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Abstract: A regression model with more parameters than data points in the training data is
overparametrized and has the capability to interpolate the training data. Based on the classical
bias-variance tradeoff expressions, It is commonly assumed that models which interpolate noisy
training data are poor to generalize. In some cases, this is not true. The best models obtained
are overparametrized and the testing error exhibits the double descent behavior as the model
order increases. In this contribution, we provide some analysis to explain the double descent
phenomenon, first reported in the machine learning literature. We focus on interpolating models
derived from the minimum norm solution to the classical least-squares problem and also briefly
discuss model fitting using ridge regression. We derive a result based on the behavior of the
smallest singular value of the regression matrix that explains the peak location and the double
descent shape of the testing error as a function of model order.
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1. INTRODUCTION

Linearly parametrized regression models that interpolate
the training data have recently attracted significant at-
tention Hastie et al. (2022), mainly due to the close con-
nections to many state-of-the-art machine learning models
Zhang et al. (2016); Belkin et al. (2019). Interpolation
of the training data is obtained when the number of es-
timated/trained parameters in the model is equal to or
larger than the number of training data used to estimate
the model. Such models are hence overparametrized and
there exists an infinite number of solutions that interpolate
the data. It has been noticed in recent publications Hastie
et al. (2022); Ribeiro et al. (2021) that the quality of
an estimated model with a linear parametrization often
follows a so-called double descent curve. This means that
the test data error first decreases with an increasing model
order and then increases again to a maximum when the
number of samples of the data is equal to the number of
parameters and then gradually decreases again with an in-
creasing model order. The double descent phenomenon has
previously been noticed in the deep-learning area Belkin
et al. (2019); Loog et al. (2020).

In this paper, we will show that this behavior can be
explained with a minimum of theory and complement the
available literature on the subject. Furthermore, we point
out that the extent of the behavior is closely tied to how
the model class is constructed, i.e., the ordering of the
basis functions employed in the regression model.

The paper is structured as follows. In Section 2, the
regression problem is formulated and necessary notation
and assumptions are explained. In Section 3, we derive
explicit expressions for the bias and variance contributions
for predictions obtained using the estimated model and

show that the smallest singular value of the regression
matrix plays a key role. We further provide a theorem that
predicts the behavior of the smallest singular value as the
model order increases. A few numerical examples are given
in Section 4 that illustrate the connection between the
model quality and the smallest singular value. In Section 5,
the paper is concluded with a summary of the findings.

2. PROBLEM FORMULATION

We consider a general regression problem where we seek
a function that maps a value in the domain X to the co-
domain Y, i.e. f : X → Y based on a given set of samples
of training data

D = {(y(t), x(t))}Mt=1 (1)

where x(t) ∈ X and y(t) ∈ Y and we consider a linearly
parametrized function class

f(x;θ) =

n∑
i=1

θiϕi(x) = ϕ(x)θ (2)

where ϕi : X → Y are given distinct basis functions and

ϕ(x) = [ϕ1(x) ϕ2(x) · · · ϕn(x)]

θ = [θ1 θ2 · · · θn]
T ∈ T .

(3)

The model order is equal to the size of the parameter
vector θ and is denoted by the integer n. In the analysis
that follows we assume the sets X and Y can be real or
complex spaces with finite dimensionsm and p respectively
and the parameter set T can be real or complex valued
with finite dimension n.

Based on the training data set the model parameters are
determined by minimizing the sum of squared errors
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θ̂ = argmin
θ

M
t=1

∥y(t)−
n

i=1

θiϕi(x(t))∥2 (4)

The minimization problem above can be written as the
least-squares (LS) problem

θ̂ = argmin
θ

∥y −Φθ∥2 (5)

with the regression matrix

Φ =




ϕ(x(1))
ϕ(x(2))

...
ϕ(x(M))


 =




ϕ1(x(1)) ϕ2(x(1)) · · · ϕn(x(1))
ϕ1(x(2)) ϕ2(x(2)) · · · ϕn(x(2))

...
...

...
...

ϕ1(x(M)) ϕ2(x(M)) · · · ϕn(x(M))




(6)

which is a matrix with N ≜ pM rows and n columns and
the vector

y =




y(1)
y(2)
...

y(M)


 . (7)

has N elements. We note that if n ≤ N we have an under-
parametrized problem and the solution to (5) is unique if
Φ has full rank. If n > N the problem is overparametrized
and there exist infinite many solutions to (5). The singular
value decomposition (SVD) Golub and Van Loan (1989)
of the regression matrix Φ in (3) plays a key role in the
analysis in this paper and we denote it as

Φ =

r
k=1

σkukv
H
k (8)

where r = min(n,N), the ordered singular values are
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, and uk and vk are the left
and right singular vectors respectively and (·)H denote the
Hermitian transpose. We assumeΦ has full rank and hence
σr > 0.

For analysis purposes we assume there exists a function
f0 : X → Y such that the data generated can be described
as

y(t) = f0(x(t)) + z(t) (9)

where z(t) is an i.i.d. zero mean white noise process with
variance

E z(t)z(t)H ≜ Rz.

3. ANALYSIS

In this section, we discuss and provide some analytical
results on the bias and variance of the estimated model
that is given by the minimum norm solution and the ridge
regression solution. We show that the largest variance
contribution is proportional to 1/σ2

r , the inverse of the
square of the smallest singular value of the regression
matrix Φ. Finally, we show that when n < N and the
model order is increased to n + 1 the smallest singular
value will decrease or stay unchanged. This implies that
the variance increases or stays constant with the increase
of the model order. Furthermore, when n ≥ N and the
model order is increased to n+1 we show that the smallest
singular value is increased or stays the same. This implies
that the variance decreases or stays constant with an
increase in the model order.

3.1 The minimum norm solution

The unique minimum norm solution to (5) is obtained
with the Moore-Penrose pseudo-inverse and can be ex-
pressed using the SVD as (see, e.g. Golub and Van Loan
(1989); Laub (2005))

θ̂ = Φ+y =

r
k=1

1

σk
vku

H
k y. (10)

By introducing the notation

x =




x(1)
x(2)
...

x(M)


 , f0(x) =




f0(x(1))
f0(x(2))

...
f0(x(M))


 , z =




z(1)
z(2)
...

z(M)




(11)
the estimate in (10) can be decomposed into

θ̂ =

r
k=1

1

σk
vku

H
k (f0(x) + z) = θ∗ + θ̃ (12)

where θ∗ = Φ+f0(x) =
r

k=1
1
σk

vku
H
k f0(x) is the noise

free minimum norm solution and θ̃ =
r

k=1
1
σk

vku
H
k z

is the contribution due to the noise. The zero mean
assumption on z(t) yields

E θ̂ = θ∗ (13)

The error of the output f(x′; θ̂) of the estimated model
given a new test data sample x′ is

e(x′) = ϕ(x′)θ̂ − f0(x
′)

= ϕ(x′)θ∗ − f0(x
′) + ϕ(x′)

r
k=1

1

σk
vku

H
k z

(14)

From above it is clear that the error e(x′) is composed of
a bias part ϕ(x′)θ∗ − f0(x

′) and a zero mean stochastic
part ϕ(x′)

r
k=1

1
σk

vku
H
k z that contributes with variance

Re(x
′) ≜ cov(e(x′)) =

ϕ(x′)


r

k=1

1

σk
vku

H
k


(IN ⊗Rz)


r

k=1

1

σk
vku

H
k

H

ϕH(x′)

(15)
If the measurement noise is uncorrelated between the
channels and have equal variance rz, then Rz = rzI. In
this case, the covariance expression (15) is simplified to

Re(x
′) = rz

r
k=1

1

σ2
k

(ϕ(x′)vk)(ϕ(x
′)vk)

H

= rzϕ(x
′)


r

k=1

1

σ2
k

vkv
H
k


ϕ(x′)H

(16)

since uH
k ul = 0 for k ̸= l. From (14) (and (16)) it is

clear that if the smallest singular value of Φ is close to
zero the error (and variance) can become arbitrarily large
unless ϕ(x′) is perpendicular to the right singular vector
corresponding to the smallest singular value. Further we
note that for any singular value distribution we have the

inequality
r

k=1
1
σ2
k

≥ r2r

k=1
σ2
k

with equality if all singular

values are equal, see e.g. Xia et al. (1999). A selection of
basis functions that results in equal singular values can
hence be regarded as variance optimal.
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θ̂ = argmin
θ

M
t=1

∥y(t)−
n

i=1

θiϕi(x(t))∥2 (4)

The minimization problem above can be written as the
least-squares (LS) problem

θ̂ = argmin
θ

∥y −Φθ∥2 (5)

with the regression matrix

Φ =




ϕ(x(1))
ϕ(x(2))

...
ϕ(x(M))


 =




ϕ1(x(1)) ϕ2(x(1)) · · · ϕn(x(1))
ϕ1(x(2)) ϕ2(x(2)) · · · ϕn(x(2))

...
...

...
...

ϕ1(x(M)) ϕ2(x(M)) · · · ϕn(x(M))




(6)

which is a matrix with N ≜ pM rows and n columns and
the vector

y =




y(1)
y(2)
...

y(M)


 . (7)

has N elements. We note that if n ≤ N we have an under-
parametrized problem and the solution to (5) is unique if
Φ has full rank. If n > N the problem is overparametrized
and there exist infinite many solutions to (5). The singular
value decomposition (SVD) Golub and Van Loan (1989)
of the regression matrix Φ in (3) plays a key role in the
analysis in this paper and we denote it as

Φ =

r
k=1

σkukv
H
k (8)

where r = min(n,N), the ordered singular values are
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, and uk and vk are the left
and right singular vectors respectively and (·)H denote the
Hermitian transpose. We assumeΦ has full rank and hence
σr > 0.

For analysis purposes we assume there exists a function
f0 : X → Y such that the data generated can be described
as

y(t) = f0(x(t)) + z(t) (9)

where z(t) is an i.i.d. zero mean white noise process with
variance

E z(t)z(t)H ≜ Rz.

3. ANALYSIS

In this section, we discuss and provide some analytical
results on the bias and variance of the estimated model
that is given by the minimum norm solution and the ridge
regression solution. We show that the largest variance
contribution is proportional to 1/σ2

r , the inverse of the
square of the smallest singular value of the regression
matrix Φ. Finally, we show that when n < N and the
model order is increased to n + 1 the smallest singular
value will decrease or stay unchanged. This implies that
the variance increases or stays constant with the increase
of the model order. Furthermore, when n ≥ N and the
model order is increased to n+1 we show that the smallest
singular value is increased or stays the same. This implies
that the variance decreases or stays constant with an
increase in the model order.

3.1 The minimum norm solution

The unique minimum norm solution to (5) is obtained
with the Moore-Penrose pseudo-inverse and can be ex-
pressed using the SVD as (see, e.g. Golub and Van Loan
(1989); Laub (2005))

θ̂ = Φ+y =

r
k=1

1

σk
vku

H
k y. (10)

By introducing the notation

x =




x(1)
x(2)
...

x(M)


 , f0(x) =




f0(x(1))
f0(x(2))

...
f0(x(M))


 , z =




z(1)
z(2)
...

z(M)




(11)
the estimate in (10) can be decomposed into

θ̂ =

r
k=1

1

σk
vku

H
k (f0(x) + z) = θ∗ + θ̃ (12)

where θ∗ = Φ+f0(x) =
r

k=1
1
σk

vku
H
k f0(x) is the noise

free minimum norm solution and θ̃ =
r

k=1
1
σk

vku
H
k z

is the contribution due to the noise. The zero mean
assumption on z(t) yields

E θ̂ = θ∗ (13)

The error of the output f(x′; θ̂) of the estimated model
given a new test data sample x′ is

e(x′) = ϕ(x′)θ̂ − f0(x
′)

= ϕ(x′)θ∗ − f0(x
′) + ϕ(x′)

r
k=1

1

σk
vku

H
k z

(14)

From above it is clear that the error e(x′) is composed of
a bias part ϕ(x′)θ∗ − f0(x

′) and a zero mean stochastic
part ϕ(x′)

r
k=1

1
σk

vku
H
k z that contributes with variance

Re(x
′) ≜ cov(e(x′)) =

ϕ(x′)


r

k=1

1

σk
vku

H
k


(IN ⊗Rz)


r

k=1

1

σk
vku

H
k

H

ϕH(x′)

(15)
If the measurement noise is uncorrelated between the
channels and have equal variance rz, then Rz = rzI. In
this case, the covariance expression (15) is simplified to

Re(x
′) = rz

r
k=1

1

σ2
k

(ϕ(x′)vk)(ϕ(x
′)vk)

H

= rzϕ(x
′)


r

k=1

1

σ2
k

vkv
H
k


ϕ(x′)H

(16)

since uH
k ul = 0 for k ̸= l. From (14) (and (16)) it is

clear that if the smallest singular value of Φ is close to
zero the error (and variance) can become arbitrarily large
unless ϕ(x′) is perpendicular to the right singular vector
corresponding to the smallest singular value. Further we
note that for any singular value distribution we have the

inequality
r

k=1
1
σ2
k

≥ r2r

k=1
σ2
k

with equality if all singular

values are equal, see e.g. Xia et al. (1999). A selection of
basis functions that results in equal singular values can
hence be regarded as variance optimal.

3.2 Bias

The size of the bias contribution ϕ(x′)θ∗ − f0(x
′) in (14)

depends on several factors. If we start by assuming that
the model is correctly specified, i.e. there exists a vector
θ0 such that for all x we have f0(x) = ϕ(x)θ0 then the
bias part of the error is

E e(x′) = ϕ(x′)θ∗ − f0(x
′) = ϕ(x′)Φ+Φθ0 − f0(x

′)

= ϕ(x′)(Φ+Φ− I)θ0
(17)

• In the underparametrized case (n ≤ N), we see that
Φ+Φ− I = 0, since Φ has full rank, thus the bias is
zero.

• If n > N then Φ+Φ − I is a rank n − N projection
matrix which projects onto the nullspace of Φ. The
bias of e(x′) hence depends on the co-linearity of the
projected true parameter vector and the row vector(s)
ϕ(x′). It also follows that the bias is zero if θ0 = ΦTp
for some vector p. In effect, this tells us that of all
possible correctly specified models f0(x) = ϕ(x)θ0
only the N dimensional subset of models given by a
parameter that can be expressed as ΦTp will have
zero bias since (Φ+Φ − I)ΦTp = 0. The set of zero
bias models hence depends explicitly on the training
data through the properties of the matrix Φ. As n
increases the size of the set of true functions with a
non-zero bias also increases as the size of the nullspace
of Φ increases with n.

For the misspecified case, when true function f0(x) is not

part of the parametrized model class f(x; θ̂) = ϕ(x)θ the
bias is

E e(x′) = ϕ(x′)θ∗−f0(x
′) = ϕ(x′)Φ+f0(x)−f0(x

′) (18)

For the overparametrized case when n ≥ N the estimated
model interpolates the training data. Hence, if x′ is very
close to one of the training data inputs x(t) in D, (see
(1)), we can expect the bias E e(x′) to be very small if the
basis functions ϕi(x) are continuous. In general when x′

is further away from the training samples the size of the
bias error is difficult to characterize beyond the expression
given in (18).

3.3 Ridge-Regression

If we add a squared penalty of the parameters to the LS
norm in (5) we obtain the ridge regression solution. For a
positive scalar λ, the parameter estimate is given by

θ̂ = argmin
θ

∥y −Φθ∥2 + λ∥θ∥2

= argmin
θ

∥∥∥∥
[
y
0

]
−
[

Φ√
λI

]
θ

∥∥∥∥
2 (19)

When λ > 0 the extended regression matrix always has
full rank and hence the LS problem has a unique solution.
Using the SVD of Φ defined in (8) we can explicitly write
the solution as

θ̂ =

([
Φ√
λI

]H [
Φ√
λI

])−1

ΦHy =
(
ΦHΦ+ λI

)−1
ΦHy

=

(
r∑

k=1

(σ2
k + λ)vkv

H
k +

n∑
k=r+1

λvkv
H
k

)−1

×

(
r∑

k=1

σkvku
H
k

)
y =

r∑
k=1

σk

σ2
k + λ

vku
H
k y

(20)
where the sum

∑n
k=r+1 λvkv

H
k vanishes if n ≤ N . It is

clear from (20) that the ridge regression solution converges
to the minimum norm solution (10) as λ → 0.

Following the same analysis as above we have θ̂ = θ∗ + θ̃
where the noise free solution is given by

θ∗ =

r∑
k=1

σk

σ2
k + λ

vku
H
k f0(x) (21)

and the noise-induced error is given by

θ̃ =

r∑
k=1

σk

σ2
k + λ

vku
H
k z (22)

The expression on the variance of the model for a new
value x′ corresponding to (16) is given by

Re(x
′) = rz

r∑
k=1

σ2
k

(σ2
k + λ)2

(ϕ(x′)vk)(ϕ(x
′)vk)

H (23)

It is clear that the variance can be reduced by increasing
λ. However, if λ > 0 and n ≥ N then

Φθ̂ =

[
r∑

k=1

σkukv
H
k

]
r∑

k=1

σk

σ2
k + λ

vku
H
k y

=
r∑

k=1

σ2
k

σ2
k + λ

uku
H
k y ̸= y

(24)

which means that the estimated model does not interpo-
late the training data. This effect is commonly known
as shrinkage since the estimated model parameters are
smaller in magnitude than the LS minimum norm solution.
The shrinkage effect will hence add to the total bias of the
estimated model.

3.4 Analysis of the smallest singular value

In this section we derive results on the behaviour of the
smallest singular value as the model order increases. The
results gives a direct explanation to the double descent
phenomenon. We will show

• that when n > N then the minimum singular value
of Φ for increasing model orders is non-decreasing.

• that for n < N then the minimum singular value is
non-increasing for increasing model orders.

The result is based on the following general matrix result.

Theorem 1. Let Φ denote a matrix with n columns and N
rows and define Φ̄ = [Φ ϕn+1] where ϕn+1 is an arbitrary
vector.

(1) Assume n < N and let σ1 ≥ σ2 ≥ . . . σn denote the
singular value of Φ and let σ̄1 ≥ σ̄2 ≥ . . . σ̄n+1 denote
the singular values of Φ̄ . Then

σ̄1 ≥ σ1 ≥ σ̄2 ≥ σ2 ≥ . . . ≥ σn ≥ σ̄n+1 (25)
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(2) Assume and n ≥ N and let σ1 ≥ σ2 ≥ . . . σN denote
the singular values of Φ and let σ̄1 ≥ σ̄2 ≥ . . . σ̄N

denote the singular values of Φ̄. Then

σ̄1 ≥ σ1 ≥ σ̄2 ≥ σ2 ≥ . . . ≥ σ̄N ≥ σN (26)

Proof. The result follows from (Horn and Johnson, 1985,
Theorem 4.3.15) or (Horn and Johnson, 1991, Corollary
3.1.3)

Corollary 2.

(1) If the model order satisfies n < N then a model order
increase will result in a non-increase (unchanged or
decreased size) of the smallest singular value.

(2) If the model order satisfies n ≥ N then a model order
increase will result in a non-decrease (unchanged or
increased size) of the smallest singular value.

The presented result shows that if the inverse of the
smallest singular value has a maximum, then it will appear
when n = N . As the level of the variance is highly
dependent on the smallest singular value as shown in
Section 3 the maximum variance will in general appear for
model order equal to N and the double descent curve will
peak at n = N if the error is dominated by the variance
contribution.

3.5 Does overparametrization give any advantages?

The key finding in the section above is that for n > N
the smallest singular value σr will not decrease with n. It
will stay the same or increase. For the miss-specified case
where the noise-free solution is given by

θ∗ = ϕ+f0(x) =

r∑
k=1

1

σk
vku

H
k f0(x) (27)

we can conclude that the magnitude of the elements in θ∗ is
highly influenced by the value of 1/σr. As the model order
increases 1/σr will in general decrease and the magnitude
of the elements in θ∗ will decrease. From the predictive
point of view of the estimated models, i.e. values outside
the training set, it seems more natural that models with
a smaller norm of the parameter vector are better than
models that have very large norm of the parameter vector.
A second, more clear, benefit is that the noise sensitivity
is decreased as the model order increases, at least for
moderate values above N . This effect is of course most
pronounced when the regression matrix is close to singular
when n = N and hence, the smallest singular value is
closest to zero.

4. NUMERICAL ILLUSTRATIONS

In this section we examine some simulated numerical
examples and interprete the results with help of the results
derived in the analysis section. In all examples we will
estimate regression models with varying orders using the
scalar valued (i.e. p = 1) complex exponential ϕ(x) =
ej2πfx as basis functions. A model structure is defined by
the set of frequencies F = {fi}ni=1 and is given by

f(x;θ) =

n∑
i=1

θie
j2πfix. (28)

We generate the training data according to (9) were we
select x(t) = t and let t = 0, 1, . . . , N − 1 where N = 10

Case ε f0 nmax N

A 0.5 f0,lin(x) 30 10
B 0 f0,lin(x) 30 10
C 0.5 f0,opt(x) 30 10
D 0 f0,opt(x) 30 10

Table 1. Definition of the different cases in the
numerical examples

and the noise z(t) are i.i.d. samples drawn from a zero
mean circular symmetric complex Gaussian distribution
with variance 0.1. To evaluate the quality of an estimated

regression model f(x; θ̂) we derive the normalized mean
square error of the predictions at the test data samples
x′(t) for t = 0, 1, . . . , N − 1

NMSE =

∑
t |f0(x′(t))− f(x′(t); θ̂)|2∑

t |f0(x′(t))|2
. (29)

We let x′(t) = t + ϵ, t = 0, . . . , N − 1 and vary ε in the
different experiments. If ε = 0 the estimated model is
evaluated in the same data points as used for the learning.
If ε = 0.5 we evaluate the quality of the model’s ability to
predict values in between training samples, i.e. ability to
generalize.

In the experiments we use two different model structures.
We set nmax = 3N as the maximum model order. For the
model structure denoted as linear ordering we define the
frequency set as

Flin,n = {k/nmax}n−1
k=0 . (30)

For the model structure denoted as optimal ordering we
define the frequency set as

Fopt,n =

{
{k/N}n−1

k=0 , n ≤ N

{k/N}N−1
k=0 ∪ Sn−N , n > N

(31)

where the set Sk is the first k elements in the ordered set
{k/nmax}nmax−1

k=0 − {k/N}N−1
k=0 . If n ≤ N then the columns

in the regression matrix Φ defined in (6) are orthogonal
to each other and have equal norms. This in turn shows
that all singular values are non-zero and equal and hence
this model structure is variance optimal as discussed in
Section 3. We note that that Flin,nmax

= Fopt,nmax
, i.e. the

two model structures are identical for n = nmax but with
a different ordering of the basis functions.

We will use the same type of basis functions to define two
data generating functions where the first one is given by

f0,lin(x) =

10∑
k=1

αke
j2π k−1

nmax
x (32)

and the second one is

f0,opt(x) =

10∑
k=1

αke
j2π k−1

N x (33)

In the Monte-Carlo Simulations below we will generate
the coefficients αk by sampling from a zero mean circu-
lar symmetric complex Gaussian distribution with unit
variance. The construction of the data generating systems
implies that for f0,lin(x) then all modell structures defined
by Flin,n for n ≥ 10 will include the data generating
system in the model class. Along the same lines as above
we notice that f0,opt(x) is included in all model structures
defined by the set Fopt,n when n ≥ N . In Table 1 we
define four experimental cases. For each case we generate
a data generating system using the function according the
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(2) Assume and n ≥ N and let σ1 ≥ σ2 ≥ . . . σN denote
the singular values of Φ and let σ̄1 ≥ σ̄2 ≥ . . . σ̄N

denote the singular values of Φ̄. Then

σ̄1 ≥ σ1 ≥ σ̄2 ≥ σ2 ≥ . . . ≥ σ̄N ≥ σN (26)

Proof. The result follows from (Horn and Johnson, 1985,
Theorem 4.3.15) or (Horn and Johnson, 1991, Corollary
3.1.3)

Corollary 2.

(1) If the model order satisfies n < N then a model order
increase will result in a non-increase (unchanged or
decreased size) of the smallest singular value.

(2) If the model order satisfies n ≥ N then a model order
increase will result in a non-decrease (unchanged or
increased size) of the smallest singular value.

The presented result shows that if the inverse of the
smallest singular value has a maximum, then it will appear
when n = N . As the level of the variance is highly
dependent on the smallest singular value as shown in
Section 3 the maximum variance will in general appear for
model order equal to N and the double descent curve will
peak at n = N if the error is dominated by the variance
contribution.

3.5 Does overparametrization give any advantages?

The key finding in the section above is that for n > N
the smallest singular value σr will not decrease with n. It
will stay the same or increase. For the miss-specified case
where the noise-free solution is given by

θ∗ = ϕ+f0(x) =

r∑
k=1

1

σk
vku

H
k f0(x) (27)

we can conclude that the magnitude of the elements in θ∗ is
highly influenced by the value of 1/σr. As the model order
increases 1/σr will in general decrease and the magnitude
of the elements in θ∗ will decrease. From the predictive
point of view of the estimated models, i.e. values outside
the training set, it seems more natural that models with
a smaller norm of the parameter vector are better than
models that have very large norm of the parameter vector.
A second, more clear, benefit is that the noise sensitivity
is decreased as the model order increases, at least for
moderate values above N . This effect is of course most
pronounced when the regression matrix is close to singular
when n = N and hence, the smallest singular value is
closest to zero.

4. NUMERICAL ILLUSTRATIONS

In this section we examine some simulated numerical
examples and interprete the results with help of the results
derived in the analysis section. In all examples we will
estimate regression models with varying orders using the
scalar valued (i.e. p = 1) complex exponential ϕ(x) =
ej2πfx as basis functions. A model structure is defined by
the set of frequencies F = {fi}ni=1 and is given by

f(x;θ) =

n∑
i=1

θie
j2πfix. (28)

We generate the training data according to (9) were we
select x(t) = t and let t = 0, 1, . . . , N − 1 where N = 10

Case ε f0 nmax N

A 0.5 f0,lin(x) 30 10
B 0 f0,lin(x) 30 10
C 0.5 f0,opt(x) 30 10
D 0 f0,opt(x) 30 10

Table 1. Definition of the different cases in the
numerical examples

and the noise z(t) are i.i.d. samples drawn from a zero
mean circular symmetric complex Gaussian distribution
with variance 0.1. To evaluate the quality of an estimated

regression model f(x; θ̂) we derive the normalized mean
square error of the predictions at the test data samples
x′(t) for t = 0, 1, . . . , N − 1

NMSE =

∑
t |f0(x′(t))− f(x′(t); θ̂)|2∑

t |f0(x′(t))|2
. (29)

We let x′(t) = t + ϵ, t = 0, . . . , N − 1 and vary ε in the
different experiments. If ε = 0 the estimated model is
evaluated in the same data points as used for the learning.
If ε = 0.5 we evaluate the quality of the model’s ability to
predict values in between training samples, i.e. ability to
generalize.

In the experiments we use two different model structures.
We set nmax = 3N as the maximum model order. For the
model structure denoted as linear ordering we define the
frequency set as

Flin,n = {k/nmax}n−1
k=0 . (30)

For the model structure denoted as optimal ordering we
define the frequency set as

Fopt,n =

{
{k/N}n−1

k=0 , n ≤ N

{k/N}N−1
k=0 ∪ Sn−N , n > N

(31)

where the set Sk is the first k elements in the ordered set
{k/nmax}nmax−1

k=0 − {k/N}N−1
k=0 . If n ≤ N then the columns

in the regression matrix Φ defined in (6) are orthogonal
to each other and have equal norms. This in turn shows
that all singular values are non-zero and equal and hence
this model structure is variance optimal as discussed in
Section 3. We note that that Flin,nmax

= Fopt,nmax
, i.e. the

two model structures are identical for n = nmax but with
a different ordering of the basis functions.

We will use the same type of basis functions to define two
data generating functions where the first one is given by

f0,lin(x) =

10∑
k=1

αke
j2π k−1

nmax
x (32)

and the second one is

f0,opt(x) =

10∑
k=1

αke
j2π k−1

N x (33)

In the Monte-Carlo Simulations below we will generate
the coefficients αk by sampling from a zero mean circu-
lar symmetric complex Gaussian distribution with unit
variance. The construction of the data generating systems
implies that for f0,lin(x) then all modell structures defined
by Flin,n for n ≥ 10 will include the data generating
system in the model class. Along the same lines as above
we notice that f0,opt(x) is included in all model structures
defined by the set Fopt,n when n ≥ N . In Table 1 we
define four experimental cases. For each case we generate
a data generating system using the function according the

f0 column and create 500 training datasets with added
noise and 500 data sets without noise. For each dataset a
model is estimated and the NMSE is evaluated at the x
values defined by t+ ε for t = 0, . . . , N − 1.

The average NMSE over the Monte-Carlo simulations for
the two model structures as a function of the model orders
are reported in the graphs in Figure 1 to Figure 4. In
Figure 5 the inverse of the smallest singular value of the
regression matrix Φ is illustrated as a function of model
order for the two model structures.

4.1 Discussion

The NMSE testing error is in the figures shown for models
trained on noise free data as well as trained on the noisy
data. The testing results on models trained on noise free
data give direct information on the NMSE caused by
the bias contribution given by (17) and (18). The testing
results on models trained on noisy data give information
about the total MSE caused by the bias contribution and
the variance contribution given by (16).

In Case A the true system is in the linear ordering model
class for model orders n ≥ 10. Hence for noise free data and
n = 10 we recover the true model as seen in Figure 1. For
the noise free case the test data error has an increase again
for model orders larger than 20. This is the effect when
the true model parameters are not in the row space of Φ
as discussed below (17). For models estimated from noisy
data the double descent phenomenon is clearly visible.
A comparison with the top graph in Figure 5 show the
qualitative agreement between the NMSE and the inverse
of the smallest singular value. The peaks are located for
n = N = 10 in both graphs and the behaviour for the
singular values are in agreement with Corollary 2. The
result for Case A for the optimal ordering model class is
shown in the bottom graph in Figure 1. For this case the
true model is in the model set for n ≥ 16. Hence, even for
noise free data this model structure has a non-zero error
that for the highest model orders increases again for the
same resons as discussed before. However, for the noisy
case the performance is significantly improved for this
model structure and is in par with the performance of the
model estimated from the noise free data. The reason for
this is found in the bottom graph in Figure 5. The inverse
of the smallest singular value is much smaller than the
linear ordering model structure for all model orders. This
implies that the variance as given by (16) is much smaller
as compared with the other model structure. In Case B the
same setup is used except that the test data points are the
same as the training data points. For the noise free case
we obtain zero error for both model structures for n ≥ 10.
For the noisy data case an error which is equal to the noise
level is obtained since all models interpolate the training
data when n ≥ 10. For case C an D the true system is
now given by the optimal order data structure. Hence, for
n = 10 the optimal ordering model structure recovers the
true model for noise free data and give the best NMSE for
the noisy data. For higher model orders the performance is
slightly reduced which again is attributed to an increase in
the bias as discussed before. For the linear ordering model
structure it is only at n = 28 the true system is in the
model class and it is at this model order the best NMSE on
test data are achieved. The ill-conditioning of this model
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Fig. 1. Case A: Graphs show normalized mean squared
error as a function of model order for the linear or-
dering model structure (top) and the optimal ordering
(bottom).
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Fig. 2. Case B: Graphs show normalized mean squared
error as a function of model order for the linear or-
dering model structure (top) and the optimal ordering
(bottom).

structure is for the lower model orders clearly visible and
the NMSE again has a peak at n = N = 10. For this
model structure we can conclude that overparametrization
produces a model with resonable performance as compared
to the solutions for model orders around 10.

5. CONCLUSIONS

The existence of a double descent behaviour is closely
related to the inverse of the smallest singular value of the
associated regression matrix. A model structure with a
near singular regression matrix when n = N results in
a double descent behavior for the NMSE on test data at
other locations than the training data.
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Fig. 3. Case C: Graphs show normalized mean squared
error as a function of model order for the linear or-
dering model structure (top) and the optimal ordering
(bottom).
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Fig. 4. Case D: Graphs show normalized mean squared
error as a function of model order for the linear or-
dering model structure (top) and the optimal ordering
(bottom).

To estimate overparametrized models, i.e. more parame-
ters than training data using the pseudo inverse solution
can be resonable (NMSR< 1) if the true parameter is close
to the row space of the regression matrix. If this is not the
case the solutions will have poor performance.

To obtain robust overparametrized solutions it is impor-
tant to select a model class such that the minimum singu-
lar value of the associated regression matrix is as large as
possible.
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Fig. 5. The graphs show the inverse of the smallest singular
value for the regressor matrixΦ as a function of model
order for the linear ordering model structure (top) and
the optimal ordering (bottom).
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