SCATS [Sims and Dobinson 1980] and
SCOOT [Robertson and Bretherton 1991] constitute two
of the many systems proposed in the literature and are
also deployed in many cities across the world. However,
none of these approaches have proven to work for all traffic
conditions (under- and over-saturated) for which a policy
exists, i.e., they are not proven to be network throughput
optimal. A throughput optimal approach, called the max-
weight (or back-pressure) algorithm, for handling traffic
in communication networks was proposed in the seminal
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paper [Tassiulas and Ephremides 1992]. Since then, the
idea has been advanced by many researchers and it has
been applied extensively in communication networks and
in other areas as well. Recently, there has been an interest
in applying the same concept in transportation systems
(see, for example, [Varaiya and Pravin 2013, Gregoire
et al. 2015, Le et al. 2015, Zaidi et al. 2015, 2016] and
references therein). [Ramadhan et al. 2020] shows that the
max-pressure approach for a disturbed network has the
capability to avoid congestion across road segments in real
traffic conditions. The extended backpressure traffic signal
control algorithm can also maintain stability of urban
traffic network while preventing queue spillback such that
the performance of the traffic network is improved [Hao
et al. 2020].

For this application, however, the measurement of the
queue size is not so trivial. One approach uses video cam-
eras, where some vehicles may be occluded. Another ap-
proach is the use of radar sensors, which are more accurate
than cameras, but are relatively weak at understanding
the precise shape of the object, and as a result, the system
might not distinguish the real traffic (even though their
speeds can be determined). Finally, LiDARs are promising
sensors, but they are very expensive and require very
high computing power compared to cameras and radars,
making them prone to system malfunctions and software
glitches. As a result, in many cases, computing the traffic
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may lead to erroneous values of the queue size. This prob-
lem has motivated us to investigate how the back-pressure
algorithm performs when it has noisy queue information
and what should it be to optimize performance.

The idea of incomplete network state information has
been extensively studied, but mainly in the context of
topology and channel-state uncertainties (see, for example,
[Pantelidou et al. 2007, Ying and Shakkottai 2012] and
references therein). In addition, the idea of noisy queue
backlog information has also been considered for example,
in [Neely 2003] where, a Dynamic Routing and Power
Control (DRPC) policy is proposed and it is stated that
it still provides stability whenever possible. The impact of
delayed queue size and channel-state information on the
throughput region was investigated in [Ying and Shakkot-
tai 2011], but the effect of the delayed queue size was not
investigated in isolation. More recently, [Le et al. 2015]
propose a decentralized traffic signal control policy which
is throughput optimal under noisy measurements of the
queue size. However, for their proposed policy, each slot is
divided among the different phases, some of which would
be very small to actually accommodate some of the traf-
fic, while a large number of switchings between different
phases would be required resulting in a high loss of service.

In this work, we consider centralized traffic signal control
policies in which the queue size measurement is noisy
and we study their performance. More specifically, our
contributions are as follows:
• We analytically show that the standard back-pressure

algorithm is throughput optimal even under noisy queue
measurements.

• We show via simulations that filtering improves the per-
formance of the back-pressure algorithm since it reduces
the steady-state average queue size and subsequently
reduces the average travel delay in the network.

The remainder of the paper is organized as follows. In
Section 2, we introduce the notation used throughout the
paper, describe the model of the network and provide
preliminary results and definitions. In Section 3 we present
our main result. Then, in Section 4 we propose a filtering
approach based on particle filtering (herein called the
Filtered-max-weight algorithm) that is to be used to
improve the steady-state average queue size. In Section 5
the numerical simulations are presented to support our
algorithm. Finally, conclusions are drawn in Section 6.

2. NOTATION AND PRELIMINARIES

2.1 Notation and System Model

We let R, N, and N0 denote the set of real numbers, natural
numbers, and natural numbers including zero, respectively.
The Euclidean norm is denoted by ∥ · ∥. E{·} represents
the expectation of its argument. Also, by x ∧ y we denote
the min{x, y}. The cardinality of a set X is denoted by
|X |.
We follow the standard road network model, where the
network is modeled as a directed graph G = (N , E); nodes
i ∈ N represent the lanes with the capability to queue
vehicles, and links εij ∈ E represent the possible flows from
node (lane) i to node (lane) j connecting the incoming

nodes with the outgoing ones. Note that a road might have
more than one lanes; in this case each lane is considered
to be one node, and that each junction ℓ ∈ J consists of
a set of links. All nodes that have links to node i directly
are said to be in-neighbors of node i and belong to the set
N−

i = {j ∈ N | εji ∈ E}. Similarly, the nodes that receive
vehicles from node i comprise its out-neighbors and are
denoted by N+

i = {j ∈ N | εij ∈ E}.
We assume that all controllers at the intersections have
a common cycle of length T and decisions are taken
synchronously. Hence, time is considered as a slotted time
model with t ∈ N0 being the number of the cycle about to
start. The loss of service due to idle times during switches
is fixed and since it does not affect the subsequent analysis
it is assumed to be zero for simplicity.

2.2 Arrivals and service rates

Consider a slotted system with n lanes (i.e., n nodes with

queues). Let A(t) =
(
A1(t) A2(t) . . . An(t)

)T
denote the

vector of exogenous arrivals in which Ai(t) is assumed to
be an i.i.d. random variable and takes integer values (i.e.,
the number of vehicles). The arrival rate Ai(t) is given by

λi ≜ lim
T→∞

1

T

T∑
t=1

E{Ai(t)},

whereas the second moments E{A2
i (t)} are assumed to

be finite. Let λ ≜ (λ1 λ2 . . . λn)
T denote the vector

of arrival rates of all the nodes in the network. Let also
S(t) =

(
S1(t) S2(t) . . . Sm(t)

)T
denote the vector of

services at all links (i.e., m = |E|) at time (traffic cycle)
t, and S(t) ∈ S, where S is the set of all possible
service vectors. Note that the service Si(t) at any link
i may vary for each traffic cycle and it is bounded, i.e.,
Smax = maxi∈N Si(t) < ∞ for all times t.

2.3 Queue dynamics

Let Qi(t) denote the queue backlog (i.e., the num-
ber of cars) at lane i ∈ N and the vector Q(t) =(
Q1(t) Q2(t) . . . Qn(t)

)T
represent the current state of

the system at the beginning of time slot t. Suppose now
that the decision is being made on noisy measurements of

the queue backlogs Q̃(t) and

Q̃(t) = Q(t) + ν(t), (1)

where ν(t) =
(
ν1(t) ν2(t) . . . νn(t)

)T
. Since νi(t) rep-

resents the noise at lane i at time t with respect to the
number of vehicles seen in the queue, so νi(t) takes integer
values. Note that since we consider roads with finite length,
Qi(t) cannot be negative and νi(t) is finite for all i.

In case node i is selected to forward vehicles to its out-
neighbors j ∈ N+

i , then the number of vehicles from i to j
is denoted by Sij and the actual number of vehicles served
is Si•(t) ∧ Qi(t), where Si•(t) =

∑
j∈N+

i
Sij(t) (note that

Si(t) refers to the service rate on link i, whereas Si• refers
to the service rate from node i to all its out-going nodes).
In the text, we will often substitute Sij(t) by Si•(t)pij(t),
where pij(t) is the proportion of the traffic from node i to
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may lead to erroneous values of the queue size. This prob-
lem has motivated us to investigate how the back-pressure
algorithm performs when it has noisy queue information
and what should it be to optimize performance.

The idea of incomplete network state information has
been extensively studied, but mainly in the context of
topology and channel-state uncertainties (see, for example,
[Pantelidou et al. 2007, Ying and Shakkottai 2012] and
references therein). In addition, the idea of noisy queue
backlog information has also been considered for example,
in [Neely 2003] where, a Dynamic Routing and Power
Control (DRPC) policy is proposed and it is stated that
it still provides stability whenever possible. The impact of
delayed queue size and channel-state information on the
throughput region was investigated in [Ying and Shakkot-
tai 2011], but the effect of the delayed queue size was not
investigated in isolation. More recently, [Le et al. 2015]
propose a decentralized traffic signal control policy which
is throughput optimal under noisy measurements of the
queue size. However, for their proposed policy, each slot is
divided among the different phases, some of which would
be very small to actually accommodate some of the traf-
fic, while a large number of switchings between different
phases would be required resulting in a high loss of service.

In this work, we consider centralized traffic signal control
policies in which the queue size measurement is noisy
and we study their performance. More specifically, our
contributions are as follows:
• We analytically show that the standard back-pressure

algorithm is throughput optimal even under noisy queue
measurements.

• We show via simulations that filtering improves the per-
formance of the back-pressure algorithm since it reduces
the steady-state average queue size and subsequently
reduces the average travel delay in the network.

The remainder of the paper is organized as follows. In
Section 2, we introduce the notation used throughout the
paper, describe the model of the network and provide
preliminary results and definitions. In Section 3 we present
our main result. Then, in Section 4 we propose a filtering
approach based on particle filtering (herein called the
Filtered-max-weight algorithm) that is to be used to
improve the steady-state average queue size. In Section 5
the numerical simulations are presented to support our
algorithm. Finally, conclusions are drawn in Section 6.

2. NOTATION AND PRELIMINARIES

2.1 Notation and System Model

We let R, N, and N0 denote the set of real numbers, natural
numbers, and natural numbers including zero, respectively.
The Euclidean norm is denoted by ∥ · ∥. E{·} represents
the expectation of its argument. Also, by x ∧ y we denote
the min{x, y}. The cardinality of a set X is denoted by
|X |.
We follow the standard road network model, where the
network is modeled as a directed graph G = (N , E); nodes
i ∈ N represent the lanes with the capability to queue
vehicles, and links εij ∈ E represent the possible flows from
node (lane) i to node (lane) j connecting the incoming

nodes with the outgoing ones. Note that a road might have
more than one lanes; in this case each lane is considered
to be one node, and that each junction ℓ ∈ J consists of
a set of links. All nodes that have links to node i directly
are said to be in-neighbors of node i and belong to the set
N−

i = {j ∈ N | εji ∈ E}. Similarly, the nodes that receive
vehicles from node i comprise its out-neighbors and are
denoted by N+

i = {j ∈ N | εij ∈ E}.
We assume that all controllers at the intersections have
a common cycle of length T and decisions are taken
synchronously. Hence, time is considered as a slotted time
model with t ∈ N0 being the number of the cycle about to
start. The loss of service due to idle times during switches
is fixed and since it does not affect the subsequent analysis
it is assumed to be zero for simplicity.

2.2 Arrivals and service rates

Consider a slotted system with n lanes (i.e., n nodes with

queues). Let A(t) =
(
A1(t) A2(t) . . . An(t)

)T
denote the

vector of exogenous arrivals in which Ai(t) is assumed to
be an i.i.d. random variable and takes integer values (i.e.,
the number of vehicles). The arrival rate Ai(t) is given by

λi ≜ lim
T→∞

1

T

T∑
t=1

E{Ai(t)},

whereas the second moments E{A2
i (t)} are assumed to

be finite. Let λ ≜ (λ1 λ2 . . . λn)
T denote the vector

of arrival rates of all the nodes in the network. Let also
S(t) =

(
S1(t) S2(t) . . . Sm(t)

)T
denote the vector of

services at all links (i.e., m = |E|) at time (traffic cycle)
t, and S(t) ∈ S, where S is the set of all possible
service vectors. Note that the service Si(t) at any link
i may vary for each traffic cycle and it is bounded, i.e.,
Smax = maxi∈N Si(t) < ∞ for all times t.

2.3 Queue dynamics

Let Qi(t) denote the queue backlog (i.e., the num-
ber of cars) at lane i ∈ N and the vector Q(t) =(
Q1(t) Q2(t) . . . Qn(t)

)T
represent the current state of

the system at the beginning of time slot t. Suppose now
that the decision is being made on noisy measurements of

the queue backlogs Q̃(t) and

Q̃(t) = Q(t) + ν(t), (1)

where ν(t) =
(
ν1(t) ν2(t) . . . νn(t)

)T
. Since νi(t) rep-

resents the noise at lane i at time t with respect to the
number of vehicles seen in the queue, so νi(t) takes integer
values. Note that since we consider roads with finite length,
Qi(t) cannot be negative and νi(t) is finite for all i.

In case node i is selected to forward vehicles to its out-
neighbors j ∈ N+

i , then the number of vehicles from i to j
is denoted by Sij and the actual number of vehicles served
is Si•(t) ∧ Qi(t), where Si•(t) =

∑
j∈N+

i
Sij(t) (note that

Si(t) refers to the service rate on link i, whereas Si• refers
to the service rate from node i to all its out-going nodes).
In the text, we will often substitute Sij(t) by Si•(t)pij(t),
where pij(t) is the proportion of the traffic from node i to

node j. The service rates at each traffic cycle are assumed
to be known to the traffic light controller.

Let a(t) =
�
a1(t) a2(t) . . . an(t)

T
denote the vector of

decision variables representing the decision taken at time
step t, where ai(t) ∈ {0, 1}, i.e., if node i is selected at time
slot t then ai(t) = 1, otherwise it is zero. This decision
depends on the current noisy measurement of the queue

backlogs Q(t) and services S(t), but we use a(t) for brevity

(instead of a( Q(t), S(t))).

For a given policy {a(t)}∞t=0, for node i the evolution of
the queue size is as follows

Qi(t+ 1) = Qi(t)−ai(t)
�
Si•(t) ∧Qi(t)


+Ai(t)

+


j∈N−
i

aj(t)
�
Sji(t) ∧Qj(t)


. (2)

2.4 Network stability and throughput region

We recall the definitions of network stability and the
throughput region [Tassiulas and Ephremides 1992]. We
begin with the definition of the queue stability with respect
to a generic backlog Qi(t); A queue with stochastic arrival
and departure processes is called stable if its average
backlog is bounded, i.e.,

lim
T→∞

sup
1

T

T
t=1

E{Qi(t)} < ∞.

A network is called stable if all individual queues in the
network are stable. Given the vector of queues backlogs
we define the total queue size of the network to be
QΣ(t) =


i∈N Qi(t). Equivalently, the network with

stochastic arrival and departure processes is called stable
if its average backlog is bounded, i.e.,

lim
T→∞

sup
1

T

T
t=1

E{QΣ(t)} < ∞.

The throughput region Λ of a network is the set of all
traffic arrival rate vectors for which there exists a scheme
that stabilizes the network. Such a scheme is known as a
throughput-optimal scheme.

2.5 Traffic Phases

At every slot t ∈ N, junction ℓ activates a signal phase
σ ∈ Pℓ, where Pℓ denotes the possible phases at the
junction. Once σ is chosen, a set of non-overlapping
links are activated for transfer of vehicles. When a phase
σ ∈ Pℓ is activated at junction ℓ, the number of vehicles
transferred by lane i to j at time instant t is given by
Sij(t), as defined in Section 2.3. Once a phase is selected,
if lane i belongs to the roads activated, then ai = 1.

2.6 The max-weight (or back-pressure) algorithm

For each lane i going to lane j, the pressure weight Wij is
computed as follows:

Wij

�
Q(t)


= Qi(t)−Qj(t). (3a)

For each phase σ ∈ Pℓ, the junction computes the pressure
release

wσ

�
Q(t)


=


(i,j)∈σ

Wij

�
Q(t)


Sij(t), ∀σ ∈ Pℓ, (3b)

and chooses the one with the highest pressure release, i.e.,

σ⋆(t) = arg max
σ∈Pℓ

wσ

�
Q(t)


. (3c)

3. THE NOISY-MAX-WEIGHT (OR
NOISY-BACK-PRESSURE) ALGORITHM

For the case for which the queue length measurements are
noisy, for each lane i going to lane j, the pressure weight
Wij is computed as follows:

Wij

 Q(t)

= Qi(t)− Qj(t). (4a)

For each phase σ ∈ Pℓ, the junction computes the pressure
release

wσ

 Q(t)

=


(i,j)∈σ

Wij

 Q(t)

Sij(t), ∀σ ∈ Pℓ, (4b)

and chooses the one with the highest pressure release, i.e.,

σ⋆(t) = arg max
σ∈Pℓ

wσ

� Q(t)

. (4c)

For considering the evolution of individual queues, we
can more conveniently represent (i, j) ∈ σ by i ∈ ℓ and
j ∈ N+

i . Then, using (4b) the total pressure release at
a junction ℓ ∈ J can be written with respect to the
individual nodes as follows:

σ∈Pℓ

wσ

 Q(t)

=


i∈ℓ



j∈N+
i


Sij( Qi − Qj)



=

i∈ℓ

Si• Qi −


j∈N+
i

Sij
Qj =


i∈ℓ

Si•


Qi −



j∈N+
i

pij Qj




  
≜wi

�Q(t)


.

The relation between the noisy and non-noisy pressure
releases can be easily shown to be

wσ

� Q(t)

= wσ

�
Q(t)


+ wσ

�
ν(t)


. (5)

Our main finding with respect to erroneous measurement
of queue lengths equation (4b), is formally stated in the
following theorem

Theorem 1. The noisy-max-weight algorithm given by (4)
is throughput optimal for any λ ∈ Λ.

Proof. The proof is to be included in extended journal
version [Charalambous et al. 2023]

Theorem 1 essentially states that even though the mea-
sured queue length is noisy, and the decisions are taken
based on noisy information, the noisy-max-weight algo-
rithm is still throughput optimal. In other words, noise
does not affect the throughput region of the algorithm.

4. THE FILTERED-MAX-WEIGHT ALGORITHM

The magnitude of the noise affects the performance of the
max-weight algorithm, even in a simple network. In order
to suppress the noise level it is necessary to estimate on-
line the state of queues, that evolves in time, as accurately
as possible using sequence of noisy observations. In this
section, we propose the use of a Bayesian sequential esti-
mator to deal with the noise in the queue measurements.
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Recalling that Qi(t) denotes the state of the queue of node
i at time t, then equations (2) and (1) provide a description
of the models for the process and measurements, respec-
tively; in its general form, for each node i, it is given by

Qi(t+ 1) = fai(t),aj∈N−
i

(t)(Qi(t), Qj∈N−
i
(t), Ai(t)), (6a)

Q̃i(t) = Qi(t) + νi(t), (6b)

where Qj∈N−
i
(t) denotes the queue states of the the in-

neighbors of node i, and f : R × R|N−
i
| × R → R

is, in our case, a nonlinear function. Note that when a
decision is taken, the services and actions are known.
Hence, if there are no endogenous arrivals or they are
known exactly, the only randomness in (6a) stems from
the arrivals Ai(t). Both the process and measurement
noise are generally assumed to be independent, identically
distributed iid stochastic processes, but not necessarily
additive or Gaussian. We also assume that the initial state
of the queues is independent of the noise processes and
its distribution is given through a Probability Density
Function p(Q(0)). If the pdf of the noise processes are
known, system (6) can be equivalently represented by

Qi(t+ 1) ∼ p(·|Qi(t), Qj∈N−
i
(t)), (7a)

Q̃i(t) ∼ p(·|Qi(t)). (7b)

In our case, it is obvious from equation (2) that the
system is nonlinear with discrete queue states and the
noise processes are non-Gaussian and bounded. Thus, we
can resort to either a hidden Markov model [Rabiner 1989]
or a particle filter [Gordon et al. 1993, Doucet et al. 2001,
Arulampalam et al. 2002]. We have selected a particle
filter, due to its ease of implementation and flexibility.

The idea of adopting particle filtering to provide esti-
mates in traffic control problems has appeared is several
occasions, such as, in [Mihaylova et al. 2007] for real-
time estimation of traffic state in freeway networks and
in [Pascale et al. 2013] for density estimation of a road.

By combining all nodes together, (7) becomes

Q(t+ 1) ∼ p(·|Q(t)), (8a)

Q̃(t) ∼ p(·|Q(t)). (8b)

Let Q̃1:t−1
i (t) denote the sequence of noisy observations at

node i from time 1 up to and including time t − 1. The
particle filter now involves 2 steps:

1) Prediction: At time t, we have particle representation

of p(Q(t)|Q̃1:t−1) in the form 1

{
µ(p)(t− 1), Q(p)(t)

}Np

p=1
,

where Np is the number of particles (for simplicity,
we assume that all nodes use the same number of
particles), the weights are such that

∑Np

p=1 µ
(p)(t −

1) = 1. It is often impossible to sample from the
posterior pdf and hence, to obtain Q(p)(t) we use the
transition prior as the proposal distribution, which is

the traffic state model (6a); Q
(p)
i (t) is obtained locally

1 This process is initialized at time t = 1 with a particle list of all
zeros, if the system starts in an empty state.

by (an intersection associated with) road i by (6a)

provided road i is informed about Q
(p)

j∈N−
i

(t− 1).

2) Correction: Now the weight associated with Q(p)(t)
is computed as

µ(p)(t) ∝ µ(p)(t− 1)× p(Q̃(t)|Q(p)(t))

= µ(p)(t− 1)×
∏
i∈N

p(Q̃i(t)|Q(p)
i (t)),

which can be computed through average consensus

for directed graphs on log p(Q̃i(t)|Q(p)
i (t)) over i for

each particle p. After such a consensus, each road
will know µ(p)(t) for all p. Note that the likelihood

function p(Q̃i(t)|Q(p)
i (t)) is calculated from (6b) using

the predicted state of Q
(p)
i (t) and the known pdf of

the measurement process. The weights are normalized
and then if weightage of the insignificant weights
Neff is greater than a threshold Nt,then resampling
is performed.

We note that each road i only keeps track of{
µ(p)(t), Q

(p)
i (t)

}Np

p=1
,

but must be informed about Q
(p)

j∈N−
i

(t− 1) and must per-

form a consensus operation to compute µ(p)(t), which are
the same for all nodes. The Filtered-max-weight algorithm
(PF-FMW) is outlined in Algorithm 1.

Algorithm 1 PF-FMW

1: for t = 1, 2, . . . do
2: for i = 1, 2, . . . , N do
3: Compute Noisy Queue Length
4: Qi(t+ 1) ← fai(t),aj∈N−

i

(t)(Qi(t), Qj∈N−
i
(t)

5: , Ai(t))

6: Q̃i(t)
(p) ← Qi(t)

(p) + νi(t)
7: Centeral Particle Filtering Estimation
8: for j = 1, 2, . . . , N do
9: Prediction

10: {
µ
(p)
i (t− 1), Q

(p)
i (t)

}Np

p=1
,

11: Correction
12: µ

(p)
i (t) ∝ µ

(p)
i (t− 1)× p(Q̃i(t)|Q(p)

i (t))

13: Normalize weights s.t.
∑Np

p=1 µ
(p)
i ← 1

14: if Neff ≤ Nt then
15: Resample
16: end if
17: end for
18: Determine most probable queue state

19: Q̂i(t) ← argmaxQi(t) p(Qi(t)|Q̃0:t
i )

20: end for
21: end for

5. NUMERICAL EVALUATIONS

5.1 Network and Simulation Parameters

We evaluated the performance of the proposed algorithm
using SUMO, a microscopic road traffic simulator. For
collecting the metrics of interest from the network and
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Recalling that Qi(t) denotes the state of the queue of node
i at time t, then equations (2) and (1) provide a description
of the models for the process and measurements, respec-
tively; in its general form, for each node i, it is given by

Qi(t+ 1) = fai(t),aj∈N−
i

(t)(Qi(t), Qj∈N−
i
(t), Ai(t)), (6a)

Q̃i(t) = Qi(t) + νi(t), (6b)

where Qj∈N−
i
(t) denotes the queue states of the the in-

neighbors of node i, and f : R × R|N−
i
| × R → R

is, in our case, a nonlinear function. Note that when a
decision is taken, the services and actions are known.
Hence, if there are no endogenous arrivals or they are
known exactly, the only randomness in (6a) stems from
the arrivals Ai(t). Both the process and measurement
noise are generally assumed to be independent, identically
distributed iid stochastic processes, but not necessarily
additive or Gaussian. We also assume that the initial state
of the queues is independent of the noise processes and
its distribution is given through a Probability Density
Function p(Q(0)). If the pdf of the noise processes are
known, system (6) can be equivalently represented by

Qi(t+ 1) ∼ p(·|Qi(t), Qj∈N−
i
(t)), (7a)

Q̃i(t) ∼ p(·|Qi(t)). (7b)

In our case, it is obvious from equation (2) that the
system is nonlinear with discrete queue states and the
noise processes are non-Gaussian and bounded. Thus, we
can resort to either a hidden Markov model [Rabiner 1989]
or a particle filter [Gordon et al. 1993, Doucet et al. 2001,
Arulampalam et al. 2002]. We have selected a particle
filter, due to its ease of implementation and flexibility.

The idea of adopting particle filtering to provide esti-
mates in traffic control problems has appeared is several
occasions, such as, in [Mihaylova et al. 2007] for real-
time estimation of traffic state in freeway networks and
in [Pascale et al. 2013] for density estimation of a road.

By combining all nodes together, (7) becomes

Q(t+ 1) ∼ p(·|Q(t)), (8a)

Q̃(t) ∼ p(·|Q(t)). (8b)

Let Q̃1:t−1
i (t) denote the sequence of noisy observations at

node i from time 1 up to and including time t − 1. The
particle filter now involves 2 steps:

1) Prediction: At time t, we have particle representation

of p(Q(t)|Q̃1:t−1) in the form 1

{
µ(p)(t− 1), Q(p)(t)

}Np

p=1
,

where Np is the number of particles (for simplicity,
we assume that all nodes use the same number of
particles), the weights are such that

∑Np

p=1 µ
(p)(t −

1) = 1. It is often impossible to sample from the
posterior pdf and hence, to obtain Q(p)(t) we use the
transition prior as the proposal distribution, which is

the traffic state model (6a); Q
(p)
i (t) is obtained locally

1 This process is initialized at time t = 1 with a particle list of all
zeros, if the system starts in an empty state.

by (an intersection associated with) road i by (6a)

provided road i is informed about Q
(p)

j∈N−
i

(t− 1).

2) Correction: Now the weight associated with Q(p)(t)
is computed as

µ(p)(t) ∝ µ(p)(t− 1)× p(Q̃(t)|Q(p)(t))

= µ(p)(t− 1)×
∏
i∈N

p(Q̃i(t)|Q(p)
i (t)),

which can be computed through average consensus

for directed graphs on log p(Q̃i(t)|Q(p)
i (t)) over i for

each particle p. After such a consensus, each road
will know µ(p)(t) for all p. Note that the likelihood

function p(Q̃i(t)|Q(p)
i (t)) is calculated from (6b) using

the predicted state of Q
(p)
i (t) and the known pdf of

the measurement process. The weights are normalized
and then if weightage of the insignificant weights
Neff is greater than a threshold Nt,then resampling
is performed.

We note that each road i only keeps track of{
µ(p)(t), Q

(p)
i (t)

}Np

p=1
,

but must be informed about Q
(p)

j∈N−
i

(t− 1) and must per-

form a consensus operation to compute µ(p)(t), which are
the same for all nodes. The Filtered-max-weight algorithm
(PF-FMW) is outlined in Algorithm 1.

Algorithm 1 PF-FMW

1: for t = 1, 2, . . . do
2: for i = 1, 2, . . . , N do
3: Compute Noisy Queue Length
4: Qi(t+ 1) ← fai(t),aj∈N−

i

(t)(Qi(t), Qj∈N−
i
(t)

5: , Ai(t))

6: Q̃i(t)
(p) ← Qi(t)

(p) + νi(t)
7: Centeral Particle Filtering Estimation
8: for j = 1, 2, . . . , N do
9: Prediction

10: {
µ
(p)
i (t− 1), Q

(p)
i (t)

}Np

p=1
,

11: Correction
12: µ

(p)
i (t) ∝ µ

(p)
i (t− 1)× p(Q̃i(t)|Q(p)

i (t))

13: Normalize weights s.t.
∑Np

p=1 µ
(p)
i ← 1

14: if Neff ≤ Nt then
15: Resample
16: end if
17: end for
18: Determine most probable queue state

19: Q̂i(t) ← argmaxQi(t) p(Qi(t)|Q̃0:t
i )

20: end for
21: end for

5. NUMERICAL EVALUATIONS

5.1 Network and Simulation Parameters

We evaluated the performance of the proposed algorithm
using SUMO, a microscopic road traffic simulator. For
collecting the metrics of interest from the network and

for making the scheduling decisions of the proposed algo-
rithm, we developed a MATLAB script which interacted
with SUMO via TraCI4Matlab. The chosen network is
composed of a 4x4 grid with 9 signalized interactions and
40 two-way roads. All roads are of the same size. Each
controlled junction is regulated with four phases shown in
Fig. 1.

(a) (b) (c) (d)

Fig. 1. Phases of a four-way junction: (a) Phase 1, (b)
Phase 2, (c) Phase 3, (d) Phase 4.

For both fixed time schedule control (FT) and Back
Pressure (BP) control we assume that the time period
for each cycle equals to 90s at all intersections according
to the signal plan (phase distribution) given in Table. 1.
All the traffic measurements are taken after every 45 sec
in order to update the signal phases according to back
pressure controller. In order to assess the effectiveness
of the algorithm, the routes of the vehicles entering the
network are generated randomly. The effectiveness of the
algorithm is shown through comparison of aggregate queue
lengths of all the roads in the network. The simulations
were performed for FT and BP controller. BP controller
was also investigated for noise and using particle filter
estimation for different noise levels. Np is chosen to be 300
for simulations. The noise vi is assumed to have a uniform
distribution. The arrival rate and route of the vehicles are
generated randomly for all cases.

Table 1. Phase Distribution.

Type Phase1 Phase2 Phase3 Phase4

Four-way 42 3 42 3

5.2 Simulation Results and Discussions

The simulations were performed for high traffic scenario
where the the traffic is generated for 800 vehicles entering
in the network at the rate of 5700 vehicles/hr. The
simulations were run for 1000 secs. The controllers used to
compare results are Fixed Time (FT), Back Pressure (BP)
with no noise, unfiltered BP (noisy-max-weight NBP),
filtered BP (Filtered-max-weight FBP) with noise levels
[-3,3] and [-5,5] respectively. We first show the filter
performance by showing mean square error (MSE) of
queue size estimation for three different lanes in the
network for multiple nois levels. The filter is used to
estimate actual queue size and attenuate the noise. It can
be seen in Fig. 2, that the MSE for estimated queue size
are closer to the true queue sizes as compared with the
observed after filtering, which is one of reasons of improved
performance of FBP controller.

Fig. 3 shows the cumulative queue lengths accumulated
for each controller. It can be seen that FT controller is not
converging and results in a deadlock. Back Pressure (BP)
controller is able to clear the traffic in all cases. However, it
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Fig. 2. Filter Performance Analysis: Mean Square Error of
Queue Size for Multiple lanes for different noise levels.
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Fig. 4. Steady State Performance Analysis for Multiple
Controllers.

is also observed that in the presence of noise, Filtered-max-
weight performs better than noisy-max-weight for all test
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cases and supports that Filtered-max-weight algorithm is
indeed throughput optimal.

Analysis of steady-state performance of all controllers is
presented in Fig. 4. The simulations were performed for
20 different scenarios and average queue lengths in steady
state were recorded in each case. It can be observed that
Filtered-max-weight shows improved performance under
noisy observations both in terms of convergence and steady
state response.

6. CONCLUSIONS

In this paper we considered the max-weight algorithm
when the queue size measurement is noisy for centralized
traffic signal control. We first proved analytically that
the max-weight algorithm is throughput optimal even
under noisy queue measurements. Then, we proposed
the Filtered-max-weight algorithm, which is based on
particle filtering, in order to alleviate the effect of the
noisy measurements. We demonstrate via simulations that
by incorporating the Filtered-max-weight algorithm the
performance of the network is somewhat improved with
respect to the average queue length. The work is done
under the assumption that the queue lengths are infinite.
In future, it is important to study the effect of the queue
lengths on the throughput region of the network.
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