
Linear analysis and crossphase dynamics in the CTEM fluid model

Downloaded from: https://research.chalmers.se, 2024-04-09 16:02 UTC

Citation for the original published paper (version of record):
Leconte, M., Qi, L., Anderson, J. (2024). Linear analysis and crossphase dynamics in the CTEM fluid
model. Physics of Plasmas, 31(2). http://dx.doi.org/10.1063/5.0179680

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)




View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  FEBRUARY 09 2024

Linear analysis and crossphase dynamics in the CTEM fluid
model 
M. Leconte   ; Lei Qi  ; J. Anderson 

Phys. Plasmas 31, 022302 (2024)
https://doi.org/10.1063/5.0179680

 23 February 2024 15:20:32

https://pubs.aip.org/aip/pop/article/31/2/022302/3262843/Linear-analysis-and-crossphase-dynamics-in-the
https://pubs.aip.org/aip/pop/article/31/2/022302/3262843/Linear-analysis-and-crossphase-dynamics-in-the?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pop/article/31/2/022302/3262843/Linear-analysis-and-crossphase-dynamics-in-the?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0003-0406-2172
javascript:;
https://orcid.org/0000-0003-3694-0865
javascript:;
https://orcid.org/0000-0001-7524-0314
javascript:;
https://doi.org/10.1063/5.0179680
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2304692&setID=592934&channelID=0&CID=846986&banID=521670459&PID=0&textadID=0&tc=1&scheduleID=2224583&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpop%22%5D&mt=1708701632825394&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpop%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0179680%2F19616773%2F022302_1_5.0179680.pdf&hc=79622f8bab6e0de885daf5fed44feb14d5e6c9a7&location=


Linear analysis and crossphase dynamics in the
CTEM fluid model

Cite as: Phys. Plasmas 31, 022302 (2024); doi: 10.1063/5.0179680
Submitted: 4 October 2023 . Accepted: 7 January 2024 .
Published Online: 9 February 2024

M. Leconte,1,a) Lei Qi,1 and J. Anderson2

AFFILIATIONS
1Korea Institute of Fusion Energy (KFE), Daejeon 34133, South Korea
2Department of Space, Earth and Environment Sciences, Chalmers University of Technology, SE-412 96 G€oteborg, Sweden

a)Author to whom correspondence should be addressed:mleconte@kfe.re.kr

ABSTRACT

Collisionless trapped-electron mode (CTEM) turbulence is an important contributor to heat and particle transport in fusion devices. The
ion-temperature gradient (ITG)/trapped-electron mode (TEM) fluid models are rarely treated analytically, due to the large number of
transport channels involved, e.g., particle and ion/electron heat transport. The CTEM fluid model [Anderson et al., Plasma Phys.
Controlled Fusion 48, 651 (2006)] provides a simplified model, in the regime where the density gradient drive (rn) is negligible compared
to the electron temperature gradient drive (rTe). This provides a starting point to study mechanisms associated with linear waves, such as
crossphase dynamics, and its possible role in the formation of E�B staircase. Here, an extended CTEM fluid model (with both rn and
rTe drive) is derived from the more general ITG/TEM model, using a simplified ion density response, and its linear dynamics is first ana-
lyzed and compared with CTEM gyrokinetic simulations with bounce-averaged kinetic electrons, while nonlinear analysis is left for future
work. The wave action density is derived for this CTEM model. Comparisons of linear ITG spectrum are also made with other analytical
models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179680

I. INTRODUCTION

In magnetic fusion devices, electron heat transport and particle
transport is partly due to collisionless trapped-electron mode (CTEM)
turbulence, which is usually coupled to ion-temperature gradient
(ITG) turbulence. For a review on turbulent particle transport, see, e.g.,
Refs. 1–3. The CTEM is an instability due to the toroidal precession-
drift resonance of trapped electrons in the low-collisionality regime.4 It
is driven by electron temperature gradient and/or density gradient.
The Chalmers model5–10 provides a simple yet predictive set of fluid
models for ITG and CTEM turbulence. This set of models has been
linearly analyzed. However, there remain certain aspects that are not
fully understood, such as the crossphase dynamics responsible for the
transport.11–14 Here, by “crossphase dynamics,” we mean the fast tran-
sient change in the value of the transport crossphase (e.g., between
fluctuating density and potential for particle transport). In other
words, this is the study of the departure of the crossphase from its
phase-locked value typically assumed in the id approximation. Linear
and quasi-linear transport theory often assumes that if the instability is
above its linear threshold, then turbulent transport automatically
ensues. However, there is a possibility that the crossphase either does
not lock, or that it locks to a value different from the one predicted by

linear theory. For example, zonal profiles of density and temperature
may have an effect on the crossphase.11 This effect could be particu-
larly important near marginality, where zonal flow and zonal profiles
can be significant. In this article, we first analyze the ITG–trapped-
electron mode (TEM) model linearly—including the crossphase
dynamics. Focusing on the limit of CTEM, we extend the two-field
model of Ref. 10 to include the density gradient drive (rn). This
extended CTEM model is compared to linear gyrokinetic simulations
with bounce-averaged kinetic electrons.15 This article reports results
that can be considered a first step toward the later goal of better inter-
preting aspects of nonlinear physics. More precisely, a weakly nonlin-
ear extension of the present work could be used to analyze zonal
density and zonal electron temperature corrugations associated with
zonal staircase with nonlinear simulations,16–19 its relation to zonal
flows, and their possible relation to the transport crossphase.11,12 This
is left for future work. Quasi-linear transport analysis—which neglects
zonal structures—has had some success in comparison with experi-
ments.20 However, near marginal-stability where zonal structures
become dominant players, quasi-linear theory can become inapplica-
ble. Near marginality, analytically tractable fluid models can provide a
theoretical basis to understand the interaction between zonal structures
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and the background turbulence driving them, e.g., via the wave-kinetic
approach.21,22

The rest of this article is organized as follows. In Sec. II, we pre-
sent the general ITG–TEM model used in this study; a linear analysis
and general crossphase dynamics analysis is presented. The derivation
of the ITG dispersion relation is reviewed and compared to linear
gyrokinetic simulations. In Sec. III, we focus on the CTEM, a subset of
the ITG–TEM model. The model is analyzed—including the detailed
crossphase dynamics—and compared with linear gyrokinetic simula-
tions. In Sec. IV, we discuss the results and present conclusions.

II. MODEL

We are interested in collisionless trapped electron modes
(CTEM) for which the frequency verifies kkvth;i � xk < kyvth;e.
Although electron trapping is a toroidal phenomenon, we assume a
slab geometry, for simplicity. We stress here that the model described
in this work only applies to tokamaks, not stellarators. We consider
the following fluid model of ITG–TEM turbulence, based on
Nordman et al.:7

@n
@t

þ vE:rnþ ftv�e
@/
@y

¼ ��ngev�e
@

@y
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Equation (1) represents the conservation of effective electron density,
Eq. (2) is the electron heat balance, Eq. (3) is charge balance, and Eq.
(4) is the ion heat balance. Here, n ¼ net þ ft ~/ is an effective density,
with net ¼

Ð
d3v he=n0 the trapped electron density.23,24 Here, he is the

trapped-electron part of the electron distribution function. The effec-
tive density is such that it can be written in the form: nft ¼ ~/ þ net

ft
, i.e.,

as the sum of an adiabatic component plus a non-adiabatic component
due to trapped electrons. Note that this convention for trapped elec-
trons is a different convention than the one used in the Chalmers
model. Namely, in the present model, quasi-neutrality reads
ni ¼ nþ ð1� ftÞ~/, since passing electrons are assumed adiabatic.

However, Eqs. (1), (2), (3), and (4) practically correspond to Eqs. (5),
(6), (1) þ (7), and (2), respectively, of Ref. 7. The quantity / denotes
the electric potential, ~/ ¼ /� h/i, with h�i ¼ 1

Ly

Ð
dy the flux surface

average, and vE ¼ ẑ �r/ denotes the E�B drift (the magnetic field
factor B is absorbed in the normalizations). The electric potential is
normalized as e/

Te0
! /, with Te0 a reference electron temperature. The

quantityr2
? ¼ @2

@x2 þ @2

@y2 is the perpendicular Laplacian, and x, y, and z

denote the local radial, poloidal, and toroidal directions in a fusion
device. Time is normalized as ðcs=LnÞt ! t, with cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
the

sound speed, and space is normalized by the gyroradius at the electron
temperature qs ¼ cs=xc;i, with xc;i ¼ eB=mi the ion gyrofrequency.
Here, Ln ¼ n=jrnj is the density gradient scale length, and the param-

eters ge; gi are normalized gradient ratios, given by ga ¼ Ln
LTa

¼ n
Ta

jrTaj
jrnj ,

with a ¼ e; i. The quantity s ¼ Te0=Ti0 is the temperature ratio, and
C ¼ 5=3 is the adiabatic index. The parameter ft ¼

ffiffi
�

p
is the trapped-

electron fraction, with � ¼ a=R the inverse aspect ratio, and terms pro-
portional to �n ¼ 2Ln=R denote magnetic drift effects modeling mag-
netic drift for ions and toroidal precession-drift for trapped-electrons.
The parameter geðsÞ ¼ 1

4 þ 2
3 s represents the effect of magnetic shear

on the precession frequency of trapped-electrons, and giðsÞ ¼
2
3 þ 5

9 s� � is its effect on the magnetic drift for ions.25,26 Since we are
interested in frequencies x � kkcs, where cs is the sound speed, we
neglect parallel ion motion.

A. ITG–TEM system

In this section, we neglect magnetic shear effects, i.e., we assume
gi ¼ ge ¼ 1, for simplicity. Later on, we will focus on CTEM. That is,
considering quasi-neutrality in the form nGCi ¼ nþ ð1� ft �r2

?Þ
�½/� h/i�, with nGCi the ion gyrocenter density, we assume that the
mode frequency resonates with the precession-drift frequency, i.e.,
xk 	 5

3xde, where xk is the mode frequency at wavenumber k; xde ¼
ky�nv�e is the toroidal precession drift frequency, with ky the poloidal
wavenumber. Hence, we use the approximation:

xk � xdi ’ xk; Tik 	 0; (5)

where xdi ¼ �ky�nv�e=s is the ion magnetic drift (sum of rB and
curvature drifts), and Tik denotes the Fourier amplitude of ion temper-
ature fluctuations. In this regime, the electron dynamics decouples
from the ion dynamics, and the nominally quartic dispersion relation
reduces to a cubic, which can be analytically solved. The present
CTEM model is an extension of the two-field model of Ref. 10, to
include the ion dynamics, although in a simplified form. This is impor-
tant, because CTEM is an ion-scale mode. Hence, polarization—ion
inertia—and ion finite-Larmor-radius (FLR) stabilization effects are
important for this mode. Note that, although jTikj 	 0 is assumed, this
is only for the amplitude of fluctuations. There is still a large value of
the equilibrium ion temperature Ti0 6¼ 0; hence, FLR and polarization
effects are retained.

B. Linear analysis

Linearizing systems (1)–(4), and applying a Fourier transform
g ¼ gkðtÞeikxxþikyy , with g ¼ ni; n;Tet ;/, one obtains—after some
algebra—the following ITG–TEM linear dispersion relation
(x� ¼ kyv�e):
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where the denominators are Ni ¼ x2 � 10
3 xdixþ 5

3x
2
di and Ne ¼ x2 � 10

3 xdexþ 5
3x

2
de. The details of the derivation are given in the Appendix.

The relation (6) is a quartic dispersion relation that describes two coupled modes: an electron mode (CTEM rotating in the electron diamagnetic
direction) and an ion mode (ITG rotating in the ion diamagnetic direction).10 As we focus here on trapped electron mode turbulence, we assume
gi � ge, and thus the electron branch (CTEM branch) is dominant. In the CTEM regime, jNij � jNej. Hence, the CTEM mode resonates at the
frequency xk ¼ xres ¼ 5

3xde. We are talking here about a fluid resonance, which is an approximation of the kinetic resonance.5 To see the quasi-
symmetry between ITG and TEM, it is useful to write the ITG–TEM system in matrix form,

x� 5
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777775 ¼ 0; (7)

where we used quasi-neutrality to express the electric potential: /k ¼
1

1� ft
ðnik � nkÞ, the parameters KTEM

k ¼ nðx� � xdeÞ and KITG
k ðxÞ ¼

1
1� ft

1� 1þ gi
s

k2?

� �
x� þ sxdi� k2?x

� �
were defined, and n¼ ft=ð1� ftÞ. This form of the ITG–TEM system clearly shows that the system is

almost block-diagonal, with the coupling between the two branches occurring only through the effective electron density nk and the ion density nik.
The two branches decouple in the following two limits: (i) The toroidal ITG mode is recovered in the limit of negligible trapped electron frac-

tion ft ! 0 corresponding to Boltzmann electrons, for which the effective electron density is negligible jnkj � jnikj; jTikj. It corresponds to the
lower block-diagonal in Eq. (7). Note that the total electron density in this case is simply nek ¼ nik ’ /k. (ii) The CTEM is recovered in the limit
xk � xdi 	 xk, and jTikj � jTekj; j/kj. It corresponds to a sub-set of the 3� 3 upper sub-matrix in Eq. (7).

An alternative way to represent the system is in terms of the ion gyrocenter density nGCi ¼ ni �r2
?/ instead of ion density ni. Then, the elec-

tric potential is given by /k ¼ 1
1�ftþk2?

ðnGCik � nkÞ, and the system can be written in the form of the following Schr€odinger-like equation:
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The following quantities were introduced:

sik ¼ Tik � 2
3s

nik and sek ¼ Tek � 2
3ft

nk; (9)

where sik (sek) is the thermodynamic entropy for ions (electrons), as described for ITG in Refs. 27 and 28. Here,W ¼ ½sek; nk; nGCik ; sik�T is the eigen-

vector, the coefficient KITG
k ðxÞ is now replaced by KGC

k ¼ 1
1� ft þ k2?

1� 1þ gi
s

k2?

� �
x� þ sxdi � 5

3
k2?xdi

� �
which does not depend on the

complex frequency x, andKTEM
k is now defined as KTEM

k ¼ nkðx� � xdeÞ, where the trapping parameter nk is defined as

nk ¼
ft

1� ft þ k2?
: (10)
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It depends on the squared wavenumber k2?, which represents
polarization effects. The ratio nk is shown vs trapped-fraction ft for
k2? ¼ 0 [Fig. 1(a)]. One sees that the parameter nk is of order unity for
ft ’ 0:5 and increases rapidly for ft > 0:5. This parameter is also
shown vs square wavenumber k2? for two values of ft ¼ 0:5 and 0.7
[Fig. 1(b)].

The Schr€odinger-like equation (8) will be useful, in a future work,
for deriving the wave-kinetic equation (WKE) and studying the non-
linear coupling of turbulence to zonal modes.

C. Crossphase dynamics

To analyze the crossphase dynamics, it is convenient to re-write
Eq. (8) in terms of sek; nk; nik; sik and the electric potential /k

x� 5
3
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� �
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10
9s
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Here, the polarization and ion FLR effects are neglected, for simplicity.
Let us define the three crossphases associated with Eqs. (11), (13),

and (14):

vk ¼ arg
/k

sek

� �
; hk ¼ arg

/k

nik

� �
; fk ¼ arg

/k

sik

� �
: (15)

Note that the crossphase between nk (representing trapped-electron)
and /k is also equal to hk due to the quasi-neutrality condition:

nik ¼ nk þ ð1� ftÞ/k: (16)

With these definitions, the turbulent particle flux is
C ¼ P

k kyjnikjj/kj sin hk, and the electron/ion entropy fluxes areP
k kyjsekjj/kj sin vk and

P
k kyjsikjj/kj sin fk, respectively. The ion

and electron entropy fluxes are related to the ion and electron heat

fluxes Qe;i via
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3ft
C and
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� 2
3sC, where use has been made of the quasi-neutrality condition (16).

We use the following ansatz
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where xk is the linear mode frequency.
Replacing sek; nk; nik, and sik in Eqs. (11), (13), (14), using the

ansatz (17), one obtains, after some algebra, the following system:
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� i
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where we used @t jukj ¼ ckjukj, for uk ¼ nik; sek; sik. It is apparent that
Eqs. (19) and (20) can be independently solved from Eq. (18).
Physically, the crossphase vk responsible for electron thermal transport
does not influence the crossphases hk and fk associated with ion trans-
port. More precisely, the coupling of ion crossphases to electron cross-
phases only occurs through the dependence of the amplitude ratios
ak; bk on the electric potential amplitude j/kj, We will thus first solve
for the ion crossphases. Once the particle transport crossphase hk is
known, one can obtain the crossphase dynamics for electron heat
transport associated with the crossphase vk Eq. (18) in closed form.
This will be done in the CTEM limit in Sec. IIIC. One can separate the

FIG. 1. Parameter nk ¼ ft=ð1� ft þ k2?Þ vs (a) trapped-fraction ft for k2? ¼ 0, and (b) square wavenumber k2? for two values of ft ¼ 0:5 (solid) and 0.7 (dash).
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real and imaginary parts of Eqs. (19) and (20). The real part yields two
relations between the crossphases hk, fk and the linear growth rate:

ck ¼ ðx� þ sxdiÞak sin hk þ sxdi
ak
bk

sinwk; (21)

ck ¼ � 10
9s

xdi
bk
ak

sinwk þ gi �
2
3

� �
x�bk sin fk; (22)

where ck ¼ jnikj�1@t jnikj ¼ jsikj�1@t jsikj ¼ jsekj�1@t jsekj is the linear
growth rate, and wk ¼ hk � fk is the crossphase mismatch responsible
for transport decoupling between particle transport vs ion heat trans-
port. The quantities ak and bk are the two amplitude ratios defined as

ak ¼ j/kj
jnikj ; bk ¼

j/kj
jsikj ; (23)

and ak=bk ¼ jsikj=jnikj is the third amplitude ratio.
The imaginary part of Eqs. (19) and (20) yields the following

crossphase dynamics
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where xres ¼ 5
3xdi is the ion resonance frequency. Here, Eq. (26) is the

difference of Eqs. (24) and (25). Considering the amplitude ratio sys-
tem (21) and (22), it is convenient to define the inverse amplitude
ratios Ak ¼ 1=ak and Bk ¼ 1=bk. After some algebra, one obtains the
following matrix system:

ck sxdi sinwk

� 10
9s

xdi sinwk ck

2
4

3
5 Ak

Bk

" #
¼

ðx� þ sxdiÞ sin hk
gi �

2
3

� �
x� sin fk

2
64

3
75:
(27)

Inverting the matrix yields after some algebra

1
ak

¼
ð1� �nÞx�=ck½ � sin hk � s gi �

2
3

� �
ð�nx�2=ck2Þ sin fk sinwk

1þ 10
9
�2nðx�2=ck

2Þ sin2wk

;

(28)

1
bk

¼
gi �

2
3

� �
ðx�=ckÞ sin fk þ

10
9

ð1� �nÞ�nx�2=ck
2

� �
sin hk sinwk

1þ 10
9
�2nðx�2=ck

2Þ sin2wk

:

(29)

The inverse amplitude ratios Ak and Bk, expressions (28) and (29) are
plotted vs hk and fk, for the parameters gi ¼ 2; �n ¼ 0:8, s¼ 1, and
ck=x� ¼ 1 (Fig. 2). Values on the forbidden domains—since Ak and
Bk are amplitudes, they must be positive—are set to zero for clarity.

Alternatively, this can also be written

ak ¼ ck=x�

ð1� �nÞ sin hk þ 1
bk

s�n sinwk

; (30)

bk ¼
ck=x�

gi �
2
3

� �
sin vk �

1
ak

� 10
9s

�n sinwk

: (31)

It is clear from Eqs. (30) and (31) that the two amplitude ratios ak and
bk are coupled. One identifies two opposite regimes: 1

bk
� 1, corre-

sponding to negligible ion heat transport (i.e., jTikj � 1), and 1
ak
� 1

corresponding to negligible particle transport. In the following, we will
focus on the former case, since our main focus is on analytically under-
standing CTEM turbulence. It is well known that experimentally, in
present tokamaks, it is mainly the role of trapped-electrons in ITG-
driven turbulence that produces the electron particle transport.1–3

However, from a theoretical point of view, it is easier to separate the
two branches, by saying that we deal with TEM whenever trapped-
electrons are included. In this picture, the ITG-driven particle transport
due to trapped-electrons is recast as a “mixed-mode” due to coupling of
the ITG and TEM branches. In the regime 1

bk
� 1, the turbulence

FIG. 2. Amplitude ratios for ITG/TEM: (a) inverse amplitude ratio Ak ¼ 1
ak
and (b) Bk ¼ 1

bk
, expressions (28) and (29) vs hk and fk, for the parameters gi ¼ 2; �n ¼ 0:8 and

ck=x� ¼ 1.
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corresponds to CTEM. In this regime, one may neglect the coupling of
the amplitude ratio ak to bk, i.e., one uses the approximation:

ak ’ ck
ðx� þ sxdiÞ sin hk : (32)

Then, the dynamics of the density–potential crossphase hk decouples
from the other crossphases fk and wk, and reduces to:

@hk
@t

’ �ðxk � xresÞ þ ck cot hk; (33)

where cot fk ¼ 1= tan fk is the cotangent of the crossphase. This
shows that the crossphase responsible for particle transport locks
to an averaged value h0k related to the CTEM linear growth rate
via:

h0k ¼ atan
ck

xk � xres

� �
: (34)

The advantage of working with the crossphase dynamics, com-
pared with the standard analysis of transport based on averaged
crossphase, is that the present analysis can be extended to include
the effects of zonal modes on the transport crossphase.11 This is
left for future work.

D. ITG limit

Linearizing the original ITG–TEM system (1)–(4), one obtains

�ixnk þ iftx�/k ¼ �i�ngex�ðnk � ft/k þ ftTekÞ; (35)

�ixTek þ igex�/k ¼ � 2
3ft

i�ngex� nk � ft/k þ
7
2
ftTek

� �
; (36)

�ð1� ft þ k2?Þix/kþ i 1� ft � 1þ gi
s

k2?

� �
x�/k

¼ i�ngex� ð1� ftÞð1þ gi=ðgesÞÞ/k þðgi=geÞTik½
þð1þ gi=ðgesÞÞnkþ ftTek�; (37)

�ixTik¼ i
�ngex�

s
2
3s
ð1� ftþsÞ/kþ

2
3s
nkþ7

3
Tik

� �

� i gi�
2
3s
ð1þgiþsÞk2?

� �
x�
s
/k

� 2
3s2

ik2?�ngex� ð1þsÞ/kþ
s

1� ft
Tikþ 1þs

1� ft
nkþ sft

1� ft
Tek

� �
:

(38)

The linear dispersion relation is best obtained by first transform-
ing the system. Adding Eqs. (35) and (37) yields the ion continuity
equation:

�ixðnik þ k2?/kÞ þ 1� 1þ gi
s

k2?

� �
ix�/k

¼ i
�ngix�

s
1� ft þ sð Þ/k þ nk þ sTik½ �; (39)

where nik ¼ nk þ ð1� ftÞ/k is the ion density perturbation set by
quasi-neutrality (this is the particle—not gyrocenter—density). In the
ITG limit, i.e., without trapped-electrons ft ! 0, the ion continuity
equation and ion heat balance become:

�ixðnik þ k2?/kÞ þ 1� 1þ gi
s

k2?

� �
ix�/k

¼ i
�ngix�

s
ð1þ sÞ/k þ nik þ sTik½ �; (40)

�ix� i
5
3
�ngix�

s

� �
Tik þ 2

3s
ixnik ¼ 2

3s
gi �

2
3

� �
ix�/k: (41)

Defining si ¼ Ti=Te ¼ 1=s, the ion continuity Eq. (40) and ion
heat balance Eq. (41) become, respectively,

� ixnik þ ð�ix� iaikyÞk2?/k þ iky/k

� isi�ngiky 1þ 1
si

� �
/k þ nik þ Tik

si
Þ

� �
¼ 0; (42)

�ixTik � iky
5
3
si�ngiTik þ gi �

2
3

� �
isiky/k þ

2
3
isixnik ¼ 0 (43)

with ai ¼ sið1þ giÞ. Here, the fields have been further normalized
as nik ! Ln

qs
nik, and same for Tik. In the present analytical limit for

the description of the ITG instability, electrons are assumed to
have a Boltzmann response: nik ¼ /k. From Eq. (43), one obtains
after some algebra the following linear response of ion temperature
to potential:

Tik ¼
gi �

2
3

� �
siky þ 2

3
six

xþ 5
3
si�ngiky

/k: (44)

Replacing Tik in Eq. (42) using the response (44), one obtains—after
some algebra—the following quadratic dispersion relation:

Ax2 þ Bxþ C ¼ 0 (45)

with real-valued coefficients given by A¼ 1þk2?; B¼ 2ky½53si�ngi
�1

2ð1��ngiÞþk2?
2 aiþ5

3si�ngi
	 
� and C¼ si�ngik2y gi� 7

3

� þ 5
3ð1þ siÞ�ngi

þ 5
3aik

2
?�. The solution to the ITG dispersion relation (45) is then

x1;2 ’ � B
2A

6
1
2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
: (46)

The unstable branch has a growth rate ck ’ 1ffiffiffi
A

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C � B2

4A

q
¼ 1ffiffiffi

A
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � A B

2A

	 
2q
. After some algebra, the ITG frequency and

growth rate are given by

xk
ITG ’ �ky

1þ k2?

5
3
si�ngi � 1

2
ð1� �ngiÞ þ k2?

2
ai þ 5

3
si�ngi

� �� �
;

(47)

ck
ITG ’ ky

ffiffiffiffiffiffiffiffiffiffiffi
si�ngi

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2?

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gi � gci

p
; (48)

where gci ¼ 1
si�ngi

ð1þ k2?Þ xk
2

k2y
þ 7

3 � 5
3 ð1þ siÞ�ngi � 5

3 aik
2
? is the lin-

ear ITG threshold, with xk ¼ xk
ITG.29 Note that here the growth rate

has a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2?

p
in the denominator, compared to the factor

ð1þ k2?Þ in Ref. 29. We believe there was a typo in Ref. 29. The ana-
lytic expressions for the real ITG frequency (47) and growth rate (48)
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are compared to Eqs. (13b) and (13c) in Nilsson et al.,8 and to linear
gyrokinetic simulations with the global gyrokinetic code GKPSP which
includes fully gyrokinetic ions and bounce-averaged kinetic elec-
trons.15 Here, Boltzmann electrons are used for the comparison. To
take into account magnetic shear effects, the perpendicular wavenum-
ber k2? is replaced by its average over a ballooning trial function, yield-
ing hk2?i ¼ ½1þ ðp2 � 7:5Þs2=3�k2y .30 The parameters are R=Ln ¼ 2;

R=LTi ¼ 6; R=LTe ’ 0, and Ti=Te ¼ 1. The safety factor is q¼ 1.34
and the magnetic shear s¼ 0.75. The ITG frequency given by expres-
sion (47) is plotted vs ky (squares) and compared to the GKPSP result
(diamonds) and to the analytical expression (13b) of Nilsson et al.8

[Fig. 3(a)]. The frequency of the ITG fluid model only shows qualita-
tive similarity with the GKPSP data, but our analytical result shows
better agreement with GKPSP data than Ref. 8, especially at large kyqs.
This is probably due to the different treatment of ion FLR effects.

The ITG growth rate given by expression (48) is plotted vs ky
(squares) and compared to the Nilsson expression (13c) in Ref.
8 (black), and to the GKPSP result (diamonds) [Fig. 3(b)]. The growth
rate also shows qualitative similarity, although the growth rate of the
fluid model is much larger than the GKPSP result and peaks at a
slightly higher wavenumber. The result from Ref. 8 seems to show
closer agreement with the GKPSP data at small kyqs. However, the
growth rate peaks at kyqs > 1, which is unphysical. This shows that
the formula of Ref. 8 is only valid for kyqs � 1.

We also plot the ITG growth rate—normalized to x�—vs the
parameter �n (Fig. 4), in the case gi ¼ 2; k2? ¼ 0, and si ¼ 1. Previous
analytical results are also plotted, for comparison. In particular, in the
Introduction section of Beer’s Ph.D. thesis,31 the ITG growth rate from
a “simple fluid” model is compared to results from the “3þ 1 Gyro-
Landau-Fluid” model. We cannot compare our results to the latter, as
we do not have access to these data, but a comparison is made with the
simple fluid case. Note that here, �n ¼ 2Ln=R as opposed to Ln=R in
Ref. 31. At the value �n 	 1—relevant for core plasmas—one can see
that expression (48) gives a lower growth rate than the simple fluid
model in Ref. 31, and the Jarmen et al.9 formula, which are more con-
sistent with the “gyrofluid” and “kinetic” value of c=x� ’ 0:4 at �n ¼
1 in Ref. 31 (not shown). The Nilsson formula from Ref. 8 has even
better agreement with the latter results, compared to expression (48).

III. CTEM limit

We will now focus on the CTEM. Hence, we use the
approximation

xk � xdi 	 xk; and jTikj � 1: (49)

According to the model of Refs. 10 and 25, the electron dynamics
totally decouples from the ion dynamics and the ion density fluctua-
tions jnikj � jnkj; j/kj. However, this may be a too strong approxima-
tion, since CTEM is ion-scale, so polarization and ion FLR effects are
important for this mode. Hence, we may say, instead: for CTEM, the
electron dynamics partially decouples from the ion dynamics. In Refs.
10 and 25, the trapped density fluctuations are in-phase with the elec-
tric potential fluctuations, which implies no turbulent particle trans-
port, and thus no density-gradient drive for the mode, which is
problematic. This is remedied in the present model, where the ion den-
sity response is retained, albeit in a simplified form. This directly
implies that, in our model, the zonal electron density is present.

FIG. 3. Comparison of the analytical model with Nilsson et al.8 and with gyrokinetic simulations: (a) ITG frequency and (b) ITG growth rate vs poloidal wavenumber ky. The
parameters are gi ¼ 3; �n ¼ 1 (RLn ¼ 2), Ti=Te ¼ 1, and ge ’ 0, with Boltzmann electrons.

FIG. 4. ITG growth rate vs �n for the analytical model Eq. (48) (blue) and compari-
son with three previous analytical models: the simple fluid model from Beer thesis31

(red), the result from Jarmen et al.9 (green), and by Nilsson et al.8 (black). Other
parameters are gi ¼ 2; k2? ¼ 0 and si ¼ 1.
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The dynamics of zonal density was analyzed for collisional drift-waves
in Refs. 11 and 32. Our model should allow to investigate zonal density
in the collisionless regime, but this is beyond the scope of this article.
Using approximation (49), the system (1)–(4) reduces to the following
CTEMmodel:

@ni
@t

� @ðiÞr2
?/

@t
þ vE:rni � vE � ẑ �rni

s

� �
:rr2

?/

þ ðv� þ svdiÞ @/
@y

¼ 0; (50)

@n
@t

þ vE:rnþ ftv�
@/
@y

¼ �vde
@

@y
ðn� ft/þ ftTetÞ; (51)

@Tet

@t
þ vE:rTet þ gev�e

@/
@y

¼ � 2
3ft

vde
@

@y
n� ft/þ 7

2
ftTet

� �
(52)

with ni ¼ ð1� ftÞ~/ þ n, and ~/ ¼ /� h/i. Here, the operator @ðiÞ
@t ¼

@
@t � v�

s
@
@y takes into account ion diamagnetic effects. Note that the con-

nection between the slab geometry of the present model and the stan-
dard toroidal action-angle variables is explained in Appendix A of Ref.
28. The simplified CTEM model (50)–(52), which is a limiting case of
the original model (1)–(4) also conserves energy.

Linearizing, expressing the potential in terms of effective density
n from the quasi-neutrality (16), one obtains the Poisson equation:
ð1� ft �r2

?Þ~/ ¼ nGCi � n. One obtains, after some algebra,

@nGCik
@t

þ iðð1� k2?=sÞx� þ sxdiÞ/k ¼ 0; (53)

@nk
@t

þ iftx�/k ¼ �ixde nk � ft/k þ Tk½ �; (54)

@Tk

@t
þ igex�/k ¼ � 2

3
ixde nk � ft/k þ

7
2
Tk

� �
; (55)

where Tk ¼ ftTek, and xde ¼ �ngex� is the trapped-electron preces-
sion-drift frequency.

A. Schr€odinger-like equation for CTEM

The linear CTEM system can be written in the form of a
Schr€odinger-like equation. To see this, start with the linearized ion
continuity equation of the CTEMmodel, in the form

i
@

@t
ðnik þ k2?/kÞ ¼ 1� k2?

s

� �
x� þ sxdi

� �
/k: (56)

Using quasi-neutrality, one obtains

nik ¼ ð1� ftÞ/k þ nk
¼ ð1� ft þ Rn

kÞ/k; (57)

where Rn
k ¼ nk=/k is the linear response of effective electron density

nk, given by

Rn
k ¼ ft

ðx� � xdeÞ x� 5
3xde

	 
þ ge �
2
3

� �
x�xde

NeðxÞ : (58)

Here, NeðxÞ ¼ x2 � 10
3 xdexþ 5

3x
2
de, with x ¼ xk þ ick the CTEM

eigenfrequency. Note that the normal coordinate nGCik ¼ ck/k þ dknk,
with ck ¼ 1� ft þ k2?, dk¼ 1 can also be obtained following the

method of Ref. 33. The ion density can be expressed in the convenient
form

nik ¼ ð1� ft þ RefRn
kgÞð1� i tan h0kÞ; (59)

where h0k is the phase-locked value of the density–potential transport
crossphase. For CTEM, it takes the form

h0k ¼ tan�1 �ImfRn
kg

1� ft þ RefRn
kg

" #
: (60)

Note that in the limit of small transport crossphase h0k ! 0;
tan h0k 	 h0k, and one recovers the standard id approximation, namely,
nik / 1� ih0k.

After some algebra, one obtains the following Schr€odinger-like
equation:

i
@

@t
ð1� ft þ Rn

k þ k2?Þ/k

� � ¼ ð1� ft þ Rn
k þ k2?ÞĤ/k; (61)

where Ĥ denotes the Hamiltonian (complex-valued linear frequency),
given by

Ĥ ¼
1� k2?

s

� �
x� þ sxdi

ð1� ft þ RefRn
kgÞð1� i tan h0kÞ þ k2?

: (62)

In the limit sxdi ¼ ��nx� ! 0; 1
s ! 0; ft ! 0;Rn

k ! 0, one recov-
ers the standard textbook drift-wave frequency: xk ! x�=ð1þ k2?Þ,
as expected. It is convenient to write the Hamiltonian as a sum of
Hermitian and anti-Hermitian components:34

Ĥ ¼ ĤH þ iĤA; (63)

where ĤH ¼ 1
2 ðĤ þ Ĥ

�Þ is the Hermitian part of the Hamiltonian,
and ĤA ¼ 1

2i ðĤ � Ĥ
�Þ denotes the anti-Hermitian part. Explicitly,

one has, for CTEM

ĤH ¼
ð1� ft þ RefRn

kg þ k2?Þ 1� k2?
s

� �
x� þ sxdi

� �
ð1� ft þ RefRn

kg þ k2?Þ2 þ ðtan h0kÞ2ð1� ft þ RefRn
kgÞ2

;

(64)

ĤA ¼
ð1� ft þ RefRn

kgÞ 1� k2?
s

� �
x� þ sxdi

� �
tan h0k

ð1� ft þ RefRn
kg þ k2?Þ2 þ ðtan h0kÞ2ð1� ft þ RefRn

kgÞ2
:

(65)

Multiplying Eq. (61) by ð1� ft þ Rn
kk

2
?Þ� and symmetrizing, one sees

that the wave action density for CTEM, takes the form

Wk ¼ j1� ft þ Rn
k þ k2?j2j/kj2

¼ ð1� ft þ RefRn
kg þ k2?Þ2 þ ðImfRn

kgÞ2
h i

j/kj2: (66)

Physically, the wave action density is an adiabatic invariant. When the
mode frequency varies in time, e.g., due to the increase in the radial
wavenumber, i.e., eddy-shearing by zonal flows, the turbulence energy
is not conserved. Instead, it is the ratio of turbulence energy Ek to
mode frequency, i.e., the wave action density Wk ¼ Ek=xk which is
conserved.
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B. Linear analysis

After some algebra, one obtains the following cubic linear disper-
sion relation:

1� ft þ k2? �ð1� k2?=sÞx� þ sxdi

x

þ ft

ðx� �xdeÞ x� 5
3
xde

� �
þ ge�

2
3

� �
x�xde

NeðxÞ ’ 0: (67)

Here, the symbol ’ is used, since the approximate ion density
response was considered. The solution for the linearly unstable branch,
withx ¼ xk þ ick is

xk
CTEM ¼ xk

0 ¼ xk0 þ cos
p
3

� �
jtkj � sk½ �; (68)

ck
CTEM ¼ sin

p
3

� �
jtkj � sk½ �: (69)

The details are given in Appendix B. The quantities sk and jtkj are
given by Eqs. (B12) and (B13). For the linearly damped branch, the fre-
quency isxk

CTEM and the linear growth rate is�ck
CTEM < 0.

The linear frequency (68) and growth rate (69) are shown for the
parameters ge ¼ 3:1; ft ¼ 0:5 and �n ¼ 2=2:2 ’ 0:9; gi ¼ 0 (Fig. 5),
and compared to linear simulations with the global gyrokinetic code
GKPSP.15 For the GKPSP simulation, the parameters are ge
¼ 3:1; �n ¼ 2=2:2 (R=Ln ¼ 2:2), and gi ¼ 1. Note that, since GKPSP
is a global code (with global profiles), it is not possible to set gi ¼ 0 in
the code, hence a low but finite value gi ¼ 1 was chosen instead.

The CTEM frequency (blue) and growth rate (red) are shown vs
normalized poloidal wavenumber kyqs for the fluid CTEM model
(square) and GKPSP linear simulations (diamonds). The fluid CTEM
frequency shows only qualitative similarity with the bounce-averaged
kinetic result from GKPSP. Namely, both frequencies increase with
increasing wavenumber, for kyqs < 0:7. For low wavenumber
kyqs < 0:2, the fluid CTEM frequency seems to approximately match
the gyrokinetic result. For the growth rate also, there is a large

discrepancy between the fluid model compared to the GKPSP result,
except for kyqs < 0:2. The fluid CTEM model has a growth rate that
increases with kyqs, before reaching a peak at kyqs 	 0:9 whereas the
growth rate becomes almost flat at large kyqs in the GKPSP simulation.
The disagreement shows that there is room for improving the analyti-
cal fluid model, but this is left for future work. The discrepancy could
be due, in part, to the approximate ion density response used in the
analytical model. One way to verify this would be to solve numerically
the quartic dispersion-relation associated with the full ITG–TEM fluid
model, to check if it resolves some of the discrepancy.

C. CTEM crossphase dynamics

In the present CTEM model, there are only two crossphases: hk
responsible for particle transport and vk associated with electron heat
transport. This is because ion heat transport is negligible in this model.
We now apply to the CTEM model the same analysis as in Sec. II C.
As pointed out in Sec. IIC, the dynamics of the density–potential
crossphase hk in the present CTEMmodel takes the simple form

@hk
@t

¼ xres � xk þ ckcothk: (70)

Here, the phase-locked condition @thk ¼ 0 yields the linear cross-
phase h0k, expression (34) used in quasi-linear particle transport analy-
sis. Hence, the crossphase dynamics for CTEM is similar to the
Kuramoto equation for coupled phase-oscillators.35 In the Kuramoto-
like Eq. (70), the first term on the rhs xres � xk is the “entrainment
frequency” responsible for phase-mixing. Note that xres ¼ 5

3xde, and
xk ¼ xk0 þ cos p

3

	 
½jtkj � sk� for the present CTEM model, with xk0,
sk and tk given in Appendix Eqs. (B7), (B12), and (B13). Hence, for
CTEM, the entrainment frequency takes the form xres � xk ¼ 5

3xde

�xk0 � cos p
3

	 
½jtkj � sk� 
 0. The last term on the rhs of Eq. (70) is
the “pinning force,” responsible for phase-locking. Like in the
Kuramoto model, there exists a threshold above which synchronization
occurs. This synchronization threshold is here given by

ck 
 jxk � xresj: (71)

FIG. 5. (a) The three branches of the CTEM cubic dispersion relation (xk
0;xk

þ;xk
�), and (b) linear growth rate (red) and frequency (blue) of the CTEM unstable branch

(solid line), and comparison with GKPSP global gyrokinetic simulations with bounce-kinetic electrons (diamonds). The parameters are ge ¼ 3:1 and �n ’ 0:9 (RLn ¼ 2:2). Here,
gi ¼ 1; ft ’ 0:4 for the GKPSP simulation, and gi ¼ 0; ft ¼ 1=2 for the analytical model.
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In most regimes, however, the timescale of the crossphase dynamics is
so short that the crossphase directly locks to its linear value, without a
transient. However, near marginality, the crossphase is expected to
exhibit a slow dynamics. In analogy with the “phase response curve”
associated with oscillators with global couplings, one can define the
“crossphase response” curve (CPR) as the rhs of Eq. (70). The cross-
phase response curve is plotted for a value h0k ¼ 0:2p (Fig. 6). A similar
idea was introduced in Refs. 13 and 36.

Remember that hk is the instantaneous crossphase between nik
and /k. Equation (70) can be further linearized around the phase-
locked crossphase (34). Using the Taylor series cot hk ’ cot h0k
þcot0ðh0kÞ½hk � h0k�, one obtains, after some algebra

@hk
@t

’ � 1
sk
ðhk � h0kÞ; (72)

where sk is the linear response time (relaxation time) at wavenumber k

sk ¼ ð1þ cot2h0kÞck
� ��1

; (73)

which is of the order of the turbulence correlation time sc, i.e.,
sk / ck

�1 	 sc, when taking into account resonance-broadening due
to turbulence, i.e., ck ! ck þ Dtk2?, with Dt the turbulent diffusivity.
Note that the crossphase dynamics—for particle transport—Eq. (72)

has a similar form as the heat flux dynamics of the traffic-jam model
of Refs. 37 and 38

@Q
@t

¼ � 1
s
ðQ� Q0Þ; (74)

where Q ¼ P
k Qk is the heat flux, Q0 ¼

P
k Q

0
k is the mean heat flux,

and s is the response time between the instantaneous heat-flux and its
relaxed value, which is also of the order of the turbulence correlation
time.37,39 From the crossphase dynamics Eq. (72), one sees that the
relaxation time becomes very large sk ! 1, when the system is near
marginality ck ! 0. Hence, one expects a slow dynamics of the cross-
phase (and associated particle flux) close to marginality, where the
crossphase can remain far from their phase-locked value (the
crossphase usually assumed in quasi-linear transport codes), for a sig-
nificant time. Hence, there seems to be a connection between the
“traffic-jam” model of Refs. 37 and 38 for heat transport, and the
CTEM crossphase dynamics for particle transport. More work needs
to be done to better understand this connection. At this point, one
may ask: Why bother with studying the linear crossphase dynamics,
since nonlinear mode-coupling effects will certainly be important?
Note, however, that for weak-turbulence (valid near marginality), non-
linear effects are usually quadratic and involve disparate-scale interac-
tions. In other words, they correspond to a modification of flows
(zonal flows) and profiles (zonal density, zonal Te,…). We thus believe
that the linear crossphase dynamics (which contains diamagnetic fre-
quency terms, and hence profile gradients) is a good starting point for
the extension to weak turbulence.

The crossphase between electron temperature fluctuations Tek
and potential fluctuations /k is defined as

vk ¼ arg
/k

Tek

� �
¼ arg

/k

sek

� �
: (75)

It is straightforward to show that the dynamics of the crossphase vk
takes the form

@vk
@t

¼ xres � xk þ ge �
2
3

� �
x�bek cos vk þ

10
9ft

xde
bek
aek

cos ðvk � h0kÞ;

(76)

where xres ¼ 5
3xde is the trapped-electron resonance frequency, and

aek ¼ j/kj=jnkj; bek ¼ j/kj=jsekj are the amplitude ratios for electrons,
given by

aek ¼
1þ 10

9
ðx2

de=ck
2Þ sin2ðvk � h0kÞ

ft ðx� � xdeÞ=ck½ � sin h0k þ ft ge �
2
3

� �
ðx�xde=ck2Þ sin vk sin ðvk � h0kÞ

; (77)

bek ¼
1þ 10

9
ðx2

de=ck
2Þ sin2ðvk � h0kÞ

ge �
2
3

� �
ðx�=ckÞ sin vk þ

10
9

ðx� � xdeÞxde=ck
2

� �
sin h0k sin ðvk � h0kÞ

: (78)

FIG. 6. Phase response curve dhk
dt ¼ f ðhkÞ for the CTEM fluid model. The curve is

shown for a value h0k ¼ �0:2p of the phase-locked solution.
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Since the dynamics of the hk crossphase is set by the ions only, Eq.
(33), this crossphase was set to its phase-locked value hk ’ h0k, expres-
sion (34).

Note that, for the CTEM model, the turbulent particle flux and
electron heat flux can be written in the form

C ¼
X
k

ky
j/kj2
ak

sin hk; and Qe ¼
X
k

ky
j/kj2
bek

sin vk; (79)

where ak is given by expression (32). Replacing the amplitude ratio ak
by its expression (32), C can be further simplified

C ¼
X
k

ky
x� þ sxdi

ck
j/kj2 sin2hk: (80)

IV. DISCUSSION AND CONCLUSIONS

Let us first discuss the comparison of the fluid model and the lin-
ear gyrokinetic simulations using the GKPSP code.15 In the ITG case,
the fluid model (42) and (43) only shows qualitative similarity with the
gyrokinetic simulation. However, the ITG frequency is more closely
matched to the gyrokinetic result than the growth rate, which shows a
large difference. Frequency and growth rate were also compared with
Nilsson et al.8 The ITG frequency from the ITG model used in this
work29 more closely matches the gyrokinetic result compared to that
of Ref. 8, except for kyqs � 1. For the CTEM case also, only qualitative
similarity is found between the fluid model and GKPSP simulation,
except at low wavenumbers kyqs < 0:2. Let us now discuss the
Kuramoto-like equation (70) describing the dynamics of the cross-
phase between density and potential fluctuations of the fluid CTEM
model. Equation (70) is very similar to the Kuramoto equation,35

except that the associated phase-response curve is of the form “cotan-
gent” instead of a sinusoid for the Kuramoto model. It thus has period
p instead of 2p for the Kuramoto model. One particular interesting
property of the Kuramoto model is the synchronization of coupled
oscillators if the coupling is above a certain threshold Kth proportional
to the entrainment frequency. By analogy, we may say, that for CTEM,
the transport crossphase—associated with particle transport—at differ-
ent wave-numbers become synchronized when above the threshold.
For CTEM, the threshold depends on the difference between the mode
frequency and the resonance frequency. The form of the Kuramoto-
like equation (70) for the CTEM instability, which is a reactive instabil-
ity is very different than the one for the collisional drift-wave instability
or the weakly dissipative trapped electron mode (DTEM).13 In the lat-
ter case, the cotangent function on the rhs of Eq. (70) is replaced by
the (negative of the) tangent function, and it is multiplied by the elec-
tron–ion collision frequency �ei instead of the linear growth rate, since
ck � �ei for collisional instabilities. This may partly explain the differ-
ence between the nature of the two types of instabilities.

In future work, the nonlinear dynamics of the CTEM model will
be investigated, especially the zonal flows and associated zonal density
and zonal Te corrugations and their impact on particle transport, elec-
tron heat transport, and staircase formation.16–18,37 For these future
studies, one obvious limitation of our model is the assumption of pass-
ing adiabatic electrons.
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APPENDIX A: CTEM LIMIT OF THE CHALMERS MODEL

Linearizing the original system (1)–(4) for gi ¼ ge ¼ 1, one
obtains

�ixnk þ iftx�/k ¼ �ixdeðnk � ft/k þ ftTekÞ; (A1)

�ixTek þ igex�/k ¼ � 2
3ft

ixde nk � ft/k þ
7
2
ftTek

� �
; (A2)

�ð1� ftþk2?Þix/kþ i 1� ft �1þgi
s

k2?

� �
x�/k

¼ ixde ð1� ftÞð1þ1=sÞ/kþTikþð1þ1=sÞnkþ ftTek½ �; (A3)

�ixTik ¼ i
xde

s
2
3s

ð1� ft þ sÞ/kþ
2
3s

nkþ7
3
Tik

� �

� i gi�
2
3s

ð1þgiþ sÞk2?
� �

x�
s
/k

� 2
3s2

ik2?xde ð1þ sÞ/kþ
s

1� ft
Tikþ 1þ s

1� ft
nkþ sft

1� ft
Tek

� �
;

(A4)

with x� ¼ kyv�e the electron diamagnetic frequency, and xde ¼
�nx� the precession-drift frequency. The linear dispersion relation
is best obtained by first transforming the system. Adding Eqs. (A1)
and (A3) yields the ion continuity equation

�ixðnik þ k2?/kÞ þ 1� 1þ gi
s

k2?

� �
ix�/k

¼ i
xde

s
1� ft þ sð Þ/k þ nk þ sTik½ � (A5)

with, due to quasi-neutrality, nik ¼ nk þ ð1� ftÞ/k the ion density
perturbation. This can also be written as

�ixðnik þ k2?/kÞ þ 1� 1þ gi
s

k2?

� �
ix�/k

¼ �ixdiðs/k þ nik þ sTikÞ (A6)
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with xdi ¼ �xde=s < 0 the ion magnetic drift. Introducing the
gyrocenter ion density nGCik ¼ nik þ k2?/k, one obtains

�ixnGCik þ 1�1þgi
s

k2?

� �
ix�/k¼�ixdiðs/kþnGCik �k2?/kþsTikÞ:

(A7)

The gyrocenter ion density response is then

ðx� xdiÞnGCik ¼ x� þ ðs� k2?Þxdi � k2?ðxþ aix�Þ
� �

/k þ sxdiTik;

(A8)

where ai ¼ ð1þ giÞ=s represents ion FLR effects. Multiplying Eq.
(A4) by 3/2 and subtracting Eq. (A7) yields the ion heat balance

�ix
3
2
Tik � 1� ft

s
/k �

nk
s

� �
� 3
2
i gi �

2
3

� �
x�
s
/k ¼ � 5

2
ixdiTik:

(A9)

The associated linear ion temperature response is

Tik ¼ 1

x� 5
3
xdi

gi �
2
3

� �
x�
s
/k þ

2
3s

xðnGCik � k2?/kÞ
� �

: (A10)

Replacing Tik in terms of nGCik and /k in Eq. (A8), the gyrocen-
ter ion density response takes the form

nGCik � k2?/k ¼
ðx� þ sxdiÞ x� 5

3
xdi

� �
� k2?ðxþ aix�Þ x� 5

3
xdi

� �
þ gi �

2
3

� �
x�xdi

Ni
/k (A11)

with Ni ¼ x2 � 10
3 xdixþ 5

3x
2
di. Next, we analyze the linear electron

dynamics. Multiplying Eq. (A2) by 3
2 ft and subtracting Eq. (A1), one

obtains the electron heat balance

�ix
3
2
ftTek � nk

� �
þ 3
2
ift ge �

2
3

� �
x�/k ¼ � 5

2
iftxdeTek: (A12)

This yields the linear electron temperature response

Tek ¼ 1

ft x� 5
3
xde

� � ge �
2
3

� �
ftx�/k þ

2
3
xnk

� �
: (A13)

Expressing Tek in terms of /k and nk, the linear electron density
response is then

ðx� xdeÞnk ¼ ftðx� � xdeÞ/k

þ xde

x� 5
3
xde

2
3
xnk þ ftx� ge �

2
3

� �
/k

� �
: (A14)

After some algebra, one obtains

nk¼ ft x�xde�2
3

xdex

x�5
3
xde

2
4

3
5
�1

x��xdeþ ge�
2
3

� �
x�xde

x�5
3
xde

2
4

3
5/k:

(A15)

Note the identity xde 1þ 5
3 d

	 
 ¼ xd, with d ¼ xde= x� 5
3xde

	 

obtained in Ref. 40. The denominator can be rewritten as
x� 5

3xde 1þ 2
3 d

	 
 ¼ x� 5
3 ðx� xdeÞd. Then, multiplying both

numerator and denominator of expression (A15) by x� 5
3xde, one

obtains—after some algebra—the following linear trapped-electron
density response:

nk ¼ ft

ðx� � xdeÞ x� 5
3
xde

� �
þ ge �

2
3

� �
x�xde

Ne
/k; (A16)

with Ne ¼ x2 � 10
3 xdexþ 5

3x
2
de. Finally, using quasi-neutrality in

the form ð1� ft þ k2?Þ/k ¼ nGCik � nk yields the following linear
dispersion relation:

nGCi;k � k2?/k

/k
¼ ft

ðx� �xdeÞ x� 5
3
xde

� �
þ ge�

2
3

� �
x�xde

Ne
þ 1� ft:

(A17)

In the limit of CTEM, the mode frequency resonates with the
precession-drift frequency x 	 5

3xde. In this limit, Ni � Ne, i.e., the
ion diamagnetic resonance is not important xk � xdi 	 xk, ion
temperature fluctuations are negligible jTikj � 1, and the dispersion
relation (A17) reduces to

1� ft þ k2? �ð1� k2?=sÞx� þ sxdi

x

þ ft

ðx� �xdeÞ x� 5
3
xde

� �
þ ge�

2
3

� �
x�xde

Ne
’ 0: (A18)

APPENDIX B: SOLVING THE CTEM CUBIC DISPERSION
RELATION

To decrease the number of free parameters, the CTEM cubic
dispersion relation (A18) is solved at fixed ft ¼ 1=2 and s¼ 1. The
CTEM cubic dispersion relation to solve is

ð1þ 2k2?Þx3�
�
ð1þ 2k2?Þ

10
3
xde�ðx� �xdeÞ

þ 2 ð1� k2?Þx� �xde

	 
�
x2þ

�
ge�

2
3

� �
x�xdeþð1þ 2k2?Þ

5
3
x2

de

� 5
3
xdeðx� �xdeÞþ 20

3
xde ð1� k2?Þx� �xde

	 
�
x

� 10
3
x2

de ð1� k2?Þx� �xde

� �¼ 0: (B1)
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This dispersion relation is in normalized form

Ax3 þ Bx2 þ Cxþ D ¼ 0 (B2)

with real-valued coefficients

A¼ 1þ 2k2?;

B¼� ð1þ 2k2?Þ
10
3
�n�ð1� �nÞþ 2ð1� �n� k2?Þ

� �
;

C¼ ge�
2
3

� �
�nþð1þ 2k2?Þ

5
3
�2n�

5
3
�nð1� �nÞþ 20

3
�nð1� �n � k2?Þ:

D¼�10
3
�2nð1� �n� k2?Þ:

The solution can be obtained by first “depressing” the cubic—trans-
forming to a form without quadratic term—and then using the
cubic formula. Using the change of variables

p ¼ 1
A

C � 3Aðxk0Þ2
� �

; (B3)

q ¼ 2B3 � 9ABC þ 27A2D
27A3

(B4)

¼ ACxk0 � 2ðxk0Þ3 þ D
A

(B5)

with

xk0 ¼ � B
3A

: (B6)

Note that xk0 
 0, i.e., in the electron diamagnetic direction. In our
case,

xk0 ¼
ky

3ð1þ 2k2?Þ
ð1þ 2k2?Þ

10
3
�n � ð1� �nÞ þ 2ð1� �n � k2?Þ

� �
:

(B7)

The cubic equation (B2) reduces to the depressed cubic equation

x̂3 þ px̂ þ q ¼ 0; (B8)

where x̂ ¼ x� xk0.
We may now use Cardano’s “cubic formula” in the special case

of s ¼ sk; t ¼ tk real-valued

x̂k0 ¼ X0sk þ X�
0tk; (B9)

x̂k1 ¼ X1sk þ X�
1tk; (B10)

x̂k2 ¼ X2sk þ X�
2tk (B11)

with the real parameters s, t, and complex parameters X0;X1;X2

given, respectively, by

sk ¼ � q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r" #1=3

; (B12)

tk ¼ � q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r" #1=3

; (B13)

Xl ¼ e2ilp=3; l ¼ 0; 1; 2: (B14)

Here, the quantities Xl are the cubic roots of 1. More specifically,

X0 ¼ 1; X1 ¼ e2ip=3; X2 ¼ X�
1 ¼ e�2ip=3: (B15)

Physically, there is one marginally stable mode with real frequency
xk ¼ xk0 þ sþ t (a remnant of the ITG branch, due to ion density
response) and two complex-conjugate modes x6

k ¼ xk0 þ e62ip=3s
þe72ip=3t. Let us now write down explicitly the parameters of the
depressed cubic. The parameter p is given by

p ¼ ky
1þ 2k2?

ge �
2
3

� �
�n þ ð1þ 2k2?Þ

5
3
�2n �

5
3
�nð1� �nÞ

�

þ 20
3
�nð1� �n � k2?Þ � 3ð1þ 2k2?Þðxk0Þ2

�
; (B16)

with xk0 given by expression (B7). The parameter q takes the form

q ¼ k2yð1þ 2k2?Þxk0

�
ge �

2
3

� �
�n þ ð1þ 2k2?Þ

5
3
�2n

� 5
3
�nð1� �nÞ þ 20

3
�nð1� �n � k2?Þ

�
� 2ðxk0Þ3

� 1
1þ 2k2?

10
3
�2nð1� �n � k2?Þ

� �
: (B17)

Hence, above threshold ge 
 gce (to be determined a posteriori), one
expects

q 
 0: (B18)

Similarly, one also expects

p 
 0: (B19)

Hence, this implies

tk � 0: (B20)

Moreover, since q 
 0, this directly implies the following inequality:
jtkj 
 sk, while the quantity sk can be positive or negative, depend-
ing on the sign of the quantity D3 ¼ �q=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2=4þ p3=27
p

inside
the cube-root in expression (B12). If D3 
 0, then sk 
 0, while if
D3 � 0, then sk � 0. However, it is easy to see that since p 
 0, this
implies p3 
 0 and hence D3 
 0 and sk 
 0. Therefore, one has:
sk 
 0; and tk � 0.

Physically, the modes real and complex-values frequencies for-
mally take the form

xk
0 ¼ xk0 � jtkj � sk½ �; ck

0 ¼ 0; (B21)

xk
þ ¼ xk0 þ cos

p
3

� �
jtkj � sk½ �; ck

þ ¼ sin
p
3

� �
jtkj � sk½ �;

(B22)

xk
� ¼ xk0 þ cos

p
3

� �
jtkj � sk½ � ck

� ¼ �sin
p
3

� �
jtkj � sk½ �

(B23)

with x ¼ xk þ ick the complex-valued frequency. Here, we used
the trigonometric identities: cos 2p=3 ¼ �cos p=3 and sin ð2p=3Þ
¼ sin ðp=3Þ, to move the angle to the first quadrant.
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