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Abstract
Motivation: Proteomic profiles reflect the functional readout of the physiological state of an organism. An increased understanding of what con-
trols and defines protein abundances is of high scientific interest. Saccharomyces cerevisiae is a well-studied model organism, and there is a
large amount of structured knowledge on yeast systems biology in databases such as the Saccharomyces Genome Database, and highly curated
genome-scale metabolic models like Yeast8. These datasets, the result of decades of experiments, are abundant in information, and adhere to
semantically meaningful ontologies.

Results: By representing this knowledge in an expressive Datalog database we generated data descriptors using relational learning that, when
combined with supervised machine learning, enables us to predict protein abundances in an explainable manner. We learnt predictive relation-
ships between protein abundances, function and phenotype; such as a-amino acid accumulations and deviations in chronological lifespan. We
further demonstrate the power of this methodology on the proteins His4 and Ilv2, connecting qualitative biological concepts to quantified
abundances.

Availability and implementation: All data and processing scripts are available at the following Github repository: https://github.com/
DanielBrunnsaker/ProtPredict.

1 Introduction

Understanding how gene deletions or changes in gene content
affect biological readouts is a key question in systems biology,
synthetic biology, and biotechnology (Benfey and Mitchell-
Olds 2008). In the most well-studied of organisms, such as

the yeast Saccharomyces cerevisiae, we have functional anno-
tations for a majority of genes but exhaustive understanding
of regulatory rules at a systems level remains a challenge
(Wood et al. 2019).
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As a model organism, the scientific community has system-
atized a substantial amount of information on S.cerevisiae
systems biology, often in the forms of vast online databases.
This includes databases such as the Saccharomyces Genome
Database (SGD), BioGRID, and metabolic models such as
Yeast8 (Cherry et al. 2012, Lu et al. 2019, Oughtred et al.
2021). In these databases, there exists information in a multi-
tude of different data modalities, containing findings and
metadata on thousands of experiments represented in a se-
mantically rich form. This makes it suitable for relational ma-
chine learning, in which one can learn complex patterns
across the content of the database using pattern mining, with
the intention of uncovering biologically relevant regulatory
rules (King et al. 2001, Raedt 2008, Muggleton et al. 2012,
Orhobor et al. 2020). Additionally, recent advances in proteo-
mics have led to the generation of protein profiles which has
been used to further increase our understanding of yeast sys-
tems biology and what drives protein abundances (Messner
et al. 2022; Messner et al. 2023).

A crucial aspect in applying machine learning techniques is
how to properly represent data in a meaningful way. While
popular methods such as deep neural networks are very suc-
cessful in extracting rich internal representations from data,
they tend to have poor interpretability. They also tend to
make poor use of existing domain knowledge without specifi-
cally encoding it in the structure (Zhou et al. 2020, Zhang
et al. 2021). In contrast, there are other machine learning
ways to generally represent data in a structured manner that
enables one to account for background domain knowledge.
The richest way to represent background knowledge are logic
programs. These programs, using a subset of first-order predi-
cate logic, are very flexible and can represent different types
of data in one formalism, and allows for an explicit way of
representing relations between entities (Lloyd 2012). The use
of logic programs as a target for machine learning is known
as “relational learning” or “inductive logic programmming”
(Raedt 2008).

Propositionalization is a machine learning methodology in
which one extracts tabular/propositional data from relational
databases or logic programs (Kramer et al. 2001, Lavra�c et al.
2020). By transforming a relational into a propositional rep-
resentation, we can make use of learning methods in a rela-
tional setting, while also partially negating one of its main
disadvantages; computational inefficiency. This is achieved by
using the much more efficient attribute-value based learners
we use today, such as support vector machines and gradient
boosting to learn the predictive model itself (Orhobor et al.
2020).

Here, we combine several of these complex relational data-
bases to construct a highly expressive Datalog database. We
performed relational learning over the content of this data-
base and generated binary descriptors through propositionali-
zation, which were then directly processed by standard
machine learning algorithms. These descriptors are repre-
sented in the form of logic programs, which can be translated
into statements interpretable by domain experts. By combin-
ing these descriptors with propositional data, such as the pro-
tein abundances generated by Messner et al. (2023) we can
use techniques in model explainability to evaluate and (to
some extent) quantify the contribution of regulatory interac-
tions, phenotypical markers and current functional annota-
tions of the genotype. We found that this methodology
provides informative and interpretable features for domain

experts. The resulting models could also be used to guide met-
abolic engineering strategies and infer protein function.

2 Materials and methods

2.1 Relational database of yeast systems biology

The database makes use of the Saccharomyces Genome
Database (SGD), BioGRID, and Yeast8 as sources of rela-
tional data (Cherry et al. 2012, Lu et al. 2019). All of the data
used to create the database were downloaded using either
YeastMine (retrieved 16 December 2022) or the Metabolic
Atlas (retrieved 17 December 2022) (Balakrishnan et al.
2012, Wang et al. 2021, Li et al. 2023). The database consists
of relations covering metabolism, function, structure, regula-
tion, and phenotype. Additional details regarding the rela-
tions can be found in Supplementary Notes SI.

For the gene-ontology terms, “manually curated,” “high-
throughput,” and “computational” GO annotations were in-
cluded. The dataset was curated, as to remove observations
with a different strain-background than the one used in the
dataset by Messner et al. (2023) (S288c). Invalid GO-terms
and dose-dependent phenotypes, such as toxin resistance and
resistance to chemicals were also removed. Gene-to-
metabolite relations from Yeast8 that involved very common
reactants and products unlikely to contribute to metabolic
regulation (such as Hþ and H2O) were removed from the
database, as defined in Waller et al. (2020).

The data were then represented in Datalog, a declarative
programming language which allows for richer representa-
tions of relational knowledge than what is possible in stan-
dard relational database query languages such as SQL
(Dehaspe and Toivonen 1999).

2.2 Frequent pattern mining and dataset

construction

In order to extract biologically relevant patterns from the con-
structed database, relational learning was applied in the form
of frequent pattern mining. These patterns were learned using
the induce features mode in the ILP-engine aleph (version 5,
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/
aleph.html), utilizing a simplified version of the data-mining
algorithm WARMR to find frequent relational patterns us-
ing sample meta-data (deletant strain) as positive examples
(Dehaspe and Toivonen 1999, Srinivasan 2001). WARMR
is an ILP data mining algorithm that makes use of a level
wise search algorithm that searches in order of pattern-
generality, starting from the most general patterns (or simple
instantiations of facts) and iteratively adds logical conditions
until a predefined level of specificity has been reached (King
et al. 2001). The goal of the algorithm in this case is to de-
fine valid patterns with as high coverage of positive exam-
ples as possible, given the following constraints: minimum
allowed fraction of positive examples in a single clause at
0.025%, maximum amount of features 2048, the upper
bound of new variable layers to 10, and with an allowed
clause-length of 10. All of the aforementioned steps were
performed in Prolog (SWI-Prolog, v7.6.3) (Wielemaker et al.
2012). All relations directly derived from the datasets used
as predictive targets were removed prior to pattern mining.
The type of data, allowed relations, along with a summary
of their biological relevance can be seen in Supplementary
Notes I. Note that the search was restricted to a subset of
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first-order logic, due to the inherent difficulties of proposi-
tionalizing higher-order logic statements.

A proteomic dataset was previously generated by Messner
et al. (2023), in which profiles consisting of thousands of pro-
teins were measured for �4600 nonessential gene deletions.
The mined, propositionalized, patterns were then combined
with this protein abundance data [or amino acid concentra-
tion data from Mülleder et al. (2016)] by merging on the ORF
(open reading frame), describing the positive example in the
case of the relational dataset, and the deletant strain in the
case of protein abundance data. The patterns were used as
predictive features (independent variables) and all of the dif-
ferent abundance values (per protein) were then used as de-
pendent variables in regression. A visual summary of this can
be seen in Fig. 1.

The propositional descriptors for each the available dele-
tant strains were then saved as tabular datasets (with accom-
panying explanatory logic programs). More detailed
instructions, along with the generated descriptors, can be
found at https://github.com/DanielBrunnsaker/ProtPredict.

2.3 Training and evaluation

The scikit-learn implementation of XGBoost (v1.6.1) was
used as the model of choice for all regression tasks in this
study, as it is a very efficient and highly performant machine
learning algorithm (Chen and Guestrin 2016). It also per-
formed favourably when compared to other supervised
learning algorithms (see Supplementary Notes SVI).
The hyper-parameters were tuned on the first example protein
in the dataset (A5Z2X5/Min8/YPR010C-A) with cross vali-
dated Bayesian optimization, using sci-kit optimize (v0.9.0).
All of the models (predicting abundances for separate pro-
teins) were evaluated using 5-fold cross validation (CV). This
type of evaluation procedure was chosen as interpretability
across the whole dataset was of main concern, and making
sure that informative features were added to the prediction
task was of higher importance. As such, an independent test-
set was deemed unnecessary for this specific purpose (King
et al. 2021). The metrics used for training and evaluation
were MSE (mean squared error) and R2 (coefficient of deter-
mination) respectively.

Figure 1. Dataset construction using frequent pattern mining on databases on yeast systems biology, utilizing sample meta-data from a proteomics

dataset by Messner et al. (2022). Biological databases are represented in Datalog. WARMR is utilized (using sample meta-data from the selected dataset)

to extract frequent patterns from the database. These patterns are propositionalized and used as independent variables (predictive variables) in the

prediction of protein abundances.
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2.4 Feature importance

Features (a-amino acids and binary data descriptors) were an-
alyzed using a model agnostic feature importance tool, SHAP
(SHapley Additive exPlanations) and an XGBoost-specific
one, gain. Gain describes the relative contribution of a feature
to the model by calculating the improvement in performance
the feature brings (Chen and Guestrin 2016). SHAP is based
on a game-theoretic approach and is used to evaluate the out-
puts of any machine learning model (Lundberg and Lee
2017). It connects optimal credit allocation with local explan-
ations by estimating instance-wise Shapley values. More spe-
cifically, TreeExplainer, a SHAP-based methodology
optimized for tree-based machine learning models, was used
(Lundberg et al. 2020).

3 Results

3.1 Frequent pattern mining

As seen in Fig. 1, a database was constructed by establishing
gene-to-entity relations from SGD, BioGRID, and Yeast8
(Cherry et al. 2012, Lu et al. 2019, Oughtred et al. 2021). These
relations were then described decalaratively in Datalog (Dehaspe
and Toivonen 1999). This relational database was then used as
a basis for frequent pattern searches using a simplified version of
the WARMR-algorithm implemented in Aleph, utilizing sample
meta-data (deletetant strains) as positive examples (Srinivasan
2001). The patterns were then represented as logic programs
(Dehaspe and Toivonen 1999, King et al. 2001, Srinivasan
2001). An example of a typical pattern (biological concept), rep-
resented as a Prolog program is:

GeneðAÞ : ¼
RegulatedByðA;B;Transcription factorÞ;
nullPhenotypeðB;Abnormal chronological lifespanÞ;
InvolvedInðA;One—carbonmetabolic processÞ

This program can be interpreted as: genes (A) which are in-
volved in the one-carbon metabolic process, and which are

regulated by a transcription factor (B) whose deletion causes
the cell to have an abnormal chronological lifespan.

3.2 Protein abundance can be predicted directly

from relational data descriptors

The generated programs (descriptors) were used as predictive
features (independent variables) for the prediction of abun-
dances for all of the 2292 proteins present in the dataset gen-
erated by Messner et al. (2023). Feature importances were
calculated using both a model agnostic method, SHAP, and
gain, a model specific importance metric (Chen and Guestrin
2016, Lundberg and Lee 2017, Lundberg et al. 2020). To as-
sess the predictive capability of the features across the whole
space of predictable proteins, values were normalized and av-
eraged across the span of all the trained models. All of the
presented patterns along with translations into English are
given in the Supplementary Notes (SII–SV).

As observed in Fig. 2A, protein abundance can be predicted
from relational descriptors alone, with the majority of models
showing a positive, although weak, coefficient of determina-
tion. A smaller subset of proteins show a stronger average
predictive performance of above 0:3 R2. This indicates that
the coverage of relations present in the generated descriptors
are sufficient to explain a significant fraction of the variation
present in the abundances. The predictable fraction of pro-
teins compared favourably to an explicit representation of the
database, as measured by cross-validated R2 (see
Supplementary Notes SVII).

As seen in Fig. 3A and B, features important for prediction
(across the span of all available proteins) are descriptors with
a large number of covered examples. Reasonably enough,
abundance predictions were mainly dominated by logic pro-
grams (descriptions and English translations of these descrip-
tors/programs can be seen in Supplementary Notes SII)
containing sub-patterns with large effects on metabolism, in-
cluding: terms regarding decreased fitness or growth defects
and abnormal accumulations of a-amino acids (ilp140,
ilp662, ilp613, ilp322, ilp1187, ilp656, ilp601, ilp345,

Figure 2. Protein abundance predictability from relational features according to mean R2 across 2292 proteins in the dataset. The plot was truncated at

60:6R2 for visualization purposes. Each separate model was evaluated using 5-fold CV. One dot represents the mean score of a protein prediction

model. The shaded area represents the standard deviation. The histogram denotes the distribution of mean R2 for the predictive models.
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ilp632, ilp651); exclusively abnormalities in a-amino acids
(ilp51, ilp78, ilp74, ilp441); and irregularities in stress
responses (ilp539, ilp720). ilp- denotes that the feature is a
generated descriptor.

The five protein’s whose abundances that were shown to be
the most predictable in these conditions are shown in Table 1.
The majority of them (Ilv2, His4, Leu4, and Aat2) are

involved in amino acid metabolism, and one being a compo-
nent of the ATP synthase complex (Atp7). Among others, pre-
dictors of Ilv2 include markers of abnormalities in growth
and accumulations of a-amino acids, such as valine and gluta-
mine. The abundance of His4 seems even more strongly con-
nected to amino acid accumulation, indicating abnormalities
in serine and proline as important. Levels of Atp7—as its an-
notation would suggest—seems tied to malfunctions of respi-
ratory growth, but also to general deviations in a-amino acid
concentrations. Abundances of Leu4 implicated phenotypical
markers such as growth irregulaties, decreased chronological
lifespan and abnormal or decreased accumulations of valine
and glutamine as important predictors. Lastly, predictions of
Aat2 abundances denoted serine and proline as significant but
also anomalies in respiratory growth and chronological life-
span. These observations corresponds well with literature,
given that Ilv2, His4, Leu4, and Aat2 are enzymes directly in-
volved with amino acid metabolism. Complete formulations
of these descriptors (as seen in Table 1) can be found in
Supplementary Notes SIII.

As seen in Fig. 6A and B, closer inspection of the features
predictive of Ilv2 abundance gives rise to a similar pattern as

Figure 3. (A) Normalized mean(jSHAPj)-values of relational features across all available protein models with a positive coefficient of determination

(R2 > 0). (B) Normalized gain of relational features across all available protein models with a positive coefficient of determination (R2 > 0). The error bars

denote the 95% confidence interval. ilp- denotes that the feature is a generated descriptor. Explanations for these can be seen in Supplementary Notes

SII.

Table 1. The five protein models with the highest predictive performance

(average R2) using only generated relational descriptors, along with a

short description and their primary predictive features.a

Name R2 SHAPb Gainc

Ilv2 (Acetolactate synthase) 0.335 ilp662 ilp1720
His4 (Multifunctional) 0.320 ilp443 ilp1790
Atp7 (ATP Synthase 7) 0.307 ilp1187 ilp1187
Leu4 (2-isopropylmalate synthase) 0.300 ilp601 ilp1720
Aat2 (Aspartate aminotransferase) 0.299 ilp1175 ilp1790

a ilp denotes that the feature is a generated descriptor. Complete
descriptions of these can be found in Supplementary Notes SIII.

b Highest ranked feature according to SHAP.
c Highest ranked feature according to gain.
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for previous observations, with features (descriptors) involv-
ing a large number of examples having high predictive power.
These descriptors (see Supplementary Notes SIV) comprise of
terms describing malfunctions of growth (ilp662, ilp601, and
ilp37) or abnormalities in oxidative stress resistance coupled
with accumulations of a-amino acids, specifically alanine
(ilp383 and ilp972 respectively). Other descriptors only in-
volved metabolite deviations, such as proline (ilp441 and
ilp2032), serine (ilp1798), valine (ilp1798), and lysine
(ilp2032). The latter observations presumably due to the regu-
lation of the protein primarily being under amino acid con-
trol, along with the fact that it catalyzes the first steps of
isoleucine and valine synthesis (Falco et al. 1985, Xiao and
Rank 1988). Inspection of the features showing maximum
deviations of model output specify abnormalities in RNA ac-
cumulation [coupled with either activity in the mitochondria
(ilp1874) or an increased accumulation of valine (ilp1865)] as
highly affecting of specific predictions. In addition, it also
identified several coupled statements, such as abnormal spor-
ulation along with irregularities in methionine accumulation
(ilp1622), metabolic proteins with biotinyl/lioypl domain pro-
files (ilp1161) and abnormal galactose utilization combined
with aberrant tyrosine concentrations (ilp1394) as distinctly
deviating model output.

3.3 Amino acids serves as predictors for protein

abundance

The a-amino acid concentrations generated in Mülleder et al.
(2016) were combined with a different propositionalized
dataset (in which ORF-to-phenotype relations regarding
a-amino acid accumulations had been removed from the
Datalog-database prior to the pattern-search). Every protein
prediction model now employed the same set of descriptors
along with concentrations of nineteen different amino acids as
predictive features. Overrepresentation-tests were performed
for proteins with a stronger-than-normal connection to spe-
cific amino acids using ClusterProfiler (Wu et al. 2021). More

in-depth descriptions of presented relational descriptors can
be seen in Supplementary Notes SV.

As shown in Fig. 4, a large subset of protein abundances
were predictable given matching concentration values of the
nineteen a-amino acids, seemingly explaining as much as
44% of the variation in some cases (such as for Atp4 and
Atp7). The majority of the protein models achieved meaning-
ful, but low performance, with a significant portion of them
barely outperforming the average value. By providing the pre-
dictive models with structured prior knowledge in the form of
relational descriptors, improvements are seen in a portion of
the proteins. These improvements were on top of the predic-
tive models already achieving high performance using only
concentration-based features, such as for the Atp4, Atp7, and
His4.

When looking for metabolites that provide the most signifi-
cant effect on abundance across the whole space of predict-
able proteins, glutamine followed by alanine, glycine,
arginine, and proline were over-represented (see Fig. 5).
Glutamine seemed to have been one of the main predictors of
global protein abundance in this particular setting.
Overrepresentation tests for the proteins primarily predicted
by glutamine (see Supplementary Fig. S5) show proteins that
are connected to the metabolic process of small molecules,
such as amino acids, purines, and the ncRNA (noncoding
RNA) metabolic process. The proteins themselves mainly be-
ing active in the nucleolus or preribosomes. Proteins predicted
(primarily) by glycine, showed a much more diverse set of
overrepresentation-terms (see Supplementary Fig. S6), such as
cytoplasmic translation, and terms regarding energy-
generation (such as oxidative phosphorylation and the ATP
metabolic process). Overrepresentation tests for proline-
predicted proteins (see Supplementary Fig. S7) pointed
towards cytosolic proteins, several protein-containing com-
plexes, small molecule binding and biosynthetic processes for
ribonucleic proteins, amides, peptides, and ribosomes.

Figure 4. Protein abundance predictability from amino acid concentrations and relational features according to mean R2 across 2292 proteins available in

the dataset. The plot was truncated at 60:7R2 for visualization purposes. Each separate model was evaluated using 5-fold CV. One square represents the

mean score of a protein prediction model using both amino acid concentrations and relational features, with the shaded area representing the standard

deviation. The red dots represents the mean scores for predictive models using only amino acid concentrations as predictive features. The histogram

denotes the distribution of mean R2 for the predictive models.
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Closer investigation of His4 predictions (see Fig. 6C) dem-
onstrate concentration-based features to be the main determi-
nant of model output, with relational features deviating
output in select cases. High concentrations of histidine lower
the models output of His4 (HIStidine requiring 4) levels.
Glutamine, serine, leucine, proline, and alanine all seem in-
versely related to His4 abundance, as low concentrations of
these a-amino acids gave rise to higher abundances. The oppo-
site behaviour was observed for arginine, valine, and asparagine.
As can be seen in Fig. 6D and Supplementary Notes SV, there
were some common patterns in the descriptors themselves,
namely: Abnormalities in stress resistances (ilp340, ilp587, and
ilp358); irregularities in RNA accumulations (ilp1029) or pep-
tide distributions (ilp791); and nutrient utilization rates (ilp732,
ilp1252, and ilp1029). The latter descriptors having identified
groups of ORFs whose deletion causes increases or decreases in
His-Leu utilization (a dipeptide formed from L-histidine and L-
leucine residues). In addition, the intersection of abnormalities in
telomere lengths and decreased Hþ accumulation (ilp946) were
predictive of His4 abundance in a subset of samples, with the

separate relations having close to no predictive power (see
Supplementary Fig. S1).

4 Discussion

In this work, we leverage prior structured knowledge in yeast
systems biology to construct a highly expressive Datalog data-
base. This database contains information and relations that en-
compass, among others, gene-function, regulatory interactions,
gene-to-metabolite relations, and phenotype observations
(Cherry et al. 2012, Oughtred et al. 2021). We exploit this
database by performing relational learning over its contents to
generate binary data descriptors that we input directly into ma-
chine learning algorithms in the form of tabular data. This is
done to produce more consistent and explainable predictions
compared to more standard workflows, enabling us to more
fully understand the regulation of protein abundances in
S.cerevisiae. These descriptors are represented in the form of
logic programs, which can be directly translated into English
statements interpretable by domain experts, showcasing an

Figure 5. Heatmap of scaled amino acid feature importance values (SHAP) for all of the protein models with a positive coefficient of determination

(R2 > 0). Rows indicate the proteins that are being predicted (dependent variables), while columns indicate the predictive features (across the range of

predictable proteins).
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advantage over popular methods such as deep neural networks
(Orhobor et al. 2020). In this way we can make use of the
advantages of attribute-value learners, such as XGBoost, to
make efficient predictions while also identifying semantically
meaningful factors that can be used to further explore yeast sys-
tems biology.

In contrast to recent biologically relevant deep-learning
based methods, such as the work done in Ma et al. (2018),
the prior knowledge can be represented as a propositional in-
put, removing the need to specifically encode it in the struc-
ture (Fortelny and Bock 2020, Elmarakeby et al. 2021). This
showcasing some advantage in flexibility and reduced com-
plexity, but also allowing for easy addition of more, and addi-
tional types of priors. However—unlike the structure-based
methods—the main disadvantage of the method used in this
study is that it is a two-stage process. The relational

descriptors that are extracted during frequent pattern mining
are not necessarily useful in the predictive task—in this case
the prediction of protein abundance.

In the worst case, this can lead to creating a high dimen-
sionality problem with features that are equally or less infor-
mative than the baseline. This due to the search restricting
access to a sufficient number of predictive features, as can be
seen for the high variance, nonpredictable protein predictions
in Figs 2 and 4. In some cases, it could also generate sparse
and highly correlated features, which could lead to a decrease
in predictive performance.

In this particular setting, the relational descriptors showed a
favourable comparison (in terms of the coefficient of determi-
nation) to a comprehensive baseline representation (a binary re-
lation matrix consisting of all relations present in the database)
for the set of previously established predictable proteins (see

Figure 6. (A) Top features for the prediction of Ilv2, given only relational features. Sorted by average contribution in descending order. (B) Top relational

features according to maximum change in model output for Ilv2, given only relational features. (C) Top features for the prediction of His4, given relational

features and amino acid concentrations. Sorted by average contribution in descending order. (D) Top relational features according to maximum change in

model output for His4, given relational features and amino acid concentrations. Each dot corresponds to one sample. ilp- denotes that the feature is a

generated descriptor. Complete explanations for these descriptors can be seen in Supplementary Notes SIV and SV.
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Supplementary Notes SVII). This indicates that the pattern min-
ing did return highly informative relational features for a large
subset of proteins.

The proposed method itself also heavily relies on the com-
pleteness of the used theory, in this case being the functional
and phenotypical annotations of the S.cerevisiae genome.
Potential remedies, while still retaining some training effi-
ciency, could be the use of computationally expensive feature
selection techniques or even lifted methods such as LRNNs
(Lifted Relational Neural Networks) (�Sourek et al. 2021).

When interpreting the models via an explainable AI (XAI)
framework, such as SHAP, caution needs to be taken as to
not infer causality from these observations alone. In addition,
the predictions themselves could be improved—due to the
issues of generating over-fitting patterns, and highly corre-
lated features confounding the predictions.

As seen in Fig. 2, the generated descriptors are capable of
predicting the abundance to some degree, with globally im-
portant features mainly being phenotype-based (more specifi-
cally on biological accumulations of amino acids). While
potentially an artifact of the data-collection itself—with data
generated by the same lab—it still implies a meaningful con-
nection between the amino acid concentrations and measured
protein abundances (Mülleder et al. 2016, Messner et al.
2023). In addition, reasonably enough, abnormalities in
growth are a strong predictor of overall protein abundance,
not excluding the possibility that this could be an artifact of
improper biomass normalization or other errors in the origi-
nal dataset. It also signifies abnormalities in stress response
(or the effect of stressors in general) as important for protein
abundance distribution, especially in the context of oxidative
stress—something that has been previously validated in litera-
ture for a subset of the proteins (Vogel et al. 2011).

More closely investigating the proteins with stronger con-
nections to the generated descriptors generally indicated phe-
notype annotations as strong deciders of abundance. For
example, the importance of valine (and in some cases isoleu-
cine) as strong predictors of Ilv2 abundance, which is likely
accurate given its name (IsoLeucine-plus-Valine-requiring 2)
(Falco et al. 1985). SHAP-assisted feature interpretation also
indicated inabilities to properly utilize galactose (usually
paired with malfunctions in growth) as positive markers of
Ilv2 abundance. The previous connection seems clearer given
the fact that when S.cerevisiae is fed galactose instead of glu-
cose as a main carbon source, the amino acid uptake is in-
creased (as Ilv2 is under general amino acid control, and also
synthesizes the first steps of valine and isoleucine biosynthe-
sis) (Hothersall and Ahmed 2013). In addition, the model
linked RNA-accumulations with Ilv2 abundance—likely due
to the correlation between the intracellular levels of the two
types of molecules—but more specifically, it linked the term
with either mitochondrial activity or valine accumulations,
resulting in vastly increased abundances for the covered
examples (Vogel and Marcotte 2012, Lahtvee et al. 2017).
This in turn likely pointing towards regulatory elements in the
mitochondria involved in valine metabolism (outside of Ilv2),
such as Bat1 (Takpho et al. 2018).

Additional investigation (follow up analysis) of the gener-
ated rules elucidated more detailed conditional dependencies
between metabolites and proteomic abundances, with models
being able to explain up to 47% of the observed variance. In
addition, the models identified glutamine (followed by ala-
nine, glycine, and proline) as a strong predictor of protein

abundance. This possibly due to glutamines potential role as
a replenisher of TCA (tricarboxylic acid cycle) intermediates,
source of nitrogen, or through its implied role as a regulator
of TORC1 (Durán et al. 2012, Jewell et al. 2015,
Chantranupong and Sabatini 2016, Nilsson et al. 2020).
Additionally, overrepresentation of glutamine-predicted pro-
teins pointed towards metabolic processes of small molecules,
the ribosome, and noncoding RNA. This result agrees with
previous findings on epigenetic regulation in other eukaryotes
(Lin et al. 2020).

Glycine involvement in protein abundance is connected
with involvement in cytoplasmic translation and energy-
generating processes such as ATP synthesis (more specifically
the electron transport chain). Additionally proline, also a
good indicator of protein abundance, is coupled to ribosome
biogenesis and overall translation through its set of predicted
proteins, something which is previously well known in litera-
ture (Melnikov et al. 2016).

By combining the two types of data (amino acid concentra-
tions and relational features) we can achieve a better perform-
ing model. In case of specific proteins such as His4, the
generated descriptors accurately catches sample-specific devi-
ations in abundance. For example, the link between His4 lev-
els and abnormalities in His-Leu uptake and mitochondrial
metabolism. Or even patterns outside of the direct descriptive
capacity of amino acids, such as telomere length and de-
creased intracellular Hþ accumulation. The latter potentially
strengthening the positive association between histidine and
aging-effecting stressors (Canfield and Bradshaw 2019). Both
structural deviations in telomeres and low intracellular pH
are previously known to cause inconsistencies in replicative
aging in eukaryotes, with the model indicating that the inter-
section of the two could be linked with an increase of His4
levels (Yoshida et al. 2010, Eigenfeld et al. 2021).

Additionally, the proposed methodology also partially veri-
fies existing literature by predictively connecting qualitative
biological concepts, derived through years of work on yeast
systems biology, to quantified abundances of biomolecules.
While the predictive power of these models are imperfect,
they showcase the relative completeness of the current func-
tional and phenotypical annotations for S.cerevisiae. Machine
learning methods integrating domain-knowledge in an inter-
pretable way could be used to understand abundances of vari-
ous biomolecules through connections to completely different
types of data. The models (and their interpretation) could also
be used to identify protein function.

5 Conclusion

Integrating domain knowledge from curated biological data-
bases into our machine learning models through logic pro-
grams can significantly improve their interpretability and
performance.

Interpretable models enable us to better understand regula-
tory rules regarding protein abundance in S.cerevisiae.

Supplementary data

Supplementary data are available at Bioinformatics online.
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10 Brunnsåker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae050/7589924 by C
halm

ers Tekniska H
ogskola user on 08 M

arch 2024

https://github.com/DanielBrunnsaker/ProtPredict
https://github.com/DanielBrunnsaker/ProtPredict
https://doi.org/10.1093/database/bar062
https://doi.org/10.1093/database/bar062
https://doi.org/10.1126/science.1153716
https://doi.org/10.1016/j.tma.2019.09.001
https://doi.org/10.1016/j.tma.2019.09.001
https://doi.org/10.1038/nature18919
https://doi.org/10.1038/nature18919
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1023/A:1009863704807
https://doi.org/10.1023/A:1009863704807
https://doi.org/10.1016/j.molcel.2012.05.043
https://doi.org/10.1016/j.molcel.2012.05.043
https://doi.org/10.3389/ffunb.2021.665490
https://doi.org/10.3389/ffunb.2021.665490
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1093/nar/13.11.4011
https://doi.org/10.1186/s13059-020-02100-5
https://doi.org/10.1155/2013/461901
https://doi.org/10.1126/science.1259472
https://doi.org/10.1126/science.1259472
https://doi.org/10.1023/A:1008171016861
https://doi.org/10.1023/A:1008171016861
https://doi.org/10.1038/s42256-021-00332-z
https://doi.org/10.1016/j.cels.2017.03.003
https://doi.org/10.1007/s10994-020-05890-8
https://doi.org/10.1093/nar/gkac831
https://doi.org/10.7150/ijbs.40769
https://doi.org/10.1038/s41467-019-11581-3
https://doi.org/10.1038/s41467-019-11581-3
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/nmeth.4627
https://doi.org/10.15252/embr.201642943
https://10.1016/j.cell.2023.03.026
https://doi.org/10.1002/pmic.202200013
https://doi.org/10.1002/pmic.202200013
https://doi.org/10.1016/j.cell.2016.09.007
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1073/pnas.1919250117
https://doi.org/10.1002/pro.3978
https://doi.org/10.1002/pro.3978
https://doi.org/10.1007/s10994-021-06017-3
https://doi.org/10.15698/mic2018.06.637
https://doi.org/10.1038/nrg3185


Vogel C, Silva GM, Marcotte EM. Protein expression regulation under
oxidative stress. Mol Cell Proteomics 2011;10:M111.009217.
https://doi.org/10.1074/mcp.M111.009217.

Waller TC, Berg JA, Lex A et al. Compartment and hub definitions tune
metabolic networks for metabolomic interpretations. Gigascience
2020;9:giz137. https://doi.org/10.1093/gigascience/giz137.

Wang H, Robinson JL, Kocabas P et al. Genome-scale metabolic net-
work reconstruction of model animals as a platform for translational
research. Proc Natl Acad Sci USA 2021;118:e2102344118. https://
doi.org/10.1073/pnas.2102344118.

Wielemaker J, Schrijvers T, Triska M et al. SWI-Prolog. Theory
Pract Logic Program 2012;12:67–96. https://doi.org/10.1017/
S1471068411000494.

Wood V, Lock A, Harris MA et al. Hidden in plain sight: what remains
to be discovered in the eukaryotic proteome? Open Biol 2019;9:
180241. https://doi.org/10.1098/rsob.180241.

Wu T, Hu E, Xu S et al. clusterProfiler 4.0: a universal enrichment tool
for interpreting omics data. Innovation (Cambridge (Mass.)) 2021;2:
100141. https://doi.org/10.1016/j.xinn.2021.100141.

Xiao W, Rank GH. The yeast ILV2 gene is under general amino
acid control. Genome 1988;30:984–6. https://doi.org/10.1139/
g88-156.

Yoshida R, Tamura T, Takaoka C et al. Metabolomics-based systematic
prediction of yeast lifespan and its application for semi-rational
screening of ageing-related mutants. Aging Cell 2010;9:616–25.
https://doi.org/10.1111/j.1474-9726.2010.00590.x.

Zhang Y, Tino P, Leonardis A et al. A survey on neural network inter-
pretability. IEEE Trans Emerg Top Comput Intell 2021;5:726–42.
https://doi.org/10.1109/TETCI.2021.3100641.

Zhou J, Cui G, Hu S et al. Graph neural networks: a review of methods
and applications. AI Open 2020;1:57–81. https://doi.org/10.1016/j.
aiopen.2021.01.001.

Interpreting protein abundance in Saccharomyces cerevisiae 11

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae050/7589924 by C
halm

ers Tekniska H
ogskola user on 08 M

arch 2024

https://doi.org/10.1074/mcp.M111.009217
https://doi.org/10.1093/gigascience/giz137
https://doi.org/10.1073/pnas.2102344118
https://doi.org/10.1073/pnas.2102344118
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1098/rsob.180241
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1139/g88-156
https://doi.org/10.1139/g88-156
https://doi.org/10.1111/j.1474-9726.2010.00590.x
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	5 Conclusion
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


