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Abstract
Introduction There is large variation in response to diet in irritable bowel syndrome (IBS) and determinants for differential 
response are poorly understood.
Objectives Our aim was to investigate differential clinical and molecular responses to provocation with fermentable oligo-, 
di-, monosaccharides, and polyols (FODMAPs) and gluten in individuals with IBS.
Methods Data were used from a crossover study with week-long interventions with either FODMAPs, gluten or placebo. 
The study also included a rapid provocation test. Molecular data consisted of fecal microbiota, short chain fatty acids, and 
untargeted plasma metabolomics. IBS symptoms were evaluated with the IBS severity scoring system. IBS symptoms were 
modelled against molecular and baseline questionnaire data, using Random Forest (RF; regression and clustering), Parallel 
Factor Analysis (PARAFAC), and univariate methods.
Results Regression and classification RF models were in general of low predictive power  (Q2 ≤ 0.22, classification 
rate < 0.73). Out of 864 clustering models, only 2 had significant associations to clusters (0.69 < CR < 0.73, p < 0.05), but 
with no associations to baseline clinical measures. Similarly, PARAFAC revealed no clear association between metabolome 
data and IBS symptoms.
Conclusion Differential IBS responses to FODMAPs or gluten exposures could not be explained from clinical and molecular 
data despite extensive exploration with different data analytical approaches. The trial is registered at www. clini caltr ials. gov 
as NCT03653689 31/08/2018.

Keywords Irritable bowel syndrome · Clinical trial · Double-blind · FODMAPs · Gluten · Personalized nutrition · 
Metabotyping · Differential response · Precision health

Abbreviations
CR  Classification rate
FODMAPs  Fermentable oligo-di-monosaccharides and 

polyols
IBS  Irritable bowel syndrome
IBS-SSS  IBS severity scoring system
PARAFAC  Parallel factor analysis
SCFAs  Short chain fatty acids

1 Introduction

Irritable bowel syndrome (IBS) is a complex condition 
characterized by recurrent abdominal pain associated with 
abnormal bowel habits (Lacy et al., 2016). The etiology of 
IBS is unknown; however, the pathogenesis is believed to be 
due to disturbed gut microbiota, visceral hypersensitivity, 
brain-gut interactions, intestinal inflammation, and psycho-
social factors (Delvaux, 2002; Holtmann et al., 2016; Tanaka 
et al., 2011). Integrated care is consequently recommended, 
including dietary modifications, behavioral therapy, and 
medication (Chey et al., 2021).

Diet is considered a main cause of symptoms in IBS 
(Chey et al., 2021). Especially fermentable oligo-, di-, mon-
osaccharides, and polyols (FODMAPs) are of major concern 
since they are not absorbed, causing intestinal osmotic load 
and bacterial fermentation. This in turn leads to increase of 
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intestinal water and gas production, believed to cause symp-
toms such as abdominal pain and gas (Staudacher & Whelan, 
2017). Hence, a low FODMAP diet is commonly followed in 
subjects with IBS (Dionne et al., 2018). Gluten has also been 
considered a major culprit, although a mechanistic rationale 
is lacking (Biesiekierski & Iven, 2015). It is well known that 
individuals respond differently to similar food intake (Zeevi 
et al., 2015), and personalization of dietary advice has been 
proposed as potentially more effective compared to general 
recommendations (Celis-Morales et al., 2017; Curtis et al., 
2012). Finding objective biomarkers reflecting personalized 
response/non-response to dietary stressors of IBS has the 
potential to improve prevention of symptoms (Biesiekier-
ski & Iven, 2015; Dimidi & Whelan, 2020; Hellström & 
Benno, 2019). However, evidence underpinning such per-
sonalization is still lacking. In addition, unnecessary exclu-
sion should be avoided since FODMAPs constitute dietary 
fibers which are part of a healthy diet in line with dietary 
guidelines (Anderson et al., 2009; Blomhoff et al., 2023).

Several studies have attempted to understand differential 
responses to a low FODMAP diet. Differentiation of indi-
viduals into response types has been based on gut micro-
biota (Bennet et al., 2018; Chumpitazi et al., 2015; Colo-
mier et al., 2022; Valeur et al., 2018; Vervier et al., 2021; 
Zhang et al., 2021), metabolite patterns (Nybacka et al., 
2021), colonic methane and SCFA production (Eetemadi & 
Tagkopoulos, 2021), hydrogen production (Schindler et al., 
2021), fecal volatile organic compounds (Rossi et al., 2018), 
intake of FODMAP at baseline (Böhn et al., 2015), and psy-
chological and nutritional factors (Colomier et al., 2022). 
However, results from these studies are inconsistent, and 
even in some cases point in opposite directions: For exam-
ple, a higher proportion of saccharolytic bacteria at base-
line has been observed in both response and non-response 
of IBS symptoms after dietary interventions (Bennet et al., 
2018; Chumpitazi et al., 2015; Zhang et al., 2021). In addi-
tion, other studies have not been able to identify differential 
responses to FODMAPs (Halmos et al., 2015; Staudacher 
et al., 2020). Concerning gluten, one clinical trial with a 
gluten-free diet versus a gluten-containing diet reported that 
response to the gluten-free diet could be predicted by the 
metabolite profile at baseline, identification of metabolites 
was not presented. However, the study was underpowered 
(Algera et al., 2022). To date, there are no generally accepted 
recommendations for tailored nutritional advice in IBS 
(Bennet et al., 2020; Drossman, 2016).

There is currently also no universal data-analytical 
framework for identification of differential response to 
dietary interventions. Both univariate (Böhn et al., 2015; 
Colomier et al., 2022; Halmos et al., 2015; Schindler et al., 
2021; Valeur et al., 2018) and machine learning algorithms 
(Algera et al., 2022; Bennet et al., 2018; Chumpitazi et al., 
2015; Nybacka et al., 2021; Rossi et al., 2018; Staudacher 

et al., 2020; Vervier et al., 2021; Zhang et al., 2021) have 
been applied in IBS and dietary trials, using the predictors 
mentioned above. Robust machine learning algorithms (Sac-
centi et al., 2014) could overcome the issue with multiple 
testing in univariate models, known to be problematic in 
analyzing large-scale omics data (Saccenti et al., 2014). 
Machine learning regression models have been used in IBS 
studies, however not with sufficient safeguards to minimize 
overfitting, such as from e.g. repeated double cross-valida-
tion (Filzmoser et al., 2009), and results may consequently 
be overly optimistic. Another approach, shown successful 
in previous studies (Hillesheim & Brennan, 2020), but not 
performed in IBS and dietary trials, is the grouping of indi-
viduals based on similarities in metabolism or metabolic 
regulation within group but differences between groups, i.e. 
metabotypes (Ciara Morris et al., 2013; Nicholson et al., 
2012; Palmnäs et al., 2020), and relate such metabotypes 
to an outcome. Moreover, when studying metabolic pat-
tern in time series data, methods to capture the dynamics 
of measured features over time and relating them to an out-
come could be particularly useful. Parallel Factor Analysis 
(PARAFAC) (Bro, 1997) is a method well suited for such 
analysis but has previously not been used in IBS. Hence, 
these methods could be applied for new approaches and 
more robust modelling of differential responses.

We conducted a double-blind, randomized, controlled 
cross-over study with provocations of FODMAPs, gluten 
and placebo in subjects with IBS. The symptomatic response 
and effect on the fecal microbiota and the metabolome have 
previously been published (Nordin et al., 2022; Nordin, 
Hellström, Dicksved, et al. 2023; Nordin et al., 2023). In 
brief, the symptomatic response was measured with irrita-
ble bowel syndrome severity scoring system (IBS-SSS). At 
the treatment level, FODMAPs caused more severe symp-
toms (mean IBS-SSS 240 [95% CI 222, 257]) compared 
to placebo (198 [180, 215]; p = 0.00056), while there was 
no difference between gluten (208 [190, 226]) and placebo 
(p = 1.0). Concerning effects on the fecal microbiota, fecal 
and plasma short chain fatty acids (SCFAs) and the untar-
geted plasma metabolome, FODMAPs led to an elevation in 
fecal saccharolytic bacteria, phenolic-derived metabolites, 
and 3-indolepropionate, while concurrently causing a reduc-
tion in plasma isobutyrate and bile acids. The introduction of 
gluten resulted in a decrease in fecal isovalerate and brought 
minor alterations in carnitine derivatives, plasma fatty acids, 
and CoA. Regarding FODMAPs, there were modest correla-
tions identified between the microbiota and phenolic-derived 
metabolites, as well as 3-indolepropionate, which have pre-
viously been associated with improved metabolic health and 
decreased inflammation (Roowi et al., 2009; Schär et al., 
2018; Tuomainen et al., 2018). However, the correlations 
between molecular data and symptoms of IBS were found 
to be weak.
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There was a large inter-individual variation in response 
to the interventions (Nordin et al., 2022) and we hypoth-
esized that differential IBS responses to FODMAP intake 
could be related to molecular and questionnaire data, since 
FODMAPs are fermented by the gut microbiota (Hill et al., 
2017), also affecting the metabolome (Subramanian et al., 
2020), and IBS symptoms are considered to relate to gut 
microbiota (Chey & Menees, 2018). Moreover, since FOD-
MAPs are rapidly fermented (Staudacher & Whelan, 2017), 
we hypothesized that characteristic phenotypic responses 
could be generated already after a rapid provocation test. 
We did not have a similar clear hypothesis for differential 
response to gluten, but due to the variability in response to 
treatment (Nordin et al., 2022), it was similarly investigated.

To address our hypotheses, we investigated whether dif-
ferential responses could be related to a rapid pre-interven-
tion provocation test containing both FODMAPs and gluten. 
Moreover, we investigated whether differential responses 
based on recorded IBS symptoms from week-long FODMAP 
and gluten provocations could be related to molecular phe-
notype data (including fecal microbiota, SCFAs, and metab-
olomics measurements), and questionnaire data at baseline. 
Furthermore, since there is no established universally 
accepted data analytical approach to identify differential 
responses (Palmnäs et al., 2020), a wide range of methodo-
logical approaches were explored to identify determinants 
for individual response or molecular subtypes, which may 
be applicable in a wider scope of health-related research.

2  Methods

2.1  Study design

A randomized, double-blind, placebo-controlled three-way 
crossover study was conducted in Uppsala, Sweden in Sep-
tember 2018 – June 2019, as described elsewhere (Nordin 
et al., 2022). Briefly, the study included 110 participants 
with moderate to severe IBS, of which 90 women and 13 
men, aged 46 ± 14 years, and with BMI 24 ± 4 kg/m2 fin-
ished the trial. At the screening occasion, participants were 
diagnosed according to the Rome IV criteria (abdominal 
pain at least one day per week associated with two or more 
of the following criteria: related to defecation, associated 
with a change in frequency of stool or associated with a 
change in form (appearance) of stool. The criteria had to 
have been fulfilled for the last 3 months with symptom onset 
at least 6 months before screening) and subtyped into con-
stipation (n = 29), diarrhea (n = 35) or mixed (n = 39). The 
severity of IBS was diagnosed with IBS-SSS (see Sect. 2.3). 
During the seven weeks of the trial, participants followed 
a so-called low-impact diet, excluding gluten and consum-
ing minimal amount of FODMAPs, guided by dieticians 

specialized in IBS. After one week of low-impact diet, to 
test the hypothesis that molecular responses to a one-dose 
provocation could be indicative of symptoms during pro-
longed intervention, participants came to the clinic for a 
combined FODMAP and gluten challenge test, where blood 
samples and measurements were collected for four hours 
(visit 1). Following another week with low-impact diet, i.e. 
at visit 2, participants started one-week long interventions 
with FODMAP, gluten, and placebo exposures, with one 
week washout in-between. Participants and study personnel 
conducting the clinical trial were blinded. Questionnaires 
and fecal samples were handed in at visits 2–7, reflecting 
the preceding study week, and anthropometric measures and 
blood samples were collected. Oral and written informed 
consent was obtained from all participants before initiation 
of the trial. Participants were randomized in blocks of 12 
into the sequences CBA, ACB, and BAC (A = FODMAPs, 
B = Gluten, and C = Placebo). Randomization of participants 
was performed by personnel not involved in the study. The 
allocation sequence was delivered to the study site one to 
three days before participants initiated the study. The blind-
ing was broken when the trial was finished. The study was 
approved by the Ethics Review Board, Uppsala (2018/159) 
and registered at www. clini caltr ials. gov as NCT03653689 
31/08/2018. The study was conducted according to the ethi-
cal principles of the Helsinki declaration. The study design 
is visually presented in Fig. 1, a flow chart of the participants 
during the trial is presented in Supplementary Fig. 1. The 
symptomatic response to the interventions has previously 
been published (Nordin et al., 2022). A table of the main 
results and a graph of the inter-individual variability of the 
response to the interventions are presented in Supplemen-
tary Table 1 and Supplementary Fig. 2.

2.2  Intervention foods

The combined FODMAP and gluten challenge at visit 1 
was served as a cake containing 19.5 g fructose, 15.7 g 
lactose, 7 g fructo-oligosaccharides, 1.5 g galacto-oligo-
saccharides, 4.5 g sorbitol, and 1.8 g mannitol and 17.3 g 
gluten. Details about the food products [42] are presented 
in Supplementary Table 2 and 3. The daily dose of the 
week-long interventions with FODMAP or gluten cor-
responded to the respective FODMAP and gluten doses 
in the cake (in powder form), however divided into three 
servings per day, with rice porridge as the vehicle. The 
placebo intervention consisted of 18 g sucrose, similarly 
served. The doses of FODMAPs were calculated as 150% 
of the daily intake in an Australian population (Halmos 
et al., 2014) except for lactose and gluten, which were 
based on 150% of the intake in the Swedish population 
(Amcoff et al., 2012).

http://www.clinicaltrials.gov
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2.3  Anthropometric data and questionnaires

At the screening occasion, measurement of blood pressure, 
waist circumference and weight were collected, and partici-
pants noted duration of IBS and if the onset was associated 
with a gastrointestinal infection or antibiotics use. Several 
questionnaires were filled out: IBS-SSS (Francis et al., 
1997), Short Form 36 (SF-36v2 (Ware & Sherbourne, 1992), 
reflecting health and wellbeing), a demographic question-
naire (age, gender, ethnicity, educational and income level), 
Baecke’s physical activity questionnaire (Ono et al., 2007) 
and a validated food frequency questionnaire (Messerer 
et al., 2004) (energy adjusted with the residual method (Wil-
let and Stampfer 1986) reflecting the dietary intake during 
the last year. IBS-SSS was the main questionnaire evaluating 
IBS symptoms in our trial. It is a validated questionnaire 
including the items: severity of abdominal pain, frequency 
of abdominal pain, abdominal distension, dissatisfaction 
with bowel habits and interference with life estimated on 
a visual analog scale (0–100). A composite total IBS score 
is reported between 0–500. IBS-SSS score < 175 is consid-
ered mild, ≥ 175 to ≤ 300 moderate and > 300 severe IBS. Of 
note, we used the questionnaire to evaluate IBS symptoms 
for 7 days, instead of the 10 days it has been developed for.

2.4  Biological samples

Participants collected a fecal sample as close to each of the 
visits 2–7 as possible, preferably the last day before the visit, 
stored it at -20 °C in their home freezer until transportation 
to the clinic where samples were stored at -20 °C at most one 
week, after which they were transferred to -80 °C until anal-
ysis. Fecal microbiota composition was analyzed with the 
16S rRNA method. In brief, DNA was extracted, the V3-V4 
region was amplified with primers and sequencing libraries 
were generated, and sequence variants were compared to 
reference databases. After data processing, 132 amplicon 
sequence variant aggregated at genus level were included; 
details described elsewhere (Nordin E et al., 2023c).

During the provocation test, blood samples were drawn 
at -10, 0, 10, 20, 30, 90, 150, and 240 min. Thereafter, 
blood samples were collected at each visit. Directly after 
blood draw, samples were put on cold blocks and cen-
trifuged within 30 min, stored in the clinic at −20 °C at 
most for one week, and thereafter transferred to -80 °C 
until analysis.

The SCFAs formate, acetate, propionate, butyrate, isobu-
tyrate, valerate, isovalerate, the SCFA analogues caproate 
and succinate were analyzed in feces and plasma from the 
intervention weeks 2–7. Fecal samples were freeze dried 
and 20 mg was diluted with 1 mL LiChrosolv water, shaken 
and centrifuged. Samples were analyzed as described by 
Han et al. (Han et al., 2015) with addition of a quenching 
step (manuscript in preparation). In brief, for each batch, 
feces and plasma samples together with blanks and quality 
control samples (10 µL of each sample) were mixed with 
10 µL 12C 3-nitrophenylhydrazine (3-NPH) and 10 µL 
N-(3-Dimethylaminopropyl)-N-ethylcarbidiimide hydro-
chloride (EDC-6), and 60 µL 75% methanol (3-NPH serves 
as the derivatizing reagent and EDC-6 as a coupling rea-
gent). Samples were thereafter shaken and centrifuged. The 
reaction was quenched by 10 µL quinic acid, shaken and 
centrifuged, and an internal standard was added to the sam-
ple and analyzed with Q-TRAP QqQ-MS, details described 
elsewhere (Nordin et al., 2023d).

Untargeted metabolomics was analyzed in plasma sam-
ples from the rapid provocation test and for the intervention 
weeks 2–7. Briefly, plasma was mixed together with cold 
acetonitrile shaken, centrifuged, and filtered. Quality control 
samples were included in each batch. Samples were ana-
lyzed using a UHPLC-qTOF-MS system. For the interven-
tion weeks, metabolomics data included 8618 features. Fur-
ther details including preprocessing of metabolomics data 
for the intervention weeks is described elsewhere (Nordin 
et al., 2023b). Corresponding information for the provoca-
tion test is presented in Supplementary Text 1. Henceforth, 
fecal microbiota and plasma metabolome will simply be 
referred as ‘microbiota’ and ‘metabolome’.

Combined 
FODMAP
and gluten 
test

     Low-impact diet

Visit
Biosampling
Clinical data

 1                   2                 3                  4                  5                  6                  7       
B                 B F               B F              B F               B F              B F              B F                 
Q A              Q A               Q A             Q A                Q A             Q A             Q A

     Run-in         Run-in                           Wash-out                         Wash-out  
B  Blood drawn
F  Faecal collection
Q  Questionnaires
A   Anthropometric        

measurements

    Week 1        Week 2        Week 3        Week 4         Week 5       Week 6       Week 7  

(ACB)

(BAC)

(CBA)
Sequence

Gluten

Gluten

Gluten

Fig. 1  Study design of the three-way double-blind, randomized 
controlled cross-over study with interventions of FODMAP, glu-
ten and placebo in people with IBS. Participants were randomized 

to the sequences CBA, ACB and BAC (A = FODMAPs, B = Gluten, 
C = Placebo). The figure is modified from Nordin et al. (Nordin et al., 
2022)
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2.5  Data analysis

Sample size was based on the assumption that we will be 
able to identify around 4 ± 1 metabotypes, and an approxi-
mate equal distribution between metabotypes (≥ 20 per-
sons per metabotype). To allow dropouts, 110 participants 
were included, assuring 100 completers. This number was 
arbitrary set since there is no consensus of how to perform 
power calculations in machine learning. However, this is 
a high number of participants in comparison to previous 
nutritional interventions.

A comprehensive methodological investigation was per-
formed including several methods attempting to relate dif-
ferential IBS responses to interventions in relation to omics 
and questionnaire-data from baseline and the provocation 
test. An overview of the structure of the statistical analy-
sis is presented in Fig. 2. We first used machine learning 
(Random Forest, RF) to investigate differential responses to 
treatment reflected by IBS-SSS (response variable) in rela-
tion to molecular (microbiota, SCFAs, and metabolome), 
and baseline questionnaires data, separate or combined (pre-
dictor variables). RF was selected since it does not require 
specific variable distributions, scaling, or underlying linear-
ity in associations between predictors and response. Fur-
thermore, it is insensitive to scaling or transformations of 

the predictor variables and thus less sensitive to variable 
preprocessing schemes (Qi, 2012). Considering that machine 
learning methods are prone to overfitting (Shi et al., 2019), 
in combination with a high number of models investigated in 
this exploratory investigation, we performed RF modelling 
using the MUVR algorithm (Shi et al., 2019) (version 0.0.9), 
which performs repeated double cross-validation (Filzmoser 
et al., 2009).

This supervised RF analysis was performed using two 
main approaches: First, to investigate differential response 
at an individual level using RF regression with IBS-SSS 
values as response on a continuous scale. Second, to evaluate 
potential associations at a group level, corresponding to IBS-
related metabotypes, using RF classification with clustered 
IBS-SSS responses as response. Both approaches were mod-
elled using several different representations of response and 
predictor data to extensively explore potential associations 
between IBS response and different molecular predictors.

In addition, unsupervised analysis was performed to cap-
ture the overall dynamics of the metabolome for the 4 h of 
the provocation test. For this purpose, as a first step we used 
PARAFAC (Bro, 1997), which can be seen as an extension 
of a principal component analysis (PCA) into additional 
dimensions (in this case, individuals, metabolite features, 
and time points). In a second step, component scores 

Absolute
Δb

LFCc

Con�nuous, Clustersd

Response to interven�on (Y)

Microbiota
Metabolome
Ques�onnaires

Separately 
and combined

Predic�ons of IBS response 
from baseline data

(Random Forest)

Predic�ons of IBS response 
from provoca�on test

(Random Forest)

Metabolic response 
to provoca�on test

(ANOVA)

Provoca�on
metabolome

PARAFAC
Predictor (X)
Dynamic
clustersd

Predictors (X)

AUC
t

t0 + t
log(t / t0)

a IBS-SSS items = Severity of abdominal pain, frequency of abdominal pain, abdominal distension, dissa�sfac�on
with bowel habits, interference with quality of life, total IBS-SSS score
b Δ = Difference in IBS-SSS (or items) from baseline
c LFC = log fold-change in IBS-SSS (or items) from baseline
d Clusters obtained from k-means and hierarchical clustering, 2-4 cluster, none/scaled data, ≥ 8 per cluster, down 
sampling

IBS-SSS 
and itemsa

Absolute

Con�nuous

Con�nuous

Baseline predictors (X)

Fig. 2  Machine learning was used to investigate differential responses 
to intervention (response) in relation to molecular and baseline clini-
cal data (predictors). To investigate differential response at a continu-
ous scale (i.e. individual responses), RF regression with IBS-SSS val-
ues as response was used. To evaluate potential associations at group 
level representing metabotypes, RF classification using clustered 
IBS-SSS responses as response was used. As predictors, the baseline 
microbiota, SCFAs, the metabolome, and baseline clinical data, were 
modelled separately and combined. RF regression with IBS-SSS val-
ues as response was used with the metabolome of the provocation test 

as predictor. Finally, unsupervised PARAFAC analysis of molecular 
data was performed to capture the dynamics of the metabolome for 
the 4  h of the provocation test. PARAFAC component scores were 
clustered and related to IBS response using ANOVA. Figure from 
doctoral thesis by Elise Nordin Chalmers, University Technology 
2023 (Nordin, 2023). ANOVA analysis of variance, AUC  Area under 
the curve, IBS-SSS Irritable bowel syndrome severity scoring system, 
LFC log fold change, PARAFAC Application of Parallel Factor Anal-
ysis, RF Random Forest, SCFA Short chain fatty acids, t timepoint 
−10 min (−10, 0, 10, 20, 30, 90, 150, 240 min)
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from PARAFAC were clustered and further related to IBS 
response for the interventions using ANOVA. Due to the 
exploratory nature of the analyses, all models were run as 
per protocol. All analyses were performed in the program-
ming language R (version 4.0.0).

2.5.1  Predictions of IBS response from baseline molecular 
data

2.6  Response variables

In all analyses, we explored the differential response of IBS-
SSS data from the interventions and not from the rapid prov-
ocation test as response variable. The total IBS-SSS score as 
well as its five separate items (severity of abdominal pain, 
frequency of abdominal pain, abdominal distension, dissat-
isfaction with bowel habits, and interference with life) were 
modelled as response variables, both as absolute values, as 
log fold change and difference compared to the preceding 
washout week, separately per intervention (FODMAPs, 
gluten, and placebo). The response variables were mod-
elled both as continuous variables (i.e., the actual recorded 
response values) to represent associations at an individual 
level and as categories (i.e., groups of individuals from 
clustering) to represent potential metabotypes, as described 
above. In clustering, the measurements of each IBS-SSS 
item from all three treatment arms were condensed into a 
data frame. Clustering was performed as hierarchical clus-
tering (Euclidean distance) and k-means clustering, using 
both scaled and non-scaled data, with 2–4 clusters, limited 
to clustering solutions with a minimum of 8 participants 
per cluster. In order not to bias classification analyses to 
the majority class, clusters were randomly downsampled to 
obtain equal number of individuals per cluster.

2.7  Predictor variables

Differential responses to the interventions were then investi-
gated in relation to baseline data as predictors, including all 
data collected at screening and microbiota, fecal and plasma 
SCFAs, and metabolome data collected at the beginning of 
the study (study visit 2). Data collected at screening were: 
IBS severity and subtype, duration of IBS, if IBS onset was 
associated with a gastrointestinal infection or antibiotic use, 
the questionnaires IBS-SSS, SF-36v2, the demographic 
questionnaire, Baecke’s physical activity questionnaire, food 
frequency questionnaire, and anthropometric measurements. 
In total, the questionnaires consisted of 124 variables. Data 
collected at screening is henceforth referred to as ‘baseline 
clinical data’.

Associations between response and predictor variables 
were modeled with the MUVR-RF algorithm (Shi et al., 

2019). Predictors were first modelled separated by the dif-
ferent data types (microbiota, SCFAs, the metabolome, 
and baseline clinical data) not to dilute associations per 
data type with additional variables potentially contributing 
with noise. Predictor data were also used in combination to 
allow for implicit interaction between variables from dif-
ferent types. A priori limits of  Q2 > 0.2 (for regression) or 
classification rate (CR) > 0.6 were used as filters to iden-
tify potentially informative models that were further ana-
lyzed by permutation tests (n = 100) to assure response was 
not due to overfitting. The a priori cutoffs were arbitrary 
selected to correspond to 20 percent better prediction than 
random chance. For clustering, downsampling can reduce 
the number of subjects included in the analysis. Models 
that had CR > 0.6 were therefore re-run 5 times (each time 
with a new random downsampling) together with permuta-
tion tests to ensure that findings were not due to overfitting. 
Average CR ± SD was reported together with p-value from 
the permutation tests. Clusters from classification models 
reaching the threshold  (ppermutation < 0.05) were associated 
to baseline clinical data using ANOVA for continuous vari-
ables and Fisher’s test for categorical variables. Adjustment 
for multiple testing was performed according to the Benja-
mini–Hochberg false discovery rate procedure, considering 
FDR-adjusted p-value < 0.05 as significant.

2.7.1  Predictions of IBS response from molecular data 
of a provocation test

To investigate differential responses in relation to metabo-
lite data of the provocation test, the IBS-SSS items from 
each intervention week (absolute values) were modelled as 
RF regressions using the dynamic metabolomics data from 
the provocation test as predictors. Metabolomics data were 
represented either by each time point during the provocation 
test (−10 = pre-test, 0, 10, 20, 30, 90, 150, and 240 min), 
area under the curve (AUC), log2(timepoint/pre-test) or by 
the combined data of pre-test and subsequent time points 
one by one. The data were comprehensively explored to 
discover any relevant associations corresponding to differ-
ential response. The stability of the metabolome during the 
provocation test was measured with intra class correlation 
with a two-way random-effect model (type = single measure, 
definition = absolute agreement).

2.7.2  Metabolic response to provocation (PARAFAC)

The metabolomics data from the provocation test were also 
explored using PARAFAC to investigate potential different 
dynamic patterns. Data were ordered into a tensor, missing 
values were imputed (matrix completion, R package eim-
pute version 0.1.1) and the data were preprocessed in two 
ways: (i) by scaling per metabolite to a standard deviation 
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of one (Skantze et al., 2023) and; (ii) subtracting the global 
metabolite average per individual and scaling the data per 
metabolite feature to the root mean square of 1 (Bro & 
Smilde, 2003). PARAFAC was run with 2–20 components. 
Scores were clustered per component using hierarchical and 
k-means clustering (same settings as above) to represent 
potential metabotypes. For each model, ANOVA was run to 
evaluate a potential link to IBS symptoms (for each interven-
tion and IBS-SSS item as absolute values).

3  Results

In both the intervention and the provocation test models, 74 
individuals were included in the analyses. The trial included 
110 subjects, exclusions were due to: dropouts (n = 7), intake 
of probiotics (n = 1), antibiotics (n = 2), non-compliance 
(n = 7), deviations from inclusion criteria in BMI (n = 2), 
age (n = 2), lactose intolerance (n = 5), intake of symptom-
mitigating pharmaceuticals (n = 2), and un-subtyped IBS 
(n = 14). Exclusion criteria overlapped for some individuals. 
Details are further described elsewhere (Nordin et al., 2022). 
No adverse events were reported during the clinical trial.

3.1  Predictions of IBS response from baseline 
and provocation molecular data

When predicting intervention and IBS-SSS outcomes from 
baseline data with RF regression, using the microbiota, 
SCFAs, the metabolome, clinical data, or a combination as 
predictors, 270 models were run. However, only one model 
reached the a priori limit  (Q2 > 0.2): total IBS-SSS score in 
the placebo arm using microbiota as predictors  (Q2 = 0.22, 
p = 0.004). When analyzing clusters of response (represent-
ing metabotypes), out of 864 potential models, 429 mod-
els reached the requirement of ≥ 8 subjects per cluster. Of 
these, 12 reached the a priori limit for predictive perfor-
mance (CR > 0.6) Analyses using data modelled as actual 
values is presented in Table 1. Modelled instead using dif-
ference or log fold change to the preceding washout week 

produced similar results (Supplementary Table 4). Only two 
of these models, both related to frequency of abdominal 
pain, reached significance at p < 0.05 (CR = 0.73 Table 1; 
CR = 0.69 Supplementary Table 4). However, none of the 
clusters associated with baseline clinical data. In addition, 
none of the 69 models predicting IBS response to the inter-
ventions (response) from rapid provocation test metabolite 
data (predictors) reached the a priori  Q2 limit.

3.2  Metabolic response to provocation (PARAFAC)

The metabolome was clearly perturbed by the rapid prov-
ocation test, since 79% of the metabolites had intra class 
correlation < 0.5 (Supplementary Fig. 3). Using hierarchi-
cal clustering on scaled data, 6978 out of in total 11,286 
models reached the requirement of ≥ 8 subjects per cluster. 
Among these, 267 were nominally significant at p < 0.05, 
of which 87 related to FODMAPs, 71 to gluten and 109 to 
placebo, i.e. with no enrichment of associations to treatment 
groups vs placebo. Results were similar for all clustering 
approaches investigated (k-means and hierarchical using 
both scaled and non-scaled data (Supplementary Table 5). 
These models were further manually inspected to examine 
whether specific groups of individuals were reproducibly 
clustered in the different models, potentially representing 
robust metabotypes. However, no such robust participant 
clustering was observed.

4  Discussion

To our knowledge, this is the first study aiming to unravel 
determinants of differential IBS responses to FODMAP 
and gluten provocation interventions from molecular 
data. The data-driven approaches for differential response 
analysis included machine learning-based predictions of 
IBS response from both baseline and provocation-related 
molecular data. Despite a comprehensive set of methods 
applied to explore IBS responses, including both regression 
and classification, predictors of differential response could 

Table 1  Output for Random 
Forest classification modelling

Each IBS-SSS item from all three treatment arms were condensed into a data frame before clustering 
(response) while the baseline microbiota, SCFAs, the metabolome, or a combination were used as predic-
tors. The table shows models were CR > 0.6 and response variables were modelled as ‘absolute’ value and 
data were scaled. A complete presentation of all relevant models is presented in Supplementary Table 4
CR classification rate, Hclust hierarchical culstering, IBS-SSS – irritable bowel syndrome - severity scor-
ingsystem, perm permutation, SCFAs short chain fatty acids

IBS-SSS variable Method N clusters Predictor data CR[SD] Pperm

Total IBS-SSS score Hclust 2 SCFAs 0.63 ± 0.05 0.12
Total IBS-SSS score Hclust 2 Combination 0.63 ± 0.08 0.15
Frequency of abdominal pain Kmeans 2 Metabolome 0.73 ± 0.02 0.006
Frequency of abdominal pain Kmeans 2 Combination 0.69 ± 0.14 0.08
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not be established. Of note, one regression model and two 
classification models associated IBS outcomes to baseline 
molecular (omics) predictors. However, these models none-
theless likely did not correspond to actionable differential 
responders: First, the predictive power was not sufficiently 
high to warrant accurate subtyping or precision interven-
tions. Second, even the use of repeated double cross-vali-
dation does not provide a complete safeguard against false 
positive discovery. Third, considering the large number of 
models run for each intervention and IBS-SSS item, true 
underlying associations would likely have produced a more 
pronounced enrichment of significant models. In fact, only 
a few associations were significant and none of the observed 
clustering models associated with phenotype traits measured 
by baseline clinical variables. Hence, the few significant 
models were not further investigated. In addition, we also 
applied a PARAFAC-based approach to capture metabolite 
dynamics over the duration of the provocation test to identify 
potential metabotype clusters that could be related to differ-
ential IBS-responses. Associations of IBS-SSS symptoms 
to the PARAFAC-based clusters were weak, and with no 
enrichment in associations for the FODMAP or gluten expo-
sures compared to the placebo control intervention. This 
suggests that the immediate postprandial metabolite dynam-
ics following exposure to FODMAP and gluten did not relate 
to IBS severity. Hence, no molecular basis for differential 
response could be identified based on microbiota, SCFAs, 
the metabolome, or clinical data; neither on individual level 
nor on group (metabotype) level. In the analyses no cutoff 
in response (IBS-SSS) was set, as a percentage of required 
change or the common cutoff with IBS-SSS, a change of 50 
points (Francis et al., 1997). The reason was that using the 
actual response as a continuous variable has two important 
features: maintained power (from keeping all observations 
in the analysis, dichotomized models may require downsam-
pling) and resolution (from relating predictor data to the 
degree of effect rather than dichotomized effect).

In contrast to our results and some previous studies (Hal-
mos et al., 2015; Staudacher et al., 2020), most IBS stud-
ies have reported differential response related to microbiota 
composition, metabolite pattern, colonic methane, hydrogen 
and SCFA production, fecal volatile organic acids, intake 
of FODMAPs at baseline, psychological and nutritional 
factors at baseline (Bennet et al., 2018; Böhn et al., 2015; 
Chumpitazi et al., 2015; Colomier et al., 2022; Eetemadi 
& Tagkopoulos, 2021; Nybacka et al., 2021; Rossi et al., 
2018; Schindler et al., 2021; Valeur et al., 2018; Vervier 
et al., 2021; Zhang et al., 2021). Of note is that most findings 
in previous studies have never been replicated, and some 
results have also been contradictory, such as saccharolytic 
genera being enriched in both response and non-response 
(Bennet et al., 2020; Chumpitazi et al., 2015; Zhang et al., 
2021). It is likely that the inconsistencies in the literature 

relate to methodological issues in several of the performed 
IBS studies, including small sample size as well as data-
analytical issues, including lack of robust methods to avoid-
ing overfitting in machine learning modelling (Filzmoser 
et al., 2009).

There may be several reasons why no apparent differ-
ential responses to IBS symptoms could be detected in the 
present study. For example, potentially important molecular 
determinants may have not been measured and therefore not 
included in the analyses (Rubin & van der Laan, 2012). Psy-
chological factors are important in IBS (Chey et al., 2021; 
Ohlsson, 2022) and may represent such unmeasured factors. 
Stratification of patients based on psychological markers is, 
according to Staudacher et al. (Staudacher et al., 2021), nec-
essary for better understanding of the response to dietary 
treatment. In addition, as previously reported (Nordin et al., 
2022), in the present trial, for the FODMAP, gluten and 
placebo intervention, there were no difference in increase 
of > 50 point in total IBS-SSS (46%, 37%, and 35%, respec-
tively; p > 0.12), considered a clinically significant effect 
(Francis et al., 1997). The high nocebo response is in line 
with reported high nocebo responses in IBS challenge tri-
als (Lembo, 2020; Li et al., 2022), further highlighting the 
challenges with psychological aspects. For the provocation 
test, there was no control and it was therefore not possible 
to properly evaluate the symptomatic response.

Concerning gluten, the general intervention effect was 
weak, both on IBS symptoms (Nordin et al., 2022), as well 
as on microbiota composition and SCFAs (Nordin E et al., 
2023a), and the metabolome (Nordin E et al., 2023). At the 
same time, there was large interindividual variability in 
symptomatic response and therefore a potential to identify 
determinants thereof (Nordin et al., 2022), in line with pre-
vious studies (Molina-Infante & Carroccio, 2017; Skodje 
et al., 2018). However, we found no associations in the data 
to support this hypothesis. A lack of a clinical or molecu-
lar basis for differential response is likely related to similar 
reasons as for the FODMAP intervention, i.e. IBS being 
a heterogenous condition and important molecular deter-
minants were not included. One previous study identified 
response to a gluten free diet versus a gluten-containing diet, 
but that study was underpowered for such a sub-analysis of 
differential response (Algera et al., 2022).

4.1  Limitations and strengths

This study has several limitations: First, there was no true 
baseline value for the microbiota and the metabolome since 
the sampling was collected after initiation of the low impact 
diet. Second, although a wide set of baseline variables was 
included, important variables were lacking, e.g. psychologi-
cal variables. Inclusion of such variables is strongly encour-
aged for future trials. Third, the use of sucrose as placebo 
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could have potential issues since there are reported muta-
tions in the sucrase-isomaltase gene in IBS (Henström et al., 
2018). However, since there was no effect of placebo in this 
trial (by comparing to the wash-out weeks (Nordin et al., 
2022), it does not seem to have had an important impact of 
the study. Fourth, the sex imbalance in recruitment makes 
the results mainly valid for women. Uneven distribution in 
recruitment of sex is a known issue in IBS studies and addi-
tional efforts need to be implemented in upcoming trials. 
Our study also has several strengths: The study was of large 
sample size, and in fact larger than any previous trial investi-
gating differential responses in IBS. Importantly, the double-
blind crossover design contributed objectivity. Moreover, a 
strength of the study was the large amount of data included 
at different time points and therefore potential to identify 
molecular markers to address differential response to treat-
ment. Thereby also the potential to use different methodo-
logical approaches to identify differential response. Finally, 
the use of a double cross-validation regimen reduced overfit-
ting and false positive discovery. Without these precautions 
more models would probably have generated significant but 
unsubstantiated associations.

5  Conclusion

We performed the hitherto largest double-blind study 
with a comprehensive exploration with multiple analytical 
approaches to understand differential IBS responses to FOD-
MAP and gluten exposure and mechanisms thereof. Yet, no 
explanations to differential responses were found. The com-
plexity of IBS, including the fact that its pathophysiology 
is still unknown, are likely to contribute to the observed 
difficulties in subgrouping. Unmeasured baseline variables, 
such as psychological factors, may have carried important 
information for such subtyping. We encourage the applica-
tion of molecular subtyping methodologies outlined here in 
other studies where differential responses to treatment are 
expected.
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