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ABSTRACT: Automation is dramatically changing the nature of
laboratory life science. Robotic lab hardware that can perform
manual operations with greater speed, endurance, and reproduci-
bility opens an avenue for faster scientific discovery with less time
spent on laborious repetitive tasks. A major bottleneck remains in
integrating cutting-edge laboratory equipment into automated
workflows, notably specialized analytical equipment, which is
designed for human usage. Here we present AutonoMS, a platform
for automatically running, processing, and analyzing high-
throughput mass spectrometry experiments. AutonoMS is
currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical
instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and
analysis runs from experimental specification files that can be produced by human users or upstream software processes. We
demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample
analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted
metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human
intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully
automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and
analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is
available at https://autonoms.readthedocs.io.

■ INTRODUCTION
Compared with traditional benchtop experimentation, modern
life science laboratories are high-throughput and data-centric
discovery platforms. This transformation is largely supported
by two pillars: (1) experimental hardware automation and (2)
informatic and control software integration. Automated robotic
laboratory equipment can increasingly perform labor-intensive
physical experimental processes including sample preparation,
maintenance, and assay execution.1−3 In addition to increasing
the quantity and quality of data produced, the use of
automated labware also produces metadata audit trails at
every step of the experimental process to increase data
reusability.4 A shift is underway from low-throughput manual
laboratory operation toward high-throughput screens generat-
ing large quantities of raw data which can only be understood
through informatic analysis. This creates a new relationship
among the scientist, the benchtop, and software. Experimental
platforms that can be run through software calls without
human supervision can generate large amounts of high-quality
data at lower cost to the human scientist to greatly improve the
rate of discovery, especially in screening applications in fields
such as drug development and metabolic engineering, in which
combing through experimental space is often the rate-limiting

factor. Such high-throughput screening platforms almost
always rely on an analytical measurement of samples of
interest. These instrumental “omics” measurements provide
the crucial biochemical readout of the system of interest.
Despite the promises of integrated hardware−software
automation for life science discovery, there remains a great
need for further development of automated analytical plat-
forms at the granular end of the omics scale, namely,
proteomics and metabolomics. In these realms, analytical
instrumentation often remains manually operated and there-
fore underutilized. As experimentation becomes increasingly
automated and high-throughput, analytical instrumentation
must keep pace.
Mass spectrometry (MS) is a valuable and broadly used

analytical technique in life sciences. The ability to sensitively
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and broadly detect the molecular components of biochemistry
has made it an essential technique for biomarker discovery,
drug development, bioprocess development, and basic
discovery.5−8 A key driver of the technique’s utility has been
the continuous development and refinement of MS instru-
mentation providing increased sensitivity, resolution, reprodu-
cibility, and throughput. However, with these benefits comes a
high cost. The vast number of acquisition parameters, diverse
instrumentation, and varied applications of MS make it a time-
intensive technique requiring multiple iteration cycles and
substantial hands-on intervention.
Ion mobility-mass spectrometry (IM-MS) integrates a high-

throughput separation dimension with MS detection that offers
analyte separation on the basis of ion structure (ion mobility)
in addition to standard mass separation in complex samples.9,10

The drift tube implementation of ion mobility MS (DTIMS)
involves the usage of a uniform field ion mobility drift region to
separate ionized molecules prior-to mass-to-charge measure-
ment. Ions exhibit different transit times through the drift tube
determined by their size, shape, charge, and instrument
acquisition parameters. This measured drift time can then be
converted via a first-principles relationship to a collision cross
section (CCS) value, which is a function of the molecule’s
structural properties.11 One of the primary advantages of IM-
MS separations is the resolution of isomers on the basis of
structure, which in some cases can serve as a replacement to
slower liquid chromatography separations.12,13 However,
despite benefiting analytical peak capacity and structural
selectivity, ion mobility introduces further experimental
complexity into already labor-intensive MS workflows.
Here we introduce AutonoMS, which offers end-to-end

automated runs of MS instrumentation involving sample
injection, raw data processing, and metabolomic analysis with
little user intervention and is currently written around the
Agilent RapidFire20 and 656021 DTIMS-QTOF systems
(Figure 1A). AutonoMS coordinates instrument control,

resource allocation, and data processing across the RapidFire
and 6560 control computers using a collection of open-source
software libraries (Figure 1B). Sample runs can be automati-
cally triggered from experiment plan files so that either a
human user or upstream software agent may design and
execute experiments. This means that the AutonoMS platform
can be integrated into a larger automated laboratory setting in
which software agents control and coordinate multiple
experimental, analytical, and informatic modules. Runs may
involve multiple acquisition modes, sequences, and variable
run parameters. After sample acquisition, data are automati-
cally prepared, processed, and then analyzed via Skyline,18,19

producing both interactive results and tabular metabolite
summaries. To demonstrate the use of the AutonoMS
platform, we analyzed a set of chemical standards chosen
from the yeast metabolic network. These standards, serially
diluted by an Agilent Bravo liquid handling robot, exhibited
the expected dynamic measurement responses as autono-
mously collected and detected by AutonoMS (Figure 2). We
also processed extracted intracellular yeast samples through the
platform, indicating its potential utility in automated
untargeted and discovery applications (Figure 3 and Figure 4).

■ EXPERIMENTAL SECTION
Workflow Control. The AutonoMS control flow automa-

tion and workflow logic were implemented using Prefect
(version 2.10.12).14 Prefect is an open-source Python-native
workflow manager for orchestrating complex code workflows
from modularly defined tasks, smoothly turning Python
functions into workflow steps. We chose Prefect because of
its open-source nature, active developer community (currently
over 200 GitHub contributors), and increasing adoption across
industrial data science teams. Its native Python implementation
obviates the need to learn a separate workflow domain specific
language. The workflow begins by compiling an input tabular
experimental definition file into RapidFire XML files.

Figure 1. AutonoMS offers walkaway automation of ion mobility mass spectrometry data collection and analysis. (A) AutonoMS integrates
software control layers with the Agilent RapidFire−6560 ion mobility mass spectrometry system to provide fully automated data acquisition, raw
data handling, data processing, and metabolomic end-to-end analysis, resulting in tabular metabolite reports and interactive Skyline documents. (B)
The AutonoMS software stack is hosted on a shared drive between the 6560 and RapidFire control computers. Human laboratory users or an
upstream software agent may trigger AutonoMS runs using a tabular experiment definition file. The AutonoMS workflow control is written using
Prefect14 which coordinates the event-triggered actions of modules responsible for instrument file compilation, instrument control (pywinauto15),
postacquisition raw data handling including ion mobility demultiplexing and CCS calibration (PNNL PreProcessor16 and DEIMoS17), and
metabolomic data analysis (Skyline18,19). Additional modules may be written and incorporated into the workflow to accommodate different
instruments or analysis workflows.
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AutonoMS then sequentially triggers an IM-MS acquisition
run for each sequence in the experiment definition using the
instrument control utilities described below. In our config-
uration, the workflow currently runs only one sequence at a
time in order of appearance in the experiment file. However,
the workflow parameters may be modified for laboratories with
the capability of running parallel data acquisition on multiple
instruments. A sample experiment file is available in the
AutonoMS GitHub repository (https://github.com/gkreder/
autonoms).
Upon completion of data acquisition for all sequences, the

workflow then automatically performs postrun data processing.
The RapidFire 365−6560 creates a single Agilent.D raw data
file that must be split into .D files corresponding to injections
from the individual microplate wells. Currently for RapidFire
instruments configured in the BLAZE (direct injection) mode,
the RapidFire software can detect injection boundaries but
does not correctly split data into the corresponding well files.
AutonoMS automatically shifts the file split times according to
the detected injection boundaries and assigns them to the
correct well plate. A description of the configuration of the
RapidFire for the BLAZE mode is provided below.
Data multiplexing is a powerful ion mobility technique for

increasing sensitivity.22 Our configuration utilizes 4-bit IM
multiplexing, but this requires postacquisition data demulti-
plexing. AutonoMS performs ion mobility data demultiplexing
on the individual well files using the PNNL PreProcessor
utility.16 Before conversion to collision cross section (CCS)

values, raw measurements in DTIMS files from the Agilent
6560 must have their drift time values calibrated according to
standard measurements with known CCS values. AutonoMS
automatically performs this CCS calibration for each injection
within a given sequence using the nearest prior injection
occurring in the same sequence with sample type “TUNE”.
The demultiplexed tune file is converted to mzML23 format
using the msconvert utility.24,25 CCS correction coefficients are
then calculated from the mzML tune file using the DEIMoS
library for ion mobility data processing17 and user-specified
reference CCS values. A CCS calibration XML file is generated
and copied to each injection .D file in the given sequence. For
the experiments outlined in this work, an Agilent ESI tuning
mix was used for CCS calibration. A sample sheet containing
the Agilent tune ions and their CCS values is available in the
AutonoMS GitHub repository. We note that the workflow can
be configured to perform this CCS calibration on manually
calculated calibration coefficients from separate runs; however,
it is recommended to include a tune injection in each sequence

Figure 2. Automated targeted data analysis of the standards with
AutonoMS. (A) Detected glutathione [M + H]+ ion intensity from an
automated AutonoMS analysis of glutathione in 50/50 methanol/
water at 0.1 mg/mL injected from separate wells in a robotically
dispensed 384 well microplate. (B) Detected peak areas from
AutonoMS analysis of robotically prepared triplicate serial dilutions
of 5 chemical standards in positive and negative ionization modes
robotically dispensed into a 384 well microplate.

Figure 3. Automated analysis of the extracted intracellular yeast
samples with AutonoMS. (A) Detected peak areas in extracted yeast
samples across plate injections (368 over 38 min per mode) of the 5
ions used in the chemical standards analysis. Ions correspond to the
[M + H]+ and [M − H]− adducts in positive and negative modes,
respectively. Peak areas shown as the 6-injection moving average
(solid lines) together with 6-injection standard deviation (shaded
areas). (B) Untargeted metabolite features found across all extracted
yeast samples across positive (blue) and negative (orange) ionization
modes. Displayed features were present in at least 2/3 of samples in a
given mode and had Agilent quality scores greater than 70. A total of
812 features were found, of which 404 involved multiple ions in
various ionization states. Single ionization state (z = 1) ion features
are shown in gray, and marker size is scaled according to
log10(abundance).
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for the sake of automation simplicity and data robustness.
AutonoMS then performs peak detection and quantification on
the demultiplexed CCS calibrated injection files using the
Skyline method (described below) via the Skyline Command-
Line interface.
Instrument Control. The pywinauto library (version

0.6.8)15 was used to write automation control wrappers
around the Agilent MassHunter Workstation Data Acquisition
(version 11.0) and RapidFire UI (version 6.1.1.2114) software
used to control the 6560 mass spectrometer and RapidFire
sampler. Functionalities necessary for automatically running
plates according to the user-supplied acquisition method and
experimental parameters were implemented. These include
reading instrument state, loading files and methods, starting
and stopping runs, running the calibrant line, checking the
RapidFire vacuum pump pressure, setting run mode, and data
file splitting. Of special note is the standard Agilent hardware
configuration of separate control desktops for the 6560 and
RapidFire connected via ethernet (Figure 1B). To work in this
configuration, the codebase is hosted on the network drive
shared between the two computers and the AutonoMS
workflow is run from the 6560 control computer. A Remote
Procedure Call server using the RPyC library (version 5.3.1)26

is hosted on the RapidFire computer to execute RapidFire
control functions from the 6560 computer. The codebase for
RapidFire−6560 instrument control is available in the
agilent_methods modules of AutonoMS.
Data Processing. Peak detection and area quantification

were performed using Skyline (version 22.2.0.351).18,19 Skyline
was chosen because of its open-source nature, ability to handle
ion mobility data, and combination of command-line and GUI
functionality. Skyline natively supports RapidFire ion mobility

data and has previously been used for acquisition workflows
such as those described below.12 Its command line utilities can
be integrated into a fully automated workflow as in AutonoMS
and results can later be loaded into the GUI to be verified by
the end user. Peak detection was run using the TOF mass
analyzer settings at a resolving power of 30 000, an ion
mobility resolving power window of 30, and a maximum m/z
of 1700. The full set of Skyline processing parameters in a
Skyline document format is available in the AutonoMS
repository.
Metabolite CCS Library. Yeast metabolites were taken

from the Yeast Metabolome Database (YMDB)27,28 and
compared against the Cross Collision Section Database
(CCSDB) hosted by the Erin Baker Lab and available at
https://brcwebportal.cos.ncsu.edu/baker/. These CCS values
were of particular interest, since they were also measured on an
Agilent 6560 mass spectrometer for comparison purposes.
Metabolites appearing in both YMDB and CCSDB were
compiled together with their experimentally observed CCS
values for their [M + H]+ and [M − H]− adducts. The
compiled list of YMDB CCS metabolites in the Skyline
transition list format is available in the AutonoMS repository.
RapidFire Sample Injection. The RapidFire was operated

in BLAZE flow injection mode to achieve rapid sample
injection and analysis times.29 This involves configuring the
RapidFire valve tubing such that the sample loop feeds directly
into the mass spectrometer outlet rather than through the solid
phase extraction (SPE) cartridges. The RapidFire configuration
files must also be modified for the valve positions to correctly
correspond to sample sipping with this connection config-
uration. We note that the RapidFire is capable of some
automated in-line sample preparation, for example, desalting,

Figure 4. Use of AutonoMS for automated data collection and integration with background knowledge. Panel of 35 metabolites from the Yeast
Metabolome Database (YMDB27,28) with publicly available collision cross section (CCS) values from the Baker Lab Cross Collision Section
Database (CCSDB). Chosen metabolites were detected by the acquisition method described in the Experimental Section and exhibited mean peak
areas across extracted yeast injections greater than 104. Metabolites are grouped by their ClassyFire/ChemOnt32 superclass labels and are plotted
against their mean peak areas across extracted yeast injections per ionization mode. Error bars display the intensity of the standard deviations.
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via its built-in SPE functionality. This functionality was not
utilized for our demonstration experiments since our sample
preparation was performed prior to injection. RapidFire
BLAZE mode configuration instructions are provided in the
Supporting Information. Operating the RapidFire using the
SPE functionality via AutonoMS can be done by simply
reverting the instrument back to its standard configuration and
changing the cartridge and sipper parameters in the input
experimental file.
The RapidFire method used involved a sample sipping time

of 600 ms followed by 4400 ms of sample elution into the MS.
As seen previously,12 sipping (aspiration) time is reported
rather than injection volume as this is the instrument’s
controllable parameter given its mechanism of sample
aspiration driven by a vacuum pump. The RapidFire’s sample
loop holds roughly 30 μL. This elution time was chosen to
ensure baseline peak separation at higher sample concen-
trations, and we note that this can be reduced for faster cycle
times. The mobile phase (pump 1) consisted of 50/50 water/
methanol with 0.1% formic acid at a flow rate of 1.25 mL/min.
The full RapidFire parameter set is provided in the Supporting
Information.
6560 Mass Spec Data Acquisition. Mass spectrometry

data was collected in IM-QTOF mode with 4-bit multiplexed
introduction of the ion packets into the drift tube. Multiplexing
has been shown to improve ion utilization and resolving power
in IMS;12 however, it creates the requirement for additional
data postprocessing as described in the workflow management
section. The Agilent 6560 was operated in the 100−1700 m/z
range at a frame rate of 1.1 frames/s and a gas temperature of
325 °C. A full description of the QTOF and IM acquisition
parameters are available in the Supporting Information.
Standards Preparation. Dry chemical stocks of gluta-

thione, L-histidine, L-valine, and L-arginine were mixed at room
temperature with a stock solution of 50/50 water/methanol to
a concentration of 10 mg/mL. These stocks were dispensed
into standard 384 well microplates using a Thermo Fisher
Combi Multidrop reagent dispenser, and 10-fold serial
dilutions were robotically performed using an Agilent Bravo
liquid handling robot controlled with the VWorks Automation
Control software (version 8.0.0.335, Agilent Technologies).
Yeast Culturing. S. cerevisiae wild-type strain BY4741

(accession number: Y00000) from the EUROSCARF deletant
library was revived from −80 °C glycerol stocks by overnight
cultivation in YPD media (10 g/L yeast extract, 20 g/L
peptone from meat, 20 g/L dextrose) at 30 °C, 220 rpm. The
strain was then streaked out on a YPD agar plate and incubated
at 30 °C for 3 days. A YPD preculture was inoculated using
multiple colonies from the agar plate and then incubated at 30
°C, 220 rpm for 14 h. The cells from the YPD preculture were
washed twice (centrifugation at 5000g, 5 min) with YNB
media (6.7 g/L YNB without amino acids and with ammonium
sulfate, 1× amino acid mix, 20 g/L dextrose). Cells were
resuspended in 1 mL of YNB media and used as inoculum for
the main culture with an initial OD600 of 0.05. The main
cultivations were performed in 4 × 250 mL wide-necked
baffled shake flasks sealed with cotton stoppers, each with a
working volume of 40 mL YNB media. The shake flasks were
incubated at 30 °C, 220 rpm. Cultivations were stopped after
24 h postinoculation and the flasks were pooled. Final OD600
was measured to be 3.56 and was used to adjust the 2-propanol
alcohol volume in the ensuing extraction method.

Yeast Quenching and Extraction. Sample preparation
and intracellular metabolite extraction followed a previously
established protocol.30,31 Samples were quickly transferred to
15 mL centrifuge tubes (5 mL per tube) containing absolute
methanol (99% purity) prechilled to −80 °C. The ratio
between sample and methanol was kept at 1:1 v/v. Tubes were
kept in dry ice during the process and were transferred to a
centrifuge and spun for 5 min at 3000g and −9 °C. The
supernatant was then discarded, and the pellet was transferred
and stored at −80 °C. Samples were lyophilized (−40 °C, 0.1
mbar) overnight and kept at −80 °C pending extraction.
Metabolite extraction was performed by adding 75% 2-
propanol (preheated to boiling temperatures, with a ratio of
1 mL of 2-propanol per 1 mg of sample) to the lyophilized
yeast biomass in 15 mL centrifuge tubes. Sample weight was
estimated from optical density (0.34 mg DCW/mL per 1
OD600). Samples were placed on a heating block for 1 min at
100 °C, then shaken and vortexed for 2 min, followed by an
additional 3 min on the heat block. Samples were then cooled
for 15 min at 4 °C before centrifuging for 20 min at 3200 g and
4 °C. The supernatant was filtered through a 0.45 μm nylon
filter, transferred to 50 mL centrifuge tubes, and stored at −20
°C until analysis. Samples were transferred to a standard 384
well microplate for AutonoMS injection by using a Thermo
Fisher Combi Multidrop reagent dispenser.

■ RESULTS AND DISCUSSION
Walkaway Automation. Over the course of our

experimentation, we found that AutonoMS enabled reliable
automated runs and analysis of data from simple experimental
definition files without any need for human intervention
(Figure 1). The AutonoMS platform integrated smoothly into
our automated laboratory workflows and provides an event-
triggered software-compatible interface to a larger automated
environment. Resources can be scaled automatically through
the control workflow in which specific tasks are granted user-
defined resource usage and concurrency rights. We found this
was crucial for automating this combination of data
acquisition, data preprocessing, and data analysis tasks with
varying degrees of interdependencies and resource demands.
Through the control workflow, the informatic steps of the
platform can be run on remote or distributed resources to cut
down on computation time. Instrument data acquisition for a
given experiment definition runs in its entirety before initiating
the informatic portions of the pipeline. As such, multiple
sequences can be run from the same microwell plate while
minimizing sample evaporation time. The targeted data and
untargeted assays described below involved laboratory robotics
and multiple data sequences and acquisition modes per
experiment. We found that aside from hardware maintenance
and physical sample transfer, usage of the AutonoMS platform
eliminated the need for human intervention or even presence
during the process of metabolomic data acquisition and
analysis.
Targeted Data Analysis of Standards.We tested the use

of AutonoMS in a targeted data analysis metabolomics
application by automated sampling and analysis of a chemical
standard, glutathione, at a set concentration of 1 × 10−1 mg/
mL in a stock solution of 50/50 methanol/water (Figure 2A).
AutonoMS, running the direct injection ion mobility method
described in the Experimental Section, enabled the automated
analysis of the known standard with an injection time of 5 s per
sample with consistent performance. The platform autono-
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mously injected, processed, and detected the [M + H]+ adduct
in positive ion mode without human intervention. We also
tested the AutonoMS platform on robotically prepared
triplicate 10-fold serial dilutions of five standards: glutathione,
L-histidine, L-valine, L-arginine, and adenosine monophosphate,
from a starting concentration of 10 mg/mL (Figure 2B). Peaks
areas were filtered to include only detections at levels 5×
higher than those in 50/50 water/methanol blanks. The
platform similarly autonomously collected data and reprodu-
cibly detected the standards with a linear peak area response
range in the 10−4−10−1 mg/mL range. In both cases, no
human intervention was required, other than cleaning of the
instruments and transfer of the prepared sample microplates to
the RapidFire. These panels lead us to conclude that (1) the
AutonoMS platform automates existing targeted data analytical
workflows and (2) using the automated workflow produces
robust and consistent results useful to downstream human
users or software processes.
Metabolomic Fingerprinting of Yeast. To investigate

the utility of the AutonoMS platform in systems biology
discovery applications, we cultured and prepared yeast samples
to study their intercellular metabolomic content via untargeted
metabolomic fingerprinting (Figure 3 and Figure 4). Extracted
intracellular yeast samples were pooled and dispensed into a
standard 384 well microplate after which AutonoMS was used
to automatically run whole-plate sequences of injections in
both positive and negative ionization modes. 368 consecutive
injections were run in each mode (leaving the first plate
column reserved for tune ions) for a total injection time of 38
min per mode. Ion behavior in this complex sample matrix
largely agreed with exhibited behavior in the targeted data
analysis standards test (Figure 3A). Ions with higher intensities
had relatively consistent peak areas across the plate injections,
with peak area consistency decaying dramatically around the 1
× 104 mark due to poor counting statistics.
The preprocessed data produced by AutonoMS were also

run through untargeted feature finding with Mass Profiler
(version 10.0.195, Agilent Technologies), yielding 812
metabolite features across positive and negative mode with
both (1) a Q-Score greater than 70 and (2) occurrence in at
least 2/3 of a given ionization mode’s injections (Figure 3B).
Of these features, 404 were higher-quality features involving
multiple ions in various ionization states. This Mass Profiler
analysis was performed manually but could be automated and
integrated into AutonoMS using DEIMoS17 if it suits the end-
user’s needs. AutonoMS automatically ran these yeast injection
data through the Skyline pipeline using the YMDB CCS library
(described in the Experimental Section). The reports
generated from the AutonoMS runs facilitated compilation of
a panel of 35 detectable YMDB intracellular metabolites with
publicly available CCS values filtered according to the earlier
tests (displaying an average peak area greater than 104 across
injections) using the ion mobility direct injection method
described in the Experimental Section. These metabolites are
shown in Figure 4 grouped by their ClassyFire/ChemOnt32

superclass labels together with their mean TIC-normalized
peak areas across injections. We note that further automated
data collection and analysis modules can be incorporated via
AutonoMS to improve the application-specific detection
performance of such a workflow. Usage of the AutonoMS
platform enabled hands-off automated metabolomic profiling
in the context of the existing background knowledge of yeast
metabolism. In this case, usage of the platform dramatically

decreased the time and effort required to characterize yeast
samples and produce interpretable results in the context of this
background knowledge. This opens the door toward
incorporation of a cutting-edge analytical platform into more
fully autonomous discovery applications in which AI software
agents control experimentation, interpret results, and run
further rounds of experimentation as has been proposed and
demonstrated previously.33−35 Metabolomics-based biological
discovery, especially in yeast, is a rich field. Previous work has
demonstrated the utility of applying rigorous mass spectrom-
etry methods toward measurements of yeast metabolites.36,37

Integrating these with automated culturing, sampling, addi-
tional data modalities, and modeling techniques has yielded
powerful approaches.38,39 Existing approaches have demon-
strated the potential of in-line SPE-IM-MS exometabolome
analysis in live cultures.40 AutonoMS should facilitate such
multifaceted approaches, allowing for granular control logic
and flexibility in new techniques. We also note that in addition
to downstream discovery, the automated characterization of
well-behaved metabolites for a given instrument acquisition
method immediately opens the door to closed-loop automated
MS acquisition methods development.

■ CONCLUSIONS
Analytical instrumentation must keep pace with the increasing
ability of life science laboratories to quickly produce large
quantities of experimental samples. Here we introduced
AutonoMS, a platform combining cutting-edge ion mobility
mass spectrometry instrumentation with software layers
capable of end-to-end instrument control, data processing,
and metabolomic analysis. From our findings, we conclude that
the resulting configuration can be immediately utilized in
laboratories already using the same instrumentation to
dramatically improve workload and improve results, especially
as related to human burden. Even when using human-compiled
experiment definition files, the streamlined AutonoMS work-
flow produced actionable results in about 1/4 of the time
compared to the same tasks using the already-optimized
conventional Agilent RapidFire−6560 vendor workflow (25
min compared to an hour for the targeted data analysis
standards workflow) with much less manual intervention. We
also note the extensibility of this platform, since the software
workflow coordinates the actions of modular instrument
control and informatic components, each of which can be
replaced with a new module fitting a given laboratory’s
configuration. For example, AutonoMS could be used for
untargeted metabolomic feature discovery or proteomic
profiling by swapping out the corresponding Skyline
metabolomics module. The current RapidFire−6560 instru-
mentation setup is already capable of a large range of analyses
including proteomics. A new instrument could be controlled
by AutonoMS by calling its instrument control wrappers in the
workflow. Multiple instruments can be run in parallel simply by
modifying the workflow configuration parameters. This process
can be made easier through instrument vendor cooperation,
particularly with regard to whether high-level users will have
access to an application programming interface (API) to allow
direct command-line control of all instrument functions rather
than requiring all commands to be passed manually to the
instrument through a graphical user interface (GUI) by means
of interactive mouse-clicks and pull-down menus on a screen.
As described in the Experimental Section, instrument control
for the RapidFire−6560 required GUI automation. General
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laboratory automation outside mass spectrometry remains a
challenge. For example, our yeast quenching and extraction
protocol was performed manually save for the final step of
robotically dispensing samples into the injection plate using
the Multidrop dispenser given logistical and resource
constraints. With the proper automated liquid handling
equipment and laboratory space, this protocol can be fully
automated, and the capabilities of AutonoMS would allow for
completely hands-off analysis of samples from culture to
output results. Looking further ahead, we believe AutonoMS
opens the door to closed-loop automation utilizing cutting-
edge analytical instrumentation in which automated laborato-
ries produce samples, transfer them to the instrument, trigger
AutonoMS runs, and then use the processed results to perform
the next round of experimentation. For example, a setup
combining automated software-controlled chemostats, liquid
handling robotics, centrifuges, heat plates, shakers, freezers,
and the RapidFire−6560 could be used to culture yeast
samples in various conditions, prepare them, and then
metabolically analyze them all via software calls with
AutonoMS handling the IM-MS portion of the workflow. An
AI system sitting on top of this configuration could take
produced results and compare them with existing background
knowledge to find discrepancies between observed and
expected output. Such systems could utilize database systems
under development41 designed for AI software agent unified
access to experimental data, protocol metadata, results, and
background knowledge.
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