
Single-cell omics analysis with genome-scale metabolic modeling

Downloaded from: https://research.chalmers.se, 2024-03-20 10:04 UTC

Citation for the original published paper (version of record):
Chen, Y., Gustafsson, J., Yang, J. et al (2024). Single-cell omics analysis with genome-scale
metabolic modeling. Current Opinion in Biotechnology, 86.
http://dx.doi.org/10.1016/j.copbio.2024.103078

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Available online at www.sciencedirect.com

Single-cell omics analysis with genome-scale metabolic 
modeling
Yu Chen1,*, Johan Gustafsson2,3,4,*, Jingyu Yang1,  
Jens Nielsen4,5 and Eduard J Kerkhoven4,6,7

Single-cell technologies have been widely used in biological studies 
and generated a plethora of single-cell data to be interpreted. Due 
to the inclusion of the priori metabolic network knowledge as well 
as gene–protein–reaction associations, genome-scale metabolic 
models (GEMs) have been a powerful tool to integrate and thereby 
interpret various omics data mostly from bulk samples. Here, we 
first review two common ways to leverage bulk omics data with 
GEMs and then discuss advances on integrative analysis of single- 
cell omics data with GEMs. We end by presenting our views on 
current challenges and perspectives in this field.
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Introduction
Single-cell technologies, which enable quantifying het-
erogeneity of cells, are increasingly used in diverse 
biological studies [1,2]. The wide applications of these 

technologies have generated a plethora of single-cell 
data, and thus, the demand for methods of single-cell 
data analysis and interpretation is growing [3–5]. While 
single-cell data can be appropriately handled by machine 
and deep learning methods [6,7], the lack of inter-
pretation remains to be addressed [8]. Meanwhile, me-
chanistic models built from prior knowledge have been 
extensively used for the interpretation of omics data 
from bulk samples [9,10]. If cellular metabolism is of 
particular interest to investigate, these mechanistic 
models can be genome-scale metabolic models (GEMs), 
which have indeed been widely used for integrative 
analysis [11–13]. Therefore, we conjecture that GEMs 
are also a valuable platform to handle single-cell data, 
which is now indeed emerging [8]. Due to the prior 
metabolic network knowledge in GEMs, the integration 
of single-cell data within GEMs may bring new insights 
in wide-ranging fields, including biotechnology and 
medicine fundamental research.

Here, we first retrospect the methods developed for in-
tegrating bulk omics data with GEMs, then review ad-
vances in the integration of single-cell data with GEMs, 
and end with challenges and perspectives in the field.

Methods of integration of bulk omics data 
with genome-scale metabolic models
At first sight, the integration of single-cell data into 
GEMs should be relatively straightforward, as it merely 
requires the adaptation of methods that have been de-
veloped for bulk cases to single-cell cases. We will 
therefore first reflect on the general methods of in-
tegrating omics with GEMs before we review in the next 
section how this has advanced to single-cell data.

A GEM contains all metabolic reactions of an organism 
with their corresponding gene–protein–reaction associa-
tions. It as such links key biological molecules, including 
genes, transcripts, proteins, and metabolites, within a 
mathematical framework. Therefore, the GEM should 
be an ideal platform for integrating genomics, tran-
scriptomics, proteomics, and metabolomics data. 
Typically, a GEM is reconstructed based on the whole- 
genome information of the organism of interest and thus 
is context (e.g. condition, cell type, and organelle) in-
dependent. The integration of omics data into GEMs 
enables generation of context-specific GEMs and 
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prediction of context-specific metabolic fluxes using 
methods that can roughly be divided into two categories, 
although some methods fall into both.

The first category are model extraction methods (MEMs) 
[14]. While the reference GEM contains the entire set of 
metabolic reactions that are annotated on the genome, not 
all reactions are active in various conditions, cell lines, cell 
types, or organelles. MEMs enable the conversion of the 
reference GEM into context-specific GEMs, in which a 
set of reactions are inactive or removed according to the 
omics data collected from the given contexts. Considering 
data availability and quality, MEMs have focused on 
using transcriptomics data for identifying reaction pre-
sence [14,15], and the core strategy is to remove from the 
reference GEM those reactions whose associated genes 
are at low expression levels according to predefined 
thresholds. Proteomics data can in principle be handled in 
the same manner, while metabolomics data might be re-
garded as supplementary evidence for the presence of 
certain reactions [16].

The second category of methods integrating omics data 
is to improve GEM predictions of metabolic fluxes. 
GEMs can be utilized to predict metabolic fluxes 
through constraint-based methods [17], such as flux 
balance analysis (FBA) [18], which search for flux dis-
tributions in the feasible region defined by constraints 
given by flux balancing around each metabolite. The 
integration of omics data as constraints can reduce the 
feasible region and thereby lead to more accurate pre-
dictions only if the region is reduced correctly. This 
reduction of the feasible reaction fluxes contrasts with 
MEMs, where the size of the network is reduced by re-
moving inactive reactions. Likewise, methods have 
mostly been developed for integrating transcriptomics 
data, and the common strategy is to constrain metabolic 

fluxes approximately based on gene expression levels 
[15]. While such methods can also be adapted to impose 
proteomics constraints on GEMs, emerging frameworks 
such as enzyme-constrained models enable direct in-
tegration and fine-tuning of proteomics data [19]. Me-
tabolomics data can be utilized to define the 
thermodynamically feasible region [20], and time-series 
metabolomics data, when available, can be utilized to 
challenge the steady-state assumption that are normally 
followed in constraint-based methods [21,22].

Advances in the integration of single-cell data 
with genome-scale metabolic models
One of the main issues with adapting the methods de-
veloped for bulk to single-cell cases is the sparsity of 
single-cell omics data. For example, high-throughput 
single-cell RNA-Seq assays, such as 10X Chromium, 
typically yield on average about 1500–30 000 molecule 
counts per cell [23] depending on properties such as cell 
type, cell size, capture efficiency, and sequencing depth. 
This can be compared with bulk RNA-Seq data, which 
typically ranges between 10 and 100 M reads per library 
[24]. To be able to confidently detect gene expression 
levels down to a few transcripts/counts per million, 
which is of the same magnitude as threshold values 
commonly used for detection of enzyme presence [14], 
the counts from one cell are simply not enough. Directly 
applying this approach results in nonfunctional sparse 
metabolic networks, with many reactions absent due to 
lack of empirical evidence of their transcript being pre-
sent. A common solution to the data sparsity is pooling of 
data across similar single cells, which we review below.

In parallel with bulk data, the integration of single-cell 
data with GEMs can also fall into the two categories, that 
is, generation of single-cell GEMs and prediction of 
single-cell metabolic fluxes (Figure 1).

Figure 1  
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Single-cell omics analysis with GEMs. There are two categories to integrate single-cell omics (mostly single-cell transcriptomics) data into GEMs. On 
the one hand, single-cell models can be extracted by mapping single-cell omics data onto a reference GEM, and the resulting single-cell models can 
be compared to identify differences in network structure and prediction of metabolic tasks [25]. On the other hand, single-cell omics data can be used 
as constraints to estimate single-cell metabolic fluxes or potential activities, which can subsequently be used to correlate with key phenotypes [26]
and infer cell–cell interactions [27].
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To generate single-cell GEMs, efforts have focused on 
directly utilizing the existing methods that have been 
developed for bulk data. A few studies employed various 
existing methods to integrate single-cell transcriptomics 
data with reference GEMs, but the single-cell data were 
pooled into subtype-specific pseudo-bulk data before 
the use in extracting submodels, which aimed to handle 
the low signal-to-noise ratio in single-cell transcriptomics 
data [28–30]. To further address the data sparsity, a re-
cent study combined the pooling of single-cell tran-
scriptomics data with a bootstrapping strategy and 
optimized the tINIT method [31] to a faster version, 
called ftINIT, in order to reduce the compute resource 
when generating bootstrap-specific models [25]. While 
these studies claimed that single-cell data were adopted 
to extract submodels from the reference GEMs, the re-
sulting models did not really represent single-cell re-
solution. However, this concern is not uncommon for 
other (nonmetabolic modeling) single-cell data analysis 
methodologies, in which single cells are clustered to 
avoid data sparsity [32].

For the prediction of single-cell metabolic fluxes, most 
of the methods for bulk data cannot be directly trans-
ferred to single-cell cases as they require exchange 
fluxes of extracellular metabolites (e.g. nutrient con-
sumption rate) as baseline constraints, which however 
are mostly unknown at the single-cell level. As it is ea-
sier to obtain the extracellular fluxes from bulk samples, 
the method scFBA [33] predicts single-cell fluxes con-
strained by both extracellular bulk fluxes and single-cell 
transcriptomics. To achieve this, a community model 
composed of single-cell models is built, in which extra-
cellular bulk fluxes constrain the community model and 
single-cell transcriptomics constrain intracellular fluxes 
of each single-cell model. For community model simu-
lations, a biological objective function, for example, 
maximization of the community growth, is required, and 
the simulations can point out distinct growth rates of 
single cells and cell–cell metabolite exchanges. In ad-
dition, scFBA can employ bulk transcriptomics to handle 
data quality issues in single-cell transcriptomics.

Without a priori knowledge of the extracellular fluxes, the 
method single-cell flux estimation analysis [34] can predict 
metabolic fluxes at single-cell resolution from single-cell 
transcriptomics data. This attributes to a graph neural 
network architecture, which minimizes the total flux im-
balance of all intermediates throughout all single cells. It 
concurrently considers flux non-negativity, coherence be-
tween estimated fluxes and gene expression, and flux 
scale. Rather than individual reactions, single-cell flux es-
timation analysis focuses on modules by merging multiple 
reactions in the metabolic network. The advantages in-
clude increase the robustness of flux prediction and the 
computational efficiency; handle the nonlinear de-
pendency between metabolic flux and gene expression — 

a challenge not only in single-cell but also bulk tran-
scriptomics-based flux prediction; and partially address the 
dropout events in single-cell transcriptomics data by ex-
amining the expression level of a group of genes within the 
module rather than a single gene.

Using assumed bounds on extracellular fluxes, the method 
Compass enables prediction of metabolic states of single 
cells [26] without the consideration of cell–cell metabolic 
communications. Instead of predicting fluxes, Compass 
assigns scores to each reaction in every cell, reflecting the 
consistency between the single-cell transcriptome and the 
flux distribution while maintaining a relatively high flux 
through that reaction. In other words, the score indicates if 
the reaction is likely to be active in the cell and is for each 
reaction based on the entire transcriptome throughout the 
whole metabolic network, thereby reducing the effects of 
data sparsity and cases where gene expression does not 
reflect flux. To further mitigate the sparsity of single-cell 
transcriptomics data, Compass adopts information-sharing 
between cells with similar transcriptional profiles using k- 
nearest neighbor graph, and statistical analysis of the large 
number of the predicted single-cell metabolic states can 
further add robustness.

A recent method METAFlux [27] can integrate both 
bulk and single-cell transcriptomics data into GEMs to 
predict metabolic fluxes. In dealing with single-cell data, 
METAFlux merges all single cells as a community and 
optimizes the whole community growth under nutri-
tional constraints, similar to scFBA. The major differ-
ence is that METAFlux clusters the same cell types 
before merging to form a community, which aims to 
handle noise and sparsity of single-cell transcriptomics 
data, and bootstrapping for single-cell data is required 
for cluster-wise metabolic statistics.

Challenges and perspectives
Single-cell technologies combined with GEMs hold 
promise to unravel numerous new findings in the field of 
cell metabolism, allowing for investigating the differ-
ences in metabolism between cell types and even single 
cells within complex tissues. To what extent these dif-
ferences can be investigated is largely governed by 
technical limitations, and parallels can be drawn be-
tween the problem addressed in this paper and the more 
established use of single-cell technologies within other 
biological fields. Single-cell technologies are today 
mainly used to investigate clusters of cells with similar 
behavior and are seldom used to investigate single cells, 
which is mostly due to technical limitations and that 
investigations at cluster level are sufficient to address 
many biological questions. The technical limit of the 
granularity of the clustering that can be reached, where 
maximum granularity is at single-cell level, depends 
mainly on the ability to separate cells confidently into 
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relevant clusters and the signal-to-noise ratio within each 
cluster, which both can be improved by increasing the 
number of cells and molecules per cell. For genome- 
scale modeling purposes, the challenges are largely the 
same, and improvements to the single-cell techniques 
will allow for the investigation of differences between 
more similar cell types and states.

Another challenge with predicting metabolic fluxes of cell 
types or single cells is to estimate the availability of me-
tabolites for single cells or groups of cells. The availability 
of metabolites in, for example, human tissue depends on 
the distance to blood vessels and is complex to estimate. 
Although estimates based on diffusion coefficients and 
metabolite concentrations in blood have been suggested 
[35], it is difficult to map such estimates to single cells 
when the spatial context is lost. In addition, the behavior of 
nearby cells may affect the nutrient availability. Spatial 
transcriptomics [36], where the transcriptomes of small 
spots are measured in a spatial context, offers a possibility 
to partly resolve these challenges, especially in combina-
tion with single-cell RNA-Seq in which the position of 
single cells can be estimated [37], but how to combine this 
data type with GEMs remains to be explored. While 
scFBA groups all single cells into a community model and 
thereby only needs to set constraints on the total meta-
bolite consumption/production, it does not take spatial 
context into account, both in terms of nutrient availability 
and spatial cell-to-cell interaction. Methods to measure 
metabolite uptake rates in single cells are in their infancy; 
future approaches may include microfluidics-based single- 
cell metabolomics [38] potentially even combined with 
stable-isotope labeling experiments [39].

A third challenge is how to estimate the objectives of 
cells. While not all methods require an objective, many 
do, and the objective of cells is sometimes difficult to 
estimate, regardless of if the modeling is based on bulk 
or single-cell data. While cell lines, cancer cells, and a 
few other cell types can be expected to be optimized for 
growth [40], the objective of many other cell types, for 
example, immune cells, is more difficult to estimate and 
requires deep knowledge of the behavior of these cells. 
This problem is still largely unsolved and is even harder 
in a single-cell context as individual cells might behave 
differently, that is, with distinct objectives. Methods that 
fit or score fluxes to omics data (e.g. Compass) have an 
advantage in that this problem does not need to be ad-
dressed but has the disadvantage that they tend to es-
timate flux capacity rather than actual fluxes.

While the use of single-cell and spatial omics together with 
GEMs brings many challenges, it also makes possible many 
types of analyses that are difficult to do with bulk omics, for 
example, investigations of specific cell types and states, 
differentiation trajectories, transitions between cell states, 
and use of spatial context. Currently, single-cell and spatial 

RNA-Seq are the main techniques considered for modeling 
purposes — however, this may soon change. Recent ad-
vances in single-cell proteomics and metabolomics show 
promise for new modeling approaches, and in the future, it 
may be possible to combine several of these data types in a 
single simulation. While single-cell omics is still more costly 
than bulk, the costs are decreasing with time. With lowered 
sequencing costs and improved single-cell techniques, the 
number of sequenced cells per data set and the number of 
captured molecules per cell will increase and thereby enable 
separation of the cells into clusters with more subtle dif-
ferences. However, despite the rapid advances in the dif-
ferent fields of single-cell omics, the goal to generate 
context-specific models and predict metabolic states from 
single cells with reasonably low uncertainty will likely still 
require a few more years to be reached.
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