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A Projective Geometric View for 6D Pose
Estimation in mmWave MIMO Systems

Shengqiang Shen, Member, IEEE, Henk Wymeersch, Fellow, IEEE

Abstract—Millimeter-wave (mmWave) systems in the 30–300
GHz bands are among the fundamental enabling technologies of
5G and beyond 5G, providing large bandwidths, not only for high
data rate communication but also for precise positioning services,
in support of high accuracy demanding applications such as for
robotics, extended reality, or remote surgery. With the possibility
to introduce relatively large arrays on user devices with a
small footprint, the ability to determine the user orientation
becomes unlocked. The estimation of the full user pose (joint
3D position and 3D orientation) is referred to as 6D localization.
Conventionally, the problem of 6D localization using antenna
arrays has been considered difficult and was solved through a
combination of heuristics and optimization. In this paper, we
reveal a close connection between the angle-of-arrivals (AoAs)
and angle-of-departures (AoDs) and the well-studied perspective
projection model from computer vision. This connection allows
us to solve the 6D localization problem, by adapting state-of-
the-art methods from computer vision. More specifically, two
problems, namely 6D pose estimation from AoAs from multiple
single-antenna base stations and 6D simultaneous localization and
mapping (SLAM) based on single- base station (BS) mmWave
communication, are first modeled with the perspective projection
model, and then solved. Numerical simulations show that the
proposed estimators operate close to the theoretical performance
bounds. Moreover, the proposed SLAM method is effective even
in the absence of the line-of-sight (LoS) path, or knowledge of
the LoS/non-line-of-sight (NLoS) condition.

Index Terms—AoD, AoA, pose estimation, SLAM, antenna
arrays, mmWave communication.

I. INTRODUCTION

Continuous development of the fifth-generation (5G) net-
work intends to broaden its uses beyond traditional mobile
broadband and to enable a key capability of precise posi-
tioning, which is expected to be required in a variety of
new applications [1], in particular, inter-robot coordination
and extended reality applications [2]. Among the develop-
ments towards 5G Advances are the support of sidelinks,
improved integrity, carrier phase positioning, and the support
of reduced capacity (RedCap) devices [3], [4]. As one of the
key enabling components of 5G and beyond 5G, millimeter-
wave (mmWave) provides massive bandwidths for high data
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(a) Problem 1: 6D pose estimation using the angle-of-arrival (AoA) with respect
to several BSs.
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(b) Problem 2: 6D pose estimation from a single-mmWave BS in an environment
with several scatterers with unknown locations.

Fig. 1: Two common configurations for 6D pose estimation in mmWave
MIMO systems.

rates and empowers precise positioning services using cellular
technology rather than a separate infrastructure. The possi-
bility to introduce a relatively large array on user devices
in mmWave multiple-input multiple-output (MIMO) systems
brings the ability to estimate user orientation, in addition to
the user position [5]. Information of the full user pose (i.e.,
joint 3D position and 3D orientation) not only benefits the
performance of communication systems [6], but also can be
used for various important applications, such as in intelligent
transport systems for driving assistance [7]; in assisted living
facilities for tracking health status [8]; in search-and-rescue
operations with unmanned aerial vehicles (UAVs) for control,
self-localization, and victim recovery [9]; in augmented reality
applications [10], and several 6G use cases [2]. As the external
device that is able to provide the pose information is not
always available due to cost and/or size limits, there has
been an increasing interest in the use of antenna arrays for
joint position and orientation estimation, i.e., pose estimation,
referred to here as 6D localization [11].

We consider two particular problems of 6D pose estimation
(see Fig. 1). The motivation for these two cases stems from
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their challenging nature, meaning that solutions for these prob-
lems can be readily simplified to easier cases (e.g., with more
measurements or more BSs). Pose estimation in mmWave
MIMO necessarily relies on angle measurements at the UE, so
that there is a natural breakdown depending on the available
bandwidth: when bandwidth is limited, the challenging angle-
only pose estimation is obtained (Problem 1 in Fig. 1), while
when bandwidth is plentiful, angle and delay information can
be used. The most challenging problem in that case is the
single-BS pose estimation problem (Problem 2 in Fig. 1).In
the multi-BS case (Problem 1), the user attempts to achieve
6D localization using pose-related information with respect
to multiple bases. For this case, most works [12]–[14] focus
on the position estimation, while the orientation estimation is
relatively less investigated. In [15], the authors investigated
the orientation estimation using AoAs, assuming the position
has been estimated. However, to the best of our knowledge,
the joint position and orientation estimation is still missing.
At the same time, for the single-BS case (denoted by Problem
2 in this paper), with the increasing depth of the research, the
problem of joint position and orientation estimation has been
investigated by many works. Enabled by the large bandwidth
and antenna arrays with mmWave, in the single-BS case, the
estimator exploits the information provided by the multipath
to achieve the joint position and orientation estimation. Such
multipath exploitation naturally leads to simultaneous local-
ization and mapping (SLAM) problems, in either snapshot
[16] or tracking contexts [17]. Initial studies on this topic
usually place restrictions on the degrees of freedom or focus
on planar scenarios. For example, [16], [18]–[20] studied
2D position and 1D orientation for single-BS case. In these
works, the analysis on different aspects, such as estimation
method, clock biases, and theoretical bound are more and more
profound. In [21]–[23], the authors investigated 3D position
and 2D orientation under the synchronized condition. Until
recently, 3D position and 3D orientation is investigated in
[24], [25]. In [24], the authors studied 3D position and 3D
orientation, i.e., 6D localization, in the presence of line-of-
sight (LoS) path for the unsynchronized case, where both the
estimation method and theoretical bound are analyzed. In [25],
the authors investigated the impact of hardware impairment
on the joint estimation of 3D orientation and 3D position
under the synchronized condition. However, it can be seen
that a unified framework that deals with 6D localization in the
absence and presence of LoS path is still needed.

The 6D localization problem is not unique to mmWave
MIMO systems, but can also be found in robotics and visual
SLAM [26], [27], to track the 6D camera poses over time.
The perspective projection model from computer vision [28]
provides a natural approach to solve the 6D localization
problem in this context, with a rich and efficient set of tools
[29]. In the visual SLAM setting, there is no notion of a LoS
path, since a camera cannot see itself in the past, while the
measurements are different compared to the mmWave MIMO
setting, since distance measurements are affected by clock
biases. Hence, computer vision methods have seen limited
application in the context of mmWave MIMO positioning.

In this paper, we reveal a connection between the AoAs

and angle-of-departures (AoDs) and the perspective projection
model. This connection allows us to solve the 6D localization
problem, by adapting state-of-the-art methods from computer
vision. In contrast to [12]–[14], the unknown orientation is
naturally accounted for, while in contrast to [16], [18]–[23]
a general 3D unknown orientation can be estimated. The
proposed projective geometric view also solves a broader
class of problems than [24], [25], since the LoS is not
required. Moreover, by relying on state-of-the-art methods
from computer vision, the 6D localization problem can be
solved efficiently, without the need for grid searches. The two
previously mentioned configurations (pose estimation from
AoAs from multiple base stations (BSs) and 6D SLAM
based on a single mmWave BS), selected for their generality
and close relation to existing mmWave MIMO positioning
problems, are modeled with the perspective projection model
and then solved, building on computer vision tools. The main
contributions of our work are as follows.

• A projective geometric view for the AoA/AoD: We
reveal a connection between projective geometry and
the perspective projection model from computer vision
and the AoA/AoD of antenna arrays. With the help of
this model, we derive an explicit expression relating the
AOD/AOA to the position of the base station (BS) and
the pose of the user equipment (UE). These expressions
from the basis for new methods in the mmWave MIMO
domain, requiring tailored modifications to account for
the properties of radio signals.

• Novel methods for solving Problem 1: Through the
perspective projection modeling, we provide two novel
methods for 6D pose estimation using AoAs, a closed-
form one and an iterative one based on the least squares
(LS) principle. The required number of paths, i.e., the
number of BSs, is also determined.

• Novel methods for solving Problem 2: On the basis of
perspective projection modeling, the geometric relation
between AoD, AoA, and scatter points for single BS
and single UE scenarios is further modeled with the
epipolar model.1 Based on this modeling, we propose
two novel algorithms for SLAM based on mmWave
communication, a closed-form one and an iterative one
as well. The required number of paths (scatter points) is
also determined.

• Detailed performance evaluation: The performance of
all the proposed algorithms is assessed using Monte Carlo
simulations, and the tightness of the results with the
Cramér-Rao bound (CRB) is evaluated to show that the
method is efficient. For Problem 2, the proposed method
is thoroughly evaluated in a 3D propagation environment,
proving its performance at various degrees of surface
roughness.

The rest of the paper is organized as follows. The projective
geometric modeling is presented in Section III. The two use
cases are investigated in Section III, where the proposed
methods as well as the derived theoretical lower bound are

1For the reader unfamiliar with epipolar models, we refer to Fig. 3 and
Fig. 5 for a quick view of such models.
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given. The Monte Carlo numerical comparison is given in
Section IV. Finally, some concluding remarks are given in
Section V.

Notations

We introduce the unit vectors e1 = [1 0 0]T, e2 = [0 1 0]T,
and e3 = [0 0 1]T. The operator ·̄ converts a vector from
Cartesian coordinates x into the homogeneous coordinates,
i.e., x̄ = [xT, 1]T. A line between two points x and y is
denoted by −→xy. The operator x× generates a skew-symmetric
matrix

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (1)

The group of all rotation matrices, i.e., the special orthogonal
group, is denoted by SO(3), and the associated Lie algebra
is denoted by so(3). The group of all pose matrices, i.e.,
the special Euclidean group, is denoted by SE(3), and the
associated Lie algebra is denoted by se(3). The operator ·∧
converts a 6× 1 vector into a member of se (3) by(

[yT,xT]T
)∧

=

[
x× y
0T 0

]
∈ R4×4, x,y ∈ R3×1. (2)

We also introduce the shorthand [xℓ∈{1,2,3}] = [x1, x2, x3].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. General System Model

We consider a scenario with a single mmWave multi-
antenna BS with known position rBS and a single multi-
antenna UE with unknown position rUE and unknown orienta-
tion RUE ∈ SO(3). Under downlink transmission, assuming
L ≥ 1 paths between the BS and UE, the channel for
subcarrier fn, represented by H[n] ∈ CNr×Nt , is given by2

[30]
H[n] =

∑
ℓ∈SL

αℓe
−j2πτℓfnaNr (ψR,ℓ)a

T
Nt

(ψT,ℓ) , (3)

where αℓ is the ℓth channel gain, τℓ the ℓth propagation delay
and

SL =

{
{0, . . . , L} for LoS case,
{1, . . . , L} for NLoS case. (4)

The propagation delays are related to the UE position by

τℓ =

{
B + ∥rUE − rBS∥/c ℓ = 0

B + (∥pℓ − rBS∥+ ∥pℓ − rUE∥)/c ℓ > 0,
(5)

where B is the UE’s unknown clock bias and pℓ is a location
of a scatterer, assuming at most single-bounce reflections.3

In addition, Nr = Nr,xNr,y is the number antenna of
elements in the UE array, comprising Nr,x elements along
the local x-axis and Nr,y along the local y-axis. Similarly,
Nt = Nt,xNt,y is the number of antenna elements in the

2Doppler is not considered in this work and its effect is absorbed in the
complex channel gain, which is a correct model under the assumption of short
transmission periods and/or medium mobility.

3Due to the mmWave propagation characteristics, the received power
contributed by multiple-bounce reflections is negligible [16], [31]. Multiple-
bounce reflections should be removed prior to the application of the method.
On the other hand, effects such as scattering or diffraction can still be
accounted for, as each resolved path would correspond to a unique incidence
point.

BS array. We focus on planar antenna arrays, and, without
loss of generality, we consider the uniform rectangular array.
The angular information of the wavefront, e.g., AoD/AoA, is
conventionally represented by the azimuth and elevation angles
ψ = [ϕ, θ]

T, which specify the normal vector

n =

cosϕ sin θsinϕ sin θ
cos θ

 (6)

of the wavefront direction. Then, the steering vector
aNr

(ψR,ℓ) ∈ CNr×1 is defined as
aNr

(ψR,ℓ) = a1 (ψR,ℓ)⊗ a2 (ψR,ℓ) , (7)
with

[a1 (ψ)]m = ejπm sin(θ) sin(ϕ), m ∈ {0, . . . , Nx} (8)

[a2 (ψ)]m = ejπm sin(θ) cos(ϕ), m ∈ {0, . . . , Ny}, (9)
assuming the antenna spacing is of half-wavelength. The AoD
ψT,ℓ ∈ R2×1 and steering vector aNt (ψT,ℓ) are defined
similarly.

B. Problem 1 – AoA-only Pose Estimation

In this problem (as visualized in Fig. 1a), the goal is to
estimate the receiver’s pose based on the AoA with respect
to multiple single-antenna BSs at known positions, from
narrowband downlink signals under pure LoS propagation.
Here, narrowband refers to the fact that there are no distinct
subcarriers and hence no ability to estimate propagation de-
lays. In that case, the channel from BS i to the UE simplifies to
hi = αiaNr (ψR,i). The focus is on processing after the AoAs
have been estimated (there are many algorithms to estimate
AoA, such as the MUSIC algorithm [32, Sect. 9.3.2]), since the
AoA-based pose estimation was only discussed partially in the
literature, in that either positioning or orientation estimation,
e.g., [15], [33], was considered. Therefore, the joint estimation
of position and orientation, that is, the pose estimation has not
been discussed previously.

C. Problem 2 – mmWave MIMO Snapshot SLAM

As shown in Fig. 1b, the objective is to simultaneously
estimate the UE pose {rUE,RUE} as well as the position
of scatters pℓ, ℓ ∈ {1 . . . , L}, based on an estimate of the
channels H[n]. This objective of mmWave communication-
based SLAM is usually achieved through a sequence of multi-
step processes [16], [17]:

1) Estimation of the channel matrices H[n] for n ∈
{1, . . . , Nf} based on the observed pilot signal (this is
not the core of this work and will be discussed in Section
V);

2) Estimation of the (effective) parameter vector zℓ =
[ψR,ℓ,ψT,ℓ, τℓ, αℓ]

T from H[n] for all Nf subcarriers,
3) Estimation of the UE pose and the position of scatters,

i.e., SLAM, based on the parameter vector set Z =
{z0, . . . , zL̂}, where L̂ is the detected number of paths.

As in Problem 1, the current paper focuses mainly on step 3,
assuming the channel parameter vectors are available. Since
the first two steps give the estimate of zℓ, the ambiguities
caused by steps 1-2 are parameterized by the estimate’s
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Fig. 2: The perspective projection model of a camera with position r and
orientation R, showing the image coordinate v of a point P .

PDF. Such ambiguities can be accounted for by solving the
SLAM problem for each possible case, followed by ruling out
physically inconsistent cases. While mmWave MIMO channel
parameter estimation is challenging, there exist several in
the literature, such as tensor-ESPRIT [21], [22], orthogonal
matching pursuit [34], or received power per beam [35].
Unless stated otherwise, we will assume that we do not know
whether the LoS path is present.

III. BACKGROUND ON COMPUTER VISION AND RELATION
TO AOA AND AOD

In this section, a short primer on basic results from computer
vision is given, followed by the application of these results to
expression AoAs and AoDs in mmWave MIMO communica-
tion systems.

A. Perspective Projection Model

Consider an ideal perspective camera and a point P with
homogeneous coordinates x̄cam ∈ R4 in the camera frame and
homogeneous coordinates x̄ ∈ R4 in the system frame. These
coordinates are linked by the coordinate transformation

x̄cam = Tx̄, (10)
where the matrix T ∈ SE (3) belongs to the Special Euclidean
group SE (3) and is defined through its inverse

T−1 =

[
R r

01×3 1

]
, (11)

in which {r,R} represent the pose of the camera, comprising a
displacement vector r ∈ R3 and a rotation matrix R ∈ SO(3),
depicted in Fig. 2.

The image coordinates v ∈ R2 of P (see Fig. 2) are given
by the so-called perspective projection model as [28, Sect. 6.1]

λv̄ = Px̄cam, (12)
where v̄ are the homogeneous coordinate of the image point
v, λ is a scale factor (λ = 1/eT3 xcam), and P ∈ R3×4 is a
projection matrix, given by

P =

h, 0, 00, h, 0
0, 0, 1

 [I3×3 03×1], (13)

in which h the camera focal length (i.e., the distance of the
image plane).

Taking into account (10)–(12) and keeping only the first
two elements of v̄, we have a concise relation between the 2D

Fig. 3: The epipolar modeling, involving the image coordinates with respect
to two cameras (C,C′) of a common point P with system coordinates x.
The epipoles are v0 and ν0. Two epipolar lines are shown in dashed.

image coordinates v of a 3D point P and its 3D coordinates
x in the system frame:

v =
KTx̄

eT3 Tx̄
∈ R2×1, (14)

where

K =

[
h, 0, 0, 0
0, h, 0, 0

]
∈ R2×4. (15)

The image coordinates will later be connected to the angle
measurements so that the perspective projection model pro-
vides a way to relate angle measurements to the pose.

B. Epipolar Model

Consider now two cameras, denoted by C and C ′ and a
point P . We now denote by {r,R} the relative pose of camera
C to camera C ′ (see Fig. 3). The point P leads to two image
coordinates, say ν and v, which are related to one another,
via the relative pose {r,R}. In this section, we will describe
this relation.

The two camera centers can be connected by a line. This
line is called the baseline in computer vision, and it intersects
the image planes at two points, i.e., v0 and ν0, which are
called the epipoles. The line joining an image point and the
epipole in each image plane is called an epipolar line, e.g.,
the line −−→v0v. It follows that for each point v in one image,
there exists a corresponding epipolar line −−→ν0ν in the other
image. Any point ν in the second image matching the point v
must lie on the epipolar line −−→ν0ν. The above relation between
these image points is characterized by the epipolar model in
computer vision, which is [28, Sect. 9.6]

ν̄TEv̄ = 0, (16)
where

E = r×R ∈ R3×3 (17)

is the so-called essential matrix. The essential matrix is used
in computer vision to determine relative poses between two
cameras, based on matched image points. The epipolar model
can thus be used to relate the scatterers seen by the BS with
those seen by the UE.

C. A Projective Geometric View of the AoD/AoA

We are now ready to relate the perspective projection model
and the epipolar model to AoAs and AoDs in mmWave MIMO
systems. Due to the antenna reciprocity, we focus on the AoA
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Fig. 4: Illustration of the virtual plane of a uniform rectangular array. A
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virtual plane) parallel to the array at height h = 1. The intersection point n
is related to the pose.

at the receiver end in the following, and a similar conclusion
can be inferred for the AoD at the transmitter end.

We recall that the angular information of the wavefront, e.g.,
AoD/AoA, is conventionally represented by the azimuth and
elevation angles (ϕ, θ), which specify the normal vector

n =

cosϕ sin θsinϕ sin θ
cos θ

 (18)

of the wavefront direction. Consider now the physical antenna
plane (say, the XY plane in the array frame) and a virtual
plane parallel to the XY plane at z = 1, as shown in Fig. 4.
It can be readily seen that each wavefront direction n ∈ R3

can be bijectively mapped to a 2D point on the plane, i.e., the
intersection v ∈ R2×1 of the virtual plane and the line of the
wavefront direction through the origin, with (in homogeneous
coordinates)

v̄ =
n

(eT3 n)
=

cosϕ tan θsinϕ tan θ
1

 . (19)

The line −−−−→rBSrUE specifies the wavefront direction at the UE
receiver end of the direct path. By analogy with a camera, if
the BS is seen as the object point, the UE antenna center as
the camera center, after introducing the virtual plane, v can
be seen as the “projected” point on the virtual plane at the
UE of the point rBS along the line −−−−→rBSrUE, complying with
the perspective projection model from Fig. 2. Consequently,
if we further assume that the orientation of the receiver in the
system frame is described by RUE ∈ SO(3), then, following
(14), the coordinates v are given by

v =
KTUEr̄BS

eT3 TUEr̄BS
∈ R2×1, (20)

where the matrix TUE ∈ SE (3) is defined through its inverse

T−1
UE =

[
RUE rUE

01×3 1

]
, (21)

and K was defined in (15), with h = 1. Hence, based on (18)–
(20), we have related the angular information (represented by
either v, n or (θ, ϕ)) to the BS position rBS, and UE pose
TUE with the perspective projection model. For the AoD, we
have a similar relation, i.e.,

ν =
KTBSr̄UE

eT3 TBSr̄UE
∈ R2×1, (22)

where TBS specifies the pose of the BS.

IV. PROJECTIVE GEOMETRY SOLUTIONS TO MMWAVE
MIMO POSE ESTIMATION

Based on the relations (20) and (22), we can now reformu-
late the problems from Section II-B and Section II-C in terms
of a perspective projection model, in order to apply methods
from computer vision. We start with Problem 1, as it is less
complex.

A. Solution to Problem 1 – AoA-only Pose Estimation

The perspective projection model provides us with a new
mathematical description to simplify the problem from Fig. 1a.
After obtaining virtual points from AoAs, the problem is
converted into estimating the UE pose from 3D to 2D point
correspondences (rBS,i,vi), i = 1, . . . , I in analogy to the
problem of estimating the camera’s pose from 3D landmark
to 2D image correspondences. We denote by Ṽ = [ṽ1, . . . , ṽI ]
the observation matrix containing the observed virtual points
ṽi converted from AoA (ϕi, θi) according to (19), for i ∈
{1, . . . , I}, We also introduce V(TUE) = [v1, . . . ,vI ] as
a function of TUE with vi modeled by (20). With these
formulations, standard computer vision methods can be ap-
plied, including closed-form solutions such as the Perspective-
n-Point (PnP) algorithm [36, 12.2], as well as the iterative
method given by

minimize
∥∥∥Ṽ −V(TUE)

∥∥∥2
F

(23a)

s.t. TUE ∈ SE(3) (23b)
in order to solve for TUE.

The LS algorithm for iterative solving the problem (23) is
specified by each iteration, which is [37, Eq. 7.196]

Tt+1
UE = exp

((
κt∆t

)∧)
Tt

UE, (24)

where κt > 0 control the incremental step size for TUE. In
(24), the update direction is calculated by

∆ = (∇TUEvec (V))
†
(
vec

(
Ṽ −V

))
(25)

where (·)† is the pseudoinverse and V = [v1, . . . ,vI ] For
the Jacobian matrix, refer to [38, Appendix A].. In addition,
the problem (23) can be solved by off-the-shelf algorithm
toolboxes for cameras, and closed-form algorithms, such as
the PnP algorithm, can be used for initialization.

Finally, we note that since the pose has six degrees of free-
dom and that each correspondence generates two constraints,
at least I = 3 bases are needed to estimate the pose [28, Sect.
7.3].

B. Solution to Problem 2 – mmWave MIMO Snapshot SLAM

Moving on to Problem 2, we focus on step 3 from Section
II-C, considering that estimates of the AoAs and AoDs are
given. To simplify the analysis, we will set the BS pose so that
RBS = I3 and rBS = 03×1, i.e., set the system frame to align
with the BS antenna, then the UE pose is given by the relative
pose to the BS. We apply the perspective projection model
to both the UE and BS antenna arrays, so that each scatter
point makes a virtual point on each virtual plane, as shown
in Fig. 5. It can be seen that (i) the LoS path is represented
by the baseline, which intersects the virtual planes at v0 (at
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Fig. 5: Illustration of 3D MIMO channel in the epipolar modeling. The BS
and UE each act similarly to a camera, which sees the same landmarks (scatter
points) from different perspectives. The local virtual images, comprising
the virtual points determined by the scattering points in the local frame of
reference, as well as the baseline, can be related to the UE pose via the
essential matrix.

UE) and ν0 (at BS); (ii) each scatter point pℓ is “projected” in
two virtual points, at vℓ (at the UE), and νℓ (at the BS). As a
result, the geometric relation between the transmitter, receiver,
and scatter points can be described by the epipolar model from
Section III-B:

ν̄T
ℓ Ev̄ℓ = 0, for ℓ ∈ SL, (26)

where the essential matrix E = (rUE)×RUE fully describes
the UE pose.

We now proceed to solve the SLAM problem, relying on
existing computer vision methods and applying modifications
where needed. Note that the methods ignore the effect of
the estimation errors in the angles and channel delays, in
order to obtain a closed-form SLAM method, summarized in
Alg. 1. These effects can be later accounted for in suitable
maximum-likelihood methods, initialized by our approach. We
also ignore the effect that the paths in (3) may not all be resolv-
able. Since the gross effect of these factors is mathematically
intractable, all these effects will be considered in the numerical
results in Section V, in which the robustness of the proposed
closed-form and iterative solutions are analyzed numerically.

We start from estimates of the AoA ψ̃R,ℓ, AoD ψ̃T,ℓ, and
delays τ̃ℓ, for ℓ ∈ SL. Here ·̃ is used to denote observations
(inputs), while ·̂ is used to denote estimates (outputs).

Algorithm 1 Summary of the Closed-Form Algorithm

Require: ψ̃R,ℓ ψ̃T,ℓ, τ̃ℓ, for ℓ ∈ SL
Obtain ν̃ℓ, and ṽℓ based on (19)
Estimate essential matrix Ê based on ν̃ℓ, and ṽℓ
Estimate R̂UE, and n̂r based on Ê
Triangulation for p̆ℓ based on R̂UE, n̂r, ṽℓ and ν̃ℓ
Metric reconstruction of ŝ (29), and recover p̂ℓ and r̂UE,

1) Phase 1: Estimation of the virtual points and the essen-
tial matrix from the AoDs and AoAs: We first convert AoDs
and AoAs estimates into the virtual points, i.e., from ψ̃R,ℓ and
ψ̃T,ℓ to ṽℓ and ν̃ℓ for ℓ ∈ SL, based on (19). Then, based on
multiple pairs of ṽℓ and ν̃ℓ, the essential matrix E can be
estimated by using, for example, the algorithm given in [39],
[40]. Estimation of the essential matrix is very involved, but
in principle it is a technology, meaning that it is a standard
function in available computer vision toolboxes with well-
defined interfaces, e.g., [41], [42].

2) Phase 2: Computation of the relative UE pose from the
estimate Ê: This step can be implemented by applying the
SVD-based algorithm from [28, Sects. 9.6.2 and 9.6.3] to Ê
to estimate the orientation RUE and the normal vector of
the position nr = rUE/∥rUE∥. Note that in this step, the
UE position can only be estimated up to scale, therefore,
the position is only estimated up to the unit vector nr. The
SVD-based algorithm [28, Sect. 9.6.2] for this step gives four
candidate solutions, i.e.,[

R̂UE n̂r

]
=

[
UEWEV

T
E + uE,3

]
(27a)

or
[
UEWEV

T
E − uE,3

]
(27b)

or
[
UEW

T
E V

T
E + uE,3

]
(27c)

or
[
UEW

T
E V

T
E − uE,3

]
(27d)

where WE =

0−1 0
1 0 0
0 0 1

, uE,3 = UEe3, and UEΣEV
T
E

composes the SVD of Ê. The final solution is determined from
the 4 candidate solutions by physical feasibility. A physically
realizable solution is the one that puts reconstructed 3D points
in front of both virtual planes.

3) Phase 3: Triangulation for computing the 3D scatter
points: The scatter positions are estimated (again up to a
scale as with nr [43, Sect. 5.2.2]) and denoted by p̆ℓ, ℓ ∈
{1, . . . , L}, based on R̂UE, n̂r, ṽℓ and ν̃ℓ by using, for exam-
ple, the homogeneous method [28, Sect. 12.2]. In particular,
the homogeneous method from [28, Sect. 12.2] (for this step)
operates as follows: the triangulation solution for the scatter
p̆ℓ, ℓ ∈ {1, . . . , L} is given by the smallest singular value of

Aℓ =


[ṽℓ]1 t

T
(3) − tT(1)

[ṽℓ]2 t
T
(3) − tT(2)

[ν̃ℓ]1 t
′T
(3) − t′T(1)

[ν̃ℓ]2 t
′T
(3) − t′T(2)

 , (28)

where tT(i) and t′T(i) are the i-th row of TBS = I and

T̂UE =

[
R̂UE n̂r

01×3 1

]−1

, respectively, and [ṽℓ]i and [ν̃ℓ]i are

the i-th element of ṽℓ and ν̃ℓ, respectively.

4) Phase 4: Scale recovery: In order to recover the scale
factor so that the relative UE pose and scatter positions can be
fully recovered, computer vision methods require knowledge
of the overall scale of the scene. As this is not possible
in mmWave MIMO pose estimation, we instead rely on
the estimated propagation delays. We introduce the vector
of estimated delays, τ̃ with [τ̃ ]ℓ = τ̃ℓ, ℓ ∈ SL, and a
corresponding vector of scaled path lengths [d̆]ℓ = d̆ℓ, ℓ ∈ SL,
and d̆ℓ = ∥p̆ℓ∥+ ∥p̆ℓ − n̂r∥. Under the correct scaling s, we
recall that τ̃ℓ = sd̆ℓ/c + B. To get rid of the clock bias, we
introduce differential measurements Dsτ̃ and Dsd̆, where Ds

is a |SL| × |SL| binary matrix. This matrix is constructed as
Ds = I|SL|−D′

s, where D′
s has exactly one ‘1’ on each row,

off the main diagonal.4 Then, Dsτ̃ = sDsd̆/c, so that the

4In the special case where UE and BS are synchronized, B is known to be
0, so that Ds = I|SL| can be used.
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scaling is found as

ŝ =
c∣∣SL∣∣ ∑

ℓ∈SL

[Dsτ̃ ]ℓ

[Dsd̆]ℓ
. (29)

Finally, the positions of the receiver and scatter point are
recovered by r̂UE = ŝn̂r, and p̂ℓ = ŝp̆ℓ, respectively.

C. Problem 2 - Discussion, Variations, and Refinement

1) Identifiability without LoS knowledge: The epipolar
model also gives the minimum number of distinctive scatter
points required for SLAM using the estimates of AoD, AoA,
and propagation delay: at least five distinctive pairs of virtual
point correspondences are required to estimate the essential
matrix [36, Sect. 13.3.2] by, for example, using the five-point
algorithm (see Appendix A for a brief introduction and refer to
[39], [40] for more details). Therefore, in order to achieve the
SLAM problem of the 6D UE pose and 3D scatter positions
estimation using the estimates of AoD, AoA, and propagation
delay, the estimator requires four and five distinctive scatter
points for the LoS and NLoS scenarios, respectively.

2) Identifiability with LoS knowledge: If we know that the
LoS path is present, the methods can be further improved
(refer to Appendix B) and the number of scatter points can
be reduced to one, in line with the literature [24]. Note that
in this case, the element within d̆ in (29) corresponding to
the LoS path is a constant 1, since the scaled path lengths are
normalized so that the scaled LoS distance is norm-1.

3) Iterative Refinement: In addition to the above closed-
form solution consisting of sequential steps, we propose a
direct estimation based on the weighted least-squares (LS)
principle, which is given by

Θ̂ =argmin
Θ

L(y,Θ),

s.t. TUE ∈ SE(3) (30)
where the parameter set is Θ = {TUE,P}, P = [p1, . . . ,pL],
and the observation vector y = vec(yℓ∈SL

) with yℓ =[
ν̃T
ℓ , ṽ

T
ℓ , τ̃ℓ

]T
. In (30), the objective function L(y,Θ) is given

by
L(y,Θ) = (31)∑
ℓ∈SL

w1,ℓ∥ν̃ℓ − νℓ∥2 + w2,ℓ∥ṽℓ − vℓ∥2 + w3,ℓ [Ds(τ̃ − τ )]2ℓ ,

where wi for i ∈ {1, 2, 3} is the weight factor and should prop-
erly reflect the precision of estimates ψ̃R,ℓ, ψ̃T,ℓ and τ̃ℓ. The
constraint in (30) implies RT

UERUE = I,det (RUE) = +1,
and considering that SE (3) is a manifold, the optimization
of (30) can be solved by the Gauss-Newton method on the
corresponding manifold [44] to convert the above optimization
problem into an unconstrained optimization problem on the
manifold, which is obtained with an iterative procedure. At
each iteration, the update step is [37, Eq. 7.196]

Tt+1
UE = exp

((
κtT∆

t
T

)∧)
Tt

UE, (32)

pt+1
ℓ = ptℓ + κtpℓ

∆t
pℓ

ℓ ∈ {1, . . . , L} (33)
where κtT > 0 and κtpℓ

> 0 control the incremental step size
for TUE and pℓ, respectively. In (32), the update direction is
calculated by

[∆T,∆p1
, . . . ,∆pL

]
T
= (∇Θµ)

†
(ỹ − µ) (34)

where (·)† is the weighted pseudoinverse defined by [45, Eq.
7.32]

(J)† = (JTWJ)−1JTW, (35)

W = diag(vec(wℓ∈SL
)), wℓ = [w1,ℓ, w1,ℓ, w2,ℓ, w2,ℓ, w3,ℓ]

T,
ỹ = vec(ỹℓ∈SL

) ∈ R5|SL|×1 with ỹℓ =
[
ν̃T
ℓ , ṽ

T
ℓ , [Dsτ̃ ]ℓ

]T
,

µ = vec(µℓ∈SL
) ∈ R5|SL|×1 with µℓ =

[
νT
ℓ ,v

T
ℓ , [Dsτ ]ℓ

]T
,

∇Θµ = [∇T
Θµℓ∈SL

]T ∈ R5|SL|×(6+3L) with ∇Θµℓ =[
∇T

Θνℓ,∇T
Θvℓ,

[
Ds∇T

Θτ
]
ℓ

]T
the gradient of µℓ with respect

to Θ. The involving derivatives are given in the Appendix
C. Note that the differential measurements Dsτ̃ are used as
effective observations, while the differential delays Dsτ are
updated in the iteration. These differential values cancel out
the clock bias, such that the bias has no direct effect during
the iteration. Further, the initialization of the Gauss-Newton
method can be achieved with the closed-form solution given
previously.

4) Computation Complexity: For the closed-form algorithm
with a set of 5 paths, in phase 1, the calculation of virtual
points has a complexity of O(2 × 7). In addition, the com-
putation of the essential matrix is dominated by the SVD for
(40) and by the matrix inversion and SVD for calculating the
solution to the 10 third-order polynomial equations. These
two SVDs and the matrix inversion have a complexity of
O(5× 92), O(103), and O(103), respectively. In phase 2, the
SVD-based algorithm is dominated by the computation of an
SVD and matrix multiplication, which have a complexity of
O(33), and O(33), respectively. In phase 3, the computation
of the homogeneous method for each path is dominated by
the SVD of a 4 × 4 matrix, which leads to a complexity of
O(5× 43). In phase 4, the calculation of the scale factor has
a complexity of O(21). Hence, for 5 paths, the complexity is
dominated by the estimation of the essential matrix in Phase
1.

To account for more than 5 paths, we rely on random
sample consensus (RANSAC). In this strategy [39], a number
of random samples containing five correspondences each are
first taken. Then the five-point algorithm is applied to each
sample and the estimated essential matrix is scored with the
Sampson distance [28, Sect. 11.4.3]. The estimate with the
best score is chosen as the final estimate.

Finally, for the iterative refinement, the complexity is dom-
inated by the computation of the pseudoinverse, which has a
complexity of O((6 + 3|SL|)(5|SL|)2) per iteration.

V. NUMERICAL RESULTS

In this section, we numerically analyze the performance of
the proposed estimators in the two problems from Section II.

A. Error metrics

The error vector measuring the residual error of the estimate
is defined as ϵ(Θ̊,Θ) =

[
ϵTr , ϵ

T
u , ϵ

T
p

]T
with ϵr = r̊UE − rUE,

ϵu = log(RUER̊
−1
UE)

∨, and ϵp = vec(P̊ − P), where ϵu
measures of orientation error vector between RUE and R̊UE

[46]. The performance of the estimator is measured in two
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Fig. 6: Simulation setup for the receiver. The three orthonormal vectors in
three different colors (the red, green, and blue vectors represent the x-axis,
y-axis, and z-axis, respectively) at each sample on the path represent the
frame of the receiver. The stems represent the BSs.

ways. First, by the root mean squared errors (RMSEs), which
are defined as

RMSEr =
√

E {ϵTr ϵr} (36)

RMSEu =
√
E {ϵTuϵu} (37)

RMSEp =

√
1

|SL|
E
{
ϵTpϵp

}
, (38)

where E{·} is the expectation operator. The proposed methods
are compared to the corresponding CRB to demonstrate their
efficiency. Second, once the efficiency is established, a more
detailed analysis of the error statistics is conducted via the
cumulative distribution function (CDF) of the errors.

As noted in Section I, neither Problem 1, nor Problem
2 have standard solutions (only simplified cases have been
solved previously), so we are not able to report comparisons
against other methods.

B. Problem 1 – AoA-only Pose Estimation: Establishing the
Tightness of the Estimator

In this section, we evaluate the asymptotic tightness of the
proposed algorithm given by (23) by comparing it with the
theoretical bound (See [46] for their derivation) under the
assumption that the observation matrix Ṽ is given.

1) Scenario: In evaluating the problem of using the AoA
from multiple BSs for pose estimation, we consider a scenario
with 4 single-antenna BSs at rBS,1 = [−24,−20, 8.5]

T m,
rBS,2 = [25,−25, 9]

T m, rBS,3 = [−22, 20, 8]
T m, and

rBS,4 = [23, 25, 10]
T m. The UE is equipped with a uniform

rectangular array of 10×10 elements at half-wavelength spac-
ing. To evaluate the performance of the proposed estimators,
we consider a path with a circular pattern in the xy plane and
a sinusoidal pattern in the z direction, as shown in Fig. 6. The
radius of the circle in the xy plane is 15 m, and the amplitude
of the sinusoid is 1 m. The circle is centered at [0, 0, 1.5]T m.
Starting at the coordinates [0, 15, 1.5]

T m, the path oscillates
sinusoidally in the z direction and completes the path in three
periods. For each sample point on the circle, the receiver
is always in LoS condition. The observed virtual points are
assumed to be Ṽ = V+WV with vec (WV) ∼ N (0, σ2

VI4)
of units 1 for the virtual points.

2) Results: In Fig. 7, we show the RMSE of the iterative
algorithm solution for the position and orientation as a function
of the σ−1

V . The results show that the proposed estimator is
indeed asymptotically tight for large SNR. There, the RMSE
for all types of errors reduces in inverse proportion to the SNR,

10−1 100 101 102 103
10−5

10−2

101

104

σ−1
V

R
M

SE
(m

/r
ad

)

CRBr RMSEr

CRBu RMSEu

Fig. 7: RMSE as a function of SNR σ−1
V . It can be seen that the proposed

estimator is asymptotically tight for large SNR, implying that the proposed
algorithm is able to estimate the UE pose with high accuracy from the
observed virtual points.

i.e., the proposed algorithm is able to estimate the UE pose
with high accuracy from the observed virtual points. We note
that Problem 1 was solved in a challenging narrowband setting
using one or very few subcarriers. In an easier wideband
setting (e.g., in 5G mmWave using many subcarriers or in
ultra-wideband (UWB) systems) pose estimation performance
will improve, due to the ability to also estimate delays.

C. Problem 1 – AoA-only Pose Estimation: In-depth Perfor-
mance Evaluation

In this section, we evaluate the method proposed in Section
IV-A, for determining the pose of a UE based on signal from
several single-antenna BSs. In this part, the simulation includes
estimating channel parameters from the reference signal, based
on which the proposed iterative method initiated with the
closed-form solution is then employed, which is expected to
illustrate the validity of the proposed method in the overall
system for Problem 1.

1) Scenario: The same scenario setting of the previous
subsection is used in this part. However, the BSs are assumed
to operate at the carrier frequency of 28 GHz, and ith BS is
assigned with a baseband transmit signal of si(t) = ej2πfs,it

with fs,i = 100 + 50i Hz. The signal-to-noise ratio (SNR)
is defined as SNR = |si|2/σ2

s , where σ2
s is the variance of

the additive Gaussian noise. At the receiver side, the MUSIC
algorithm [32, Sect. 9.3.2] is used to estimate AoA, and then
the association of the AOA estimate and corresponding BS is
achieved by MVDR beamforming [32, Sect. 6.2.1] to identify
the transmit signal frequency. Finally, the iterative method
initialized with the solution of the P3P algorithm [47] is used
to estimate the pose, using the virtual points converted from
the AOA estimates.

2) Results: We evaluate the proposed estimator with respect
to the SNR, and the pose estimate over the path is evaluated.
Fig. 8 shows the CDF of the pose error. The performance
of both closed-form estimation and LS estimation is included
and denoted as CF and LS, respectively, for comparison. Here,
we see an outperforming of the LS method against the CF
method. The figure also reveals that our algorithm converges
approximately for 95% of the sample positions when SNR =
0 dB, while this reduces to 90% when SNR = −10 dB. Hence,
as expected, the coverage degrades if the receiver has a lower
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(a) Position estimation error
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(b) Orientation estimation error

Fig. 8: CDF of pose estimation errors for different SNRs for the AoA-only
pose estimation problem. It can be seen that higher SNR leads to improved
coverage of both methods, but the gains diminish with higher SNR. In
addition, an outperforming of the LS method against the CF method can
be seen.

SNR. Furthermore, it can be seen that the performance of the
estimator improves as the SNR increases, however, there are
diminishing performance gains with increasing SNR.

D. Problem 2 – mmWave MIMO Snapshot SLAM: Establish-
ing the Tightness of the Estimator

In this section, we evaluate the asymptotic tightness of the
proposed algorithm given by (30) by comparing it with the
theoretical bound (See [46] for their derivation) under the
assumption that the parameter vector estimate ẑℓ is given.

1) Scenario: We first consider a channel model of 3D
geometry-based stochastic model [48], as shown in Fig. 9,
where Ns scatter points are randomly generated on the surface
of an ellipsoid. The principal axes of the ellipsoid are set to
[16, 12, 8]

T m. The UE and BS are placed at the foci and
point toward each other. The field of view of the receiver is
set to 4π/9 rad. The observed parameter vector is assumed
to be y = µ + wµ with wµ ∼ N (0, σ2

µΣ ⊗ INs) and
Σ = 10−3diag(

[
1, 1, 1, 1, 10−12

]T
) with units 1 for the virtual

points and s2 for the ToA, which is chosen to characterize
the magnitude order relation between different components
based on the MSE of estimates given by the Tensor-ESPRIT
algorithm.

2) Results: First, in Fig. 10a, we show the RMSE of the
iterative algorithm solution (denoted as weighted least squares
(WLS)) for the position, orientation, and scatter positions as
a function of the σ−1

µ for Ns = 10 scatter points. For the

−10
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−5

0

5

XY

Z

Fig. 9: Simulation setup of 3D ellipsoid channel model, used to establish the
tightness of the method from Section IV-B for the mmWave MIMO snapshot
SLAM problem. The UE and BS (shown with a triangle and square) are the
foci of the ellipsoid.
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(a) RMSE as a function of SNR σ−1
µ .
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(b) RMSE as a function of number of scatter points Ns.

Fig. 10: RMSE for position, orientation, and the position of scatters as a
function of (a) σ−1

µ and (b) Ns. The results show that the proposed estimator
is asymptotically tight for large SNR and is consistently tight for all Ns,
suggesting that the proposed algorithm can achieve a high level of accuracy
in estimating the UE pose and the positions of scatterers based on the observed
parameter vector.

weighted least squares method, the weight5 of the ℓth path
is set to wℓ = |αℓ|2[1, 1, 1, 1, 1012]T. We also added results
for equal weight, i.e., the standard LS, (denoted as LS) for
comparison. The results show that the proposed estimator is
indeed asymptotically tight for large SNR. There, the RMSE

5In practice, the weights could be tabulated after an offline calibration stage
(where measurements are compared to the ground truth in order to determine
the error statistics) [49] or determined online from the measurements them-
selves, e.g., via the Fisher information, evaluated at the measurement [50].
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Fig. 11: RMSE as a function of the weights provided to the estimator. Note
that γw = 1 corresponds to the correct generative weight.

for all types of errors reduces in inverse proportion to the
SNR, i.e., the proposed algorithm is able to estimate the UE
pose and the position of scatters with high accuracy from
the observed parameter vector. Next, we show in Fig. 10b
the RMSE for the position, orientation, and scatter positions
as a function of the number Ns of scatters, for σ−1

µ = 10.
Also here, we see a tightness between the RMSEs and their
respective lower bounds, while it can be seen that the RMSEs
decrease slowly with respect to the logarithm of Ns. However,
the dependency is insignificant, so that in a smaller range of
Ns, the RMSE appears almost constant. In addition, it can be
seen that WLS achieves noticeable improvement at low SNR
and a large number of scatter points. However, even in other
cases, there is only a marginal improvement.

To understand the impact of mismatches in the weights,
we performed additional simulations to investigate the perfor-
mance when some weights deviate from the correct generative
value. The generative model is set as used previously, and the
weight of the ℓth path that is provided to the estimator is set
to wℓ = |αℓ|2[γw, γw, γ−1

w , γ−1
w , 1012]T, where γw denotes the

factor controlling the degree of mismatch. The result is given
in Fig. 11, where the RMSE for the position, orientation, and
scatter positions as a function of γw is given. As expected, the
RMSE performance degrades with the degree of mismatch.
However, it can be seen that the position estimate is more
sensitive to the mismatch than the orientation estimate. Most
importantly, the degradation due to a wrong selection of the
weight is rather limited, indicating that the method is relatively
robust to weight mismatch.

E. Problem 2 – mmWave MIMO Snapshot SLAM: In-depth
Performance Evaluation

In this section, we evaluate the estimator in the simulation
setting given by [21]. In this part, the simulation comprises
an end-to-end approach that includes estimating channel pa-
rameters from the pilot signal, based on which the proposed
iterative method initiated with the closed-form solution is then
employed, which is expected to illustrate the validity of the
proposed method in the overall system for Problem 2.

1) Scenario: We consider a scene consisting of two sur-
faces, representing the building and ground surfaces respec-
tively, as shown in Fig. 12. The building facade’s center
is at [10, 10, 5]

T m with a facade length of 20 m, facade
height of 10 m, and direction [0, 1, 0]

T. The ground surface

0
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Fig. 12: Simulation setup for channel estimation and SLAM with 2 clusters.
The BS is on the right and has a known pose, while the UE is on the left and
has an unknown pose. The two walls have unknown locations and each give
rise to several scatter points.

is at [10, 0, 0]
T m with direction [0, 0, 1]

T, surface dimen-
sion 20 × 20 m2. The positions of BS and UE are set to
rBS = [20, 0, 8]

T m and rUE = [0, 0, 2]
T m, respectively,

while their orientations are

RBS =

0, 0, −1
1, 0, 0
0,−1, 0

 , RUE =

 0, 0, 1
−1, 0, 0
0, −1, 0

 , (39)

pointing at each other. The BS and UE are equipped with
a uniform rectangular array with 10 × 10 half-wavelength
spaced elements and a carrier frequency of 28 GHz. For the
kth facade, Lk = 100 scatters are generated (L = 200 in
total), whose positions pℓ are randomly generated according
to the model from [17], [21], [22], [51], described in Appendix
D. This model is parameterized by β ∈ N, which describes
the directivity of the scattering (i.e., larger β means more
directive scattering). The clock bias is assumed to comply with
a uniform distribution, i.e., B ∼ U

(
−Tsym

2 ,
Tsym

2

)
with symbol

duration Tsym. The channel parameter estimation method is
detailed in Appendix E, providing Z = {z0, . . . , zL̂} (where
we recall that zℓ = [ψR,ℓ,ψT,ℓ, τℓ, αℓ]

T). The weight factors
for the proposed WLS algorithm are specified with the squared
magnitude of the estimated channel gain |α̂ℓ|2. While our
focus is on a coarse estimator in this case, further performance
improvements can be obtained by considering the actual error
statistics of the channel parameter estimator from Appendix
E. Due the finite resolution in angle and delay domain, the
estimated number of paths L̂ is usually much less than L.6

For the methods to work, L̂ needs to be sufficiently large
(i.e., L̂ ≥ 4 in LoS and L̂ ≥ 5 in NLoS). If fewer paths are
detected, the proposed methods cannot be applied. If more
paths are detected, either all paths can be used, or a subset
can be selected with maximal diversity among the angles and
delays.

2) Results: First, the averaged estimated number of paths
for each setting is given in Tab. I for reference. In Fig. 13,
we show the CDF of the estimation errors, for different SNRs
for β = 10. The performance of both closed-form estimation

6This observation implies that the model order L is random and unknown,
since each noise realization will give rise to a different value of L̂ with cor-
responding different path parameters. Hence, neither the maximum likelihood
estimator nor the CRB are well-defined in this case.
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Fig. 13: CDF of pose errors for different SNRs for the closed form (CF) and weighted least squares (WLS) solution. The position and orientation errors are
given in top and bottom rows, respectively. The first column contains the performance in the LoS case and the knowledge of the presence of LoS path is
utilized, the second column contains the performance in the NLoS case, and the last column contains the performance in the LoS case but the LoS path is
treated as the NLoS paths.
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Fig. 14: CDF of pose errors for different values of the directivity β for the closed form (CF) and weighted least squares (WLS) solution. The position and
orientation errors are given in the top and bottom rows, respectively. The first column contains the performance in the LoS case and the knowledge of the
presence of LoS path is utilized, the second column contains the performance in the NLoS case, and the last column contains the performance in the LoS
case but the LoS path is treated as the NLoS paths.



12

TABLE I: The averaged estimated number of paths for each setting.

Cases SNR
β 0 5 10

LoS 0 (dB) 8.03 7.73 7.33
20 (dB) 9 9 9

NLoS 0 (dB) 8.58 8.44 8.12
20 (dB) 9 9 9

and WLS estimation is included and denoted as CF and WLS,
respectively, for comparison. Under the condition of asynchro-
nization, we evaluated the three study cases. More specifically,
the first column in Fig. 13 contains the performance in the
LoS case and the knowledge of the presence of LoS path is
utilized, the second column contains the performance in the
NLoS case, and the last column contains the performance in
the LoS case but the LoS path is treated as the NLoS paths.
It can be seen that the WLS algorithm achieves an accuracy
of 1 m and 0.04 rad or better in approximately 70% of the
cases when the LoS channel is present and utilized properly,
while this accuracy becomes 3 m and 0.1 rad in approximately
70% of the cases when the LoS is absent. This indicates
that even the derivation of the closed-form solutions ignores
some impairments, i.e., the effect of the estimation errors in
the angles and channel delay, the CF method demonstrates
a remarkable level of robustness, standing out as a reliable
solution that maintains its performance integrity even when
subjected to these impairments. In addition, we observe that
the WLS algorithm outperforms the CF method, in all cases.
The figure further reveals that the WLS algorithm achieves an
accuracy of 1 m and 0.03 rad or better in approximately 90%
of the cases when the LoS channel is present and utilized
properly, while this accuracy becomes 3 m and 0.2 rad in
approximately 80% of the cases when the LoS is absent.
However, if the LoS path is utilized improperly, the accuracy
degrades significantly. This is because the LoS path does
not have an associated scattering point and the algorithm
dealing with the NLoS will always associate one with the
estimated path, such that a fake scattering point is expected
to be produced for the LoS path, biasing the final estimate.
It can also be seen that the performance does not improve
significantly with increasing SNR, which means that SNR is
not the dominant factor in determining performance. This is
due to the fact that both the WLS and CF algorithms utilize
the estimated parameter set Z̃ , which is provided in the form
of effective scatter points and has limited resolution, so the
performance is mainly limited by the accuracy of Z̃ . Next, we
show in Fig. 14 the CDF of the estimation errors for different
values of the directivity β, for SNR = 40 dB. Also here, we see
an outperforming of the WLS method against the CF method.
The figure further reveals that the WLS algorithm achieves an
accuracy of 1 m and 0.03 rad or better in approximately 90%
of the cases when the LoS channel is present and utilized
properly, while this accuracy becomes 3 m and 0.1 rad in
approximately 90% of the cases when the LoS is absent.
However, if the LoS path is utilized improperly, the accuracy
degrades significantly. The results shown in Fig. 14 reflect that
β has a smaller impact on performance when the LoS channel
is present and utilized properly.

VI. CONCLUSION

In this paper, we investigate the estimation of the full
6D user pose (joint 3D position and 3D orientation) using
antenna arrays by providing a projective geometric view
of AoDs and AoAs in the context of 5G and beyond 5G
positioning. To this end, the directional angular information
is first modeled in terms of the receiver’s pose using the
perspective projection model from computer vision. Then, two
pose estimation problems, namely 6D pose estimation using
AoAs from multiple base stations and 6D SLAM based on
single-BS mmWave communication, are investigated with the
perspective projection model. Particularly, we show that the 6D
SLAM problem, when modeled with the perspective projection
model, can be further modeled with the epipolar model. For
each problem, we propose two estimation algorithms, a closed-
form one and an iterative one based on the principle of LS. The
simulation results confirm the effectiveness of the proposed
algorithms and demonstrate that reliable 6D localization of a
user is achievable even in the absence of the LoS path, while
the performance is significantly improved when the LoS path
is present and utilized properly. However, improper utiliza-
tion of the LoS path degrades the performance significantly,
prompting the necessity of an effective LoS detection stage.

APPENDIX A
BRIEF INTRODUCTION TO THE FIVE-POINT ALGORITHM

FOR ESTIMATING THE ESSENTIAL MATRIX

Base on (16), for a set of five correspondences {(v̄i, ν̄i)},
we have v̄

T
1 ⊗ ν̄T

1
...

v̄T
5 ⊗ ν̄T

5


︸ ︷︷ ︸

A∈R5×9

vec(E) = 0 (40)

where vec(E) =
[
eT1 , e

T
2 , e

T
3

]T
. (40) implies that vec(E) is

the right null space of A, whose base vectors vec(Ei), i ∈
{1, . . . 4} can be obtained with SVD. Since E is defined up
to a scale, we have E = xE1 + yE2 + zE3 +E4, for certain
coefficients C = (x, y, z). Further, the following constraints,

det(E) = 0 (41)
and

EETE− 1

2
tr(EET)E = 03, (42)

are used to build 10 third-order polynomial equations in C.
In general, K ≤ 10 sets of real solutions to C are obtained
from the polynomial equations. Since the five-point algorithm
is used together with the RANSAC strategy, in order to keep
only the optimal solution, these K solutions are assessed
with the remaining correspondences other than the chosen five
correspondences.

APPENDIX B
ESTIMATION WITH THE KNOWLEDGE OF THE LOS PATH

Prior knowledge of the existence of the LoS path can
improve the performance of SLAM, since the AoD and AoA
associated with the LoS channel are specifically represented by
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epipoles in epipolar geometry. For the sake of simplification,
we ignore the subscript of RUE in this section. As pointed out
in [52, Sect. 2.2], the epipoles ν0 and v0 have the following
two properties

ν̄0 = rUE (43)

v̄0 = −RTrUE, (44)
where these two equalities are defined up to a scale. These two
properties can be exploited to recover the pose partially. On
the one hand, the direction of rUE can be recovered according
to (43). On the other hand, (44) implies that the rotated vector
Rv̄0 specifies the direction of −ν̄0, with which we can recover
R partially. To illustrate this, substituting (43) into (44) and
left multiplying R, we have, up to a scale,

−ν̄0 = Rv̄0. (45)
Then following the swing-twist parametrization [53, Sect. 5],
the rotation R is decomposed into R = R⊥R∥, where R∥ =
exp

(
θ(n∥)×

)
is a rotation matrix over an arbitrary unit vector

n∥ and an arbitrary angle θ, and R⊥ = exp ((u⊥)×) is the
rotation matrix of a rotation vector u⊥ residing in the plane
perpendicular to n∥, i.e., uT

⊥n∥ = 0. Note that for arbitrary
θ we have n∥ = R∥n∥. Then if we choose n∥ = v̄0

∥v̄0∥ , for
arbitrary θ, (45) can be rewritten as

−ν̄0 =R⊥R∥v̄0 (46)
=R⊥v̄0. (47)

Since R⊥ brings v̄0 to the direction of −ν̄0, the axis of
rotation R⊥ is therefore ν̄0×v̄0

∥ν̄0×v̄0∥ and the rotation angle is
the angle between v̄0 and −ν̄0, then we have [54, Eq. 3]

u⊥ =
ν̄0 × v̄0

∥ν̄0 × v̄0∥
arccos

−v̄T
0 ν̄0

∥v̄0∥∥ν̄0∥ , (48)

which has two degrees of freedom [53, Sect. 5]. It can be seen
that based merely on the AoA and AoD of the LoS path, two
degrees of freedom specified by u⊥ can be recovered, but not
the remaining one, θ (i.e., R = exp ((u⊥)×) exp

(
θ(n∥)×

)
where only θ remains unknown). To this end, we use the
information provided by the scattering paths. Based on the
facts that ν̄TEv̄ = 0 from (16), E = (rUE)×R from (17)
and the relation (43), an additional pair of correspondences
(νl,vl) associated with the lth scatter point leads to
ν̄T
l (ν̄0)×Rv̄l = ν̄

T
l (ν̄0)×R⊥R∥v̄l = vT

l exp(θ(n∥)×)v̄l

=vT
l v̄l + vT

l (n∥)×v̄l sin θ + vT
l (n∥)

2
×(1− cos θ)v̄l (49)

=vT
l (n∥)×v̄l sin θ + vT

l v̄l cos θ (50)

=nT
l

cos(θ)sin(θ)
1

 = 0. (51)

where vT
l = ν̄T

l (ν̄0)×R⊥, and

nl =

 vT
l v̄l

vT
l (n∥ × vl)

0

 . (52)

Eq. (49) holds due to the Rodrigues’ rotation formula, given
by,

exp(θn×) = I+ n× sin θ + n2
×(1− cos θ), (53)

while (50) holds due to the cross product properties of a×a =
0 and a × (b × c) = (aTc)b − (aTb)c and to the equality
vT
l n∥ = 0 resulted from (47). It can be seen that θ corresponds

to the intersections of the unit circle centered at the origin
with the line specified by the normal vector nl and the origin.
There are two intersections, thus two values θi, i ∈ {1, 2},
which lead to two estimates of R. By first noticing that the
rotated vector Rv̄l resides in the epipolar plane and that

(R|θ1 v̄l)× (R|θ1n∥) = (R|θ2n∥)× (R|θ2 v̄l), (54)
R|θ1n∥ =R|θ2n∥, (55)

where R|θ
.
= R⊥ exp(θ(n∥)×), then the two estimates can be

illustrated by the vectors R|θ1 v̄l and R|θ2 v̄l forming reflection
with respect to Rn∥ within the epipolar plane. As a result, we
can choose the appropriate value for θ so that ν̄0×ν̄l and ν̄0×
(Rv̄l) have the identical sign. Thus, one additional scattering
point suffices to uniquely recover the rotation matrix.

The sequential application of (43) and (49) can be used
to estimate the pose up to a scale factor. However, in this
approach, the direction estimation of rUE is based exclusively
on the observation of the LoS channel, while the observation
of scattering paths does not contribute to this estimation. To
deal with this problem and to make the estimation com-
patible with existing algorithms, we can convert the con-
straints (43) and (44) into a set of extra correspondences
S = {(e1, v̄0), (e2, v̄0), (e3, v̄0), (ν̄0, e1), (ν̄0, e2), (ν̄0, e3)},
which can then be fed into existing algorithms along with the
virtual points of scattering paths.

APPENDIX C
GRADIENTS IN THE GAUSS-NEWTON METHOD

The gradient of τℓ with respect to Θ is given by

∇Θτℓ =
1

c

( pT
ℓ

∥pℓ∥
∇Θpℓ +

pT
ℓ,u

∥pℓ,u∥
∇Θpℓ,u

)
, (56)

where ∇Θpℓ =
[
∇T

TUE
pℓ,∇T

p1
pℓ, . . . ,∇T

pL
pℓ

]
, ∇TUE

pℓ =
03×6,

∇pi
pℓ =

{
I3 if ℓ = i

03×3 if ℓ ̸= i
, (57)

p̄ℓ,u = TUEp̄ℓ, and

∇TUE
pℓ,u =∇TUE

(
[e1, e2, e3]

T
TUEp̄ℓ

)
= [e1, e2, e3]

T
p̄⊙
ℓ (58)

∇pi
pℓ,u =∇pi

(
[e1, e2, e3]

T
TUEp̄ℓ

)
=

{
RT

UE if ℓ = i
03×3 if ℓ ̸= i

. (59)

where the gradient with respect to TUE is calculated with the
infinitesimal perturbation [37, Sect. 7.1], and the operator (·)⊙
is ([

ξT, η
]T)⊙

=

[
ηI3 −ξ×
0T 0T

]
, (60)

The gradients of νℓ and vℓ with respect to Θ are given by

∇Θνℓ =

[
eT1
eT2

](
I3

eT3 pℓ
− pℓe

T
3

(eT3 pℓ)
2

)
∇Θpℓ, (61)

and

∇Θvℓ =

[
eT1
eT2

](
I3

eT3 pℓ,u
− pℓ,ue

T
3

(eT3 pℓ,u)
2

)
∇Θpℓ,u, (62)

respectively.
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APPENDIX D
GENERATIVE MODEL FOR THE SCATTER LOCATIONS

The scatter point locations are synthesized by applying
Markov Chain Monte Carlo (MCMC) sampling to the PDF
of pℓ given by [17], [21], [22], [51]

pk(pℓ|rUE, rBS) ∝
{
Rk(pℓ, rUE, rBS, β) if pℓ ∈ SF,k

0 otherwise,
(63)

where SF,k for i ∈ {1, 2} denotes the space of the kth facade,
and the pattern function Rk(pℓ, rUE, rBS, β) is [55]

Rk(pℓ, rUE, rBS, β) ∝

{ cos θi cos θs
d2id

2
s

if β = 0

cos θi(1+cosψb)
β

Fβd2id
2
s

otherwise.
(64)

In (64), di = ∥rBS − pℓ∥, ds = ∥rUE − pℓ∥, the angles θi
and θs are, respectively, the incidence and scattering directions
with respect to pℓ, ψb denotes the angle between the reflection
and scattering directions at pℓ, β ∈ N describes the directivity
of the scattering at pℓ, and the normalization factor Fβ is given

by Fβ = 1
2β

∑β
j=0

(
β
j

)
· Ij and

Ij =
2π

j + 1

[
cos θi

j−1
2∑

w=0

(
2w
w

)
· sin

2w θi
22w

]( 1−(−1)j

2

)
. (65)

In this paper, the channel gain αℓ of the ℓth path is modeled
with the exponential decay model [56]. More specifically, the
kth cluster is assigned with a power of Pk = e−

τk
Dc 10

Zk
10 , where

Zk ∼ N (0, σ2
Z), and τk is the speculator delay contributed by

the kth facade. Further, within the kth cluster, the nth scatter
is associated with a channel gain of

αk,n =
P ′
k,n∑N
i P

′
k,i

Pk, (66)

where P ′
k,n = e−

τk,n
Ds 10

Un
10 , Un ∼ N (0, σ2

U ), and τk,n is
the delay associated with nth scatter within the kth facade.
Following the parameters given in [56], it is chosen such that
Dc = 25.9 ns, σZ = 1 dB, Ds = 16.9 ns, and σU = 6 dB.

APPENDIX E
CHANNEL PARAMETER ESTIMATION

Following [21], [22], we assume that the received pilot
signal at nth subcarrier is

Y[n] = H[n]X[n] +W[n], (67)
where W[n] models the additive Gaussian noise, and X[n]
is chosen such that (X[n])(X[n])H = I. Then, the channel
estimate is given by Ĥ[n] = Y[n](X[n])H [21], and after
stacking and rearranging the channel estimates of all Nf
subcarriers, we have a tensor representation of the channel
estimates, given by

Ĥ = H+W ∈ CNr,x×Nr,y×Nt,x×Nt,y×Nf , (68)
where the stacking order is implicit from the dimensions of
the tensor. In (68), the tensor H represents the true value
of the channel, and the tensor W represents the estimation
error contained in Ĥ, which is Gaussian. The SNR is defined
as SNR = ∥H∥2F /∥ΣH∥F with ΣH the covariance of W .
The MATLAB package Tensorlab [57] is used to perform
tensor-ESPRIT algorithm [21], [22] to estimate the parameter
vector set Z from Ĥ. The number of paths is estimated by

the minimum description length (MDL) [58], this estimated
number L̂ is usually much less than L, representing the number
of effective scattering paths.

REFERENCES
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