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Abstract: Due to dynamic operating conditions, random user behaviors, and cell-to-cell
variations, accurately predicting battery life is challenging, especially using information from
only a few early cycles. This work proposes a data-driven battery early prediction pipeline
using both time-series, measurement-related features, and usage-related histogram features. We
first investigate the prediction performance of using these two feature sources individually, then
two methods of systematically combining these two feature sources are devised. Additionally,
four machine learning algorithms with different characteristics are applied to compare their
performances on battery prognostic problems. We show that the prediction accuracy of using
these two feature sources individually is comparable. Moreover, a systematic combination of
these two features considerably improves the prediction performance in terms of accuracy and
robustness, achieving excellent prediction results with a root mean square error of around 150
cycles using only the first 100 cycle’s data. Finally, experimental data of different cell types and
cycling conditions are used to verify the developed method’s effectiveness and generality.

Keywords: Machine learning, Lithium-ion battery, Battery life prediction, Remaining useful
life, Battery management system.

1. INTRODUCTION

For a more sustainable future, many efforts have been put
into different sectors, such as transportation and electricity
production, to replace fossil fuel usage with sustainable
solutions. Lithium-ion (Li-ion) batteries play an important
role in this transition by serving as traction batteries for
electric vehicles or energy storage devices for the power
grid, due to their lower cost, higher reliability, and longer
lifetime compared to other alternative solutions. How-
ever, as electrochemical devices, Li-ion batteries are also
plagued by their nonlinear, complex, and path-dependent
aging characteristics, imposing significant challenges for
their broad adoption by end customers (Birkl et al., 2017).
Therefore, optimally controlling battery usage to extend
their lifetime and enhance performance becomes indispens-
able. To this end, an accurate and robust early prediction
algorithm is pivotal to pave the way for a later health-
conscious control strategy.

Battery lifetime prediction approaches can be classified
into three main categories, namely empirical, physics-
based, and data-driven methods, as discussed by (Li et al.,
2019). Empirical models, which were initially popular due
to their simplicity and low computational requirements,
have limitations in accuracy and reliability when applied
to real-world scenarios with varying operating profiles and
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cell-to-cell differences. In contrast, physics-based models
provide detailed insights into battery aging mechanisms,
but they require complicated parameterization and high
computational resources, making them impractical for on-
line applications. Finally, data-driven methods offer flex-
ibility and can recognize patterns and trends in complex
and dynamic situations, making them a promising solution
for predicting battery life.

The choice of inputs to a data-driven model, often referred
to as features, is of great importance for such a method.
Many efforts have been made to extract features from
the charge or discharge time-series measurement data to
predict battery capacity, lifetime, and knee point (Li et al.,
2019; She et al., 2022). Additionally, different features
based on electrochemical impedance spectroscopy (EIS),
cell pressure change, or acoustic analysis have also been
investigated (Yang et al., 2021). However, the cost of
instrumentation necessary to collect these measurements
may hinder the applicability of such methods. As most of
the data-driven methods are developed based on repetitive
battery cycling in a laboratory, deploying such a model in
real-world applications undergoing diverse cycling profiles
and an ever-changing cycling environment is very chal-
lenging (Sulzer et al., 2021a). Our recent work has used
usage-related histogram data-based features, where only
information of how the battery has been used is recorded,
to recursively predict the future aging trajectory of trac-
tion batteries using their historical capacity data (Zhang
et al., 2022). However, to the best of our knowledge, there



is no work using such information to early forecast battery
life and investigate its relationship to methods using time-
series measurements.

In this work, we aim to fill the identified research gap
by proposing a data-driven battery early-life prediction
pipeline using both time-series measurement data and
usage-related information. The contributions arise from
three perspectives. First, we demonstrate that using usage-
related features alone can achieve the same prediction
performance as using the time-series data, indicating that
these two feature sources are effectively interchangeable
and also complimentary. Second, we developed two meth-
ods to systematically combine the information from these
two feature sources, both methods achieving excellent
performance with increased accuracy and tightened confi-
dence intervals compared to using them individually. Last,
the generality of the developed pipeline is demonstrated on
two different data sources of different cell chemistry.

2. BATTERY DATASET INTRODUCTION

Two battery datasets are investigated in this study, one
originating from Stanford University (Severson et al.,
2019), which will be referred to as the Stanford dataset,
and another from Sandia National Laboratories (SNL)
(Preger et al., 2020), which will be called the SNL dataset
hereafter. For the Stanford dataset, the cells used in
the test campaign are of lithium iron phosphate (LFP)
type, whereas for the SNL dataset, nickel magnesium
cobalt (NMC) type batteries were used. The detailed cell
specifications are listed in Table 1. Moreover, the cycling
profile in the Stanford dataset is various fast charging
policies with identical 4C constant discharge, while in the
SNL dataset, more diverse cycling profiles are used to
investigate their impact on cell aging performance.

Table 1. Battery cell specifications

Dataset Stanford SNL

Battery type LFP NMC

Manufacture A123 LG Chem

Nominal capacity (Ah) 1.1 3

Voltage range (V) 2 to 3.6 2 to 4.2

Max discharge current (A) 30 20

Operating Temperature (◦C) -30 to 60 -5 to 50

3. FEATURE CONSTRUCTION AND ENGINEERING

3.1 Usage-related histogram features

The usage profiles have a profound impact on battery
life. Therefore, we presume that incorporating both the
historic usage recordings and predicted future usage pat-
terns will considerably improve the prediction accuracy
and robustness. As per Woody et al. (2020), the following
usage-related features, also known as stress factors, are
of interest: the depth of discharge (DoD), charge current
rate, discharge current rate, cycling/calendar temperature,
voltage, SoC and cycling/calendar time. These stress fac-
tors form the foundation for the usage-related feature pool
that we will construct for later machine learning (ML)
algorithm training. It is worth noting that not all features

mentioned are available for extraction due to the limita-
tions of the datasets. For example, in the Stanford dataset,
only the charge current and charge time can be used due
to other features being identical for all the batteries across
the whole dataset.

For the Stanford dataset, we construct our features based
on the fact that most cells experience a unique charging
policy. First, the complete SoC range is divided into 20
intervals of 5%. Then, the corresponding average charge
current in C-rate is assigned to each interval to form
a feature vector of 20 elements, e.g., F = [f1, · · · , f20].
The statistical properties of this vector, e.g., mean(F ) or
var(F ), are then calculated to reduce the feature dimen-
sion with the hope of not affecting the prediction perfor-
mance. Apart from using the charge current information,
the charging time of the first cycle is also used as one of
the features to indicate how the battery is being charged.
As for the SNL dataset, the initial SoC, DoD, discharge
current, mean and variance of the ambient temperature,
and mean and variance of the cell temperature are selected,
all as scalar values.

3.2 Time-series features

With a fixed charge or discharge policy, both the current
and voltage curves will gradually change when the battery
degrades. Considering the hidden aging mechanisms that
can potentially be manifested by the current and volt-
age profiles, the on-purpose feature construction based on
these time-series measurement data can be quite useful
in predicting the lifetime of the battery. Here, we first
investigate the cycle-to-cycle evolution of the accumulated
charge/discharge capacity (Q) as a function of the voltage
curve (V ), namely dQ(V ), which has been demonstrated
useful in the prediction of battery lifetime (Severson et al.,
2019). Second, we study the effectiveness of using the
features constructed from the incremental capacity (IC)
curves. IC is the ratio between the changing rates of the
accumulated charge capacity and of the voltage, which is
a powerful tool for battery aging diagnostics. Thus, we
hypothesize that the rich aging information that the IC
curve contains can also make IC-related features a good
health indicator for battery early prediction. In practice,
for the Stanford dataset, we adopt the dQ(V ) curve and
the IC curve during discharge as the baseline features be-
cause the batteries experience the same constant discharge
profile across the whole dataset. Conversely, with the same
reasoning, we use the charge part of the profile to form the
baseline features for the SNL dataset.

4. EARLY PREDICTION MODEL

The early prediction problem of battery life is formulated
as a regression problem with the aim of minimizing the
measured lifetime and the model predictions for all bat-
teries in the test set. Four ML algorithms are considered
in the prediction pipeline to evaluate their performance
in such cases. Among them, two are linear models, i.e.,
elastic net (EN) and Bayesian ridge regression (BRR),
and the other two are nonlinear support vector regression
(SVR) and random forest regression (RFR) models. Fig. 1
illustrates the overall prediction pipeline for the battery’s
lifetime prediction.
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Fig. 1. The overall battery early life prediction pipeline.

Linear models have advantages, such as efficient training
and a relatively low computational cost during online de-
ployment, making them the first choice when the accuracy
of the model output can meet the requirement of the
desired applications. Additionally, the simple and neat
model structure makes the final prediction result highly
interpretable. EN consists of an ordinary least square
formulation together with two regularization terms, e.g.,
L1 and L2 regularization, with the goal of solving the
following optimization problem:

θ̂ = argmin
θ

∥y −Xθ∥22 + λ
1− α

2
∥θ∥22 + α∥θ∥1, (1)

where y is the prediction target, in this case, the measured
lifetime of the battery, X is the feature matrix, θ is the
model coefficient vector, and both λ and α are hyperpa-
rameters that are tuned using cross-validation. Similarly,
applying a Bayesian approach to the ordinary least square
problem leads to the BRR. The algorithm can incorporate
the regularization parameters in the estimation procedure
and naturally and systematically propagate its prediction
uncertainty.

A nonlinear model, such as SVR and RFR, may require
a complex calculation procedure for both the training
and testing but may increase the prediction accuracy and
robustness for certain applications. Mathematically, an
SVR algorithm tries to minimize the ϵ-insensitive loss:

L(y, ŷ) =

{
0 if |y − ŷ| < ϵ

|y − ŷ| − ϵ otherwise,
(2)

where ŷ is the predicted lifetime value. By introducing
the slack variables and constructing the Lagrangian of
the primal formulation, we can find the solution to such
an optimization problem. The built-in sparsity charac-
teristics and outstanding fitting performance for nonlin-
ear systems make SVR a popular algorithm for battery
prognostics. RFR is an ensemble learning method, which
is used through bootstrapping and data aggregation to
achieve a good trade-off between bias and variance. Due to
its ensemble characteristics, RFR is a robust and accurate
supervised learning algorithm for highly nonlinear systems
with complicated data and features. To quantify the esti-
mation uncertainty, we adopt the method from (Wager
et al., 2014) that uses the bootstrap replicates during the

training process to calculate the confidence interval of the
prediction result for RFR.

Combining features from different sources during the train-
ing process is one way to systematically incorporate in-
formation from both time-series measurements and bat-
tery usage. Alternatively, fusing the prediction results of
independent models trained with different feature inputs
is also a plausible candidate. One of the motivations for
considering fusing the independent model result is to have
the flexibility to choose which model to use depending on
the availability of the feature input, as practical data col-
lection challenges (communication delays, data corruption,
or memory shortage) may hinder the applicability of a
certain type of feature input. Herein, we adopt an inverse-
variance weighting method to aggregate the prediction
results, for which the fused prediction result is given by:

ŷf =

∑
m ŷm/σ2

m∑
m 1/σ2

m

, (3)

where ŷf is the fused result, ŷm is the individual prediction
result using model m, and σm is the standard deviation of
the prediction result from model m. Correspondingly, the
prediction variance of the fused result is calculated as

Var(ŷf ) =
1∑

m 1/σ2
m

. (4)

5. EVALUATION MATRICES

For the train-test set split, a ratio of 8/2 is adopted, where
80% of the batteries are randomly selected as the train set,
and the remaining unseen data are assigned to the test set.
Three error evaluation matrices are chosen to quantify the
performance of the developed method, i.e., the coefficient
of determination (R2), root mean squared error (RMSE),
and mean absolute percentage error (MAPE)

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(5)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (6)

MAPE =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100%, (7)
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Fig. 2. Prediction results using different feature inputs extracted from the Stanford dataset. (a) Using time-series
features only. (b) Using usage-related histogram features only. (c) Using both feature sources.

where ȳ is the mean value of the measured lifetime, and
N is the number of data points in the test set.

6. RESULTS AND DISCUSSIONS

We first discuss the results obtained from the Stanford
dataset, followed by the SNL dataset. In the beginning,
only the cycling information from the first 100 cycles is
used for prediction. Then, we perturb the number of early
life cycles to study its sensitivity to the prediction results.

To compare the prediction performance using different
feature sources, we applied the same ML algorithm, RFR
in this case, but trained it with different feature inputs.
The results are summarized in Table 2. It can be seen that
the prediction performance of using time-series features
or usage-related histogram features alone are similar in
terms of the MAPE, with the histogram feature-based
algorithm slightly outperforming that of the time-series
features. Based on this, we could conclude that the two
feature sources are effectively interchangeable for battery
life prediction. However, it is worth highlighting that when
both feature sources are used, significant performance
improvement is achieved, showing that the two feature
sources are complementary and should be used together
when possible. By examining the detailed prediction result
shown in Fig. 2, the model trained with combined features
tends to violate less the ±100 cycles prediction boundary
of the measured lifetime when compared to using individ-
ual feature sources. Additionally, the zoom-in figures show
the error histogram of the prediction results using different
feature sources. This result again shows the superiority
of combining both feature sources, including less extreme
predictions and narrower error distribution. The superior-
ity stems from the fact that the usage-related feature can
indicate how the cycling profiles affect the battery life in
an average sense, while the time-series features are able to
identify the cell-to-cell variations.

Fig. 3 illustrates the prediction result on a randomly
selected cell in the test set using different feature sources.
The prediction result of using combined feature sources is
not only better in terms of prediction accuracy, but it also
has a narrower prediction confidence interval compared to
the other two predictions using only one feature source.

As stated in Section 4, instead of combining the feature
sources and then training one ML algorithm, an alternative
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Fig. 3. The prediction result and its confidence interval
using different feature sources was demonstrated on
a randomly selected cell, where the shaded color
illustrates the 95% prediction confidence interval. ŷc,
ŷt, and ŷu indicate the predicated cycle lives, and y is
the measured cycle life.

Table 2. Results of different feature inputs and
two combination methods for early prediction
of battery life using the Stanford dataset

Feature input R2 RMSE (cycles) MAPE (%)

Time-series 0.78 197 15.41

Histogram 0.85 162 14.31

Combined features 0.87 149 10.51

Combined models 0.87 151 10.11

option is to train two ML algorithms using all the feature
inputs and fuse their prediction results. The last row
in Table 2 shows the numerical result of training two
RFR prediction models and then fusing the prediction
results of the two using (3). Not surprisingly, the obtained
results are similar to the ones using combined features to
train one ML algorithm. The detailed prediction results in
Fig. 2(c) and Fig. 4(a) also verify the similar prediction
performance of the two methods. This result can be
attributed to the fact that these two feature sources are
largely complementary. The histogram of the standard
deviation of the prediction uncertainty and their median
value for different methods are shown in Fig. 4(b). It can
be observed that when using the same number of trees in
the RFR algorithm to propagate prediction uncertainty,
one of the advantages of training two RFR models and
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fusing the final results is that the confidence interval of the
outputs is considerably tightened. Additionally, to achieve
a similar confidence interval level, the number of trees
needs to be doubled for the model combining the feature
sources. Therefore, combining different models can save
computational resources.
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Fig. 5. Prediction error as a function of prediction start
cycle number.

In addition to the prediction results obtained above using
the first 100 cycles, we evaluate the robustness of the
developed methods by varying the early life data from 20
to 300 cycles, with the result shown in Fig. 5. It can be
noted that incorporating usage-related features can dra-
matically increase prediction accuracy relative to the case
of time-series features, especially when performing early
prediction. For example, when we utilize the first 20 cycles,
the prediction accuracy can be improved by around 45%.

Furthermore, the superiority of using combined features
is consistent over the whole examined range of [20, 300]
cycles, verifying the importance of having such information
included in the feature construction step.

Finally, the prediction results of different ML algorithms
trained with combined feature input are reported in Ta-
ble 3. The best-performing algorithm, in this case, is RFR
with a MAPE of around 10%. However, we want to em-
phasize the importance of having several ML algorithms of
different characteristics in the prediction pipeline, as which
algorithm performs the best may depend on the dataset.

Table 3. Results of different ML algorithms for
battery life prediction using Stanford dataset

ML algorithm R2 RMSE (cycles) MAPE (%)

EN 0.83 175 17.91

BR 0.81 181 14.73

SVR 0.61 263 20.62

RFR 0.87 149 10.51

The model parameter θ of the EN model can be used
to evaluate how much each feature contributes to the
final prediction result. Fig. 6 shows the absolute value of
the weighting coefficient for the selected features. Among
these, the variance and the minimum value of the dQ(V )
curve are the most important features with the highest
contribution to the final prediction result, which is in line
with the conclusion drawn in (Severson et al., 2019). Other
than that, the next most important features are extracted
from the charging time and the mean charge current,
which demonstrates the effectiveness of including usage-
related information in the feature pool, i.e., the increased
prediction accuracy and robustness.
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Fig. 6. Feature importance analysis.

To verify the generalizability of the proposed method,
we apply our approach to the SNL dataset with NMC-
type chemistry. The numerical prediction results of various
kinds of feature inputs are shown in Table 4, and the de-
tailed prediction results are illustrated in Fig. 7. Generally,
the conclusions that we drew previously on the Stanford
dataset are also valid here. Comparatively, the prediction
performance discrepancy between using the time-series
features and the usage-related histogram features is larger
in the SNL dataset. The reason could be that the cells
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Fig. 7. Prediction results using different feature inputs for SNL dataset. (a) Using time-series, measurement-related
features only. (b) Using usage-related features only. (c) Using both feature sources.

in this dataset experience more diverse cycling profiles
than those in the Stanford dataset. Moreover, the charging
part of the dQ(V ) curve does not manifest as much aging
information as the discharging part of the dQ(V ) curve,
which has also been noticed by (Sulzer et al., 2021b).
Another interesting finding is that cell consistency, which
is how much the battery life varies if the cells experience
exactly the same cycling profile, will considerably affect
the prediction accuracy using usage-related features. We
have noted here that the lifetime variance of the cells
that conduct the same cycling profiles inside the Stanford
dataset is 78 cycles, whereas, for the SNL dataset, it is 42
cycles. Consequently, the prediction accuracy of the SNL
dataset adopting usage-related features is also higher than
that of the Stanford dataset.

Table 4. Results of different feature input for
battery life prediction using SNL dataset

Feature input R2 RMSE (cycles) MAPE (%)

Time-series 0.95 136 16.38

Usage related 0.96 131 11.32

combined features 0.98 94 10.52

7. CONCLUSION

In this work, we developed a battery lifetime early predic-
tion pipeline that is accurate and robust under various cy-
cling profiles and for different cell chemistry, highlighting
the importance and benefits of simultaneously using both
time-series features and usage-related histogram features.
We foresee such a method should be considered as a stan-
dard way to formulate feature pools for battery prognostic
problems.

In the future, the efficacy of such a prediction model
under more dynamic usage protocols, e.g., the NEDC cycle
or even using field data directly, should be investigated.
More broadly, further development of the optimal control
strategy to extend the lifetime and enhance the battery’s
performance based on such a lifetime prediction model can
bring more value to the battery communities.
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