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Abstract: Lithium-Ion battery system is one of the most critical but expensive components for
both electric vehicles and stationary energy storage applications. In this regard, accurate and
reliable early prediction of battery lifetime is important for optimizing life cycle management
of batteries from cradle to grave. In particular, accurate aging diagnostics and prognostics
is crucial for ensuring longevity, performance, safety, uptime, productivity, and profitability
over a battery’s lifetime. However, current state-of-art methods do not provide satisfactory
prediction performance (lack of uncertainty quantification) using early degradation data. In
the present work, to produce the best model for both battery cycle life point prediction and
range prediction (i.e., confidence intervals or prediction intervals), a pipeline-based approach
is proposed, in which a full 33-feature set is generated manually based on battery degradation
knowledge, and then used to learn the best model among five machine learning (ML) models
that have been reported in the battery lifetime prediction literature, and two quantile regression
models for battery cycle life prediction. The calibration and sharpness property of battery cycle
life range prediction is properly evaluated by their coverage probability and width respectively.
The experimental results show that the gradient boosting regression tree model provides the
best point prediction performance, while the quantile regression forest model provides the best
range prediction performance with both full 33-feature set and the MIT 6-feature set.
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1. INTRODUCTION

Lithium-ion batteries have been widely used as energy
storage systems in various applications, such as, mobile
devices, electric vehicles, and microgrids, due to their
high energy and power density, low cost and long lifetime
characteristics Schmuch et al. (2018). However, as a result
of a complex interplay of different physical and chemical
mechanisms, the performance (e.g., available energy, and
available power) of lithium-ion batteries gradually de-
grades over time where the degradation rate is a nonlinear
function of storage and cycling conditions (ambient tem-
perature, state-of-charge (SoC) window, charge/discharge
current. energy throughput etc) Vetter et al. (2005). In
the application of stationary energy storage systems, the
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battery capacity degradation can be converted into the
replacement cost of energy storage systems, which in-
creases with battery degradation Wang et al. (2020). Bat-
tery degradation may also incur safety issues (e.g., due
to excessive lithium plating and dendrite growth leading
to internal short-circuit) during their service over lifetime
Han et al. (2019). Therefore, to ensure profitable and safe
battery usage throughout their whole lifetime, accurate
and reliable battery lifetime prediction using early degra-
dation data is of great importance. Moreover, optimizing a
parameter space of fast-charging protocols for maximizing
battery lifetime can become tractable by a significant
reduction of the number of testing cycles per battery cell
Attia et al. (2020). However, the lithium-ion battery degra-
dation process exhibits high nonlinearities and depends
on both external factors (e.g., storage conditions Grolleau
et al. (2014), cycling conditions and their sequences Raj
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Sébastien Gros ∗∗∗∗

∗ Department of Electromobility, Volvo Group Trucks Technology,
Gothenburg, Sweden (e-mail: huang.zhang@volvo.com) and Department

of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden (email: huangz@chalmers.se).

∗∗ Department of Electromobility, Volvo Group Trucks Technology,
Gothenburg, Sweden (e-mail: faisal.altaf@volvo.com)

∗∗∗ Department of Electrical Engineering, Chalmers University of
Technology, Gothenburg, Sweden, (e-mail: torsten.wik@chalmers.se)
∗∗∗∗ Department of Engineering Cybernetic, Norwegian University of

Science and Technology, Trondheim, Norway, (e-mail:
sebastien.gros@ntnu.no)

Abstract: Lithium-Ion battery system is one of the most critical but expensive components for
both electric vehicles and stationary energy storage applications. In this regard, accurate and
reliable early prediction of battery lifetime is important for optimizing life cycle management
of batteries from cradle to grave. In particular, accurate aging diagnostics and prognostics
is crucial for ensuring longevity, performance, safety, uptime, productivity, and profitability
over a battery’s lifetime. However, current state-of-art methods do not provide satisfactory
prediction performance (lack of uncertainty quantification) using early degradation data. In
the present work, to produce the best model for both battery cycle life point prediction and
range prediction (i.e., confidence intervals or prediction intervals), a pipeline-based approach
is proposed, in which a full 33-feature set is generated manually based on battery degradation
knowledge, and then used to learn the best model among five machine learning (ML) models
that have been reported in the battery lifetime prediction literature, and two quantile regression
models for battery cycle life prediction. The calibration and sharpness property of battery cycle
life range prediction is properly evaluated by their coverage probability and width respectively.
The experimental results show that the gradient boosting regression tree model provides the
best point prediction performance, while the quantile regression forest model provides the best
range prediction performance with both full 33-feature set and the MIT 6-feature set.

Keywords: Computational intelligence in control, lithium-ion battery, cycle life early
prediction, uncertainty quantification, prediction intervals

1. INTRODUCTION

Lithium-ion batteries have been widely used as energy
storage systems in various applications, such as, mobile
devices, electric vehicles, and microgrids, due to their
high energy and power density, low cost and long lifetime
characteristics Schmuch et al. (2018). However, as a result
of a complex interplay of different physical and chemical
mechanisms, the performance (e.g., available energy, and
available power) of lithium-ion batteries gradually de-
grades over time where the degradation rate is a nonlinear
function of storage and cycling conditions (ambient tem-
perature, state-of-charge (SoC) window, charge/discharge
current. energy throughput etc) Vetter et al. (2005). In
the application of stationary energy storage systems, the

⋆ The authors would like to thank Volvo Group and Swedish Energy
Agency for funding this work.

battery capacity degradation can be converted into the
replacement cost of energy storage systems, which in-
creases with battery degradation Wang et al. (2020). Bat-
tery degradation may also incur safety issues (e.g., due
to excessive lithium plating and dendrite growth leading
to internal short-circuit) during their service over lifetime
Han et al. (2019). Therefore, to ensure profitable and safe
battery usage throughout their whole lifetime, accurate
and reliable battery lifetime prediction using early degra-
dation data is of great importance. Moreover, optimizing a
parameter space of fast-charging protocols for maximizing
battery lifetime can become tractable by a significant
reduction of the number of testing cycles per battery cell
Attia et al. (2020). However, the lithium-ion battery degra-
dation process exhibits high nonlinearities and depends
on both external factors (e.g., storage conditions Grolleau
et al. (2014), cycling conditions and their sequences Raj

Comparative Analysis of Battery Cycle Life
Early Prediction Using Machine Learning

Pipeline ⋆

Huang Zhang ∗ Faisal Altaf ∗∗ Torsten Wik ∗∗∗
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the application of stationary energy storage systems, the

⋆ The authors would like to thank Volvo Group and Swedish Energy
Agency for funding this work.

battery capacity degradation can be converted into the
replacement cost of energy storage systems, which in-
creases with battery degradation Wang et al. (2020). Bat-
tery degradation may also incur safety issues (e.g., due
to excessive lithium plating and dendrite growth leading
to internal short-circuit) during their service over lifetime
Han et al. (2019). Therefore, to ensure profitable and safe
battery usage throughout their whole lifetime, accurate
and reliable battery lifetime prediction using early degra-
dation data is of great importance. Moreover, optimizing a
parameter space of fast-charging protocols for maximizing
battery lifetime can become tractable by a significant
reduction of the number of testing cycles per battery cell
Attia et al. (2020). However, the lithium-ion battery degra-
dation process exhibits high nonlinearities and depends
on both external factors (e.g., storage conditions Grolleau
et al. (2014), cycling conditions and their sequences Raj
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2. BATTERY DATASET AND MACHINE LEARNING
PIPELINE

The machine learning pipeline that automatically selects
the best model among various ML models for battery cycle
life early prediction is presented in Fig. 1.

Battery data

Selected feature set

Data preprocessing

Training set Test set

Model selection

Hyperparameter optimization

Final ML models Model evaluation

Stratified random sampling

80% 20%

The best model

Fig. 1. The proposed machine learning pipeline for select-
ing the best ML model to predict battery cycle life.

2.1 Battery dataset

The battery dataset generated by Severson et al. (2019)
is used to validate the effectiveness of the proposed
pipeline. There are 124 lithium iron ferrous phosphate
(LFP)/graphite cells with 1.1 Ah nominal capacity. These
cells are from 3 different batches (i.e., the ”2017-05-
12” batch, the ”2017-06-30” batch, and the ”2018-04-12”
batch) where the batch date indicates the date of start
of experiment. Each battery cell is charged from 0% to
80% state-of-charge (SoC) with a one-step or two-step fast-
charging protocol, and then charged from 80% to 100%
SoC with a uniform 1C constant current-constant voltage
(CC-CV) charging step to 3.6 V and a current cutoff of
C/50. Subsequently, the cells are discharged identically
with a 4C CC-CV discharging step to 2.0 V and a cur-
rent cutoff at C/50. For example, a charging protocol
”6C(30%)-3.6C” represents a 6C charging step from 0%
to 30% SoC, followed by a 3.6C charging step from 30% to
80% SoC. All cells are cycled until they reach end of life,
i.e., 80% of initial nominal capacity.

2.2 Data preprocessing

The data preprocessing can have a significant impact
on generalization performance of a ML model, which
consists of data cleaning, normalization, transformation,
feature engineering and selection, etc Kotsiantis et al.
(2006). In the present application of battery cycle life
prediction, there are 33 features extracted from the first

100 cycles data with aid of battery domain knowledge. The
33 features are divided into five groups and listed in Table.
1.

2.3 Train-test split

Notably, there are 72 different charging protocols used in
this battery dataset, whose nominal charging time from
0% to 80% SoC ranges from 9 to 13.3 min. In order to
reduce the possibly large sampling error due to relatively
small dataset in this work, the stratified random sampling
method Reitermanova et al. (2010) is used to randomly
split the dataset, with 80% in a training set (99 samples)
and 20% in a test set (25 samples). Equal ratios of fast-
charged (i.e., less than 10.5 min) cells , medium-charged
(i.e., between 10.5 and 11.7 min) cells, and slow-charged
(i.e., greater than 11.7 min) cells are preserved in the
training and test set at each split. Moreover, for the
purpose of reducing the random effect of the selected split,
the stratified random sampling is repeated 5 times, and the
experimental results of 5 train-test splits are averaged.

2.4 Model selection

Quantile regression forest Quantile regession is one type
of regression method which provides conditional quantiles
of battery cycle life given input feature values from the first
100 cycles degradation data Koenker (2005). Comparing
with the classical least squares estimation, quantile regres-
sion estimates are more robust against possible outliers
in battery cycle life observations. Moreover, distribution
assumptions of battery cycle life as output variable, such as
Gaussian, are not required for quantile regression models.

Different from a random forest, all observations in every
leaf of every tree are stored in a QRF, which are used
to construct the conditional distribution of the battery
cycle life Meinshausen and Ridgeway (2006). To compute
the conditional quantile at a given level α by a QRF
for a given x ∈ Rp represents p features extracted from
the first 100 cycles of a battery cell, i.e., Q̂α(x), the
empirical conditional cumulative distribution function is
first obtained by averaging weights of every observation
over all trees of the forest. Then the estimate of the
conditional quantile Q̂α(x), is obtained.

Quantile regression gradient boosting By substituting
the squared error loss function of the GBRT with a pinball
loss function, the GBRT is able to estimate the conditional
quantile at a given level α for a given x, i.e., Q̂α(x)
Friedman (2001).

The prediction intervals are constructed from the predic-
tive quantiles of battery cycle life by quantile regression
models. We consider the classical case of central (1−α)×
100% prediction interval for battery cycle life, with lower
and upper bounds that are the predictive quantiles at level
α
2 and 1− α

2 . In this work, the 95% prediction interval for
battery cycle life is estimated by

Î(x) = [Q̂.025(x), Q̂.975(x)], (1)

which means given X = x, a new observation of battery
cycle life Y is in the interval Î(x) with a probability of
95%.

et al. (2020)), and internal factors (e.g., variances due to
manufacturing tolerances Baumhöfer et al. (2014)). All
these factors complicate the battery lifetime prediction.

Over the past decade, there has been significant re-
search work on battery lifetime prediction, which is also
known as remaining useful life (RUL) prediction. Based
on a measure of battery lifetime (e.g., cycle number, Ah-
throughput) together with an end of life (EoL) threshold,
various methods have been developed in studies to esti-
mate the lifetime remaining until EoL. The methods devel-
oped in these studies can be roughly divided into two cat-
egories, model-based methods and data-driven methods.
Model-based methods typically start with developing a
mathematical model that captures the battery degradation
dynamics, for example, a physics-based model Sadabadi
et al. (2021), a semi-empirical model Lian et al. (2020) or
an empirical model Hu et al. (2018). The mathematical
model is then incorporated into a recursive Bayesian filter
framework, such as a Kalman filter Chang et al. (2017)
or a particle filter Miao et al. (2013), in which battery
model parameters are recursively updated from measured
data. Although the battery lifetime or RUL prediction
performance of model-based methods has successfully been
demonstrated in the aforementioned studies, these meth-
ods still struggle to predict battery lifetime at the early
degradation stage because of the typical two-stage nonlin-
ear degradation process as well as limited data collected
from a short range of early lifetimes Severson et al. (2019).

Instead of developing an explicit mathematical model
to characterize the battery degradation dynamics, data-
driven methods are used in some studies to formulate
the battery lifetime or RUL prediction problem as a
standard regression problem, with the goal of learning
a mapping function from input features extracted from
battery degradation data to the battery lifetime or RUL
directly, given a large set of input-output training pairs.
Severson et al. (2019) extracted features mainly from dis-
charge voltage and capacity curves, and then selected three
feature subsets to learn three different elastic net models
to predict battery lifetime. Zhang et al. (2021) extracted
features from discharge voltage curves, discharge capacity,
and internal resistance, and then high-importance fea-
tures were selected to learn a general regression neural
network for RUL prediction. In some other studies that
also employ data-driven methods, the battery lifetime or
RUL prediction problem is formulated as a time-series
forecasting problem, in which the future battery state
of health (SoH) is estimated first and then the battery
lifetime or RUL is predicted as the time that the estimated
future SoH reaches a predefined EoL threshold. Richard-
son et al. (2019) extracted features from elapsed time,
charge throughput in each load pattern, elapsed time in
the selected voltage, current, temperature windows in each
load pattern, and then used a Gaussian process regression
(GPR) with a Matérn kernel to predict battery SoH. Ma
et al. (2019) used a convolutional neural network (CNN) to
automatically extract features from the battery capacity
data in a sliding window and then employed long short-
term memory (LSTM) to predict battery SoH by using
the extracted features. However, the amount of required
battery degradation data for accurate RUL prediction by

LSTM accumulates up to 25% of the whole lifetime data
Zhang et al. (2018).

Although data-driven methods that are employed in the
aforementioned studies provide outstanding lifetime pre-
diction accuracy with limited data at early cycles, the
uncertainty associated with battery lifetime prediction is
either lacking or quantified with Gaussian assumption that
is not necessarily hold, especially in the case of a small
battery dataset.

Considering the great benefits of battery lifetime pre-
diction using early degradation data for optimization of
battery life cycle management from cradle to grave, there
is still a need of accurate and reliable battery lifetime
prediction using as early degradation data as possible.
Here in this work, we propose a pipeline-based approach
(illustrated in Fig. 1) to automate the process of producing
the best model for both battery cycle life point prediction
and battery cycle life range prediction. In the proposed
pipeline, 33 input features are first extracted from the
first 100 cycles of degradation data. Next, to generate
the best model for battery cycle life point prediction pro-
vided by conditional mean, five ML models in the battery
lifetime prediction literature and two quantile regression
models are compared with respect to their point prediction
performance. Alternatively, to generate the best model
for battery cycle life range prediction provided by either
confidence intervals or prediction intervals, two quantile
models and Gaussian process regression are compared
with respect to their range prediction performance. The
effectiveness of the proposed pipeline for battery cycle life
point prediction and range prediction are demonstrated by
several comparative simulation experiments.

The novelty and contributions of this work are as follows:

• A pipeline-based approach is proposed for automating
the process of producing the best model for both
battery cycle life point prediction and range predic-
tion using early degradation data, which makes model
selection easier prior to its deployment in an applica-
tion. The proposed pipeline offers several advantages
over conventional lifetime prediction methods, such
as defined performance evaluation metrics for assess-
ing cycle life point prediction and range prediction,
respectively, adaptability to different charging proto-
cols with minimum knowledge of battery degradation,
and versatility to other battery state estimation and
prediction tasks.

• Two representative quantile regression models are in-
troduced to provide battery cycle life point and range
prediction, and their prediction performance is bench-
marked to five ML models that have been reported
in the battery lifetime prediction literature. Both
calibration property referring to the statistical con-
sistency between the constructed prediction interval
and the observations and sharpness property referring
to the concentration of the predictive distributions
of range predictions are evaluated by their coverage
probability and width respectively. Simulation results
show that quantile regression models are not only
capable of providing cycle life point prediction with
high accuracy but also cycle life range prediction with
high reliability.
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2. BATTERY DATASET AND MACHINE LEARNING
PIPELINE

The machine learning pipeline that automatically selects
the best model among various ML models for battery cycle
life early prediction is presented in Fig. 1.

Battery data

Selected feature set

Data preprocessing

Training set Test set

Model selection

Hyperparameter optimization

Final ML models Model evaluation

Stratified random sampling

80% 20%

The best model

Fig. 1. The proposed machine learning pipeline for select-
ing the best ML model to predict battery cycle life.

2.1 Battery dataset

The battery dataset generated by Severson et al. (2019)
is used to validate the effectiveness of the proposed
pipeline. There are 124 lithium iron ferrous phosphate
(LFP)/graphite cells with 1.1 Ah nominal capacity. These
cells are from 3 different batches (i.e., the ”2017-05-
12” batch, the ”2017-06-30” batch, and the ”2018-04-12”
batch) where the batch date indicates the date of start
of experiment. Each battery cell is charged from 0% to
80% state-of-charge (SoC) with a one-step or two-step fast-
charging protocol, and then charged from 80% to 100%
SoC with a uniform 1C constant current-constant voltage
(CC-CV) charging step to 3.6 V and a current cutoff of
C/50. Subsequently, the cells are discharged identically
with a 4C CC-CV discharging step to 2.0 V and a cur-
rent cutoff at C/50. For example, a charging protocol
”6C(30%)-3.6C” represents a 6C charging step from 0%
to 30% SoC, followed by a 3.6C charging step from 30% to
80% SoC. All cells are cycled until they reach end of life,
i.e., 80% of initial nominal capacity.

2.2 Data preprocessing

The data preprocessing can have a significant impact
on generalization performance of a ML model, which
consists of data cleaning, normalization, transformation,
feature engineering and selection, etc Kotsiantis et al.
(2006). In the present application of battery cycle life
prediction, there are 33 features extracted from the first

100 cycles data with aid of battery domain knowledge. The
33 features are divided into five groups and listed in Table.
1.

2.3 Train-test split

Notably, there are 72 different charging protocols used in
this battery dataset, whose nominal charging time from
0% to 80% SoC ranges from 9 to 13.3 min. In order to
reduce the possibly large sampling error due to relatively
small dataset in this work, the stratified random sampling
method Reitermanova et al. (2010) is used to randomly
split the dataset, with 80% in a training set (99 samples)
and 20% in a test set (25 samples). Equal ratios of fast-
charged (i.e., less than 10.5 min) cells , medium-charged
(i.e., between 10.5 and 11.7 min) cells, and slow-charged
(i.e., greater than 11.7 min) cells are preserved in the
training and test set at each split. Moreover, for the
purpose of reducing the random effect of the selected split,
the stratified random sampling is repeated 5 times, and the
experimental results of 5 train-test splits are averaged.

2.4 Model selection

Quantile regression forest Quantile regession is one type
of regression method which provides conditional quantiles
of battery cycle life given input feature values from the first
100 cycles degradation data Koenker (2005). Comparing
with the classical least squares estimation, quantile regres-
sion estimates are more robust against possible outliers
in battery cycle life observations. Moreover, distribution
assumptions of battery cycle life as output variable, such as
Gaussian, are not required for quantile regression models.

Different from a random forest, all observations in every
leaf of every tree are stored in a QRF, which are used
to construct the conditional distribution of the battery
cycle life Meinshausen and Ridgeway (2006). To compute
the conditional quantile at a given level α by a QRF
for a given x ∈ Rp represents p features extracted from
the first 100 cycles of a battery cell, i.e., Q̂α(x), the
empirical conditional cumulative distribution function is
first obtained by averaging weights of every observation
over all trees of the forest. Then the estimate of the
conditional quantile Q̂α(x), is obtained.

Quantile regression gradient boosting By substituting
the squared error loss function of the GBRT with a pinball
loss function, the GBRT is able to estimate the conditional
quantile at a given level α for a given x, i.e., Q̂α(x)
Friedman (2001).

The prediction intervals are constructed from the predic-
tive quantiles of battery cycle life by quantile regression
models. We consider the classical case of central (1−α)×
100% prediction interval for battery cycle life, with lower
and upper bounds that are the predictive quantiles at level
α
2 and 1− α

2 . In this work, the 95% prediction interval for
battery cycle life is estimated by

Î(x) = [Q̂.025(x), Q̂.975(x)], (1)

which means given X = x, a new observation of battery
cycle life Y is in the interval Î(x) with a probability of
95%.
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Evaluating range prediction quality Likewise, the two
commonly used performance evaluation metrics to eval-
uate the quality of the range predictions are prediction
interval coverage probability (PICP) and mean prediction
interval width (MPIW) respectively Pearce et al. (2018).

The PICP assesses the calibration property (the degree
of reliability) of the range prediction, which refers to the
statistical consistency between the constructed prediction
interval (PI) and the observations. The PICP is defined
as,

PICP =
1

NT

NT∑
j=1

cj , (8)

where cj is a binary variable and its value can be either
0 or 1. If the observed cycle life of cell j in the test set is
within the range constructed by the lower bound lj and
the upper bound uj , then cj = 1; otherwise, cj = 0.

Since a high PICP value can be easily obtained by simply
increasing the width of constructed PIs, which does not
make much sense for practical battery range prediction,
there is a need to assess the sharpness of the range pre-
diction, which refers to the concentration of the predictive
distributions Gneiting and Raftery (2007). The MPIW is
defined as

MPIW =
1

NT

NT∑
j=1

|uj − lj |. (9)

Ideally, it is desirable to have PIs with a PICP value close
to their nominal coverage (i.e., 95%) and a small MPIW
value.

3. RESULTS AND DISCUSSION

3.1 Battery cycle life prediction using full 33-feature set

The battery cycle life point prediction and range predic-
tion results for all the models are illustrated in Tab. 2. In
terms of battery cycle life point prediction, it can be seen
from the results in Tab. 2 that the Elastic Net has the
worst performance referring to its highest RMSE, MAPE
and lowest R2. Meanwhile, the GBRT exhibits the best
battery cycle life point prediction performance, as it has
the lowest RMSE and highest R2. In terms of battery cycle
life range prediction, it can also be seen from the results
in Tab. 3 that the QRF has the best performance referring
to its lowest MPIW and the lowest AIS. Even though the
GPR provides prediction with a bit higher confidence (i.e.,
lower uncertainty) than the QRGB and QRF by exhibiting
a larger PICP value, the GPR has lower MPIW than the
QRGB. Therefore, the GPR comes as the second best
model for battery cycle life range prediction.

In order to statistically compare both the battery cycle
life point prediction and range prediction performance
among different models, the performance improvement in
percentage is calculated with the best performance model
(i.e., GBRT) as the reference. As shown in Tab. 2, the
performance improvements of the other 6 models are all
negative compared to the GBRT model as the reference for
the best point prediction, which indicates their worse point
prediction performance than the GBRT. Interestingly, the
QRGB that is the quantile regression model of the GBRT
is the second best point prediction model. Moreover, the

SVR has the worst point prediction performance with the
largest performance reduction in percentage. Regarding
range prediction performance, it can be seen from the
Tab. 3 that the performance improvements of the other 2
models are all negative compared to the QRF model as the
reference for the best range prediction model except that
the GPR has positive performance improvement relative
to the QRF model.

Based on the results, it can be concluded that by using
the full 33-feature set, the GBRT model provides the best
battery cycle life point prediction performance, while the
QRF model provides the best battery cycle life range
prediction performance.

3.2 Battery cycle life prediction using MIT 6-feature set

In the original work by Severson et al. Severson et al.
(2019), a 6-feature set (i.e., minimum, variance, skewness,
and kurtosis of difference of the discharge voltage curve
between cycle 100 and cycle 10, discharge capacity at cycle
2, and difference between maximum discharge capacity
within the first 100 cycles and discharge capacity at cycle
2) is used to learn a ”discharge” model for battery cycle
life point prediction, which performs the best on the test
set among all 3 feature sets (i.e., 1-feature set, 6-feature
set, and 9-feature set Severson et al. (2019)). Therefore,
the performance of all learned models using the MIT 6-
feature set is compared with that of all learned models
using the full 33-feature set.

As for battery cycle life point prediction performance
among different models, it can be shown in Tab. 4 that the
GPR has the worst performance, with the highest RMSE,
and the lowest R2. Meanwhile, the GBRT consistently
exhibits the best point prediction performance and the
QRGB is the second best after the GBRT. In terms of
battery cycle life range prediction, the results coincide
with that of using full 33-feature set, i.e., the QRF model
performs the best and the GPR comes as the second best.
The performance improvements in comparison with using
the full 33-feature set are also calculated for all models.
The performance improvement results for point prediction
and range prediction are shown in Tab. 4 and Tab. 5
respectively. In terms of point prediction, the performance
improvements of all seven models are negative (i.e., worse
performance) using the MIT 6-feature set. In terms of
range prediction, the performance improvements of the
GPR for the three metrics are positive (i.e., better per-
formance) using the MIT 6-feature set. Interestingly, the
performance improvements of two quantile models for the
MPIW metric are positive (i.e., better performance), but
for the PICP metric are negative (i.e., worse performance)
using the MIT 6-feature set.

These results show that by using the MIT 6-feature set,
the GBRT model consistently provides the best battery
cycle life point prediction performance, while the QRF
model again provides the best battery cycle life range
prediction performance. In comparison with the full 33-
feature subset, the MIT 6-feature set helps improves range
prediction performance of the GPR measured by all three
metrics and also range prediction performance of two
quantile regression models (i.e., QRF, and QRGB model)
measured by MPIW. In terms of battery cycle life point

Table 1. 33 features in 5 groups

Groups Features

Time-related Average charge time for the first 5 cycles Severson et al. (2019).

Curve-related

Minimum, variance, skewness, and kurtosis of difference of the discharge voltage curve

between cycle 100 and cycle 10 (i.e., ∆Q100−10(V )) Severson et al. (2019).

Amplitude and position shift of the highest peak in the discharge incremental capacity curve

between cycle 10 and cycle 100 (i.e., dQdV100−10).

Minimum, variance, skewness, and kurtosis of difference in the discharge cell temperature,

as a function of voltage, between cycle 100 and cycle 10 (i.e., ∆T100−10(V )).

Minimum, maximum, mean, and variance of discharge cell temperature as a function of

voltage at cycle 10 (i.e., T10(V )).

Minimum, maximum, mean, and variance of discharge cell temperature as a function of

voltage at cycle 100 (i.e., T100(V )).

Difference in minimum, maximum, mean, and variance of discharge cell temperature,

as a function of voltage, between cycle 10 and cycle 100.

Capacity-related

Slope of the linear fit to the capacity fade curve from cycle 2 to cycle 100 Severson et al. (2019).

Intercept of the linear fit to capacity fade curve from cycle 2 to cycle 100 Severson et al. (2019).

Discharge capacity at cycle 2 Severson et al. (2019).

Discharge capacity at cycle 100 Severson et al. (2019).

Difference between maximum discharge capacity within the first 100 cycles and discharge

capacity at cycle 2 Severson et al. (2019).

Internal resistance-related

Minimum internal resistance from cycle 2 to cycle 100 Severson et al. (2019).

Maximum internal resistance from cycle 2 to cycle 100.

Internal resistance at cycle 2 Severson et al. (2019).

Internal resistance at cycle 100.

Difference in internal resistance between cycle 100 and cycle 2 Severson et al. (2019).

Additionally, machine learning models, such as elastic net
Severson et al. (2019), support vector regression Qin et al.
(2015), random forest regression Voronov et al. (2018),
gradient boosting regression tree Yang et al. (2020), and
Gaussian process regression Richardson et al. (2019), have
been reported to be used for battery lifetime prediction,
and therefore are included in the proposed pipeline.

2.5 Model performance evaluation

Evaluating averaged performance in LOO-XV To select
the best set of hyperparameters for a model that provides
point prediction, the averaged squared error (ASE) over
each validation sample in the LOO-XV is used as the
criterion, and is defined as,

ASE(yi, ŷi) =
1

ND

ND∑
i=1

(yi − ŷi)
2 (2)

where ND denotes the number of samples in the training
set, and yi ∈ R+ and ŷi denote the observed cycle life and
the predicted cycle life of validation cell i, respectively.

To select the best set of hyperparameters for a GPR model
that provides range prediction, the averaged negative
log pseudo-likelihood (ANLL) Williams and Rasmussen
(2006) over each validation sample is used as the criterion
and is defined as,

ANLL(yi, µ̂i, σ̂i) =− 1

ND

ND∑
i=1

(−1

2
logσ̂2

i −
(yi − µ̂i)

2

2σ̂2
i

− 1

2
log2π)

(3)

where µ̂i is the predictive mean and σ̂2
i is the predictive

variance of validation cell i.

To select the best set of hyperparameters for a quantile
regression model that provides range prediction, the av-
eraged interval score (AIS) Gneiting and Raftery (2007)

over each validation sample is used as the criterion and is
defined as,

AIS =
1

ND

ND∑
i=1

((ui − li)

+
2

α
(li − yi)1{yi<li}

+
2

α
(yi − ui)1{yi>ui}),

(4)

where li is the lower bound, and ui is the upper bound of a
constructed PI. By rewarding narrow prediction intervals
and penalizing intervals missed by the observation depend-
ing on the size of α, the AIS defined above can assess both
calibration and sharpness properties of PIs.

Evaluating point prediction quality The most common
performance evaluation metrics to evaluate the quality
of point predictions are root-mean-square error (RMSE),
mean absolute percentage error (MAPE) and coefficient of
determination (R2). They are defined as follows:

RMSE(yj , ŷj) =

√√√√ 1

NT

NT∑
j=1

(yj − ŷj)2 (5)

MAPE(yj , ŷj) =
1

NT

NT∑
j=1

∣∣∣∣
yj − ŷj

yj

∣∣∣∣ (6)

R2(yj , ŷj) = 1−
∑NT

j=1(yj − ŷj)
2

∑NT

j=1(yj − ȳ)2
(7)

where NT denotes the number of samples to be evaluated
in the test set, and yj and ŷj denote the observed cycle
life and the predicted cycle life of cell j, respectively. The
average cycle life for in total NT samples in the test set is

calculated as ȳ = 1
NT

∑NT

j=1 yj .
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Evaluating range prediction quality Likewise, the two
commonly used performance evaluation metrics to eval-
uate the quality of the range predictions are prediction
interval coverage probability (PICP) and mean prediction
interval width (MPIW) respectively Pearce et al. (2018).

The PICP assesses the calibration property (the degree
of reliability) of the range prediction, which refers to the
statistical consistency between the constructed prediction
interval (PI) and the observations. The PICP is defined
as,

PICP =
1

NT

NT∑
j=1

cj , (8)

where cj is a binary variable and its value can be either
0 or 1. If the observed cycle life of cell j in the test set is
within the range constructed by the lower bound lj and
the upper bound uj , then cj = 1; otherwise, cj = 0.

Since a high PICP value can be easily obtained by simply
increasing the width of constructed PIs, which does not
make much sense for practical battery range prediction,
there is a need to assess the sharpness of the range pre-
diction, which refers to the concentration of the predictive
distributions Gneiting and Raftery (2007). The MPIW is
defined as

MPIW =
1

NT

NT∑
j=1

|uj − lj |. (9)

Ideally, it is desirable to have PIs with a PICP value close
to their nominal coverage (i.e., 95%) and a small MPIW
value.

3. RESULTS AND DISCUSSION

3.1 Battery cycle life prediction using full 33-feature set

The battery cycle life point prediction and range predic-
tion results for all the models are illustrated in Tab. 2. In
terms of battery cycle life point prediction, it can be seen
from the results in Tab. 2 that the Elastic Net has the
worst performance referring to its highest RMSE, MAPE
and lowest R2. Meanwhile, the GBRT exhibits the best
battery cycle life point prediction performance, as it has
the lowest RMSE and highest R2. In terms of battery cycle
life range prediction, it can also be seen from the results
in Tab. 3 that the QRF has the best performance referring
to its lowest MPIW and the lowest AIS. Even though the
GPR provides prediction with a bit higher confidence (i.e.,
lower uncertainty) than the QRGB and QRF by exhibiting
a larger PICP value, the GPR has lower MPIW than the
QRGB. Therefore, the GPR comes as the second best
model for battery cycle life range prediction.

In order to statistically compare both the battery cycle
life point prediction and range prediction performance
among different models, the performance improvement in
percentage is calculated with the best performance model
(i.e., GBRT) as the reference. As shown in Tab. 2, the
performance improvements of the other 6 models are all
negative compared to the GBRT model as the reference for
the best point prediction, which indicates their worse point
prediction performance than the GBRT. Interestingly, the
QRGB that is the quantile regression model of the GBRT
is the second best point prediction model. Moreover, the

SVR has the worst point prediction performance with the
largest performance reduction in percentage. Regarding
range prediction performance, it can be seen from the
Tab. 3 that the performance improvements of the other 2
models are all negative compared to the QRF model as the
reference for the best range prediction model except that
the GPR has positive performance improvement relative
to the QRF model.

Based on the results, it can be concluded that by using
the full 33-feature set, the GBRT model provides the best
battery cycle life point prediction performance, while the
QRF model provides the best battery cycle life range
prediction performance.

3.2 Battery cycle life prediction using MIT 6-feature set

In the original work by Severson et al. Severson et al.
(2019), a 6-feature set (i.e., minimum, variance, skewness,
and kurtosis of difference of the discharge voltage curve
between cycle 100 and cycle 10, discharge capacity at cycle
2, and difference between maximum discharge capacity
within the first 100 cycles and discharge capacity at cycle
2) is used to learn a ”discharge” model for battery cycle
life point prediction, which performs the best on the test
set among all 3 feature sets (i.e., 1-feature set, 6-feature
set, and 9-feature set Severson et al. (2019)). Therefore,
the performance of all learned models using the MIT 6-
feature set is compared with that of all learned models
using the full 33-feature set.

As for battery cycle life point prediction performance
among different models, it can be shown in Tab. 4 that the
GPR has the worst performance, with the highest RMSE,
and the lowest R2. Meanwhile, the GBRT consistently
exhibits the best point prediction performance and the
QRGB is the second best after the GBRT. In terms of
battery cycle life range prediction, the results coincide
with that of using full 33-feature set, i.e., the QRF model
performs the best and the GPR comes as the second best.
The performance improvements in comparison with using
the full 33-feature set are also calculated for all models.
The performance improvement results for point prediction
and range prediction are shown in Tab. 4 and Tab. 5
respectively. In terms of point prediction, the performance
improvements of all seven models are negative (i.e., worse
performance) using the MIT 6-feature set. In terms of
range prediction, the performance improvements of the
GPR for the three metrics are positive (i.e., better per-
formance) using the MIT 6-feature set. Interestingly, the
performance improvements of two quantile models for the
MPIW metric are positive (i.e., better performance), but
for the PICP metric are negative (i.e., worse performance)
using the MIT 6-feature set.

These results show that by using the MIT 6-feature set,
the GBRT model consistently provides the best battery
cycle life point prediction performance, while the QRF
model again provides the best battery cycle life range
prediction performance. In comparison with the full 33-
feature subset, the MIT 6-feature set helps improves range
prediction performance of the GPR measured by all three
metrics and also range prediction performance of two
quantile regression models (i.e., QRF, and QRGB model)
measured by MPIW. In terms of battery cycle life point
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factors is needed; the effectiveness of the proposed pipeline
for battery lifetime prediction in the field would be the
second meaningful but challenging future work to explore.
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Table 2. Battery cycle life point prediction performance using full 33-feature set

ML

Point prediction

evaluation

Performance improvement

relative to the best model (%)
models RMSE (cycles) MAPE (%) R2 RMSE MAPE R2

Elastic net 183 18.5 0.74 -57.8% -101.1% -17.8%

SVR 183 13.4 0.73 -57.8% -45.7% -18.9%

RF 148 11.4 0.83 -27.6% -23.9% -7.8%

GBRT 116 9.2 0.90 / / /

GPR 167 16 0.79 -44.0% -73.9% -12.2%

QRF 140 10.2 0.85 -20.7% -10.9% -5.6%

QRGB 120 9.1 0.89 -3.4% 1.1% -1.1%
The GBRT model is referenced as the best model. Negative performance improvement percentages

indicate worse performance than the GBRT model.

Table 3. Battery cycle life range prediction performance using full 33-feature set

ML

Range prediction

evaluation

Performance improvement

relative to the best model (%)
models PICP (%) MPIW (cycles) AIS (cycles) PICP MPIW AIS

GPR 94.4 630 1015 0.9% -32.1% -61.4%

QRF 93.6 477 629 / / /

QRGB 88.8 709 1132 -5.1% -48.6% -80.0%
The QRF model is referenced as the best model. Negative performance improvement percentages

indicate worse performance than the QRF model.

Table 4. Battery cycle life point prediction performance using MIT 6-feature set

ML

Point prediction

evaluation

Performance improvement

on full 33-feature set (%)
models RMSE (cycles) MAPE (%) R2 RMSE MAPE R2

Elastic net 190 20.7 0.72 -3.8% -11.9% -2.7%

SVR 188 17.9 0.72 -2.7% -33.6% -1.4%

RF 148 12.5 0.83 0% -9.6% 0%

GBRT 134 11.6 0.86 -15.5% -26.1% -4.4%

GPR 210 19.2 0.62 -25.7% -20% -21.5%

QRF 145 12.0 0.84 -3.6% -17.6% -1.2%

QRGB 135 12.4 0.86 -12.5% -36.3% -3.4%
The results using full 33-feature set is the reference. Positive performance improvement percentages

indicate better performance using MIT 6-feature set.

Table 5. Battery cycle life range prediction performance using MIT 6-feature set

ML

Range prediction

evaluation

Performance improvement

on full 33-feature set (%)
models PICP (%) MPIW (cycles) AIS (cycles) PICP MPIW AIS

GPR 95.2 623 734 0.8% 1.1% 27.7%

QRF 92.8 455 651 -0.9% 4.6% -3.5%

QRGB 84.8 563 1163 -4.5% 20.6% -2.7%
The results using full 33-feature set is the reference. Positive performance improvement percentages

indicate better performance using MIT 6-feature set.

prediction, the GBRT model performs the best among
all the models thanks to its superior abilities, such as
capturing nonlinear relationship, less prone to overfitting,
robust against outliers. In terms of battery cycle life
range prediction, the reason why the QRF model performs
arguably better than GPR and QRGB model may be
because of the sensitivity of the kernel selection for the
GPR, and the robustness of the QRF model against noise.

4. CONCLUSION

Accurate and reliable early prediction of battery life-
time is important for optimizing life cycle management
of batteries from cradle to grave. In the present work,
a pipeline-based approach was proposed for automating
the process of producing the best model for both battery
cycle life point prediction and range prediction. It has been

demonstrated that our proposed machine learning pipeline
can adapt to different realistic charging protocols in prac-
tice. The experimental results illustrated that the gradient
boosting regression tree (GBRT) provided the best point
prediction performance while the quantile regression forest
(QRF) provided the best range prediction performance
using both full 33-feature set and the MIT 6-feature set.
However, it is important to note that the prediction per-
formance of these models also varies with the quality of
the battery data and the input feature set. Therefore, that
well motivates the use of our proposed machine learning
pipeline with the aim of consistently producing the best
model for battery cycle life prediction. In terms of future
work, it would be interesting to explore two aspects, i.e., to
improve the adaptability of our proposed machine learning
pipeline to different battery design, chemistry and usage, a
new feature set that is independent of the aforementioned
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factors is needed; the effectiveness of the proposed pipeline
for battery lifetime prediction in the field would be the
second meaningful but challenging future work to explore.
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