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Dynamics and Reactivity of Cu-species in Cu-CHA for NH3-SCR

Joachim Dithmer Bjerregaard
Department of Physics
Chalmers University of Technology

Abstract
Copper exchanged chabazite (Cu-CHA) is a state-of-the-art catalyst for deNOx via
ammonia assisted selective catalytic reduction (NH3-SCR) in lean burn engines,
owing to its good low-temperature activity, and high hydrothermal stability. One
challenge for Cu-CHA is, however, the sensitivity to sulfur species, which are present
in the exhaust gas. Even at small concentrations, sulfur accumulates in the catalyst
leading to a loss in activity and a reduction in the operational lifetime. A better
understanding of the NH3-SCR activity and sulfur poisoning is important for the
development of catalysts with high activity that are sulfur resistant.

In this thesis, density functional theory (DFT) calculations are used to study the
mechanism for the sulfur poisoning of Cu-CHA during NH3-SCR conditions, with
a focus on low-temperature deactivation. It is suggested that SO2 reacts with
[Cu2(NH3)4O2]2+ resulting in accumulation of ammonium bisulfate species inside
the chabazite cage. This hinders the pairing of [Cu(NH3)2]+ complexes, which is
needed for adsorption of O2, leading to a loss in activity. At high temperatures, it is
proposed that SO2 and SO3 primary react with ZCuOH and Z2CuOOCu complexes,
forming stable copper sulfur species, with SO3 forming Cu sulfates with highest sta-
bility. The combination of DFT with micro-kinetic modeling has, moreover, been
used to investigate H2 temperature programmed reduction (H2-TPR) profiles to aid
the interpretation of experimental H2-TPR profiles.

Given the importance of [Cu(NH3)2]+ diffusion for the O2 adsorption and subse-
quently reduction of NO, a machine learning force field (ML-FF) has been con-
structed that is trained with DFT data. The use of ML-FF makes it possible to
simulate system sizes and timescales inaccessible to conventional ab initio molecular
dynamics (AIMD). The effect of zeolite composition on the mobility and pairing of
[Cu(NH3)2]+ complexes is studied using different analysis tools. It is found that a
high Cu/Al and low Si/Al ratio enhance the pairing of [Cu(NH3)2]+ complexes.

Keywords: Cu-CHA, NH3-SCR, Sulfur Deactivation, Diffusion, DFT, Machine
Learning Force Field
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1
Introduction

Since the advent of industrialization, humans have emitted large quantities of green-
house and toxic gases into the atmosphere. Emissions of gases such as CO2 and CH4
contribute to the greenhouse effect, which, leads to rising temperatures globally.1
Simultaneously, there has been an increase in pollutants like NOx (x=1,2), SO2,
CO, and particulate matter (PM), affecting the local air quality. In fact, 99 % of
the world population today, breathes air that surpasses the guidelines set by the
World Health Organization (WHO),2 thus, there is an urgent need for reducing air
pollution. One of the main sources of NOx is combustion processes from petrol or
diesel-powered vehicles and power plants. Biogenic sources of NOx include light-
ing and volcanic activities, although they are not as important as anthropogenic
emissions.3 In the EU, the road transport sector is the largest source of NOx , ac-
counting for 39 % of the total emissions.4 The second largest source is the energy
production and distribution sector emitting 16 % of the total NOx emissions.4 For-
tunately, large improvements have been made regarding NOx emissions during the
last decades. The NOx emissions from transport in the EU has decreased by 53 %
with respect to the 1990-level,4 which is largely attributed to the development of
new catalytic aftertreatment systems for NOx control.5 However, there is a contin-
uous need to improve catalytic techniques for NOx control, due to the increasingly
stringent regulations concerning emissions from fuel engines.

1.1 NOx Emissions
NOx have negative health effects, such as respiratory and lung problems,2 however
many of the negative effects associated with NOx originate from the reaction of NOx
with other species in the atmosphere. Both NO and NO2 are reactive molecules with
short lifetimes of around 4 days.3 NOx is a precursor for the formation of tropospheric
O3 and can react with volatile organic compounds (VOC), which can lead to the
formation of smog.6 Furthermore, NO2 can react with OH radicals in the atmosphere
forming nitric acid7 according to:

NO2 + OH −−→ HNO3 (R1)

Nitric acid HNO3, is soluble in H2O and may contribute to acid rain, causing dam-
age to the ecosystem.8 Emission control strategies can be designed to reduce the
formation of NOx directly from the source or by removing NOx once it is formed.
NOx abatement methods may include physical processes such as filters that adsorb
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1. Introduction

NOx for which typically active carbon is used or a catalyst that can chemically react
with NOx , forming the harmless gases N2 and H2O.3 The use of a catalyst is the
method of choice for NOx control of fuel-powered vehicles. For gasoline cars, the
three-way-catalyst (TWC) is used thanks to its ability to efficiently remove NOx ,
CO, and hydrocarbon (HC) simultaneously. NOx is reduced to N2 and H2O, while
CO and HC are oxidised to CO2 and H2O. The TWC is typically based on Pt, Pd,
and Rh nanoparticles supported on a metal oxide such as Al2O3.9 Promoters in the
form of metal oxides with high oxygen capacity, such as CeO2 are also added. TWC
has the limitation that it must be operating under stoichiometric conditions, which
exclude the use of TWC in lean burn engines, where there is an excess of O2. The
use of lean burn engines provides a better fuel economy compared to stoichiometric
engines.10 To remove NOx from lean burn engines ammonia assisted selective cat-
alytic reduction (NH3-SCR) is typically used. In this technology NH3 is dosed over
a catalyst, that reacts with NOx forming N2 and H2O. Zeolite- or vanadium-based
catalyst is commonly used for NH3-SCR since they show high activity and selectiv-
ity towards reducing NOx to N2 and have at the same time a good hydrothermal
stability.11

1.2 Heterogeneous Catalysis
A catalyst is defined as a material that can increase the rate of a reaction without
changing the standard Gibbs energy.12 A catalyst is ideally not, consumed during
the reaction, hence only small amounts of catalyst are required. Catalysts are a
fundamental part of modern society and it is estimated that 85 % of all chemical
products are produced using a catalyst.13 Catalysts are generally divided into ho-
mogeneous, enzymatic, and heterogeneous catalysts. In homogeneous catalysts, the
reactants and products are in the same phase as the catalyst.14 Enzymatic catalysts
are enzymes used in biochemical reactions. In heterogeneous catalysis, the reactant
and products have a different phase from the catalyst. The catalyst is typically in
solid phase while the reactants and products are in gas phase. The advantage of
using heterogeneous catalysts is the ease of separating catalysts and products, how-
ever, they typically have lower selectivity compared to homogeneous catalysts.14

The role of a catalyst on the potential energy landscape is illustrated in Figure 1.1.
Two pathways are shown that have the same reactants and products. However, the
landscape connecting the initial and final state are different. Typically for surface
reactions, the use of a catalyst introduces several intermediates along the reaction
coordinate. These intermediates could be the adsorption and desorption processes
and the different steps of the surface reactions. The non-catalyzed reaction has
one high activation barrier, while the catalyzed reaction has many lower activation
energies, which increases the rate of the reaction as given by the Arrhenius equation:

r = Ae−Ea/kBT (1.1)

The rate scales experimentally with the barrier, Ea. A is the pre-expotential factor,
kB is the Boltzmann constant and T is the temperature. One role of the catalyst is to
assemble the reactants, so they are close and can react with each other. Even though
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1. Introduction

Figure 1.1: Potential energy diagram, for a catalyzed reaction and non-catalyzed
reaction.

the catalyst is not consumed during the reaction, it may lose activity over time, due
to deactivation. Examples of deactivation processes are poisoning of the active site
by containments in the gas-feed, thermal degradation if the catalyst is operated at
high temperature, or fouling, which is physical deposition onto the catalyst, such
as carbon or coke.15 Hence, a catalytic process should aim at having both a high
activity to the desired product and a good stability of the catalyst.

1.3 NH3-SCR
The NH3-SCR treatment systems in diesel-powered vehicles, use urea, which upon
heating releases NH3. NH3 can react with NO in presence of O2 through the so-
called, standard SCR reaction.

4 NH3 + 4 NO + O2 −−→ 4 N2 + 6 H2O (R2)

The stoichiometry between NH3 and NO is one, and the presence of O2 is required
for the abstraction of the hydrogen atoms. A catalyst suitable for NH3-SCR should
have redox properties to allow for O2 adsorption and, be able to adsorb and facilitate
NO and NH3 coupling. NO is the main component of NOx emissions in diesel
combustion.16 However, in presence of NO2, the SCR reaction can proceed according
to the so-called fast SCR.

2 NH3 + NO + NO2 −−→ 2 N2 + 3 H2O (R3)

Side reactions that can occur simultaneously with the desired SCR-reactions, such
as oxidation of NH3 and NO, need to be suppressed. One important side reaction
is the formation of N2O.

2 NH3 + 2 NO + O2 −−→ N2 + N2O + 3 H2O (R4)

3



1. Introduction

N2O is a potent greenhouse gas, and this side reaction should be avoided. Common
catalysts for NH3-SCR include vanadium-based and zeolite-based materials.11 For
vanadium-based catalyst, TiO2 is normally used as support, thanks to its high SO2
resistance and good dispersion of V2O5.17 However TiO2 can undergo an unwanted
phase transition from anatase to rutile during high temperatures and a promotor
such as WO3 is often added to stabilize the catalyst.18 The addition of WO3 enhances
at the same time, the low-temperature activity.18 A drawback with vanadium-based
catalysts is that VOx species are volatile, which, poses a health risk.19 The standard
SCR is believed to occur as a redox reaction on V+5 sites in a Mars-van Krevelen
type of mechanism20 where NH3 and NO reduces the active site to V+4. V+4 is then
reoxidized by O2 back to V+5.

Zeolites are hydrated crystalline aluminum silicates, which can be found in nature
or can be synthesised.21 Zeolites are composed of tetrahedral TO4 sites where T is
Si or Al. Pure silicates (SiO2) do not contain any charges as silicon is tetravalent.
However, as Al is trivalent, it requires a balancing counter ion, which could be a
proton. In natural zeolites, the counter ion is typically Na+ or K+.21 It is possible
to do an ion exchange and this is commonly done with either Cu or Fe.22 Zeolites
consist of connected cages, which are the size of molecules, giving a high size se-
lectivity and unique properties. As of today, there are 255 zeolites with different
frameworks as documented by the International Zeolite Association (IZA).23 Each
zeolite framework is assigned a 3-letter combination, with BEA and CHA being two
zeolites that are commonly used for NH3-SCR. BEA is classified as a large pore-
size zeolite with the largest ring consisting of 12 Si atoms. BEA has shown good
tolerance against sulfur,24 however, it suffers from thermal degradation25 and hy-
drocarbon poisoning.26 CHA is a small pore zeolite with the structure illustrated in
Figure 1.2. Chabazite consists of two cages, a small cage made up of four- and six-
membered rings and a large cage, consisting of four- six- and eight-membered rings.
Cu exchanged chabazite (Cu-CHA) zeolites are known to have good hydrothermal
stability,27 with a good low-temperature activity to the SCR-reaction28 and is the
catalyst studied in this thesis.

The low-temperature NH3-SCR mechanism has been extensively studied during the
last few years.29–31 The active site in Cu-CHA for low-temperature NH3-SCR is NH3
solvated copper complexes [Cu+(NH3)2]+. [Cu+(NH3)2]+ are mobile complexes that
can diffuse between the CHA-cages and if two complexes are paired in the same
cage, they can adsorb O2 forming a peroxo complex [Cu2+

2 (NH3)4O2]2+. NH3 and
NO can couple over the complex forming HONO and H2NNO, which are connected
to N2 and H2O. The NO-NH3 coupling30,31 reduces Cu back to [Cu+(NH3)2]+. The
reaction is a redox-cycle where Cu changes between oxidation states +1 and +2.
The mechanism for the high temperature is less well known but is believed to occur
over framework-bound Cu.

4



1. Introduction

Figure 1.2: The two cages, that make up the Chabazite structure. Atomic color
codes: Si (yellow) and O (red).

1.4 Catalyst Deactivation

Deactivation of Cu-CHA is a significant challenge, as it impacts the activity and
life time of the catalyst. The deactivation of a catalyst is closely related to the
chemicals and temperature that the catalyst is exposed to. Exhaust gas contains
various contaminants derived from the engine and fuel additives, that may deac-
tivate Cu-CHA.32 The possible contaminants include phosphor, alkali metals, hy-
drocarbon, and sulfur. Phosphor has been suggested to form Cu-phosphate species
that deactivate the catalyst33,34 and may become a significant problem in the future
due to the introduction of biomass fuels.33 Hydrocarbons formed during incomplete
combustion, cause significant deactivation in large pore zeolite such as BEA. How-
ever, a small pore zeolite such as Cu-CHA is generally not poisoned by the larger
hydrocarbons35 such as dodecane, C12H26, due to the small ring size preventing
larger molecules from entering. Smaller hydrocarbons like C3H6 do deactivate the
catalyst, but only slightly and in the medium temperature range (200-300 ◦C).35

Furthermore, when exposed to H2O at high temperatures, site relocation, dealu-
mination and breakdown of the pore structure may occur, known as hydrothermal
deactivation.36

Diesel contains small amounts of sulfur and SO2 is formed during combustion. In
the after-treatment system, a diesel oxidation catalyst (DOC) is commonly placed
upstream of the NH3-SCR catalyst, which may oxidize a part of SO2 to SO3, hence,
both of these sulfur species will be present in the gas entering the catalyst. Cu-CHA
is generally prone to sulfur deactivation compared to large pore size zeolite24 and Fe-

5



1. Introduction

based zeolites.37 Even small amounts of sulfur can accumulate in the zeolite and lead
to substantial deactivation.38 The exposure of the catalyst to sulfur might lead to
the formation of sulfuric acid, ammonium (bi)sulfate, and Cu-sulfates.39 A large part
of the sulfur-induced deactivation can be regenerated by increasing the temperature
to 500 ◦C, which is done periodically during operation, extending the lifetime of the
catalyst. However, some of the strongly bound sulfur remains in the zeolite and is
not removed during the regeneration, resulting in a loss of activity over time.40 The
poisoning mechanism with sulfur is a complex process and depends on numerous
factors, such as gas composition (O2, H2O, NO and NH3), and temperature. There
are some promising ways to limit sulfur deactivation by, for example, constructing a
core-shell structure,41 however, these methods are in the early stage of development.

1.5 Objectives
The objective of the thesis is to investigate NH3-SCR over a Cu-CHA zeolite with
a focus on sulfur deactivation to gain a deeper mechanistic understanding.

Cu-CHA is a dynamic system, where the state of Cu changes depending on tempera-
ture and gas composition.42 Several experimental procedures exist that quantify the
different Cu sites, for instance, H2-TPR, which is studied in Paper 1. In Paper I,
density functional theory (DFT) calculations are performed to study H2 dissociation
over Cu sites, which is used to construct a mean-field model to simulate H2-TPR
profile. In addition H2-TPR experiments are carried out to support our findings.
This work will aid future interpretations of H2-TPR profiles.

Paper II and Paper III focus on the sulfur poisoning. In Paper II a detailed re-
action mechanism is proposed for the deactivation of the low-temperature NH3-SCR
by SO2. A thermodynamic analysis is carried out to construct a phase diagram to in-
vestigate the most stable sulfur species at reaction conditions. As sulfur is proposed
to limit the mobility of NH3 solvated Cu species, constrained ab initio molecular
dynamic simulation is performed to investigate the free energy barriers. In Paper
III sulfur poisoning with both SO2 and SO3 at high-temperature and its effect on
ammonium nitrate and N2O formation is investigated. DFT calculations for sulfur
interaction with Cu complexes are performed to facilitate the interpretation of the
experimental results.

In Paper IV, a machine learning force-field (ML-FF) is constructed that is trained
using DFT data. The ML-FF is used to investigate the mobility and pairing of
[Cu(NH3)2]+ complexes in Cu-CHA. Molecular dynamic simulations for systems
with thousands of atoms for nanoseconds are performed to investigate the effect
of Si/Al ratio, Cu loading, counter ion, and Al distribution. MD simulation using
metadynamics is performed to investigate the diffusion between zeolite cages.

The thesis contains six chapters with the introduction being the first. In chapter
two, the electronic energy obtained from both density functional theory and machine
learning force-fields is discussed. Chapter three introduces methods for simulating
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1. Introduction

the system at elevated pressures and temperatures, such as molecular dynamics and
micro-kinetic modeling. Chapters four and five present an overview of the results
obtained and chapter six is the conclusions and outlook.
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2
Electronic Energy

The knowledge about the electronic energy as a function of nuclear coordinates is
fundamental to the study of chemical reactions. The electronic energy can be calcu-
lated by solving the Schrödinger equation using the approximation within density
functional theory. First-principle calculations are computationally expensive and an
alternative approach is to parameterize the electronic energy by means of machine
learning force-fields. The parameterization allows simulations of larger systems and
longer simulation times. This chapter will introduce both of these methods.

2.1 The Schrödinger Equation
The time-independent Schrödinger equation is given by:

Ĥψ = Eψ (2.1)

Ĥ is the Hamiltonian operator, ψ is the wavefunction and E is the energy. The
Hamiltonian can be written with operators for the potential and kinetic energies
of the electrons and nuclei. It is convenient to write the Schrödinger equation in
atomic units (au), which is defined as me = e = ℏ = 1

4πϵ0
= 1.

Ĥ = −
nuclei∑

A

1
2Mn

∇2
n −

elec∑
i

1
2∇2

e −
nuclei∑

A

elec∑
i

ZA

RA − ri

(2.2)

+
elec∑

i

elec∑
j>i

1
ri − rj

+
nuclei∑

A

nuclei∑
B>A

ZaZb

|RA −RB|

The first two terms are the kinetic energy of the nuclei and electrons, respectively.
The last three terms are the Coloumb interaction between nucleus-electron, electron-
electron, and nucleus-nucleus, respectively. An essential part when solving the
Schrödinger equation is the Born-Oppenheimer approximation, allowing us to treat
the wavefunction of the nuclei and electrons separately. This approximation is based
on the fact that the nuclei have high masses compared to electrons, meaning that
the nuclei can be seen as static relative to the motion of the electrons. This makes
it possible to express the electronic part using nuclear coordinates.

2.2 Density Functional Theory
Using the Schrödinger equation (2.1), only one electron systems such as H2

+ can be
solved analytically. Thus, the solution needs to be approximated using numerical
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2. Electronic Energy

methods. One of the first approaches developed to solve the Schrödinger equation
is the Hartree-Fock (HF) approximation.43,44 In HF, the one-electron orbitals are
arranged in a Slater determinant. The Slater determinant satisfies the requirement
that the total electronic wavefunction must be asymmetric, meaning that the wave-
function must change sign when interchanging two electron coordinates. The HF
energy is given by:

EHF =
Nelec∑
i=1

hi + 1
2

Nelec∑
i=j

Nelec∑
j=1

(Jij −Kij) + Vnn (2.3)

hi is the energy given by the one-electron kinetic energy operator.

hi = ⟨ϕi(1)| − 1
2∇2

i −
Nnuclei∑

A

ZA

|RA − ri|
|ϕi(1)⟩ (2.4)

Jij is the Coulomb integral and Kij is the exchange integral. Jij and Kij are given
by

Jij = ⟨ϕi(1)ϕj(2)| 1
|r1 − r2|

|ϕi(1)ϕj(2)⟩ (2.5)

Kij = ⟨ϕi(1)ϕj(2)| 1
|r1 − r2|

|ϕj(1)ϕi(2)⟩ (2.6)

Vnn is the nuclear repulsion. HF does not contain the full electron correlation as the
many-body wavefunction is described by a single Slater determinant. The electron-
electron repulsion is instead included in an average fashion. On the other hand, HF
contains the exact exchange energy, which means that any electron self-interaction
is absent.
In 1964, Hohenberg and Kohn proposed two theorems that form the basis for DFT
methods used today.45 The first theorem states that the external potential Vext is a
unique functional of the electron density, ρ, which means that the ground state is
also a unique functional of the electron density. The second theorem states that the
ground state energy is a unique functional of the electron density. The clear advan-
tage of using the electron density, ρ compared to wavefunction-based approaches is
that the electron density, in principle, has the same number of variables indepen-
dent of the size of the system. However, the functional connecting the energy and
electron density is unknown.
Attempts at solving the ground state energy only from the electron density results
in poor accuracy, with one reason being the difficulty in describing the kinetic en-
ergy. A solution is the introduction of Kohn-Sham orbitals,46 used in modern DFT
calculations. Here, the DFT energy can be written as

EDF T (ρ) = TS(ρ) + Ene(ρ) + J(ρ) + Exc(ρ) (2.7)

TS(ρ) is the kinetic energy expressed by single-electron orbitals for non-interaction
electrons, where the wavefunction is constructed from a single Slater determinant
similar to HF.

TS(ρ) =
Nelec∑
i=1

⟨ϕi| − 1
2∇2|ϕi⟩ (2.8)
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2. Electronic Energy

Ene(ρ) is the interaction between the nucleus and electrons, J(ρ) is the electron-
electron repulsion. For the first three terms, there are exact solutions available.
However, for the exchange-correlation energy Exc(ρ), an approximation is needed.

2.2.1 Exchange Correlation Functionals
Exc(ρ) can be given as the sum of the exchange energy Ex(ρ) and correlation energy
Ec(ρ). The different ways of approximating Exc(ρ) give rise to the many methods
within DFT. A simple approximation is the local density approximation (LDA)45

where the density is treated locally as a uniform electron gas. Here the exchange
energy is given as

ELDA
x (ρ) = −3

4

( 3
π

)1/3 ∫
ρ4/3(r)dr (2.9)

The correlation energy, ELDA
c can be calculated with high accuracy based on quan-

tum Monte Carlo simulations.47 The approximation of a uniform electron gas fails
in cases where the electron density does not vary slowly, for example, in the case of
molecular systems.
Improvements to LDA are possible by making the exchange-correlation depend on
not only the electron density but also on the first derivate. One of these methods
is known as generalized gradient approximation (GGA)48 and the exchange energy
can be written as

EGGA
x (ρ, x) =

∫
ρ4/3F (x)dr (2.10)

F (x) is an enhancement factor that depends on the method used. x is the dimen-
sionless density gradient. One well-known approximation within the GGA class is
Perdew-Burke-Ernzerhof (PBE),49 which is used in this thesis. Here, the enhance-
ment factor is

F (x) = 1 + κ− κ

1 + µx2/κ
(2.11)

κ and µ are constants. The correlation energy, EGGA
c is expressed as the local

correlation together with an additive term. A way to make the approximation better
is to let the exchange-correlation energy depend on higher-order derivatives of the
electron density, which includes the kinetic energy density and is called meta-GGA
methods.50

Common for the LDA and GGA methods, is that they tend to over delocalise the
electrons because the exchange-correlation term Exc, cannot properly remove the
self-interaction from the electron-electron interaction. This is especially important
for the description of strongly correlated d- or f-electrons, which typically is the case
for transition-metal oxides. In HF, this electron self-interaction is removed by the
HF exchange. In hybrid methods, the problem is reduced by adding a fraction of
the HF exchange to the exchange-correlation. One example of a hybrid method is
B3LYP.51,52

EB3LY P
xc = (1 − a)ELSDA

x + aHHF
x + b∆EB88

x + (1 − c)ELSDA
c + cELY P

c (2.12)

Two different exchange energies are included, which is the exchange from HF, EHF
x

and B88, EB88
x . The correlation part is the LYP functional ELY P

c . The amount
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2. Electronic Energy

of exchange included is determined by the parameters a, b, and c, which are fitted
to experimental data. Hybrid methods generally give more accurate results than
GGA methods, however, there is an increasing computational cost associated with
the calculation of HF exchange.
Another way to reduce the issue with the self-interaction is augmenting DFT with
a Hubbard U term.53 Here, the strong on-site Columb interactions of the localized
electrons are treated with an additional term, which stabilizes the localized orbitals
with respect to delocalization. The choice of the U parameter is important and
is method and material dependent. Typically different values of U are tested and
compared with experiments or computational results. The U value can also be
determined from first-principles54.
A drawback of standard density functional theory is that it does not contain disper-
sion forces and therefore cannot capture the attractive 1/R6 long-distance behavior.
A solution is to add an empirical pairwise correction as suggested by Grimme55 that
accounts for the dispersion forces.

∆Edisp = −
∑

n=6(8,10)
sn

atom∑
AB

CAB
n

Rn
AB

fdamp(RAB) (2.13)

sn is a scaling factors that depends on the functional applied, CAB
n is a dispersion

coefficient, for atom pair AB and Rn
AB is the distance between A and B for the nth

order(n=6(8,10)). fdamp(RAB) is the damping factor. Early models50 included only
the 6th order term, but can be refined by including higher orders corrections. This
correction is referred to as DFT-D methods, where the DFT-D3 approach is used in
this work.

2.2.2 Basis Sets and Pseudopotentials
When solving HF or DFT, they both require a basis set to represent the orbitals.
This can either be done with a Slater and Gaussian-type of orbitals centered at the
atoms or in the form of plane waves. In this work, plane waves are used as they are
the preferred choice for periodic systems, as they fulfill Bloch’s theorem. Bloch’s
theorem states that the plane wave functions, at the same position in two different
cells can be related by the lattice vector t.

ϕ(r + t) = eik·rϕ(r) (2.14)

Plane waves are good at describing delocalized slowly varying electron densities,
such as valence and conduction bands as the potential is rather smooth. However,
this is not the case for core electrons that are localized with sharp peaks and many
oscillations that would require many plane waves to describe. A solution to this
problem is to treat the core electrons with an effective potential and only treat the
valence electrons explicitly, which at the same time decreases the computational
cost. This is possible since the core electrons are not involved in the formation and
breaking of chemical bonds. These methods are known as pseudopotential methods
and the Projector Augmented Wave (PAW)56 proposed by Bloch is used in this
thesis.
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2.2.3 Bader Charge Analysis
Analysis of atomic charges is useful as it allows for studies of, for example, the
oxidation state of Cu ions. The method of Bader charge analysis is used in this
thesis.57,58 In Bader charge analysis, the charge density is partitioned into Bader
volumes corresponding to each atom, which are separated by zero flux surfaces,
where the charge density is a minimum perpendicular to the surface. Each Bader
volume contains a single electron density maximum. Henkelman and co, developed
a method to partition the charge density into Bader volumes.57,58 The method is
grid-based and the partition algorithm follows the steepest ascent path along the
charge density gradient until the maximum electron density is found. The total
charge is then calculated by integrating over each Bader volume.

2.3 Parameterization of Energy
DFT is a powerful tool for calculating the electronic energy from the Schrödinger
equation. However, DFT calculations have a high computational cost, which puts a
limitation on what problems can be studied. Instead of solving the DFT-equations,
the electronic energy can be calculated by parameterizing it as a function of nuclear
coordinates, known as force-fields (FF).

2.3.1 Force-Field
The force-field energy can generally be written as different bonded and non-bonded
terms contributing to the energy.59

EF F = Estr + Ebend + Etors + Evdw + Eel + Ecross (2.15)

Estr is the energy contribution from stretching of the bonds, Ebend describes the
energy as a function of bending an angle between three atoms, Etors is the torsion
between four atoms. Evdw and Eel describe the van der Waals and electrostatic
contributions to the energy. Finally, Ecross represents the coupling between the
different terms. The bonding terms (Estr +Ebend +Etors) can be described by simple
functions of distance, angle, and torsion, respectively. For the non-bonding terms,
the van der Waals forces, Evdw can be modeled using a Lennard-Jones potential while
the electrostatic energy Eel can be modeled using a Coulomb law assuming point
charge, however, higher-order forms may be included. The parameters are typically
fitted to experimental or higher-level ab initio data. By parameterizing the electronic
energy, and bypassing the DFT equations, it becomes possible to study systems with
thousands of atoms. However, traditional FF, can be time-consuming to construct
and require a detailed knowledge of how to model the system.60 Conventional force-
fields such as AMBER61 and UFF,62 assume that the bonds between the atoms
are predefined, and that bond formation and breaking do not occur, which limits
its application.63 More advanced bond-order force-fields like ReaxFF,64 can model
reaction, as the bonds are determined during the simulation,65 however, this adds
more complexity to the force-field.
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2.3.2 Machine Learning Force-Fields

The main problem with FF is the poor accuracy compared to, for example, DFT
calculations. A promising way to combine the accuracy of DFT with the low com-
putational cost of FF is by using machine learning (ML-FFs).63 Here, the energy and
forces are predicted through the use of machine learning and do not consist of ana-
lytical expressions as is the case for FF. ML-FF is an emerging field whereby training
a force-fields on for example DFT data, an accuracy close to DFT can be achieved
with a computational cost close to that of a traditional force-field. In addition, the
process of constructing a force-field is simplified by using machine learning.
In ML-FF, the total energy is a sum of the energies of the individual atoms.

EML−F F
tot =

∑
i

Ei (2.16)

The energy of each atom, Ei is determined by the local atomic environment, de-
termined by a radius cut-off value rcut, illustrated for atom A in Figure 2.1(a). To
describe the local atomic environment, several descriptors can be implemented. Two
simple descriptors are the distance rA−C between atom A and C together with the
angle θB−A−C between atom B, A and C illustrated in Figure 2.1. Here, the energy
of atom A depends on the atoms within the cut-off value, which are atoms B and C.
However, atom D is outside the cut-off values, and thus the energy of atoms A and
D does not depend explicitly on each other. The assumption of chemical locality
reduces the computational cost as the interaction between all atoms does not have
to be calculated. Furthermore, it makes it possible to extrapolate the ML-FF to
larger systems after training. However, the drawback is the inability to describe
long-range interactions, which can be important for, especially, charged systems.66

Figure 2.1: (a): The description of local atomic environment for atom A (b): A
simple neural network showing three different layers, being the input layer, hidden
layer and output layer.
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2.3.3 Long-range Interactions
A way to add long-range interaction to an ML-FF is by the use of atom-centered
point charges. The ML-FF energy can in this way be augmented with the elec-
trostatic energy. Here, a recently developed method by Zhang et al67 implemented
in the Deep MD kit code68 is used. The code was originally used with maximally
localized Wannier functions. Here, however, atom-centered point charges are used
instead. The energy is

EML−F F
tot = Esr + EGt (2.17)

Esr is the predicted energy from standard ML-FF using a radius cut-off value. The
introduced EGt term is the Gaussian electrostatic energy. Note that the Gaussian
electrostatic energy EGt is subtracted from Esr to avoid double counting. EGt is
calculated in the Fourier space as

EGt = 1
2πV

∑
m ̸=0,|m|≤L

exp(−π2m2/β2)
m2 S(m)2 (2.18)

V is volume of the unit cell, L is the Fourier space cutoff and β is the spread
parameter. S(m) is the structure factor given by

S(m) =
∑

i

qie
−2πimRi (2.19)

qi is the charge density of charge i, and Ri is the charged site. The particle-particle-
particle-mesh (PPPM) algorithm is used to calculate the electrostatic energy. Note
that it is not necessarily all atoms that are assigned a point charge. The incor-
poration of the Gaussian electrostatic energy increases the computational cost by
approximately a factor of 5 but is still superior in speed when compared to DFT
calculations.67

2.3.4 Neural Network
Having introduced the descriptors in equation 2.16, the next step is to go from
the descriptors to electronic energies and forces by the use of machine learning.
Two commonly used algorithms for ML-FF are the kernel method and the neural
network, which is used in this thesis.69 The neural network is inspired by the neurons
in the brain, hence, the neural network is sometimes referred to as biological neural
networks. A simple neural network is illustrated in Figure 2.1b, with input, hidden,
and output as the layers. In reality, a neural network may have hundreds of neurons
with several hidden layers depending on the complexity of the problem studied. The
objective of the hidden layer is to transform the input (descriptors), into output
(energy and forces). A single hidden layer can be written as

f(x) =
N∑

n=0
cnσ(wnx+ bn) (2.20)

f(x) corresponds to the output and x is the input. N is the number of neurons and
σ is the neuron activation function. cn, wn and bn are parameters fitted to a given
set of training data.
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The parameters are fitted by constructing a loss function.68

L(pϵ, pf , pξ) = pϵ∆ϵ2 + pf

3N
∑

i

|∆Fi|2 + pξ

9 ||∆ξ||2 (2.21)

∆ is the difference between the force-field prediction and the training data, N is
the number of atoms, ϵ is the energy per atom, Fi is the force on atom i, and ξ
is the viral tensor (if included). pϵ, pf and pξ are adjustable parameters, where
p∈ and pf are increasing, and pξ decreasing during training. The training is a
minimization problem of the loss function by tuning the parameters in the hidden
layer(s). The training data used in this thesis is DFT data from structures extracted
during molecular dynamic simulation trajectories.
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3
Towards Elevated Pressure and

Temperature

Structures and transition states, which are needed to investigate chemical reactions
can be identified by performing optimization procedures. However, the calculated
electronic energy corresponds to zero kelvin and zero pressure, which does not rep-
resent experimental conditions. With statistical mechanics and thermodynamics, it
is possible to add temperature and pressure effects to the electronic energies. An al-
ternative approach is to solve Newton’s equations of motion and simulate the system
at finite temperatures and/or pressures via molecular dynamics (MD). Combined
with ML-FF, it is possible to simulate several nanoseconds. Micro-kinetic modelling
can be used to study the time evolution of chemical reactions over extended times.
In a first principle-based micro-kinetic model, a set of differential equations is solved
using rate constants derived from first-principle calculations. This chapter will dis-
cuss the process of adding the effects of temperature and pressure to the electronic
energies calculated in the previous chapter, and methods to model reaction kinetics.

3.1 Optimization
The search for a stable structure is a multidimensional optimization problem, where
the nuclear coordinates are changed to minimize the energy of the system. The
objective is to find a local minimum on the potential energy surface, hence, the
gradient in all directions should be zero. Using first-principle calculations or ML-FF,
it is possible to determine the energies and forces of the potential energy landscape,
that can be used by different algorithms to obtain a minimum. A simple approach is
to calculate the gradient and then take a step in the opposite direction, known as the
steepest descent (MD) method.50 Going in the opposite direction of the gradients,
ensures that the energy will decrease, thus, it is guaranteed that a minimum will
be found. However, SD tends to oscillate around the minimum and the convergence
is slow.50 A way to improve on the SD method, is to consider both the gradient
and the gradient from the previous step. By doing so, the step is not taken against
the gradient but along a line conjugate to the previous step. This ensures faster
convergence than the SD method. This method is called conjugate gradient and is
the method used in this thesis. Another method is the Newton-Raphson method,
which uses the second-order derivatives. Note that these methods only ensure that
the structure converges to a local minimum, thus, it might not correspond to a
stable structure. This is especially challenging for species in Cu-CHA as the potential
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3. Towards Elevated Pressure and Temperature

energy landscape is flat. Here, this issue has been tackled by using ab initio molecular
dynamics (AIMD) to sample the potential energy landscape.

3.2 Transition State Search
Chemical reactions typically involve some kind of energy barrier that has to be
passed to form the final products. The molecules follow the minimum energy path
between the two states with the highest point connecting them corresponding to
the transition state, which is a first-order saddle point. For periodic systems, multi-
structure interpolation methods such as the climbing image nudge elastic band (CI-
NEB) are generally used to identify the transition states.50 In NEB, a series of
structures, called images are interpolated between the initial and final state, which
must be known. A spring is added that evenly distributes the images, along the
reaction coordinate, mimicking an elastic band, hence the name. The images are
optimized based on the perpendicular component of the true force, ensuring that
the spring force does not interfere with the convergence of the images to the mini-
mum energy path.70 To find the transition state, the spring of the image with the
highest energy is turned off, so the image experiences the true forces.71 This image
is, thereafter, converged to a first-order saddle point.

3.3 Vibrations
At zero Kelvin, the molecules still vibrate and typically a correction to the electronic
energy is added, giving the zero point energy (ZPE). The vibrations can be approx-
imated as that of a harmonic oscillator. The vibrational frequencies can with this
approximation be derived by a Taylor expansion involving the energy and nuclear
coordinates. For a diatomic molecule, the only nuclear coordinate to consider is the
bond length and the Taylor series becomes the following.50

E(R) = E(R0) + dE

dR
(R −R0) + 1

2
d2E

dR2 (R −R0) + 1
6
d3E

dR3 (R −R0)3 + ... (3.1)

The first term is the zero point of the energy, the second term vanishes since the
structure vibrates around a minimum where the first derivate with respect to the
nuclear coordinates is zero. The energy can, thus, be approximated as the lowest
non-zero term, which is the second-order derivative.

E(R −R0) ≈ 1
2
d2E

dR2 (R −R0) = 1
2k(R −R0) (3.2)

The second derivative is defined as the force constant k, which can be used to
estimate the vibrational frequency v.

v = 1
2π

√
k

µ
(3.3)

µ is the reduced mass that for a diatomic molecule is m1m2/(m1 +m2).

18



3. Towards Elevated Pressure and Temperature

3.4 Statistical Mechanics
The structure and transition states discussed so far, correspond to structures at zero
Kelvin at zero pressure. Statistical mechanics provide the connection between the
properties of a single molecule and an ensemble of molecules at elevated temper-
atures and pressures. Essential for the connection is the partition function Q as
several thermodynamic properties can be derived from the partition function72 such
as enthalpy H, entropy S, Helmholtz free energy F , and Gibbs free energy G.

H = U + PV = kBT
2
(
∂ lnQ
∂T

)
V

+ kBTV

(
∂ lnQ
∂V

)
T

(3.4)

S = U − F

T
= kBT

(
∂ lnQ
∂T

)
V

+ kB lnQ (3.5)

F = −kBT lnQ (3.6)

G = H − TS = kBTV

(
∂ lnQ
∂V

)
T

− kBT lnQ (3.7)

For a system consisting of N non-interaction, indistinguishable particles, the par-
tition function Q is defined as Q = 1

N !q
N . q is the partition function for a single

molecule, which is given by the sum of all possible quantum energy states.

q =
∞∑
i

e−ϵi/kBT (3.8)

The total partition function can be written as a product of terms involving the
electronic, translation, rotation, and vibration degree of freedoms.

qtot = qtransqrotqvibqelec (3.9)

The translation has three degrees of freedom, and the partition function depends on
the volume V and the mass m.

qtrans =
(

2πmkBT

h2

)3/2

V (3.10)

Using the rigid-rotor approximation the rotational partition function for a poly-
atomic molecule can be calculated using the principal axes of inertia Ix and a sym-
metry factor σ.

qrot =
√
π

σ

(
8π2kBT

h2

)3/2√
I1I2I3 (3.11)

The vibrational partition function can be written as a product involving the vibra-
tional frequencies vi. The number of vibrations is 3N − 6 for a non-linear molecule,
with N being the number of atoms.

qvib =
3N−6∏
i=1

e−hvi/2kBT

1 − e−hvi/kBT
(3.12)

19



3. Towards Elevated Pressure and Temperature

The partition function for the electronic degree of freedom is a sum of all quantum
states. However, since the energy difference between the ground and exited states
typically is large compared to kBT , only the ground state becomes important. This
means that the partition function can be approximated by only the ground state.

qelec =
∞∑

i=0
gie

−ϵi/kBT ≈ g0e
−ϵ0/kBT (3.13)

Defining the ground state energy as the zero point energy, the partition function
becomes equal to the degeneracy gi.

The calculation of the entropy from partition functions is not straightforward. For
surface-bound atoms, the contribution from translation and rotation degree of free-
dom is typically assumed to be small since the movement is restricted. In this case,
the entropy is calculated from the vibrational frequencies. However, for zeolites, this
becomes challenging since the species may contain a significant amount of transla-
tion and rotational entropy.73 An alternative way to calculate the free energy for
such systems is by molecular dynamics.

3.5 Molecular Dynamics
In molecular dynamics (MD), the motion of the atoms is simulated at elevated tem-
peratures and pressures. The motion of the nuclei is heavy enough to be approxi-
mated as classic particles. The motion can in this case be described by Newton’s
second law.

F = ma (3.14)
F is the force, m is mass and a is acceleration. Newton’s equations of motion for a
set of atoms can be solved numerically using the Verlet algorithm.74 Here ri is the
initial position and ri+1 is the new position.

ri+1 = (2ri − ri−1) + Fi

mi

∆t2 (3.15)

∆t is the timestep. If the force is evaluated using first-principle calculations, it is
called ab initio molecular dynamics (AIMD). The force can also be estimated using
ML-FF from which simulation times in the range of nanoseconds can be achieved.
The choice of the timestep ∆t, depends on the application. A large timestep allows
for long simulation times, as the forces have to be evaluated less frequently. How-
ever, a too large timestep can lead to inaccuracies in the simulation as rapid changes
may not be captured. The choice of timestep typically depends on the lightest atom
included in the simulation, as they vibrate faster, a smaller timestep is therefore
needed for systems containing hydrogen atoms. If the vibration of the hydrogen
atoms is not of interest, they may be slowed down by increasing the mass or simply
freezing the bond length allowing a higher time step.50

To mimic experimental conditions in the MD simulations, different thermodynamic
ensembles exist that have different degrees of isolation from the surroundings. The
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most simple one is the microcanonical ensemble (NVE), where the system has a con-
stant number of atoms, volume, and energy. Typically an experiment can exchange
heat with the surroundings, and in this case, an NVT ensemble is a more suitable
choice, where instead of the energy, the temperature is kept constant. A third option
typically encountered in MD simulation is the NPT ensemble where the pressure is
kept constant, hence the volume is allowed to change. In reality, the temperature
is not fixed at all times but fluctuates around the target temperature, controlled
by a thermostat. A popular thermostat is the Nosé-hoover thermostat,75,76 which
is used in this thesis. Here a heat bath is coupled to the physical system via the
Lagrangian.

L =
N∑

i=1

mi

2 s2
(
dri

dt

)2

− U(r) + Q

2

(
s

dt

)2
− gkBT ln s (3.16)

The first two terms correspond to the kinetic and potential energy of the system,
respectively. The variable s introduces an extra degree of freedom into the system,
Q is the effective mass of s and g is the number of degrees of freedom of the system
(g = 3N , where N is the number of atoms).

In MD simulations, the atoms tend to stay around their minimum energy and rare
events may require a very long simulation time to be observed. The use of ML-FF to
run molecular dynamic simulations does improve this, but the problem still exists.
A way to estimate the free energy barrier of rare events is to apply a bias that forces
the transition to happen more frequently, known as enhanced sampling techniques.

3.6 Enhanced Sampling Technique
Common for all enhanced sampling techniques is the need to define a collective vari-
able (CV) that represents the reaction path for which the free energy is estimated.
A simple CV could be a bond length, angle, torsion, or combinations of them. More
advanced CV’s include the Path Collective Variables,77 where the CV is adapted
to the lowest energy path connecting two structures. Typically only one CV is
investigated per simulation, however, some methods allow the sampling of a multi-
dimensional reaction landscape. Common methods used to sample the free energy
barriers are the slow growth78 and metadynamics,79 both of which are using this
thesis. In the slow-growth method, the CV is linearly changing from an initial value
to a final value thereby, estimating the electronic energy along the reaction path.
Using the blue moon approach, it is possible to estimate the free energy profiles.80

Here, the free energy can be obtained by integrating the free energy gradients along
the CV, ξ.

∆A1→2 =
∫ ξ(2)

ξ(1)

(
∂A

∂ξ

)
ξ∗
dξ (3.17)

3.6.1 Metadynamics
The idea behind metadynamics is that the potential energy wells are filled with
Gaussians making it possible to sample the rare events more frequently. In meta-
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dynamics, Gaussian functions are added during the simulation81, where the bias V
can be defined as.

V (s, t) =
∑
kr<t

W (kτ) exp
−

d∑
i=1

(si − s
(0)
i (kτ))2

2σi

 (3.18)

The bias V (s, t), is added to the potential energy landscape, which can force the
molecule through transitions that otherwise would not happen during the timescale
of the simulation. W and σ are the width and height of the Gaussian function, s and
s0 are the values of the CV and the CV where the Gaussian function is added respec-
tively. A popular version of the method is well-tempered metadynamics79, where
the height of the Gaussian W decreases over time, resulting in a more smooth con-
vergence. In the long time limit, the bias potential should converge to the negative
Helmholtz free energy F , with a constant C.

V (s, t → ∞) = −F + C (3.19)
The free energy can be estimated directly from the added Gaussian as shown in
(3.19). In cases where one is interested in studying other CVs than what has been
used in the simulations, it is possible to do so by reweighting the bias.82 Figure 3.1(a)
shows the free energy estimates at different times. As the simulation time increases
the free energy profiles at different times should converge. The exploring of the CV
during the simulation is illustrated in Figure 3.1(b). The system oscillates around
the reaction path, slowly refining the free energy profiles. As the simulation above
is with well well-tempered metadynamics, the height of the Gaussian function as a
function of simulation decreases, see Figure 3.1c. The idea behind well-tempered
metadynamics is that the first Gaussian functions are used to fill up the potential
energy wells and a high Gaussian height makes the sampling faster. When the po-
tential energy wells are filled, smaller Gaussian functions are used to refine the free
energy profile which should lead to a smooth convergence in the long time limit.79

The use of MD simulations combined with ML-FF makes it possible to simulate
for a few nanoseconds, however, typical experiments are run for minutes to several
hours. To overcome this micro-kinetic modeling can be used, where a set of coupled
differential equations is solved.

3.7 Micro-Kinetic Modeling
In micro-kinetic modeling, a reaction path with elementary steps is first constructed.
This should include the formation of desired products, but may also contain side
reactions. The rate constant of the reaction has to be calculated, which could be
done using DFT calculations. In transition state theory (TST), the reaction rate is
given by.83

k = kBT

h
e−∆G‡/kBT (3.20)

∆G‡ is the free Gibbs energy difference between the transition state and initial state.
The change in Gibbs free energy can be calculated from the enthalpy and entropy.

∆G = ∆H − T∆S (3.21)
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Figure 3.1: Well-tempered metadynamics simulations. (a): Estimated free energy
profiles calculated at different simulation times. (b): Value of the CV for every
Gaussian function deposited during the simulation. (c): Height of the Gaussian
during the simulation.

The enthalpy can be approximated as the zero point corrected electronic energy E
by neglecting the pV-dependence. The entropy can be calculated using partition
functions introduced earlier. Note that the reaction coordinate should be excluded
from the partition function of the transition state. Combining equation 3.20 and
3.21, the rate constant become.

k = kBT

h
e−∆H‡/kBT e∆S‡/kB ≈ kBT

h
e−∆E‡/kBT e∆S‡/kB (3.22)

For adsorption reactions, the rate constant is calculated using collision theory.

k = pA√
2πmkBT

e−E‡/kBT (3.23)

A is the area of the active site, p is the partial pressure, and m is the mass. To
ensure thermodynamic consistency, the reverse rate constant is calculated from the
equilibrium constant

K = kf

kr

= e−∆G/kBT (3.24)

kf and kr are the forward and reverse rate constant, respectively, and ∆G is the free
Gibbs change between the final and initial state.

To simulate the kinetic of the system, a set of coupled differential equations are
solved numerically.

dθi

dt
=
∑

j

vijrj (3.25)

θi is the coverage of species i, vij is the stoichiometric coefficient for reaction j, and
species i. rj is the rate of reaction j and is given by the rate constant and coverage.

rj = kf
j

∏
f

θf − kr
j

∏
b

θb (3.26)
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Temperature-programmed reduction (TPR) is an experimental analysis where the
sample is exposed to a reducing gas such as H2, during a temperature ramp. From
this valuable information, such as the reduction temperature of active sites can be
obtained. Micro-kinetic modeling can be used to simulate TPR experiments by
introducing a time-dependent temperature.

T = T0 + βt (3.27)

T0 is the starting temperature, β is the heating rate and t is the time.
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4
Sulfur Poisoning during NH3-SCR

Cu-ions in Cu-CHA are dynamic in the sense that they can exist in different oxida-
tion states (Cu+ and Cu2+) and be solvated by different ligands (H2O, NH3). Thus,
the state of the Cu-ions depends sensitively on the temperature and feed-gas.42 The
different Cu states have different properties and, therefore, different reactivity to-
wards sulfur species. It is, therefore, important to obtain information on which
Cu species that are present in the sample. One well-known method for quantifying
Cu species in Cu-CHA is temperature programmed reduction (H2-TPR), which is
studied in Paper I. By comparing experimental and computed TPR profiles, it is
possible to make conclusions on the dominant Cu-species in Cu-CHA.

As discussed in the Introduction, the catalyst is exposed to small amounts of SO2
and SO3 that reduce the activity. One way to formulate strategies to mitigate sulfur
poisoning is to understand the mechanisms of poisoning. The sulfur poisoning is
studied for low-temperature in Paper II and high-temperature in Paper III, using
DFT calculations.

4.1 State of Cu during Operating Conditions

Two Cu species, commonly discussed in the literature are Z2Cu and ZCuOH.42 Here,
Z represents a one-Al environment and Z2 a two-Al environment. The two Cu sites
are usually attributed to H2 consumption at 210 ◦C for ZCuOH and both 320 and
480 ◦C for Z2Cu. However, the interpretation is not fully settled.84–90 The H2-TPR
profiles may have different shapes and peaks depending on the pre-treatment and
composition, making the interpretation complex. During NH3 –SCR conditions,
NH3 can adsorb onto the Cu ions and form mobile [Cu(NH3)2]+ complexes that are
not bound to the framework.30,31,91 If two [Cu(NH3)2]+ complexes are in the same
cage, they can adsorb O2, forming a peroxo complex [Cu2(NH3)4O2]2+, which is an
important intermediate in the NH3-SCR reaction.29,31 At higher temperature, NH3
may desorb forming framework-bound Cu species. Framework bound Cu species be-
side Z2Cu and ZCuOH, are Z2CuOOCu, Z2CuHOOHCu and Z2CuOCu.92–94 While
ZCuOH and Z2Cu have been studied extensively for H2-TPR in the literature, there
is a limited understanding at which temperatures the alternative Cu sites consume
H2.

In Paper I, we constructed a microkinetic model to simulate H2-TPR profiles to
aid in the interpretation of experiments. The rate constants are calculated using
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4. Sulfur Poisoning during NH3-SCR

DFT and the simulated H2-TPR profile is shown in Figure 4.1(a) with the Cu sites
shown in Figure 4.1(b). Cu in oxidation state +1 is also considered, however, no
energetical favored pathway was found for the adsorption of H2. Cu in oxidation
+1 is commonly assigned to TPR-signatures at temperatures above 800 ◦C where
the destruction of the framework may occur, which is not taken into account in our
calculations.88 Our simulated H2-TPR profiles predict that ZCuOH reduces at 150
◦C and Z2Cu at 420 ◦C, which is consistent with reports in the literature. However,
it is also observed that the measured H2-TPR profiles potentially would be assigned
to other Cu sites such as Z2CuOCu Z2CuHOOHCu or Z2CuOOCu, as they adsorb
H2 in similar temperature ranges. One notable finding is that only two proximate
Z2Cu sites can be reduced with H2, thus, a single isolated Z2Cu site should not be
reduced. This suggests that the Al distribution may play an important role in the
reduction temperatures.

To further validate our findings, H2-TPR experiments are performed where the
sample were pretreated to contain dominant Cu sites. The experiments match our
simulated profiles. This study shows that only considering ZCuOH and Z2Cu in
H2-TPR profiles may not capture the full picture.

Figure 4.1: (a): Simulated H2-TPR profile. (b): Cu species considered in the
simulation.

4.2 Sulfur Poisoning
For Cu-CHA samples with low Cu loading, the NH3-SCR activity as a function of
temperature typically shows two maxima referred to as the seagull shape.95 This
is attributed to two different reaction mechanisms, at low and high temperatures.
This is related to the different states of Cu complexes present in the two different
temperature regimes. The reaction proceeds over [Cu(NH3)2]+ species at low tem-
peratures, whereas framework bound species are active sites at high temperatures.

A major challenge with the use of Cu-CHA is the sensitivity to sulfur species. The
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4. Sulfur Poisoning during NH3-SCR

current understanding of the interaction of SOx (x=2 and 3) species with Cu-CHA
on the atomic level is limited. The studies until now have mostly been focused on
ZCuOH and Z2Cu,86 which are active at high temperatures. Since SO2 does not ad-
sorb in Cu-free chabazite (H-CHA)86, the speciation of the Cu ions is likely to influ-
ence the sulfur deactivation. SO2 temperature-programmed desorption (SO2-TPD)
is a common procedure to quantify the sulfur derived species formed. The desorp-
tion of SO2 at 420 ◦C is commonly assigned to the decomposition of SO4(NH4)2 or
HSO4(NH4), and the two high-temperature peaks at 540 and 720 ◦C are assigned to
sulfur bonded to Cu and Al.96,97 Since SO2 is released at 420 ◦C, periodic heating up
to ≈ 500 ◦C of the catalyst is done to remove part of the sulfur species and thereby
regaining some of the lost activity. The deactivation that can be recovered by the
regeneration procedure is denoted reversible deactivation, while the sulfur species
that are still present after regeneration are denoted irreversible deactivation.

4.2.1 Low-temperature Deactivtion
In Paper II, we investigated the reaction of SO2 with Cu complexes present dur-
ing low-temperature NH3-SCR, such as [Cu(NH3)2]+ and [Cu2(NH3)4O2]2+. SO2
is found not to react with [Cu(NH3)2]+ but with [Cu2(NH3)4O2]2+ from which
a detailed reaction mechanism is proposed and illustrated in Figure 4.2. The
[Cu2(NH3)4O2]2+ complex adsorbs SO2 from structure I to II, leading to a sta-
ble Cu sulfate structure [Cu2(NH3)4SO4]2+ (Structure III). NO and NH3 can couple
with over the complex, forming H2NNO that can decompose over a Brønsted site
into N2 and H2O. In addition to N2 and H2O, H2SO4 is formed. The reaction can
proceed via two routes, depending on whether it involves structures that are mo-
bile (roman numbers) or bound to the framework (letters). Since H2SO4 is a bulky
molecule, it can not exit the chabazite cage due to a high diffusion barrier through
the eight-membered ring and may accumulate leading to a loss in activity. As NH3
is present, H2SO4 can exchange proton forming SO4(NH4)2 and HSO4(NH4) and
ab into thermodynamic analysis suggests that HSO4(NH4) is the stable species at
typical reaction conditions.

To investigate how the accumulation of HSO4(NH4) affects the NH3-SCR activity,
constrained AIMD simulation was performed and the results are shown in Figure 4.3.
The AIMD simulations was done to investigate the stability of paired [Cu(NH3)]+
complexes, which is necessary for the adsorption of O2. If two ammonium bisulfate
are present (red line), the stability of paired [Cu(NH3)2]+ complexes is decreased,
thus deactivating the catalyst. This finding implies that the sulfur deactivation at
low temperatures is of physical origin.

4.2.2 High-temperature Deactivation

At higher temperatures, the [Cu(NH3)2]+ complexes decomposes and Cu binds to
the framework. In Paper III, the sulfur poisoning was carried out at 400 ◦C, thus,
only framework-bound Cu species are expected to be present. To investigate sulfur

27



4. Sulfur Poisoning during NH3-SCR

Figure 4.2: Proposed reaction cycle for the reaction of SO2 with [Cu2(NH3)4O2]2+

during low-temperature NH3-SCR conditions. Al-O-Si represents a brønsted and is
only shown if the complex is bonded to the framework.

Figure 4.3: (a): Free energy profile for the diffusion of a [Cu(NH3)2] through an
eight-membered ring in the presence of a second [Cu(NH3)2]+ and different numbers
of ammonium bisulfates. (b): Snapshot of the initial and final state from the simu-
lation.
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poisoning at this temperature, the interaction with both SO2 and SO3 is calculated
for ZCuOH, Z2Cu, and Z2CuOOCu. Framework bound Cu+ is not found to ad-
sorb or react with SOx species similar to the case of [Cu(NH3)2]+. Thus, Cu ions
in oxidation state +1, are not active towards SO2 or SO3. Both low and high-
temperature sulfur poisoning is illustrated in Figure 4.4. At low-temperature, there
are the two complexes [Cu(NH3)2]+ and [Cu2(NH3)4O2]2+ discussed in previous sec-
tion. [Cu(NH3)2]+ can not react with SO2, whereas [Cu2(NH3)4O2]2+ can couple
with NH3 and NO forming HSO4(NH4) and [Cu2(NH3)4O2]2+ is reduced back to
two [Cu(NH3)2]+ complexes. At high temperatures, the reaction of SO2 and SO3
with ZCuOH leads to the formation of ZCuHSO3 and ZCuHSO4 respectively. The
formation of ZCuHSO4 is more exothermic based on the DFT calculations and asso-
ciated with lower barriers, thus the reaction with SO3 is preferred. The same trend
with the reaction of SO3 being more exothermic is calculated for Z2Cu where SO2
and SO3 form ZCuHSO3ZH and ZCuHSO4ZH. Note that compared to ZCuOH, a
Brønsted acid (ZH) site is also formed. Comparing ZCuOH and Z2Cu, ZCuOH is
more susceptible to adsorption of sulfur as the reaction is more exothermic. The
reaction of SOx with Z2CuOOCu forms two ZCuHSO4 complexes or ZCuHSO3 and
ZCuHSO4 depending if it is exposed to a mixture of SO2 and SO3 or only SO2.
SO3 alone does not react with Z2CuOOCu as the potential sulfur species would
have five oxygen atoms, which is not stable. The reaction with Z2CuOOCu is more
exothermic compared to both ZCuOH and Z2Cu. In conclusion, the exposure to
SO3 forms more stable sulfur structure compared to SO2, and the reactivity of the
Cu complexes towards sulfur is in the order Z2Cu, ZCuOH and Z2CuOOCu, with
Z2CuOOCu being most reactive.

The formation of Cu sulfate blocks the Cu-sites, by chemisorption, while the low-
temperature deactivation is of a physical origin, where HSO4(NH4) is formed. This
fundamental difference in the poisoning mechanism may explain the large temper-
ature effect on the sulfation of the catalyst.98 HSO4(NH4) is commonly assigned to
the SO2 release in TPD at 420 ◦C, hence, this deactivation may be recovered by
heating the catalyst. However, it has been suggested that a part of the ammonium
sulfate may transform to strongly bound Cu or Al sulfates.99 The Cu sulfate formed
at high temperatures is also expected to be decomposed at higher temperatures.
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Figure 4.4: Overview of the Cu ions present at high and low temperatures for Cu
oxidation state +1 and +2, together with the sulfur derived structure formed after
SOx exposure.
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Mobility of [Cu(NH3)2]+

Complexes

The mobility of [Cu(NH3)2]+ complexes is important for the-low temperature NH3-
SCR since two [Cu(NH3)2]+ complexes in the same cage are required for the adsorp-
tion of O2. As discussed in the previous chapter, sulfur poisoning at low tempera-
tures is related to the diffusion of [Cu(NH3)2]+ complexes, hence, a better under-
standing of [Cu(NH3)2]+ diffusion is important for further studies. The diffusion of
Cu complexes is not well understood and this issue is difficult to investigate using
experimental procedures. However, impedance spectroscopy has been used to track
the dielectric relaxation process100 associated with the diffusion of [Cu(NH3)n]+, and
electron paramagnetic resonance (EPR) spectroscopy to study the (super)hyperfine
features which relate to the dynamics of Cu ions.101 The conclusion from the two
studies is that a higher Cu loading leads to increasing Cu mobility, and at lower
Cu loadings the diffusion of Cu species becomes more important for the NH3-SCR
activity. However, the atomistic understanding of the mobility and dynamics of Cu+

species is presently only available through computational studies. There have been
several studies using ab initio molecular dynamics (AIMD) to estimate free energy
barriers.29,102 Such studies are limited to small system sizes and short simulation
times. However, with the use of machine learning force field (ML-FF) it is possible
to study properties otherwise inaccessible to conventional AIMD simulations. In
Paper IV, an ML-FF is constructed to investigate the diffusion of [Cu(NH3)2]+ in
Cu-CHA. The chapter will first introduce pair correlation functions, which yield an
average picture of the system, and thereafter, the mobility, and pairing are analyzed.

5.1 Pair Correlation Function
The pair correlation function (PCF) is a way to describe the environments around
the atoms, by investigating the statistical distribution of distances between the
atoms. In Figure 5.1(a). the PCF is shown for the Al-Cu and Al-N bonds, where
N is the nitrogen in NH4

+. For Al-Cu a broad peak at 4.5 Å is observed which
corresponds to the Al atom by which the Cu is charge-stabilized. Notably, the peak
has a fine structure consisting of three small peaks, related to the three different
orientations Cu can have with respect to Al. For example, the last peak in the fine
structure could be attributed to an Al ion at the bottom of the cage, where the
repulsion from the framework hinders the [Cu(NH3)2]+ complex from getting closer
to the Al ion. Al ions located in the middle of the cage are more accessible for the

31
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[Cu(NH3)2]+ complex giving a shorter Al-Cu distance. Al-N has a large peak at 4 Å,
which is narrower than that of Cu. This suggests that NH4

+ does not move as much
as compared to [Cu(NH3)2]+. The smaller distance can be explained by the fact that
NH4

+ tends to stay in the center of the eight-membered ring, with the Al ion being
part of the ring giving a distance of 4 Å. [Cu(NH3)2]+ on the other hand, is moving
inside the cage giving a wider peak. The two locations of [Cu(NH3)2]+ and NH4

+

ions are shown in Figure 5.1(c). In Figure 5.1(b), the RDFs for Cu-Cu, N-N, and
Cu-N are shown. For Cu-Cu two peaks are observed, one at 5.5 Å, which is assigned
to paired [Cu(NH3)2]+ complexes, and a peak at 8 Å assigned to [Cu(NH3)2]+ in two
different cages. The lower intensity of the first peak indicates that the paired state
is less stable due to repulsion between the two Cu ions. For N-N, there is a peak
at 7 Å with high intensity. The distance of 7 Å corresponds to NH4

+ ions located
in two eight-membered rings next to each other. For Cu-N, no significant patterns
are observed, meaning that they do not influence each other positions, which may
be attributed to the fact that they occupy two different locations in the cage.

Figure 5.1: Pair correlation function for (a): Al-Cu and Al-N (b): Cu-Cu, N-N
and Cu-N. Here N denotes the nitrogen atom in NH4

+. (c): structure of Cu-CHA
with the typical positions of [Cu(NH3)2]+ and NH4

+ ions.

5.2 Mobility and Pairing
Mean square displacement (MSD) analysis for an Si/Al ratio of 5 for [Cu(NH3)2]+
and NH4

+ are shown in Figure 5.2(a) and 5.2(b). Both of the ions show slow dif-
fusion, which is a consequence of the fact that the motion is restricted by charge
stabilization. Comparing [Cu(NH3)2]+ and NH4

+, it is clear that [Cu(NH3)2]+ has a
higher mobility as also suggested by the PCF analysis. Furthermore, a higher Cu/Al
ratio enhances the diffusion of both [Cu(NH3)2]+ and NH4

+. This can be explained
by counter diffusion where two positive counter ions change locations, retaining the
charge neutrality. Since [Cu(NH3)2]+ has a higher diffusion than NH4

+, it can easier
counter diffuse.

Figure 5.2(c) shows the fraction of paired [Cu(NH3)2]+ complexes as a function of
time for different Cu/Al ratios. A Cu/Al ratio of 0.75 exhibits the highest fraction
of paired [Cu(NH3)2]+, thus, a larger fraction of [Cu(NH3)2]+ enhances both the
mobility and pairing. The dashed line shows the fraction of paired [Cu(NH3)2]+
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complexes if they were randomly placed. For a Cu/Al ratio of 0.75 and 0.5, the
simulated fraction of paired complexes is below the dashed line, indicating that
the paired state is more unstable than a random distribution, probably due to the
repulsion of the Cu ions. Interestingly, this is not the case for a Cu/Al ratio of 0.25
where the simulated fraction is higher than the dashed line after approximately 1 to
2 ns. The low Cu/Al ratio ratio means that there are more Al, and NH4

+ ions per
Cu ions, in this case which stabilize the paired state. Additional simulations were
done with the same number of [Cu(NH3)2]+ ions but different Si/Al ratios and these
results (not shown in the Figure) indicate that more Al ions also result in a higher
fraction of paired [Cu(NH3)2]+ complexes. Figure 5.2(d) shows a histogram for the
lifetime of the paired complexes [Cu(NH3)2]+. The lifetime of the [Cu(NH3)2]+ varies
a lot from under 0.1 ns up to almost 2 ns. This suggests that some [Cu(NH3)2]+
pairs are in a more stable position compared to others, thus, the local environments
are important for the stability.
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Figure 5.2: Mean square displacement (MSD) plots for (a): [Cu(NH3)2]+ and (b):
NH3. (c): Fraction of paired [Cu(NH3)2]+ complexes as a function of time. (d):
Histogram for the lifetime of paired [Cu(NH3)2]+ complexes.
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6
Conclusions and Outlook

This thesis investigated the dynamics and reactivity of the Cu species in Cu-CHA,
and the influence of sulfur species, using different theoretical methods. This includes
first principle-based micro-kinetic modeling and density functional theory calcula-
tions to study H2-TPR profiles and sulfur poisoning. To study the diffusion of Cu
ions in the zeolite, a machine learning force field was constructed to enable simu-
lations of larger systems over extended times, which was necessary to capture the
diffusion dynamics.
H2-TPR is a common technique to characterize the Cu ions in Cu-CHA, however, the
interpretation is often ambiguous. To understand which Cu ions may be influenc-
ing the H2-TPR profiles, a first-principle-based micro-kinetic model was developed.
Several Cu sites in oxidation state +2 consumed H2, which was ZCuOCu, ZCuOH,
ZCuHOOHCu, Z2Cu and ZCuOOCu. The micro-kinetic model agreed well with
the experimental findings and provided a way to link Cu sites to the reduction
temperatures.
The reactivity of sulfur towards Cu ions present during both-low and high-temperature
NH3-SCR conditions was studied using DFT calculations. At low temperature SO2,
was found to react strongly with the peroxo complex [Cu2(NH3)4O2]2+. From this,
a reaction mechanism was proposed involving the reaction of SO2, NO, and NH3,
to form H2SO4, H2O and N2. As H2SO4 is a bulky molecule it may accumulate in
the cage over time deactivating the catalyst. H2SO4 can interact with other NH3
species and a thermodynamic analysis was performed that found the HSO4(NH4)
species to be most stable at typical reaction conditions. Lastly, AIMD simulations
suggested that the presence of two HSO4(NH4) species destabilizes the pairing of
[Cu(NH3)2]+, inhibiting the adsorption of O2. The reaction of SO2 and SO3 to-
wards the framework-bound Cu complexes Z2Cu, ZCuOH and ZCuOOCu present
at high temperature, showed that more stable Cu sulfates were formed when re-
acting with SO3. ZCuOH and ZCuOOCu form more stable Cu sulfur complexes
compared to Z2Cu. The two studies show that there is a large difference in the poi-
soning mechanism depending the temperature. At low temperatures, the poisoning
mechanism is physical blocking by the accumulation of HSO4(NH4) species, while
at high temperatures, the Cu sites are blocked by forming stable Cu sulfites/sulfates.

Lastly, a machine learning force-field was constructed to study the mobility and
pairing of [Cu(NH3)2]+ complexes by varying the zeolite composition (Si/Al and
Cu/Al). The mobility of both [Cu(NH3)2]+ and NH4

+ ions is enhanced by increas-
ing Cu/Al ratio, which is attributed to increased counter diffusion. A lower Si/Al
ratio decreases the mobility since the NH4

+ prefer to stay in the eight-membered ring

35



6. Conclusions and Outlook

effectively blocking other ions from diffusion. The fraction of paired [Cu(NH3)2]+
complexes is enhanced by increasing the Cu/Al ratio and decreasing the Si/Al ratio.
Interestingly, if there is a high amount of Al and NH4

+ ions, the simulated fraction
of paired [Cu(NH3)2]+ complexes is higher than if they were randomly put. By using
machine learning force-field this study gives information on the diffusion dynamics
of [Cu(NH3)2]+ and the interplay between the Al ions and counter ions otherwise
inaccessible to conventional AIMD simulations.

This thesis has proposed mechanisms on how SOx may deactivate the catalyst at
both high and low temperatures, however, there are still important questions that
remain unanswered. Firstly, how the two different kinds of Cu species formed during
the two temperature regimes are connected. The possible interconversion between
HSO4(NH4) and Cu sulfate may play an important role in the stability of the sulfur
species and should be investigated. The low-temperature deactivation is linked to
the destabilization of paired [Cu(NH3)2]+ complexes, however, this has only been
studied using small unit cells with short simulation times. To study how HSO4(NH4)
species influence the pairing of [Cu(NH3)2]+ complexes, the machine learning force-
field constructed in this thesis could be extended to allow simulation containing
sulfur species.

The use of machine learning force-fields allows simulation in the range of nano-
seconds, however, turnover frequencies typically occur at much longer timescales.
To extend simulation times, a kinetic Monte Carlo model can be used. This method
requires knowledge of rates concerning the diffusion of Cu species, which may be
derived using the machine learning force-field.
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