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“The price of reliability is the pursuit
of the utmost simplicity.”

- Tony Hoare
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Abstract

The ubiquity of digital systems across all aspects of modern society, while
beneficial, has simultaneously exposed a lucrative attack surface for potential
adversaries and attackers. Consequently, securing digital systems becomes of
critical importance. In this dissertation, we address the security concerns of two
classes of digital systems: (i) cloud systems, co-locating multiple applications
and relying on a large trusted code base for software virtualisation, and (ii)
embedded systems, resource-constrained environments that typically employ
unsafe programming languages for application development.

The thesis underlying our dissertation is that digital systems can be protected
from a wide range of critical attacks by employing functional programming-based
techniques, ensuring software isolation in the cloud, and facilitating high-level,
declarative and memory-safe abstractions in embedded systems. Our approach
here is to employ programming language tools, specifically functional program-
ming, which focuses on building software by composing pure functions, avoiding
shared state, mutable data, and side-effects, to enhance the security of both
cloud and embedded systems. For cloud systems, we use functional program-
ming abstractions to partition security-critical software into compartmentalised
structures that use modern hardware protection mechanisms such as Trusted
Execution Environments (TEEs) for software isolation. For embedded systems,
we present high-level functional programming constructs that raise the level
of abstractions and provides safety features to resource constrained embedded
system. The dissertation is organised into two parts.

Part I introduces two successive versions of a domain-specific language
(DSL) designed for programming TEEs, such as Intel SGX. TEEs isolate
applications from low-level system software with large codebases, such as
operating systems and hypervisors, thereby minimizing the trusted computing
base and reducing the resultant attack surface of cloud applications. Broadly,
the DSL contributes the following: (1) It facilitates automatic type-based
program partitioning between trusted and untrusted code, (2) It supports
dynamic information flow control mechanisms for ensuring data confidentiality,
(3) It integrates with an automated remote attestation framework to preserve
TEE integrity, and (4) It offers a tierless programming model that helps minimise
errors arising from multi-tier confidential computing applications, requiring
adherence to complex data exchange protocols.

Evaluations for Part I involve expressing confidential computing applications,
such as (i) a privacy-preserving federated learning application, (ii) an encrypted
password wallet, and (iii) a data-clean room design pattern for multiple parties
to conduct data analytics.
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Part II contributes a functional language runtime and a functional reactive
programming language targeting embedded systems, with the goal of raising the
level of abstraction and ensuring memory and type safety. The runtime offers
a unified message-passing framework for handling both software messages and
hardware interrupts, along with a novel timing operator to capture the notion
of time. This allows for expressing classical (1) concurrent, (2) I/O-bound,
and (3) timing-aware embedded systems applications in a declarative manner.
Similarly, the reactive programming language is a declarative, pure functional
language built on top of the runtime. It tracks unique side effects in its type
system using a feature called resource types.

Evaluations for Part II ran the language and runtime on microcontrollers
like NRF52, STM32, and GRiSP boards, microbenchmarking resource efficiency
parameters including memory footprint, garbage collection latency, throughput,
jitter, and interpretive load, demonstrating acceptable overheads.

The programming artifacts resulting from this dissertation comprise the
HasTEE and HasTEE+ DSLs for programming TEEs, the Synchron C99-based
portable embedded systems runtime, and the Hailstorm reactive programming
language for embedded systems. All these programming artifacts are made
publicly available, along with the evaluation procedures, encouraging further
experiments in securing both cloud and embedded systems.

Keywords

functional programming, trusted execution environment, information flow
control, microcontrollers, real time, runtime, functional reactive programming
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Chapter 1

Introduction

The pervasiveness of digital systems has brought immense productivity to
several aspects of modern society. Sectors such as finance, healthcare, telecom-
munications, information technology, retail, and manufacturing are intrinsically
reliant on digital systems to enhance efficiency, data management, communica-
tion, and overall business competitiveness. However, this significant reliance
on digital artifacts opens a lucrative attack surface, exposing society to unpre-
cedented attackers and adversaries.

Consider, for instance, the classic computer worm1 Stuxnet [1]. Stuxnet,
identified in 2010, was crafted to compromise the Siemens Step7 software,
which controls programmable logic controllers (PLCs) in industrial processes. It
exploited at least four zero-day vulnerabilities in Microsoft Windows, including
a remote-shell execution vulnerability (CVE-2010-2568 [2]) and a hard-coded
password backdoor in the Windows driver for the Siemens PLC (CVE-2010-
2772 [3]). The attack vectors enabled Stuxnet to interfere with the real-time
behavior of the PLCs, causing irreparable damage to the entire control system.
Similar attacks, like the Equifax data breach [4] (CVE-2017-5638 [5]), the
WannaCry ransomware attack (CVE-2017-0143 [6]), and numerous others that
are too many to list, demonstrate the prevalence of such incidents.

Aside from the above discussed instances of deliberate cyber-espionage, there
have been cases of genuinely overlooked vulnerabilities in popular software
libraries, such as the Heartbleed vulnerability in the widely popular OpenSSL
project [7]. This flaw, exploiting an unvalidated buffer over-read, allowed
attackers to retrieve sensitive data, including private keys and user credentials.
Another recent example is the exploitation of a flaw within Java’s Remote
Method Invocation (RMI) functionality in the seemingly innocuous Java logging
library log4j to launch a remote-code-execution attack [8].

A common theme begins to emerge from our discussions above on software
vulnerabilities, illustrating a connection between software security and software
correctness. For instance, both Microsoft and Google assert that 70% of their
reported security bugs are linked with memory safety [9], [10] – a software
correctness condition. Similarly, NASA’s investigation into the 1999 Mars

1a software worm, unlike a virus, is capable of self-replication without host intervention
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4 CHAPTER 1. INTRODUCTION

Climate Orbiter crash revealed that a type-unsafe conversion between English
and metric units in the ground software [11], a software correctness violation,
was one of the root causes behind the incident.

Complicating matters, certain attacks discussed earlier remain difficult to
thwart, even when the programmer ensures memory safety and type safety
throughout the entire program. In instances similar to Stuxnet [1], attackers
exploit vulnerabilities in the host operating system and the surrounding infra-
structure to mount their attacks. To differentiate between various classes of
attack vectors, we use the Stuxnet example to categorise two types of digital
systems targeted by attackers:

Cloud Systems: Such systems are commonly represented by powerful ma-
chines that virtualise hardware through hypervisors and containers [12].
Typically resource-rich, these systems can host multi-tenanted, type-safe,
and memory-safe software, while providing basic memory protection
through the underlying hardware’s memory management unit. Attacks
like Stuxnet2 tend to exploit the memory and type unsafety of the underly-
ing hypervisor, operating system and its associated drivers, compromising
critical parts of the system. Section 1.2 explains the attacker model and
security of the cloud in further detail.

Embedded Systems: These systems employ hardware deployed in large
volumes, characterized by low power and resource constraints, often
in the form of microcontrollers. The resource constraints dictate the
use of highly memory-efficient and power-efficient software, typically
written in the C and C++ family of programming languages, which
are both memory and type-unsafe. Additionally, microcontrollers lack
memory management units for cost reduction. Exploiting the memory-
unsafety of such systems, the second part of the Stuxnet attack hijacks
the control flow of the embedded-system-software and injects a malicious
state-machine that degrades the real-time behavior of the control system,
causing catastrophic damages. Section 1.3 explains the consequences of
unsafe programming languages in embedded systems in further detail.

The Threat Model

Based on the discussed attacks, we can now craft a threat model that we want
to address in this dissertation. We can divide it into two parts:

• Threat Model 1. For cloud systems, we assume a powerful attacker
that has administrative access to the operating system, hypervisor and
other related system software hosted on a malicious cloud service. The
attacker could be further classified as a passive attacker who can learn
from observing the public channels of interaction of the trusted program
and the active attacker who actively attempts to compromise the trusted
program through various malicious means discussed above.

2The Stuxnet attack was not conducted on a typical public cloud such as Amazon Web
Services but on a private desktop machine infected with a USB.
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• Threat Model 2. In embedded systems, the active attacker often
exploits the memory-unsafety of C/C++ to supply malicious inputs
or misuse the calling convention, causing buffer overflow or use-after-
free bugs. These vulnerabilities enables remote code injection, privilege
escalation, denial-of-service attacks, and similar exploits.

Madhavapeddy et al [13] provides a systematic classification of the various
attack vectors exploitable within both of our threat models. In this dissertation,
our aim is to propose a solution based on programming language techniques that
addresses both of the threat models stated above. In particular, we consider
functional programming languages built on the concept of pure mathematical
functions – that do not perform side-effects – as a means of designing more
correct and, consequently, more secure software.

Functional Programming and Correctness

Functional programming focuses on expressing computation as the evaluation
of pure mathematical functions. Pure functional languages, such as Haskell,
emphasise immutability, referential transparency, and the absence of side effects.

These convenient properties have historically cultivated a culture of equa-
tional reasoning [14], even in the presence of a variety of computational effects
[15], giving rise to a category-theory-inspired algebra of programming [16] in
functional languages. Furthermore, theoretical results [17] have justified the
informal style of equational reasoning adopted by Haskell programmers for
reasoning in the presence of non-termination and the undefined ⊥ value.

The strong type system of statically-typed functional languages, like Haskell,
not only enables the development of type-safe software but also facilitates the
encoding of lightweight proofs within the type system [18]. Haskell’s type system
is further extended by tools such as LiquidHaskell [19], enabling the encoding
of invariants that generalise Hoare Logic [20]. Additionally, libraries like
QuickCheck [21] allow automated property-based testing of Haskell programs.

The above discussion positions functional languages, such as Haskell, as
ideal tools for designing security-critical and correct software. However, upon
considering Threat Model 1 carefully, we observe that the first class of attacks
on cloud systems arises outside the safety guarantees provided by the software.
Meanwhile, the second class of attacks on embedded systems (Threat Model 2 )
exploits the fact that developers often program in a domain where functional
languages (or as such any high-level languages) are uncommon or absent. In
summary, we list the key challenges below:

• Challenge 1 Functional Programming alone cannot guarantee overall
system correctness. For instance, vulnerabilities in the underlying OS or
a foreign public library are not captured in the correctness condition of a
software written in Haskell.

• Challenge 2 Security properties are quite distinct from the category
theoretic properties that functional languages primarily reason about. For
instance, access control properties or data integrity properties.
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• Challenge 3 Functional Programming lacks abstractions for effectively
expressing real-time computations, abundant in embedded systems.

• Challenge 4 Functional Programming naturally evolved for bulk data-
transformation computations, not I/O-heavy reactive embedded systems.

This dissertation addresses the first two challenges arising from Threat Model
1 by proposing a domain-specific language that combines specialised hardware
security extensions with language-based security [22] to provide more concrete
security guarantees to the programmer. To tackle the final two challenges
arising from Threat Model 2, we introduce a set of new functional programming
abstractions and a specialised functional language runtime, designed specifically
for embedded systems.

1.1 The Thesis

Having discussed the challenges arising from the threat models attempting to
compromise the safety and security of both cloud and embedded systems, we
now present the thesis underlying this dissertation.

THESIS STATEMENT

Functional Programming abstractions, in conjunction with modern
hardware security extensions and language-based information flow
control mechanisms, present a viable path to isolate sensitive code
and data in the presence of powerful adversarial attacks in a cloud
system. Extending these functional programming abstractions with
structured concurrency and temporal programming primitives further
provides high-level, declarative and memory-safe abstractions for
embedded systems, thereby establishing a foundation for building
safer and more secure digital systems overall.

The rest of this dissertation is aimed at supporting our thesis statement.
In the following sections, we will first provide the necessary background on the
safety and security of cloud and embedded systems, essential for presenting
our contributions. Followed by that, we provide the summary of four of
our publications that support the hypothesis of functional programming as a
foundation for building safer and secure system. Figure 1.1 shows the outline
of this dissertation and how they tackle parts of our general threat model.

We conclude this section with definitions of useful terms that have been
and will continue to be used throughout the dissertation.

Some useful definitions

Safety. Safety is the absence of undesirable states, ensuring a system remains
within defined permissible states with no violation of critical properties during
execution. Examples include memory safety, type safety and thread safety.
Security policies are often stated as safety properties [23], [24].
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Figure 1.1: Outline of the dissertation

Correctness. The correctness of a system is defined by its precise adherence
to formal specifications. Often, the formal specification takes the form of a
collection of safety properties. However, the specification is not limited to
safety; it may also include other properties like liveness and fairness.
Trustworthy. A system which is provably or demonstrably correct (i.e. it
meets its specification) will be trustworthy [25] – at least within the parameters
of its specification.
Trusted. An entity can be trusted if it always behaves in the expected manner
for the intended purpose [25]. The expected behaviour is often closely tied to
the correctness criterion of the system.
Secure. The Bell-LaPadula model [26] defines security in the form of a
state-machine model for enforcing access control. A system state is defined
to be secure if the only permitted access modes of subjects to objects are in
accordance with a specific security policy.

1.2 Security in the Cloud

Starting from the early 2000s, the world has seen a massive shift in large-scale
IT operations from bare-metal servers and private digital infrastructure to
shared, on-demand, pay-per-use public digital services owned by tech giants
such as Amazon [27], Microsoft [28], and Google [29]. This trend, known
as Cloud Computing, heavily relies on resource pooling and virtualisation to
achieve economies of scale that drive overall deployment costs on a cloud much
lower than maintaining a private digital infrastructure for an organization [30].

The role of virtualisation in the cloud has been achieved through traditional
isolation technologies such as hypervisors and operating systems, commonly
implemented in memory-unsafe languages. This provides attackers with a fairly
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large and unsafe trusted code base that can be subjected to various types of
sophisticated attacks [31]–[36].

Concerned by the alarming trend of low-level attacks against hypervisors
and operating systems, hardware vendors such as Intel, ARM, and AMD have
embraced an emerging security paradigm known as Confidential Computing
[37]. At its core, confidential computing aims to secure what is known as
data in use. Data in use refers to in-memory data on a physical machine,
distributed across DRAM, cache lines, page tables, and other CPU registers.
While encryption has been fairly successful in protecting secrets for data at
rest (such as databases and file systems) as well as data in transit (such as
networks using TLS), the need for efficiency and performance has prevented
encryption from effectively protecting data in use.

To protect data in use, hardware vendors introduced the concept of a
Trusted Execution Environment (TEE), providing hardware-enforced isolation
for in-memory data. A TEE unit essentially offers a disjoint region of code
and data memory, enabling the isolation of a program’s execution and state
from the underlying operating system, hypervisor, I/O peripherals, BIOS, and
other firmware. Some of the most popular Trusted Execution Environment
implementations from leading hardware vendors include Intel Software Guard
Extensions (SGX) [38], ARM TrustZone [39], AMD Secure Encrypted Virtual-
ization (SEV) [40], and Intel Trust Domain Extensions (TDX) [41]. Fig. 1.2
illustrates a comparison of the attack surface for an application running on the
cloud without and with a TEE unit engaged.

Figure 1.2: The software attack surface (trusted code base) without and with
a TEE unit; Image source: Intel.

In Figure 1.2 on the right, observe that the OS and the hypervisor (also
known as a virtual machine monitor or VMM) are outside the attack surface
of the application stack. The hardware-protected region of code and data
memory has been variously referred to as an enclave, realm, or isolate. This
enclave is provided with strong guarantees of confidentiality and integrity by
the underlying hardware.

The actual hardware implementation for providing said guarantees varies
widely between different hardware vendors. For instance, Intel SGX implements
the enclave within the virtual memory and employs encryption when the data
moves to the shared cache. In contrast, ARM TrustZone provides a physically
disjoint memory segment with separate memory buses.
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Another key aspect of confidential computing is the presence of a hardware
root of trust and a supported remote attestation protocol. The attestation
process usually employs a cryptographic hash of the enclave code and data to
produce a measurement, which can be used by a communicating third party to
verify both the code integrity and data integrity of the enclave.

This combination of hardware-enforced memory isolation and the remote
attestation mechanism enables programmers to deploy security-critical software
on a public, co-tenanted cloud without having to trust the virtualisation
infrastructure of the cloud provider. However, an Achilles’ heel in the large-
scale adoption of confidential computing has been the low-level and awkward
programming models offered by various hardware vendors [42].

From a broad perspective, the programming model demands intricate
program partitioning that is complex and error-prone and relies on complicated
vendor-specific toolchains. Adding to the woes, the majority of language support
for programming TEEs is using the C/C++ language family, reintroducing the
wide class of memory-unsafety-related vulnerabilities [43] that we have discussed
earlier. Also, the strong confidentiality and integrity guarantee of an enclave
does not extend to the inclusion of public libraries, such as cryptographic
libraries, which can result in leaking user secrets [22].

Opportunity. This opens up an opportunity for us to employ memory-safe
functional programming abstractions to (1) implement program partitioning
and (2) enforce language-based information flow control mechanisms [22] for
protecting the confidentiality and integrity of security-critical software.

Before presenting our approach to capitalise on this opportunity, we will
now switch gears to discuss the second type of systems mentioned earlier –
embedded systems. We will provide a brief background on them and then
outline our contributions.

1.3 Safety in Embedded Systems

An embedded system, unlike traditional disciplines of batch computing and
data processing, is typically embedded within a larger system that involves
interactions with the physical environment. Henzinger and Sifakis [44] defines
an embedded system as “an engineering artifact involving computation that
is subject to physical constraints. The physical constraints arise through two
kinds of interactions of computational processes with the physical world: (1)
reaction to a physical environment, and (2) execution on a physical platform.”

The first category of interactions gives rise to behavioural requirements on
an embedded system application such as deadline, throughput, response time,
etc., that can have a tangible impact on the physical environment. The physical
interaction component demands that an embedded application be reactive to
any stimulus provided by its environment.

On the other hand, the second category results in more implementation-
specific requirements such as limited power usage, memory usage, etc. These
constraints dictate the economics of embedded systems, which are deployed in
large numbers in most applications areas (like sensor networks and cars) and



10 CHAPTER 1. INTRODUCTION

require application development platforms that prioritise resource sensitivity
over high performance.

Consider a typical embedded systems application area like wireless sensor
networks (WSNs) [45], where the number of deployed devices ranges from
hundreds to thousands. Such large deployments are made cost-effective by
reducing the price of an individual unit to be in the range of 10 to 100 dollars.

The cost of these devices is cut down by manufacturing them to be heavily
resource-constrained. Such devices, often microcontrollers, have a small die
area with simple circuitry, missing components like on-chip cache, transistors
for superscalar execution, etc. As a result, these devices are power efficient and
require little cooling. They frequently use ARM-based microcontrollers, also
with constrained memory and clock speed.

Given this inclination toward resource efficiency, the embedded systems
industry primarily conducts software development in the C/C++ family of
programming languages. Figure 1.3 show the results of a 2019 survey of the
embedded systems market conducted by EE Times [46]. The survey gathered
responses from 958 participants across various sectors of the embedded systems
industry, allowing for multiple responses regarding the developers’ primarily
used programming language.

Figure 1.3: EETimes 2019 Embedded Systems Markets Study [46]

Figure 1.3 clearly shows the dominance of the C programming language
in the embedded systems industry. The second-most popular language, C++,
often uses a highly specialised subset of modern C++ standards. These
subsets exclude several high-level features of C++ and constrain the language,
effectively making it behave more like C.

The omnipresence of C can be partially attributed to microcontroller vendors
exclusively supporting C compiler toolchains [47]. Today, any new microcon-
troller entering the market is expected to inherently support the popular ARM
GNU toolchain or another vendor-specific C toolchain. One of the key benefits
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of C is that it is considered as a sufficiently low-level language that can enable
the programmer to write resource-conscious programs. Restricted subsets of C,
such as MISRA C [48], allow writing deterministic programs with statically
predictable object lifetimes.

However, this perceived strength of C as a low-level systems language
becomes a security disadvantage for the system. Examining the memory-
unsafety of C, MITRE analysed the list of known exploited vulnerabilities from
the American Cybersecurity and Infrastructure Agency [49]. Their findings
indicate that the top three culprits—use-after-free, heap-based buffer overflow,
and out-of-bound writes—all stem from memory unsafety.

Although the adoption of C is driven by resource efficiency, Henzinger
and Sifakis’ definition [44] highlights an unaddressed component in embedded
systems – reaction to the physical environment or reactivity. Operationally,
reactive applications are I/O-intensive due to their continual interactions with
the external environment. Additionally, the external environment can supply a
variety of stimuli, best handled by breaking down an application into several
concurrent stimulus handlers.

A third property that arises as a result of interaction with the external
world is the notion of being timing-aware. Responses to certain specific types
of stimuli often require reactions within a given deadline and at a periodic
rate. Thus, we can assemble three important operational properties of reactive
systems, which are embodied in embedded systems applications, as follows:

1. I/O-intensive

2. Concurrent

3. Timing-aware

The C programming language is not a concurrent language. There are some
ad-hoc libraries, such as Protothreads [50], to mimic concurrent behavior, but
the intrinsic language semantics are not concurrent. Moreover, in the presence
of callback-based I/O driver APIs for embedded systems, C programs start
suffering from a programming anti-pattern known as callback hell [51]. Also, in
terms of real-time behaviors, C is deficient and often resorts to vendor-specific,
bespoke real-time extensions to the original language [52].

There is a clear gap for a high-level, memory-safe, and type-safe language
for embedded systems that embodies the discussed reactive properties while
efficiently running programs in a resource-sensitive manner. To design such
systems, we need a fundamentally concurrent language that allows structuring
callback-based, low-level APIs into programs with a natural control-flow while
respecting the physical timing requirements.

For certain application areas, such as soft real-time applications, if pro-
grammers are willing to adopt automatic memory management schemes, a
trade-off emerges: memory-safe programs that occasionally miss application
deadlines versus memory-unsafe programs susceptible to the wide class of
memory-unsafety-based attacks [49] but with tighter timing performance. In
this dissertation, we opt for the former, which gives rise to an opportunity.
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Opportunity. This opens up our second opportunity to employ memory-
safe functional programming abstractions and extend them with structured (1)
concurrency, (2) I/O, and (3) temporal programming primitives for safer em-
bedded systems programming.

Recapitulating, in this dissertation, we are considering two classes of systems
– cloud systems and embedded systems. After discussing the challenges to
the safety and security of both classes of systems, we have now identified
two opportunities for contributions aimed at supporting our thesis of using
functional programming abstractions as a foundation for safe and secure systems.
In the remainder of this chapter, we will provide a high-level summary of our
four papers and highlight their main contributions that support our thesis
statement. Papers I and II introduce two successive versions of a domain-
specific language embedded in Haskell for programming Trusted Execution
Environments in cloud systems. Papers III and IV present the design and
implementation of specialised functional programming languages and runtimes
targeted towards embedded systems. Note that the contributions in Papers III
and IV have also been discussed in our licentiate thesis [53].

1.4 Papers I and II: HasTEE and HasTEE+

Paper I

Paper I presents HasTEE [54], a domain-specific language (DSL), designed for
programming Trusted Execution Environments (TEEs) such as Intel SGX.

One of the challenges that arises when running high-level, memory-safe, and
type-safe languages on a TEE like Intel SGX is the use of a restricted C standard
library implementation provided by the vendor, such as tlibc [55]. Libraries
like tlibc are not POSIX-compliant and severely restrict memory mapping,
threading, timing, and various other APIs used for interacting with the OS
and hardware. This significantly impacts the porting of standard programming
language runtimes that heavily rely on POSIX compliance, especially for high-
level features such as efficient and automatic memory management.

Trusted Runtime. A crucial contribution of HasTEE was enabling the
Glasgow Haskell Compiler (GHC) Runtime [56] to operate on Intel SGX
hardware. This enables the execution of a language with a strong type system
and automatic memory management on a TEE, which inherently offers stronger
correctness guarantees than programming TEEs in the C family of languages.
The implementation details are discussed in Chapter 5.

Another key challenge in TEE programming is the cumbersome multi-
project programming model that necessitates partitioning the entire program
and its state into two projects – a smaller trusted project for the enclave
and the remaining untrusted project responsible for communication with the
trusted counterpart. Every hardware vendor provides its own toolchain for
accomplishing this program partitioning, and the result is often error-prone,
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requiring adherence to complex data-copying protocols [57] for communication
between the two projects.

In addressing this challenge, our solution is creating a fairly general pro-
gramming interface for HasTEE. This interface is designed to capture the
lifting of a polymorphic Haskell function into an enclave and allowing function
application within the enclave. It also features mutable references to model
state. Figure 1.4 show the core HasTEE API.

-- mutable references for modeling state

liftNewRef :: a → App (Enclave (Ref a))

readRef :: Ref a → Enclave a

writeRef :: Ref a → a → Enclave ()

-- get a reference to call a function inside the enclave

inEnclave :: Securable a ⇒ a → App (Secure a)

-- runs the Client monad

runClient :: Client () → App Done

-- used for function application on the enclave

gateway :: Binary a ⇒ Secure (Enclave a) → Client a

(<@>) :: Binary a ⇒ Secure (a → b) → a → Secure b

-- call this from `main` to run the App monad

runApp :: App a → IO a

Figure 1.4: The core HasTEE [54] API

Program partitioning through a “poor man’s module system”.
Our program partitioning is accomplished by treating the API shown in Fig. 1.4
as analogous to a module signature [58] in the ML family of languages. There
are two implementations for the corresponding signature: one for the program
running on the enclave (captured as the Enclave monad) and the second for the
program communicating with the enclave (the Client monad). Internally, a
dispatch table is constructed within our DSL, mapping a function call from the
untrusted side of the program to a function application inside the enclave. The
detailed meaning and implementation of the API are provided in Chapter 5.

Note that our implementation, inspired from Haste[59], is quite lightweight
and does not require any advanced type-level or language-level features of
Haskell. The main objective of the API is to facilitate sound program par-
titioning rather than introducing a module system, similar to those already
existing in Haskell [60], [61].

Information Flow Control. The HasTEE API also incorporates a prag-
matic implementation of information flow control [22], where all computations
carried out in the enclave are considered highly confidential. Enforcing gen-
eralised non-interference [62] on such a model would disallow any form of
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communication with the enclave, as all computed results would also be confid-
ential. We relax this constraint and allow data to flow out of the enclave, but
through a very restricted API – namely, the function gateway (Fig. 1.4). There
are a number of other guardrails provided to prevent accidental information
leak such as the RestrictedIO monad and Binary typeclass constraint on
data flowing across the enclave. The details can be found in Chapter 5.

Evaluations. Our evaluations were conducted through three sample ap-
plications. One of them – a case study on Federated Learning [63] – involves
the use of TEEs and homomorphic encryption [64] to emulate a zero-trust data
analytics setup. Our preliminary results show acceptable memory overheads
but suffer from high latency and low throughput in communication with the
enclave. The performance impact is attributed to our implementation strategy,
wherein we utilise two GHC runtimes to facilitate communication between the
client and the enclave, a topic discussed in further detail in Chapter 5.

One of the missing features in HasTEE is the absence of any integration
with the remote attestation protocols supported by various TEEs. In our
follow-up Paper II, we improve upon HasTEE by adopting an alternate threat
model and addressing its other shortcomings.

Paper II

Paper II presents HasTEE+ [65], a DSL that builds on top of HasTEE while
adopting a different threat model. Figure 1.5 contrasts the two threat models.

Figure 1.5: The HasTEE threat model on the left and the HasTEE+ threat
model on the right (not limited to four clients)

In Fig. 1.5 on the left, we observe that HasTEE’s threat model closely
aligns with a typical TEE threat model. In this scenario, there is a single
malicious machine, and an attacker with administrative access on the hypervisor,
operating systems, and all other system software attempts to compromise the
enclave, which is trusted. The red arrows indicate the input/output boundary,
which is often maliciously exploited to craft spurious inputs that can compromise
the enclave integrity [66].

In HasTEE+, we extend the above threat model to represent multiple
clients (Fig. 1.5 right). The program partitioning technique from HasTEE is
generalised to allow a single program to represent multiple clients and an enclave.
HasTEE+ then employs multiple compilations to split the same program into
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several clients and one enclave program. The details of the implementation are
found in Chapter 6.

Tierless DSL. This approach of using a single program to express the
interactions of several clients and servers is known as tierless programming [67].
The automation of program partitioning in Haskell makes the entire process
type-safe by capturing the types of all participants within Haskell’s type system.
This automation helps eliminate bugs that may arise from manual program
partitioning and the adherence to complex data copying protocols.

Furthermore, this enables a transition from the HasTEE model, which
uses the DSL as an SDK, to a model where separate trusted client and server
programs are generated. Subsequently, the entire server program could be
hosted within a TEE, aligning with the programming model of newer Intel
TDX machines [41]. Further details can be found in Chapter 6.

Integrity with Remote Attestation. One of the key contributions of
HasTEE+ is the integration of a remote attestation infrastructure for verifying
the enclave integrity. In Fig. 1.5, the arrows at the communication boundary
are marked in green, as HasTEE+ uses Intel’s RA-TLS infrastructure [68]
to establish a secure communication channel with the enclave. Furthermore,
HasTEE+’s design frees programmers from writing any form of cross-cutting
code related to attestation protocols, which is very common in C/C++-based
projects. HasTEE+ also incorporates a digital signature-based scheme to
verify client integrity, ensuring secure data inflow and outflow. The details are
presented in Chapter 6.

Information Flow Control. HasTEE+, as an improvement over HasTEE,
integrates a sound and complete dynamic information flow control (IFC) mech-
anism inspired by the Labeled IO (LIO) monad [69]. HasTEE+ introduces
labeled values inside the enclave, enabling the mixing of both public and con-
fidential data within the enclave. The basic IFC primitives include tainting,
labeling, and unlabeling the data. Unlabeling data results in tainting the com-
putational context, which constrains all other contexts in which the data can
move while respecting generalised non-interference [62].

The labeling model adopted in HasTEE+ is Disjunction Category labels
[70], which itself is based on the well-known Myers-Liskov labeling model [71].
Our implementation additionally provides the client application with labeling
and unlabeling primitives, as they are trusted. Declassification [72] is permitted
using privileges, which resemble the concept of capabilities [73]. Further details
are explained in Chapter 6.

A Confidential Data Sharing Pattern. The final contribution of
HasTEE+ is a data sharing design pattern that uses a combination of priv-
ileges or capabilities with standard public-key cryptography, enabling mutually
distrusting parties to conduct data analytics.

Evaluations. For evaluations, the data sharing pattern discussed above is
employed to model a data clean room [74]. We present microbenchmarks for
measuring the performance overheads on the data clean room arising from the
dynamic IFC mechanism, remote attestation, and client-integrity checks. The
results indicate that the overheads are in the order of hundreds of milliseconds,
which we suggest as acceptable overheads for security-critical software.
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Multiple Enclaves. While the HasTEE+ DSL accounts for multiple
clients and a single enclave, it seems that there is a missing notion for multiple
enclaves. Multiple enclaves typically refer to multiple sets of encrypted memory
pages hosted in either (1) the same virtual address space, (2) different virtual
address spaces, or (3) different physical address spaces.

Scenario (1) can be naturally expressed in HasTEE+ using a combination of
the forkOS and runInBoundThread functions from GHC’s Control.Concurrent
library [75]. Regarding scenarios (2) and (3), we deliberately decided against
representing disjoint address spaces as distinct types in our DSL. This is because
those scenarios are simply considered a special case of the standard client-server
interaction already expressible in HasTEE+.

The Question of Side channels. While HasTEE+ presents itself as
a viable solution for constructing secure software on the cloud, employing a
combination of strongly-typed functional programming, Trusted Execution
Environments, and language-based information flow control, a rising concern
is the exploitation of side channels in hardware [76], [77]. In the work on
HasTEE+ and HasTEE, side channels were considered out of scope, as we
focused on mitigating much easier-to-exploit software vulnerabilities compared
to hardware side-channel attacks, which often require physical access to the
hardware. Nevertheless, given the discovery of attacks like the ÆPIC Leak [78],
which do not rely on noisy side-channels, we recognise the significant challenge
of addressing side channels. Accordingly, we discuss possible future work on
extending HasTEE+ to counter such attacks in Chapter 3.

1.5 Paper III: Synchron

Paper III presents Synchron [79], a functional language runtime, and corres-
ponding programming interface targeted towards embedded systems. Synchron
is a specialised runtime API designed for expressing (i) I/O-bound, (ii) con-
current and (iii) timing-aware programs. The architecture of Synchron
consists of three parts -

• Runtime - The principal component of Synchron is a specialised runtime
consisting of nine built-in operations and a scheduler. The runtime
allows the creation of concurrent user-level processes (green threads)
and provides operators for declaratively expressing interactions between
the software processes and hardware interrupts. The power-efficient
scheduling of the processes is managed by the Synchron scheduler.

• Low-level Bridge - The Synchron runtime interacts with the various
hardware drivers through a low-level bridge interface. The interface is
general enough such that it can be implemented by both synchronous
drivers (like LED) as well as asynchronous drivers (like UART).

• Underlying OS - The Synchron runtime is run atop an underlying RTOS
such as ZephyrOS or ChibiOS. The OS supplies the actual hardware
drivers that implement the low-level bridge interface described above.
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We have designed our runtime interfaces in a modular fashion such that
other operating systems, such as FreeRTOS, can be easily plugged in.

Our implementation of Synchron is in the form of a bytecode-interpreted
virtual machine called the SynchronVM. The execution engine of SynchronVM
is based on the Categorical Abstract Machine [80] (of Caml [81]), which supports
the cheap creation of closures to support functional programming languages.
Fig. 1.6 below provides a graphical description of the architecture of Synchron.

Figure 1.6: Architecture of Synchron

The Synchron API

The core API of Synchron consists of nine functions, which can be embedded
within a standard call-by-value functional language. In Fig. 1.7, we present the
complete API using the syntax of a call-by-value functional language, serving
as the frontend for programming with Synchron. Syntactically, the language
resembles Haskell but is semantically closer to Caml [81]. We emphasise that
we use the type signature for the ease of exposition; however, the underlying
virtual machine is untyped.

spawn : (() → ()) → ThreadId

channel : () → Channel a

send : Channel a → a

recv : Channel a → Event a

choose : Event a → Event a → Event a

wrap : Event a → (a → b) → Event b

sync : Event a → a

syncT : Time → Time → Event a → a

spawnExternal : Channel a → Driver → ExternalThreadId

Figure 1.7: The complete Synchron API

Concurrency. The Synchron API is built on Concurrent ML (CML) [82], a
synchronous message-passing–based concurrency model. CML’s key distinction
from predecessors like Hoare’s communicating sequential processes [83] is the
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separation between the intent and act of communication. This separation is
captured by first-class values called Events.

An event is an abstraction to represent deferred communication. In contrast
with a rudimentary protocol involving single message sends and receives, the
CML combinators such as wrap and choose can compose elaborate communic-
ation protocols involving multiple sends and receives.

Timing. Synchron’s extension of the CML API to include the notion of
timing is from the function syncT (Fig. 1.7). The syncT operation allows a
programmer to specify the exact timing window at which an event synchron-
isation should happen. The first argument to syncT represents the baseline of
the operation, while the second argument is the deadline. The syncT operator
provides an opportunity to dynamically prioritise concurrent timed processes
instead of static-priority APIs provided by typical RTOSes.

I/O. To unify the notions of I/O and concurrency, Synchron introduces the
spawnExternal operator. The spawnExternal operator models the external
hardware drivers as processes themselves. Modelling the drivers as processes
allow programmers to apply the entire message-passing API to low-level drivers
interactions such as interrupt-handling. The serialisation and deserialisation
between software messages and hardware interrupts are handled by the runtime.

The design and implementation of SynchronVM are detailed in Chapter 7.
Note that we previously introduced a subset of the API, focusing on concurrency
and I/O aspects, elsewhere [84]. However, Chapter 7 provides a comprehensive
explanation of the complete API.

Evaluations. Our evaluations were carried out on the NRF52840DK [85]
and the STM32F4 Discovery [86] microcontroller boards with the help of a mu-
sical application, which involves some soft real-time components. Other micro-
benchmarks were carried out on response times, memory usage, interpreter-
overhead, and power consumption.

Our preliminary results are encouraging and show that in terms of power
usage, a program running on SynchronVM has the same amount of momentary
power consumption as a C program written using callback registration. Indeed,
when considering integrated power usage over time, a C program tends to be
more power-efficient. However, the trade-off of programming with high-level
abstractions is an attractive proposition.

In terms of memory usage, a SynchronVM program occupies tens to hun-
dreds of kilobytes, which is beneficial for memory constrained microcontrollers.
The response times of our benchmarks are typically 2-3x times longer than the
C equivalents. A point to be noted here is that our execution engine is based
on the categorical abstract machine, which is known to be four times slower,
on average, than the Zinc abstract machine [87] (that underlies OCaml [88]).

For memory management, we use a stop-the-world, non-moving, mark-and-
sweep garbage collector that employs pointer-reversal-based marking, suitable
for memory-constrained embedded systems. Additionally, we employ an ag-
gressive peephole optimization that attempts to reduce the size of the code to
fit in the flash memory of microcontrollers.

A natural extension of this work would be to embed a HasTEE+–style
DSL in Synchron’s frontend functional language and use ARM TrustZone’s
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extensions for microcontrollers [89]. This is considered as potential future work.
Additionally, in Chapter 3, we discuss our future plans to port SynchronVM to
experimental memory-tagging architectures, such as CHERI [90].

1.6 Paper IV: Hailstorm

Paper IV introduces Hailstorm, a functional reactive programming language
designed for embedded systems [91]. Chronologically, Hailstorm is the first
published paper in this dissertation, preceding the work on SynchronVM.
Hailstorm primarily aims to tackle the challenge of designing a programming
language for I/O-intensive embedded systems applications. In a pure functional
language like Haskell, these applications would reduce to a giant I/O monad
capturing all external interactions.

One alternate approach to expressing such applications is Functional React-
ive Programming (FRP) [92]; however, in practice, if embedded3 in a language
like Haskell, such applications would inevitably interact with the external world
through monadic I/O. The problem is also alluded to by Conal Elliott, the
inventor of FRP, in a blog post [93]:

...imperative computation still plays a significant role in most
Haskell programs. Although monadic IO is wily enough to keep
a good chunk of purity in our model, Haskell programmers still use
the imperative model as well and therefore have to cope with the
same fundamental difficulties that Backus told us about. In a sense,
we’re essentially still programming in Fortran,...

Hailstorm’s key contribution is introducing a purely functional programming
language that incorporates side effects without relying on monads. Instead, it
opts to integrate FRP into the core I/O semantics of the language. It uses the
Arrowized FRP [94] formulation of FRP. The most central type in the language
is that of a signal function, SF a b, where a and b denote polymorphic type
variables. Signal functions are representations of a dataflow from type a to b.

We further extended this representation with the concept of a resource type
[95]. A resource type is type-level label that can be used to uniquely identify
various external resources. The new type of a signal function becomes SF r a b,
where r denote a polymorphic resource label. For instance, two sensors that
can supply an Int and Float value type respectively, will have the following
types in Hailstorm -

resource S1

resource S2

sensor1 :: SF S1 () Int

sensor2 :: SF S2 () Float

3refers to the embedding of a language, not to be confused with embedded systems
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The unit type - () - above indicates that the sensor interacts with the
external world. Hailstorm provides a family of combinators (Fig. 1.8) to
declaratively compose the data flowing through the various signal functions.

mapSignal# : (a → b) → SF Empty a b

(>>>) : SF r1 a b → SF r2 b c → SF (r1 ∪ r2) a c

(&&&) : SF r1 a b → SF r2 a c → SF (r1 ∪ r2) a (b, c)

(***) : SF r1 a b → SF r2 c d → SF (r1 ∪ r2) (a, c) (b, d)

Figure 1.8: The key Hailstorm operators

The technical details about the type-level union and its semantics are
described in the Chapter 8. As discussed earlier, FRP models are often
embedded within a host language, making any form of interaction with the
external world syntactically awkward. The introduction of resource types is
done to resolve this issue, and we detail, using examples, in Chapter 8 on how
a resource label can allow the correct composition of signal functions.

Evaluations. The Hailstorm language has an LLVM and an Erlang backend.
The Erlang backend, in particular, was used to prototype experiments on the
GRiSP microcontroller boards. The evaluations consisted of writing very small
prototype applications in Hailstorm like a watchdog process, a simplified traffic
light system and a railway level-crossing simulator.

We also carried out micro-benchmarks on the memory consumption and
response time of the programs. The memory footprint of the Hailstorm pro-
grams was in the order of 2-3 MB, owing to the size of the Erlang runtime.
The response time of the programs was in the range of 100-150 microseconds.

As the work on Hailstorm preceded Synchron [79], the paper uses an Erlang-
based runtime. Nevertheless, the language is more naturally suited for hosting
on a memory-efficient, embedded systems runtime such as Synchron.

1.7 Discussion

Revisiting our thesis statement, our goal was to use a functional programming
foundation to build safer and secure digital systems. We distinguish between
two classes of digital systems: cloud and embedded systems. Built upon
functional programming abstractions, we employ hardware security extensions
and language-based security techniques to secure the cloud. Simultaneously,
we propose concurrency, I/O, and timing primitives to enhance the safety of
embedded systems. Figure 1.9 visually illustrates how the contributions from
these four papers come together to construct a secure software system.

In Fig. 1.9, the embedded systems component benefits from the declarative,
memory-safe, and type-safe features of Hailstorm and Synchron. At the same
time, the cloud-based software can be hosted on a potentially malicious cloud,
with security guarantees ensured by HasTEE+. Furthermore, the integration
of our remote attestation framework with the communication protocol (TLS)
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Figure 1.9: A secure digital system using HasTEE+, Synchron and Hailstorm

ensures that we can establish secure communication channels, guaranteeing the
integrity of both the client and server. In the following chapter, we offer our
reflections on the role of Functional Programming in this dissertation and in
the construction of secure systems in general.
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Chapter 2

Reflections

This dissertation is a compilation of four papers in which we use functional
programming abstractions to address a variety of problems. Reflecting on some
of the more important challenges:

1. Both HasTEE [54] and HasTEE+ [65] have to deal with the problem of
program partitioning for security.

2. Both libraries, HasTEE+ in particular, needs to enforce forms of Inform-
ation Flow Control (IFC) mechanisms.

3. To provide a highly automated and type-safe programming model for
TEEs, HasTEE+ had to implement a multi-tier programming model,
which we call tierless programming.

4. To address the inherent concurrency of microcontrollers, both Synchron
[79] and Hailstorm [91] need to implement structured concurrency prim-
itives. Structured concurrency [96], a general term1 for concurrency
primitives ensuring well-defined scope and structured lifetime for con-
current tasks, is implemented by the green threads in Synchron and
implicitly integrated into Hailstorm’s FRP primitives.

5. Synchron has to implement temporal programming primitives to express
timing-aware computations.

6. Finally, Hailstorm needs to perform resource tracking to express compos-
able I/O operations among various sensors within the FRP paradigm.

To address the above challenges, we employ various techniques and abstrac-
tions from what we refer to as the Functional Programming Toolkit.

1coined by Martin Sústrik, the author of the popular ZeroMQ library [97]

23
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2.1 The Functional Programming Toolkit

The Functional Programming Toolkit is a metaphorical “toolkit” that offers
a wide array of techniques and abstractions from a functional programming
language, which we have employed for solving problems during various stages
of writing this dissertation. Figure 2.1 visually illustrates the above discussed
challenges (highlighted in blue) and showcases some of the tools (highlighted
in green) from the toolkit that we employed to address these diverse problems.

Figure 2.1: Some essential tools (green) from the Functional Programming
Toolkit employed in this thesis and their corresponding applications (blue).

Monads. The notion of a monadic structure is employed to enforce in-
formation flow control. The return :: a -> m a operator can be considered
as tainting a value, and the underlying monadic computation then tracks the
information flow within the specified monad (Chapter 6).

For tierless programming, a monadic computation tracks the correct client
and server, dispatching the desired computation accordingly (Chapter 6)

For program partitioning, the entire API is expressed as a combination of
three monads, where the monadic type marks the location where the computa-
tion is executed (Chapters 5 and 6).

Typeclasses. Typeclasses are used to emulate remote procedure calls and
variadic functions for a partitioned program in Chapter 5. They are extensively
used in implementing disjunction category labels [70] for IFC in Chapter 6 .

Purity. Purity is an important concept in IFC, where a pure function can
be considered confined by default [98]. Consequently, HasTEE+ relies on the
purity of Haskell functions to enforce non-interference.

Higher-Order Concurrency. Originally proposed by John Reppy [82],
higher-order concurrency naturally integrates with functional languages to
represent structured concurrency primitives. Our extensions in Synchron
additionally allow expressing temporal programming operations in this model.
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Functional Reactive Programming (FRP). FRP, in combination with
resource-types [95] enable resource tracking in Hailstorm (Chapter 8).

Higher-Order Functions. Higher-Order Functions are pervasive through-
out every aspect of this dissertation, with applications too numerous to enu-
merate. For instance, the program partitioning and tierless programming
mechanisms in both HasTEE and HasTEE+ rely on higher-order functions to
lift them to the enclave and generate the internal dispatch table identifying
the location of each function.

Type-level Programming. We deliberately use a limited amount of
type-level programming, as it can often impact the type-inference capabilities
of Hindley-Milner-style type systems [99]. In HasTEE+, type-level strings are
used for distinguishing between various client and servers. Also in Hailstorm,
a resource type serves as an example of very simple set-theoretic operations
implemented at the type-level for resource tracking.

2.2 Practicality

Reflecting on the practicality of our contributions, the HasTEE+ DSL (along
with its predecessor HasTEE) is implemented as a Haskell library. Along with
the DSL, even the Information Flow Control aspect of HasTEE+ is part of the
same Haskell library.

The advantage of adopting this library-based approach is that programmers
can readily access a simple and secure DSL for specialised hardware without
relying on dedicated languages such as GoTEE [100] for TEE programming or
Jif [101] and Flow Caml [102] for information flow control. Furthermore, the
entire Haskell ecosystem is available to the programmer, as a HasTEE+ program
is simply a Haskell program, without any specialised language extension.

In the chronological order of publication, our earlier works on Hailstorm and
Synchron represent more ground-up redesigns, which we consider essential given
the propensity for memory-safety and type-safety vulnerabilities associated
with C in embedded systems. Since the publication of Synchron [79], we
have incorporated a foreign-function interface in Synchron to interact with
C/C++ libraries, thereby opening the door to the broader embedded systems
ecosystem. However, the memory and type safety guarantees do not extend
to the C/C++ libraries. One possible approach to address this limitation is
software compartmentalization, a topic we discuss as future work in Chapter 3.

2.3 Reasoning with Functional Programming

One of the benefits of functional programming is that it allows equational
reasoning even in the presence of side effects [15]. As the HasTEE+ library
implements enclave computation within a monad, the well-known left-identity,
right-identity, and associativity monad laws [103] apply to the Enclave monad.

Regarding security properties, the Information Flow Control component
of HasTEE+ is based on the Labeled IO monad, for which Stefan et al. have
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already proven non-interference and containment (asserting that certain pieces
of code cannot manipulate or have access to specific data) [69].

Reasoning becomes more challenging with Synchron as it is implemented
as an impure virtual machine rather than a pure programming language.
Nevertheless, the underlying API is an extension of Hoare’s Communicating
Sequential Processes [83], which has a substantial body of work dedicated to
developing a mathematical theory [104].

Hailstorm, on the other hand, is a pure functional programming language
based on Arrowized FRP formulation. Consequently, when equationally reas-
oning with Hailstorm, one can apply the standard monad laws as well as the
additional Kleisli arrow laws [105].

What about Formal Verification? Given our aim to provide strong
system security guarantees, the question naturally arises: Is it feasible to
formally verify our assurances? Considering type safety, a sound [106] and
complete [107] Hindley-Milner type system is able to guarantee the type safety
of a program. In terms of memory safety, the memory management in our
contributions is automatic, ensuring memory-safety by default.

The security properties requiring formal verification include non-interference
[62]. The non-interference property of security monads and their corresponding
Haskell libraries has been mechanically verified [108].

Such formal proofs often involve mechanising a core calculus and proving
non-interference in the somewhat idealised core language. If mechanising the
proof for a significantly larger, practical language were to be undertaken, it
would require mechanised semantics for the entire language. However, with
the exception of Standard ML [109], very few feature-rich languages have such
comprehensive mechanised semantics. As a result, there are possibilities of
errors creeping in the actual implementation of the library.

One of the possible solutions is writing the entire library in a proof assistant
and then using the program extraction feature to generate the actual library.
Such approaches often require quite elaborate proof techniques and substantial
proof-engineering effort [110].

An alternative to formal verification could involve using QuickCheck [21]
to encode non-interference as a property and applying property-based testing
on the actual library implementation. As HasTEE+ enables the execution of
Haskell programs within the enclave, we consider this a potentially fruitful
avenue for future research and discuss it further in Chapter 3.

2.4 Applicability beyond Functional Languages

Our final reflection is on the applicability of our contributions beyond functional
programming languages. Before discussing imperative languages, if we consider
other statically-typed functional programming languages like OCaml and SML,
our contribution could be adopted, subject to mimicking higher-kinded types like
monads. Similarly, while typeclasses are quite central to our implementation,
the same could be implemented using ML modules.

Beyond functional languages, the natural beneficiary from the contributions
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made in this dissertation would be a language like Rust [111]. Particularly in
embedded systems, Rust is touted to be an eventual replacement for C. Though
Rust does not intrinsically contain structured concurrency primitives, there
are experimental crates [112] that leverage the basic concurrency constructs of
Rust to implement various structured concurrency libraries. Rust also lacks any
temporal programming operations, so the Synchron API could be something
that could be naturally adopted as a Rust library.

With respect to the HasTEE+ line of work, Rust, like OCaml, does not nat-
ively support higher-kinded types like monads. However, through sophisticated
usage of Rust traits, many of the core functionalities in our contributions could
be implemented. There also exists a Rust SDK [113] for programming Intel
SGX enclaves, so it would be quite natural to adopt the program partitioning
technique of HasTEE+ and use it to simplify TEE programming in Rust.
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Chapter 3

Future Work

3.1 Property-based Testing for TEEs

As discussed earlier, the capability of running Haskell programs in the enclave
opens up the possibility of applying QuickCheck’s property-based testing to
Trusted Execution Environments. There are two levels at which QuickCheck
can be applied:

• Fuzz Testing. Tools such as SGXFuzz [114] and TEEzz [115] have
successfully employed fuzzing-based approaches to discover bugs and
vulnerabilities in Intel SGX and ARM TrustZone, respectively. The
bugs are typically found by fuzzing the API at the enclave boundary.
QuickCheck can be analogously applied as a fuzzer (as illustrated in
QuickFuzz [116]) to catch vulnerabilities at the enclave boundary.

• Testing Non-interference - The more interesting and unique use case of
QuickCheck could be to test if the HasTEE+ library when executing
a monadic computation on an enclave obeys non-interference. Unlike
traditional properties, non-interference is a hyperproperty [117], meaning
it is a property applied to a set of traces rather than a single trace.
While this poses a challenge to express in QuickCheck, Hritcu et al.
[118] have presented initial work on testing non-interference for a stack
machine written in Haskell. The next challenge would be to generalise this
approach for generating polymorphic HasTEE+ programs, thus paving
the way to employ QuickCheck for testing generalised non-interference.

3.2 Beyond Binary Attestation

Attestation, one of the core components of Confidential Computing, is concerned
with proving the identity of the software (and hardware) running on a TEE to
a challenging remote party. Both Intel SGX and ARM TrustZone toolchains
currently rely on something called binary attestation, where the identity of the
software essentially consists of a cryptographic hash of the software’s build
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artifact. One of the key limitations of binary attestation is that it provides the
remote party with confidence solely in the enclave’s initial state, disregarding
the dynamically changing state of the program. It fails to account for the
fundamental fact that software’s behaviour and state, particularly in the case
of long-running servers, undergoes dynamic changes throughout its runtime –
something not captured by a binary hash. Moreover, the use of a static binary
hash as an identity also increases the probability of fingerprinting attacks [119].

A more natural way to identify software could involve behavioral or property-
based attestation, where the software is identified by the satisfaction of func-
tional and security properties, rather than relying on a binary hash. The idea
of property-based attestation [120] has been around since the introduction of
the Trusted Platform Module [121] but deserves to be explored in the context of
TEEs. An important question that needs answering is: What kind of properties
best identify trusted software?

In line with our earlier discussion on property-based testing, the QuickCheck
properties of the trusted software could serve as the identifier in property-based
attestation. Research is needed on the infrastructure required to integrate
dynamic monitoring of the software and check if it satisfies the specified
properties. A potential solution would likely involve integrating a runtime
monitor with HasTEE+ programs, drawing parallels to related work on software
privacy monitoring using runtime monitors [122].

3.3 Side-channel Attacks

There is a growing body of work on side-channel attacks against Intel SGX
enclaves [123], where the speculative execution capabilities of modern x86
machines are exploited to extract secrets through timing [77], voltage [124],
and other side channels. The long-term solution to these attacks would involve
migrating security-critical software to computer architectures with specialised
extensions [125] or to newer processor designs [126].

A more short-term solution would involve integrating software-based tech-
niques for side-channel mitigation into HasTEE+. The general strategy involves
disallowing (1) branching on secrets, (2) specialized memory-access patterns
depending on secrets, and (3) early termination of loops or procedures de-
pending on secrets. In connection with this, Agat [127] proposed a simple
type system, allowing statements to branch on secrets only if the branches
exhibit the same memory access pattern. More recently, DSLs like FaCT
[128] introduced secrecy type systems and compiler transformations to enforce
the aforementioned strategies. These approaches could be implemented and
experimented with using GHC compiler plugins [129]. Additionally, further
research on the impact of laziness on side-channel attacks is crucial.

3.4 SynchronVM on CHERIoT

As noted earlier, the addition of the C/C++ foreign function interface to
SynchronVM enables tapping into the larger embedded systems ecosystem.
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However, correspondingly, the memory and type safety of the software are
compromised, and even the type-safe Synchron programs themselves become
vulnerable to classic memory-unsafety-based attacks [49].

A solution to this would be porting Synchron to a new architectural ex-
tension to RISC-V called CHERIoT [130]. Underneath, CHERIoT employs
a capability-based system that uses a collection of techniques involving fat
pointers to perform bound-checks on memory-unsafe libraries and prevent
use-after-free vulnerabilities, effectively compartmentalising the memory-unsafe
code. Challenges would mainly involve adapting the C99-based SynchronVM
code to the CHERIoT toolchain, which features a different pointer structure
and introduces new pointer types compared to C99.

3.5 Conclusion

We acknowledge that security is often a moving target, and achieving a perfectly
secure platform is a goal that demands further research. As such, our hope
is that the contributions made through this dissertation would open further
avenues for research, where the strong static guarantees provided by a language
like Haskell can be married with newer hardware and software-based security
techniques to enable the construction of a safe and secure digital system.

The programming artifacts of HasTEE, HasTEE+, Synchron, and Hailstorm
have all been made publicly available and are liberally licensed (MIT and BSD
licenses). We hope that subsequent research will build upon these artifacts and
our suggested lines of future work, enhancing our current security guarantees
and moving closer to the elusive goal of a perfectly secure software system.
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Chapter 4

Statement of Contributions

Paper I. HasTEE: Programming Trusted Execu-
tion Environments with Haskell

Abstract

Trusted Execution Environments (TEEs) are hardware enforced memory isol-
ation units, emerging as a pivotal security solution for security-critical ap-
plications. TEEs, like Intel SGX and ARM TrustZone, allow the isolation
of confidential code and data within an untrusted host environment, such as
the cloud and IoT. Despite strong security guarantees, TEE adoption has
been hindered by an awkward programming model. This model requires
manual application partitioning and the use of error-prone, memory-unsafe,
and potentially information-leaking low-level C/C++ libraries.

We address the above with HasTEE, a domain-specific language (DSL)
embedded in Haskell for programming TEE applications. HasTEE includes a
port of the GHC runtime for the Intel-SGX TEE. HasTEE uses Haskell’s type
system to automatically partition an application and to enforce Information
Flow Control on confidential data. The DSL, being embedded in Haskell, allows
for the usage of higher-order functions, monads, and a restricted set of I/O
operations to write any standard Haskell application. Contrary to previous
work, HasTEE is lightweight, simple, and is provided as a simple security
library ; thus avoiding any GHC modifications. We show the applicability of
HasTEE by implementing case studies on federated learning, an encrypted
password wallet, and a differentially-private data clean room.

Statement of Contributions

I implemented the trusted GHC runtime, developed the cabal-based library for
two-project partitioning, and created the overall compiler and runtime toolchain.
The idea for using the Haste-based approach for program partitioning came
from Koen. The ideas on the information flow control mechanisms came from
Alejandro and were implemented by Robert and myself.
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For the federated learning example, the entire Paillier-based homomorphic
encryption library support for IEEE-754 floating-point numbers was developed
by me, and I officially maintain the Paillier library on Hackage. The server
side of the federated learning example was written by me. Robert wrote the
client side of the federated learning example, as well as the password wallet
example and the differentially private data clean room example.

For the paper, Sections 1 to 4.3 and Section 5.1 were written by me, including
the formulation of the two-memory-cell-based operational semantics. Section
4.4 was written by Alejandro. Sections 5.2, 5.3, 6.1, 8 and 9 were written in
collaboration between myself and Robert. Sections 6.2 and 6.3 were written
by Robert. Alejandro made several additions to the related work on IFC in
Section 8.

The complete evaluations in Section 7 on the Azure machine were done
by me, and the writing for Section 7 was also done by me. Alejandro made
insightful comments, edits, and enhancements to the overall paper. Koen also
provided feedback on the paper.

Paper II. HasTEE+: Confidential Computing and
Analytics with Haskell

Abstract

Confidential computing is a security paradigm that enables the protection of
confidential code and data in a co-tenanted cloud deployment using specialised
hardware isolation units called Trusted Execution Environments (TEEs). By
integrating TEEs with a Remote Attestation protocol, confidential computing
allows a third party to establish the integrity of an enclave hosted within
an untrusted cloud. However, TEE solutions, such as Intel SGX and ARM
TrustZone, offer low-level C/C++-based toolchains that are susceptible to
inherent memory safety vulnerabilities and lack language constructs to mon-
itor explicit and implicit information-flow leaks. Moreover, the toolchains
involve complex multi-project hierarchies and the deployment of hand-written
attestation protocols for verifying enclave integrity.

We address the above with HasTEE+, a domain-specific language (DSL)
embedded in Haskell that enables programming TEEs in a high-level language
with strong type-safety. HasTEE+ assists in multi-tier cloud application
development by (1) introducing a tierless programming model for expressing
distributed client-server interactions as a single program, (2) integrating a
general remote-attestation architecture that removes the necessity to write
application-specific cross-cutting attestation code, and (3) employing a dynamic
information flow control mechanism to prevent explicit as well as implicit data
leaks. We demonstrate the practicality of HasTEE+ through a case study on
confidential data analytics, presenting a data-sharing pattern applicable to
mutually distrustful participants and providing overall performance metrics.
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Statement of Contributions

The design of the tierless DSL was done in collaboration between myself
and Alejandro. The implementation was done by myself. The entire remote
attestation framework was designed and implemented by myself. The design of
the information flow control system was inspired by LIO and COWL, whose
design Alejandro asked me to study. The implementation was done by myself.
The data clean room example was proposed by Alejandro, and the design was
a collaboration between Alejandro and myself. The implementation was done
by myself. The evaluations were also done by myself.

The entire paper was written by myself with feedback from Alejandro on
the final draft.

Paper III. Synchron - An API and Runtime for
Embedded Systems

Abstract

Programming embedded applications involves writing concurrent, event-driven
and timing-aware programs. Traditionally, such programs are written in
machine-oriented programming languages like C or Assembly. We present an
alternative by introducing Synchron, an API that offers high-level abstractions
to the programmer while supporting the low-level infrastructure in an associated
runtime system and one-time-effort drivers.

Embedded systems applications exhibit the general characteristics of being
(i) concurrent, (ii) I/O–bound and (iii) timing-aware. To address each of these
concerns, the Synchron API consists of three components - (1) a Concurrent
ML (CML) inspired message-passing concurrency model, (2) a message-passing–
based I/O interface that translates between low-level interrupt based and
memory-mapped peripherals, and (3) a timing operator, syncT, that marries
CML’s sync operator with timing windows inspired from the TinyTimber
kernel.

We implement the Synchron API as the bytecode instructions of a virtual
machine called SynchronVM. SynchronVM hosts a Caml-inspired functional
language as its frontend language, and the backend of the VM supports the
STM32F4 and NRF52 microcontrollers, with RAM in the order of hundreds of
kilobytes. We illustrate the expressiveness of the Synchron API by showing
examples of expressing state machines commonly found in embedded systems.
The timing functionality is demonstrated through a music programming exercise.
Finally, we provide benchmarks on the response time, jitter rates, memory, and
power usage of the SynchronVM.

Statement of Contributions

I am responsible for the development and maintenance of the virtual machine
discussed in the paper. I conceived the core research idea presented in the
paper and designed and implemented the middleware, optimiser, assembler,
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bytecode interpreter, and substantial portions of the runtime. Additionally,
I proposed the timing API and implemented its core components within the
runtime. Bo Joel Svensson contributed by writing the low-level bridge and
timing subsystem, as well as the garbage collector, and collaborated with me
on various crucial design decisions within the runtime.

I wrote the paper in collaboration with Bo Joel Svensson. Several edits and
enhancements were proposed by Mary Sheeran. The experiments presented in
the paper were conducted by myself and Bo Joel Svensson.

Paper IV. Hailstorm: A Statically-Typed, Purely
Functional Language for IoT Applications

Abstract

With the growing ubiquity of Internet of Things (IoT), more complex logic
is being programmed on resource-constrained IoT devices, almost exclusively
using the C programming language. While C provides low-level control over
memory, it lacks a number of high-level programming abstractions such as
higher-order functions, polymorphism, strong static typing, memory safety, and
automatic memory management.

We present Hailstorm, a statically-typed, purely functional programming
language that attempts to address the above problem. It is a high-level
programming language with a strict typing discipline. It supports features like
higher-order functions, tail-recursion, and automatic memory management, to
program IoT devices in a declarative manner. Applications running on these
devices tend to be heavily dominated by I/O. Hailstorm tracks side effects like
I/O in its type system using resource types. This choice allowed us to explore
the design of a purely functional standalone language, in an area where it is
more common to embed a functional core in an imperative shell. The language
borrows the combinators of arrowized FRP, but has discrete-time semantics.
The design of the full set of combinators is work in progress, driven by examples.
So far, we have evaluated Hailstorm by writing standard examples from the
literature (earthquake detection, a railway crossing system and various other
clocked systems), and also running examples on the GRiSP embedded systems
board, through generation of Erlang.

Statement of Contributions

I was responsible for conceiving the research idea and implementing the compiler
presented in the paper. I authored all the major sections of the paper, with
Mary Sheeran providing suggestions for the paper’s structure, making edits,
and contributing final enhancements.
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