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Abstract: To keep up with shifting technology trends and remain competitive, more manufac-
turing companies are investigating how to utilize data analytics to improve their processes. An
issue these companies often face today is the need for more competence to perform advanced an-
alytics projects within their departments. By using a human-in-the-loop approach and efficiently
utilizing current domain knowledge in combination with data analytics, the higher success of
implementation can be achieved. A common approach today to perform data analytics projects is
to use the general Cross Industry Standard Process for Data Mining (CRISP-DM) methodology.
This methodology does not consider the challenges specific to manufacturing and how to include
domain expertise. This paper, therefore, suggests how the CRISP-DM methodology can be
adapted to compensate for these issues. The adapted methodology is demonstrated in a case
study for improving quality in the machining process by using interpretable machine learning
models that can be used to assist experts when performing root cause analysis. This contributes
to showing how to use domain experts’ knowledge better and how data analytics can be used

in conjunction with domain-specific methods.
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1. INTRODUCTION

Digitalization and data analytics have attracted significant
interest within the manufacturing industry during the last
few years. More companies are looking into how to gain
valuable insights from the large quantities of data at their
disposal. However, this is a challenging transition for most
companies, where one main reason is the lack of data
analytics competencies within manufacturing departments
(Dogan and Birant, 2021). Furthermore, manufacturing
problems are usually complex and require domain-specific
knowledge and tools, which are difficult to replace by only
relying on data analytics. Quality problems, a common use
case for data analytics in manufacturing, are an example of
a complex area requiring skilled domain experts to deduce
causes of process instability. Advanced analytical methods
such as machine learning (ML) are often not transparent,
making it difficult for humans to understand the model’s
behaviors (Soldatos and Kyriazis, 2021). This makes it
challenging to identify the root causes of quality problems
and improve manufacturing processes based on analytical
results, as well as create acceptance of the result among
domain experts.

The CRoss Industry Standard Process for Data Mining
(CRISP-DM) is a common methodology for performing
data analytics in manufacturing due to its ability to
integrate business goals with the analytics process (Huber
et al., 2019). CRISP-DM is a general methodology and

not specific to manufacturing and the unique challenges in
this area. It needs to describe how to use available domain
knowledge best and how it can be implemented with
outdated legacy systems. Therefore, this makes it difficult
for manufacturing companies to use the methodology
efficiently (Lundén, 2022).

This paper proposes an adapted CRISP-DM methodology
to enable the fusion of domain-specific knowledge with the
data analytics process. An application case is performed
where the methodology is implemented to improve quality
in a machining operation. The result demonstrates the
needs and benefits of human-in-the-loop when performing
data analytics projects in manufacturing. It is also shown
how interpretable ML can augment process experts’ ability
to perform root cause analysis (RCA). This is done by
developing models with high transparency and explainable
results.

The paper is structured as follows: Section 2 presents
related work to these topics. Section 3 describes the
adapted CRISP-DM methodology. Section 4 shows the
results from the case study, and section 5 provides a
discussion of the results and concluding remarks.

2. RELATED WORK

Industry 4.0 has been an important research subject fo-
cused on how new technology can be an enabler within
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manufacturing. In recent state-of-the-art research, the
follow-up, Industry 5.0, has also gained increasing atten-
tion. Cotta et al. (2021) explains that the main difference
with Industry 5.0 is the human-centric approach where
human needs are prioritized in production. They elaborate
that with this mindset, technology should guide and assist
humans in their work rather than adapting the workforce
to rapidly changing technology. In this way, advanced data
analytics approaches such as ML can be used complemen-
tary to traditional methods already known to the domain
experts for dealing with quality problems for example.
This section discusses which previous suggestions have
been made to apply CRISP-DM with a human-centric
approach and also how the analytics result can better
assist domain experts by using interpretable ML.

2.1 CRISP-DM in manufacturing

It is important to include business understanding and
expertise in industrial contexts when conducting data an-
alytics projects. Without proper domain understanding,
there is a risk of only detecting trivial or already known
patterns which are not relevant to the business goal (Lad]j
et al., 2021). For this reason, the cross-industry standard
process for data mining (CRISP-DM) has become widely
spread for data mining in manufacturing. CRISP-DM is a
general framework for translating business problems into
data analytics goals (Huber et al., 2019). It constitutes
six phases that are performed sequentially: Business un-
derstanding, data understanding, data preparation, mod-
eling, evaluation, and deployment. The initial business
understanding phase is where an understanding of the
project objectives from a business perspective is formed
and then converted into a data mining problem (Wirth
and Hipp, 2000). The following data understanding phase
concerns creating a better understanding of the data and
potential data quality problems. The data preparation
phase is thereafter used to create a proper structure and
transformation of the data that can be used for modeling.
In the modeling phase, the aim is to select appropriate ML
algorithms and train models, which are later evaluated in
the evaluation phase according to setting business goals.
The final deployment phase aims to use gained insights
from the project to implement improvements in the orga-
nization. A more in-depth description of the CRISP-DM
methodology is described by Wirth and Hipp (2000).

The CRISP-DM model can be viewed as a general guide-
line for planning and documentation of the data mining
process. It needs to be adapted to the domain where it
is executed to consider the domain-specific requirements.
Commonly discussed topics when applying CRISP-DM in
manufacturing involve experts within different fields in
the manufacturing environment in multiple steps of the
process and that higher emphasis needs to be put on data
acquisition (Martinez-Plumed et al., 2019).

Huber et al. (2019) propose that a technical understanding
phase is added to create a better understanding of which
parameters are needed to gather data from by consulting
technical experts. They argue that a technical realization
phase should be performed to investigate how to acquire
this data with sufficient quality. (Ungermann et al., 2019)
discusses that domain knowledge should be used to pri-
oritize what parameters should be collected initially if
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the realization of data collection is time-consuming or
expensive.

Kristoffersen et al. (2019) points out that it is essential
to re-use gained insights when applying CRISP-DM in
manufacturing to facilitate scaling of data analytics. They
propose that analytic profiles should be used to document
steps taken in projects. These profiles can be used to
implement the following use cases of similar nature. The
authors also argue that manufacturing domain experts
should be involved later in the data preparation process to
validate if the transformed data still represents the original
business problem well.

It is commonly mentioned that successful implementation
of data analytics in manufacturing requires integrating
domain-specific tools for improved business and data un-
derstanding. Ishikawa diagrams, Failure Mode and Effects
Analysis (FMEA), and Five Whys (5W) are mentioned
as examples (Huber et al., 2019; Ungermann et al., 2019;
Kampker et al., 2018; Pradhan et al., 2007).

When applying CRISP-DM in manufacturing, there are
several considerations to adapt it to the domain. So far,
a comprehensive data analytics process covering all these
areas has yet to be developed specifically for usage in
manufacturing. This might make it difficult for new or
aspiring practitioners of data analytics within the industry
to make valuable use of this advanced data analytics.
This inspired the development of a holistic version of
CRISP-DM better suited for the manufacturing area that
considers several of the mentioned issues with the original
methodology.

2.2 Interpretable ML for root cause analysis

A common approach for dealing with quality issues is
to identify the root cause of the problem so the issue
can be corrected. Traditionally, RCA has been performed
by experienced personnel at a site to describe the causal
relations between process steps and the quality outcome
with the help of manual methods as described by Lokrantz
et al. (2018). However, they explain that the problem
with this approach is that this valuable knowledge might
sometimes be difficult to transfer between individuals or
sites, and the experts might be biased in their assessments.
Data analytics on a diagnostic level offers possibilities to
perform objective RCA where models learn the relations
in a machining process from large volumes of sensor data
which traditional methods can not make good use of.

Different approaches can be taken to achieve data-driven
RCA depending on the previous knowledge of the causal
effects in the machining process. Miguéis et al. (2022)
describes how RCA is performed when there is a low
understanding between parameters and the problem. The
idea builds on creating associations between the param-
eters and the problems, which can be derived by feature
importance from ML classification models. They explain
that parameters strongly associated with the problem are
likely to be root causes and can be further examined by
experts. The requirement for applying this approach is
to have a labeled data set so that supervised learning
models can be used to learn the relations between input
parameters and the labeled quality outcome. It is further
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explained by Miguéis et al. (2022) that classification mod-
els with an interpretive structure should be used to fully
understand which features have the highest importance for
the problem. The interpretability aspect when applying
ML for RCA is elaborated on by Mueller et al. (2018).
They distinguish between white-box models and black-
box models, where humans can more easily understand
white-box models’ structures. They mention Decision Tree
models as a suitable example for RCA application as the
feature importance can easily be extracted from such a
model. Black-box models such as Support Vector Machines
or Neural Networks should be avoided in these applications
as they are highly non-linear and complex to interpret
(Mueller et al., 2018).

It is important to differentiate between correlation and
causation when performing RCA, as only finding corre-
lated values might not reveal the root cause of the prob-
lem. The methods explained above are mainly helpful in
finding the correlations between input and output data
and can act as decision support for domain experts to find
causation among the parameters. Therefore, the model
developed in the case study was created with the focus on
being explainable and clear to enable further investigation
by process experts.

3. ADAPTATION OF CRISP-DM FOR
MANUFACTURING

The adapted CRISP-DM methodology aims to address
the shortcomings for implementation in manufacturing
described in Section 2.1. The adapted version emphasizes
how to better use domain knowledge, describes a data col-
lection strategy, and how to reuse knowledge. A method-
ology flowchart is shown in Figure 1 where the added
key elements to the standard CRISP-DM methodology are
highlighted. Lundén (2022) presents a detailed review of
the methodology. In this section, the main ideas are pre-
sented for how to adapt CRISP-DM for manufacturing but
with maintained generality for data analytics. In Section
4, it is shown how this methodology can be used with ML
for addressing quality issues.

During the initial business understanding phase, the
needed domain experts should be identified to get a holistic
view of the problem. It is important that multidisciplinary
knowledge can be shared efficiently between data analysts

Business
Understanding

——
s ot
Deployment .

| Evaluation H Modeling |

Analytic Profile

Data
Acquisition

Data

Understanding

Data
Preparation

Domain expert
validation

Fig. 1. Adapted workflow of the CRISP-DM methodology
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and domain experts. Therefore, basic knowledge within
both fields is ideal for efficient collaboration. Quantifiable
business goals relating to production KPIs should be set
and then translated into data analytics goals.

A data acquisition phase is added to accommodate the
complexity of data collection in brownfield factories. Like
the ideas presented by Huber et al. (2019), the phase is
divided into steps involving the identification of relevant
data sources and, after that, acquisition. An overview of
this process can be seen in Figure 2. The first step is
identifying relevant parameters using domain-specific tools
like Ishikawa diagrams. This data is, after that, structured
into an ideal data set (what ideally should be collected if
possible) and a required data set containing parameters
that must be collected to succeed with the project. Based
on cost versus benefit assessments for collecting the pa-
rameter, it might be necessary to reduce the ideal data set.
When the CRISP-DM process is iterated, more parameters
in the ideal data set can be collected if necessary. The
collection is realized by setting up a connection between
IoT sources from the shopfloor as well as other data sources
to the company’s analytics platform.

As discussed by Kristoffersen et al. (2019), a validation
performed by domain experts who will use the model
should be performed during the data preparation phase.
This confirms that the data is not altered beyond its
intended purpose. For conducting RCA, the extracted
features from the data must be understandable.

Modeling and evaluation are performed as usual. Whether
the project is successful or not, documentation should
be completed where an analytics profile is created after
the evaluation. This will support the following projects
when deciding what domain experts to include, what data
to use, and what methods. The next section presents an
implementation of the adapted CRISP-DM methodology
for the case study.

4. CASE STUDY RESULT

The case study was performed at a truck manufacturing
company within a department where engine components
are machined. A multi-purpose machine in which machines
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intake and exhaust holes in cylinder blocks has long been
an issue for the department due to dimensional errors
causing high scrap rates. Several manufacturing experts
have been involved in a project trying to find the root
causes of dimensional errors using different methods and
have yet to be successful results. The case study aimed to
use data analytics to assist with RCA and provide new
insights to domain experts.

As presented in the previous section, the adapted CRISP-
DM methodology incorporated the experts’ knowledge
in the data analytics process. This section shows the
implementation of the steps in the methodology.

4.1 Business understanding

To achieve a holistic view of the problem, people with
different competencies were involved from the first phase.
The team consisted of production engineers, machine op-
erators, IoT technicians, and data analysts. The business
goal for the case was to provide data-driven insights that
can assist with RCA, which ultimately will reduce the
number of scraped workpieces produced by the machine.
The data analytics goal was to create a model that can
determine which parameters have the highest impact on
quality.

4.2 Data acquisition

A workshop was performed with involved experts to iden-
tify all parameters which might have an impact. An
Ishikawa diagram was used to structure relevant data
related to the workpiece, machining process, machine tool,
machining result, machining time, and human factors. The
required data from this set was those related to tem-
peratures and tools, as the domain experts hypothesized
that these parameters were critical. Some of the identified
parameters were excluded due to high acquisition effort.
Vibrations were an example of such parameters, as they
resided in a separate system that was difficult to connect
to.

The machine is old and operates in a brownfield factory
environment. No significant investments were made for
the case study. Collecting data from the factory’s current
legacy system was essential. ThingWorx ! was used as the
data analytics platform to which the parameters were
connected using standard interfaces. After a historical data
set had been collected, the data was exported from the
platform in csv-format. The analytics was performed with
Python using the open-source scikit-learn 2 library.

4.8 Data understanding

Data from 5 739 machine cycles were collected for analysis.
Each sample was labeled with an OK or NOK quality
result. The labeling was performed with an automatic
measuring machine which asserts that machined holes are
within tolerances. In Figure 3, the output from a subset of
the samples is seen, where a few samples have been outside
the upper or lower tolerance limit. Quality output was also
gathered from a log written by machine operators, where
more details of the defects were provided.

L https://www.ptc.com/en/products/thingworx
2 https://scikit-learn.org/
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The data was collected in multiple formats. Some param-
eters had to be excluded due to many missing values or
irregular collection frequencies. There was also an issue
with unbalance since only 0.35% of the samples had a
NOK result. This is a common issue for quality-related
data analytics cases in manufacturing and is usually dealt
with by using a balancing technique (Taisch et al., 2020).

4.4 Data preparation

The data preparation was performed in four steps. In the
first step, data cleaning, samples with many missing values
or outliers were removed. After this, data integration was
performed to combine data from different sources into a
single tabular format.

Data tranformation was carried out to extract features
from the data. Christ et al. (2016) proposed a method to
extract features from time series collected from industrial
sensors. This technique was applied by fragmenting the
data into equal and synchronized time frames. Afterward,
as suggested by the authors, the time series were split into
time windows where the data was aggregated into statis-
tical features within each time window. In this case, equal
and non-overlapping time windows were used for simplicity
and easier interpretation. The time series features and all
other parameters used as features were normalized to a
standard zero-to-one scale. This was done to reduce any
negative impact the variation in measurement units might
have on the modeling result.

In the last data preparation step, dimension reduction,
Analysis of Variance (ANOVA) was used to reduce the
number of features used for modeling. The algorithm
ranked the features by their ability to predict the quality
outcome. A test design was set up that tried different
amounts of features during modeling.

As proposed in Section 3, a validation by domain experts
should be performed after the data preparation step. It
was ensured that features were not altered to an extent
where it would be difficult to interpret their meaning. The
experts saw partitioning into time windows for sensor data
as useful for RCA as this makes it possible to determine
when the cycle problems occur.
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Fig. 4. Top eight important features for class prediction
with the Random Forest model

4.5 Modeling

As the data set is labeled, a supervised ML approach was
used. As suggested by Mueller et al. (2018), tree-based
models offer high interpretability and can derive feature
importance. Therefore, Decision Tree, Random Forest, and
XGBoost were chosen as potential training algorithms.
The detailed theoretical background information regarding
these algorithms can be found in an edited book Han
et al. (2022). Logistic Regression was also evaluated as
this model offers high interpretability (Brownlee, 2020).

To reduce the negative impact of an unbalanced data set,
Synthetic Minority Oversampling Technique (SMOTE)
was used to create new synthetic samples with NOK
labels. To avoid introducing too much bias in the data
set, SMOTE was combined with a random undersampling
technique as suggested by Chawla et al. (2002).

The data set was split into training and test data with a 75
to 25 ratio. The number of features, time windows (for time
series parameters), and the balancing ratio was changed
iteratively to find the best-performing models. The best
performing configurations and the performance for each
model can be seen in Tablel.

Four common evaluation metrics were used for model
evaluation: Accuracy, precision, recall, and F1l-score. Ac-
curacy measures the ratio of correct predictions, whereas
the other metrics evaluate the percentage of correct true
positive and true negative predictions. Handelman et al.
(2019) provides detailed explanations of how the metrics
are calculated. Due to the unbalance between the classifi-
cation label, accuracy is not a good indicator of model
performance. The precision, recall, and Fl-score better
explain the model’s abilities to distinguish between OK
and NOK samples.

Table 1. Configuration and performance met-
rics for the evaluated models

Configuration/  Random Decision Logistic XG-
Metric Forest Tree Reg. Boost
No. win. 5 5 5 8
Balance ratio 3:10 1:5 1:5 1:5
No. Features 50 50 40 50
Accuracy 0.99 0.99 0.98 0.99
Precision 1.00 0.25 0.13 0.60
Recall 0.75 1.00 0.75 0.75
F1-score 0.86 0.40 0.22 0.67
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The Random Forest model had the highest F1l-score
among investigated models. The feature importance was
extracted from this model with the scikit-learn library
and can be seen in Figure 4. Among the most important
features were tool wear, machine idle time before the cycle,
spindle temperature, axis load, and axis positions.

4.6 BEvaluation

Due to the high imbalance in the data with few samples
with NOK quality results, it was deemed that more data
should be collected over a more extended period. This
will ensure a more robust training set for the models with
reduced impact of bias.

Making features interpretable with unambiguous names
can give domain experts clear insights about important
parameters. The top-ranked features can be further ex-
amined through visualization. Figure 5 shows an example
of how one of the top-ranked features, the y-axis load
variance in time window 5 (Y_load_-W5_variance), can be
illustrated. This allows domain experts to further identify
anomalous patterns during specific times in the machining
cycle.

5. DISCUSSION AND CONCLUSIONS

In this paper, suggestions have been made for adapting
the CRISP-DM methodology into a more holistic approach
for implementing data analytics in manufacturing with
a fusion of domain knowledge. It has been discussed in
literature (Huber et al., 2019; Ungermann et al., 2019) that
data acquisition is a common problem for realizing the true
potential of data analytics in manufacturing. The imple-
mentation of the suggested methodology successfully clari-
fied to the company how to use domain experts’ knowledge
to identify critical data and prioritize what data to collect.
Other suggestions were also made for how to best utilize
manufacturing domain knowledge in different phases of
CRISP-DM, such as validation, previously suggested by
Kristoffersen et al. (2019). This proved advantageous in
the case study as it allowed for early adoption of the
analytics process to achieve a modeling result suitable for
the process experts who will use the result.

The case study where the adapted methodology was imple-
mented focused on how to assist with RCA in quality use

Wi W2 W3 W4 W3 Wa W7 W8
Time window

Fig. 5. Visualization of load as a percentage of max load
for the Y_load_-W5_variance parameter
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cases. It was demonstrated how this might be achieved by
creating easily understood features for modeling and using
ML models with high interpretability. This allowed for
finding parameters with a high correlation to the quality
result and provided new insights to the process experts.
Finding correlating parameters is not enough to automate
the RCA process as causality in the data then needs to be
found, which is a difficult task with ML (Pradhan et al.,
2007). The model results should therefore be deployed with
an interactive tool that domain experts can use in com-
bination with other domain-specific tools for performing
RCA. The result showed examples of data visualizations
that can guide the experts in finding deviating patterns in
the machining cycles.

The findings in this study provide more clarity as to how
data analytics can be implemented in manufacturing in
a human-centric manner. It shows how to implement a
human-in-the-loop approach, which can help companies
where it is uncertain how to transition to data analytics
can be made in the best way with their current competen-
cies. The case study also demonstrates how humans are
involved in defining goals, selecting data, labeling data,
validating the process, and interpreting the results. By
using efficient cross-functional collaboration between data
analysts and domain experts in this way, the knowledge
barriers to implementing data analytics can be reduced.
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