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A B S T R A C T   

Urban public space is often provided for freight delivery operations in the form of on-street (un)loading zones 
(LZ). Since public space is scarce and demanded by several users, city authorities have the challenge of managing 
LZ by gaining knowledge about freight curbside needs and utilization. Although technological solutions and 
enforcement practices have become popular among policymakers to capture curbside dynamics, there is still an 
open and promising research field for designing analytical frameworks that shape LZ decision-making processes. 
This fact has motivated the authors to define the concept of Smart Loading Zones (SLZ) as the involvement of 
technology and data analytics in the planning and management of LZ in a responsive and user-oriented way. 
Besides proposing a conceptual approach for the study of SLZ, this paper implements data analytics tools for 
enhancing decisions on LZ network design, using the City of Vic (Spain) as a case study. The machine learning 
techniques k-means++, DBSCAN, and integer linear programming prescribed the LZ number, location and ser
vice assignment based on establishments’ coordinates, walking distances and freight demand. Results from the 
case study showed how an optimized number, location, and size of LZ improved occupation levels, i.e., from 18 
% to 80 %, while freeing up curbside space for other users. Service coverage was also improved by allocating LZ 
to establishments within walking distances no greater than 75 m. Further development of methods and tools for 
SLZ at tactical and operational decisions are recommended for future studies.   

Introduction 

Demand for goods in urban areas has intensified amid trends such as 
cities’ densification, consumption growth, digitalisation, and e-com
merce. Consequences derived from the increased demand for freight 
transport coupled with a slow response in corresponding infrastructure 
provision, i.e., a supply–demand infrastructure mismatch, have led to 
externalities hampering urban sustainability (Xiao et al., 2021). 
Although more awareness of the need to include freight activities in city 
development plans is evident in mobility and urban planning research, 
practice, and policy, planning for urban freight operations remains in its 
infancy (Rodrigue, 2020). 

Cities worldwide have adopted various initiatives to mitigate the 
adverse effects of freight transport through infrastructure-, vehicle-, 
regulation-, land use- and logistics-related strategies (Russo and Comi, 
2010; Holguín-Veras et al., 2020). These Urban Freight Transport (UFT) 
initiatives aim at satisfying goods movement demand at the lowest 

economic, social and environmental cost (Ogden, 1992). Gonzalez-Feliu 
and Sánchez-Díaz (2019) classified research approaches supporting UFT 
initiatives based on their geographical scope, impact and handled issues 
into macroscopic (i.e., long-term, infrastructure mega-projects, regional 
and metropolitan range), mesoscopic (i.e., medium-term, traffic regu
lation, inner-city lanes) and microscopic levels (i.e., short-term, right-of- 
way allocation decisions, street level). 

Curbside space allocation for freight operations has been found to be 
one of the most effective tools for reducing the negative impacts of last- 
mile deliveries in urban areas (Boussier et al., 2011; Comi et al., 2022), i. 
e., an infrastructure-related initiative at the microscopic level. Likewise, 
Manzano Dos Santos and Sanchez-Díaz (2016) identified parking as the 
primary obstacle to efficient UFT from the carriers’ perspective. 
Providing curbside space for freight deliveries is becoming critical, 
majorly because freight vehicles typically try to park as close as possible 
to the delivery location. Freight vehicles spend 40–80 % of their oper
ational time parked due to loading and unloading (L/U) operations 
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(Sanchez-Diaz et al., 2020). When the curbside space is occupied or 
missing for freight deliveries, operators often drive around to find 
available space, i.e., cruising, and if they cannot find it, they either 
continue cruising or double-park while they deliver (Dalla Chiara and 
Goodchild, 2020). Frequent illegal parking, congestion impacts due to 
cruising for parking, inefficient curbside controls and, lack of empirical 
data on infrastructure service levels, are some of the issues that have 
pushed cities’ need for curbside management solutions targeting ob
jectives of efficient and sustainable UFT (Muñuzuri et al., 2019; Santos 
Junior and Oliveira, 2020). 

Curbside infrastructure for freight takes the form of (un)loading 
zones (LZ), defined by transport departments as on-street reserved areas 
for L/U heavy or bulky goods (Regal-Ludowieg et al., 2022). According 
to Holguín-Veras et al. (2020), 17 out of 56 surveyed cities had imple
mented LZ as part of their mobility plans, which were widely acclaimed 
by practitioners, freight companies, and society as an effective solution 
to urban mobility issues. However, the implementation of these initia
tives has faced challenges due to the lack of knowledge and tools 
required to achieve a balance between the supply and demand of LZs, 
which is crucial for effective freight curbside management. This lack of 
knowledge explains inefficiencies in the provision and management of 
LZ with the corresponding negative impacts on city sustainability 
(Nourinejad and Roorda, 2017; Iwan et al., 2018; Castrellon and 
Sanchez-Diaz, 2022). 

Intending to provide city authorities with tools and insights to solve 
these issues, research has concluded that parking fines and enforcement 
are not enough to spur efficient use of the curbside and to mitigate 
negative impacts on traffic from freight deliveries, e.g., cruising, and 
double-parking (Jaller et al., 2013; Figliozzi and Tipagornwong, 2017). 
Although researchers agree that public policies should be more proac
tive in assessing curbside demand/supply based on data-driven de
cisions, several works identified the lack of data and the high cost of 
acquiring them (Gatta and Marcucci, 2016). This leads to unclear LZ 
authorization and management processes that rely on perceptions or 
biased requests more than on ex-ante assessments about the number, 
size, or LZ location, coupled with ex-post analyses about the use, service 
levels, performance, or adequacy of spaces (Muñuzuri et al., 2019). 

One of the opportunities to overcome this challenge is to frame LZ 
management – here defined as the process of designing, implementing, 
operating, and monitoring LZ – within the Smart City concept, to engage 
public and private actors in the implementation of digital technologies 
that enhance the interactions among them during freight delivery op
erations (Cronemberger and Gil-Garcia, 2019). To do so, this paper 
proposes the concept of Smart Loading Zones (SLZ) as stop delimitated 
areas, where freight loading and unloading operations take place, equipped 
with technology that provides real-time information for vehicle detection, 
parking space monitoring, and parking assignment, where data coming from 
connected infrastructure and mobile devices are used by public authorities, 
space owners/managers and private companies to make informed decisions 
that enhance operational efficiency and urban liveability. 

Developing SLZ represents a promising practice in curbside decision- 
making processes to meet sustainable development goals while 
improving freight transport efficiency (Castrellon and Sanchez-Diaz, 
2022). However, evidence is needed to understand to what extent SLZ 
implementation contributes to closing curbside management gaps 
related to i) insufficient knowledge about curbside demand and service 
levels, ii) weak enforcement conducing to LZ misuses, iii) the lack of 
differentiation in regulations to freight operations and to other curbside 
users, and iv) the so-called big-no data paradox, i.e., limited data 
analytical tools to process vast amounts of data collected from installed 
curbside technologies (Ionita et al., 2018; Comi et al., 2018; Gonzalez- 
Feliu, 2019; Allen and Piecyk, 2022). 

Therefore, this paper aims to propose a conceptual approach to study 
and develop SLZ and to assess how data analytics tools contribute to 
enhancing decisions regarding SLZ network design, i.e., gaps i) and iv). 
The paper also illustrates the benefits of digitalisation in providing data 

to inform decisions in freight curbside management. 
To achieve this aim, the authors explored the current literature on 

LZ. A data analytics approach to SLZ management is presented, focusing 
on decisions related to parking infrastructure network design, i.e., the 
number, service assignment, and size of LZ. Empirical data came from a 
case study, i.e., the City of Vic (Spain), consisting of more than 100 K 
freight curbside operations from more than 340 establishments located 
in the city centre. These operations were tracked by the mobility office 
via the parking management system provided by Parkunload®, a tech- 
based company that uses the Internet of Things (IoT) to control park
ing conditions on the curbside. The paper shows the results from the 
data analytics models and presents their discussion in terms of practical 
and theoretical implications. Finally, conclusions and future research 
directions are suggested. 

Conceptual framework of LZ management studies 

LZ management has recently emerged in the academic literature 
within the urban freight management concept (Olsson et al., 2019). In 
(Alho et al., 2014), the authors proposed that LZ studies should address 
tools for deciding on LZ location, size, number of parking stalls and 
enforcement. Santos Junior and Oliveira (2020) classified problems 
related to LZ based on approaches for addressing data collection, num
ber, and location of LZ, parking type, booking and control system, sizing 
of LZ, operation of LZ, and how to reduce double parking. Galindo-Muro, 
et al. (2020) split the LZ research into two areas: methods for the design 
and operation of LZ and, the study of LZ impacts on mobility, conges
tion, and parking practices. Although there is not a generally accepted 
framework for the study of LZ, these several approaches have opened the 
discussion about aspects that range from the strategic decision levels, i. 
e., long-term actions that imply policies and high investments, to the 
operational ones, i.e., day-to-day actions, from both the public and 
private perspectives. In this paper, the authors propose grouping LZ 
research approaches by decision levels in terms of temporal implications 
i.e., strategic, tactical, and operational, for the involved stakeholders, i. 
e., public, and private sectors, as explained in Fig. 1. 

The strategic level includes LZ network design, i.e., the definition of 
the LZ quantity, location, and number of parking stalls. It also includes 
technological assessments regarding stationary devices for LZ manage
ment, i.e., sensors, cameras, parking meters or other fixed devices. From 
the private sector perspective, the strategic level refers to allocating 
transport resources based on freight demand, access regulations, and LZ 
availability at the specific city zone. 

The tactical level refers to decisions about duration limits, pricing, LZ 
dimensions and mobile technology that should be implemented by 
different LZ users. The private sector defines fleet allocation in terms of 
the type of vehicles, size, and technology that best suit traffic policies 
and customer requirements. 

At the operational level, public sector defines enforcement schemes, 
information-sharing initiatives among users, operations impact evalua
tion on traffic, environment, land use and logistics efficiency. Private 
sector makes decisions about routing under parking stalls availability 
and freight demand constraints. 

Strategic, tactical, and operational decisions drive actions within the 
scope of: i) LZ infrastructure, ii) curbside regulations, iii) information 
and communication technologies (ICT) implementation and, iv) private 
sector operations based on urban conditions (infrastructure + regula
tions) provided to move and deliver goods. 

Table 1 summarizes the state of the art in LZ management, grouping 
research contributions by decision level, scope, and type of decision. 
Each decision is motivated by relevant questions that organizations from 
the public and private sectors commonly ask themselves to satisfy their 
specific objectives. In general, recent contributions suggest research 
opportunities towards improved modelling developments in curbside 
demand estimation based on automated data collection and their ana
lytics (Tamayo et al., 2018), coupled with novel tools for dynamic 
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schemes of curbside allocation regulations according to time, type of 
user, weather, type of commodity, city zone, etc. (Jaller et al., 2021). 

A comprehensive view of all the decision levels and interventions can 
provide a holistic perspective aiming at fostering shared benefits of 
efficient use of the public infrastructure to the involved stakeholders. 
Adding the “smart” component to this view of the LZ management im
plies the definition of data sources, data collection processes, their an
alytics, and finally, user-oriented data-driven decisions. The scope of 
this paper is diving deep into data analytics for strategic decisions, i.e., 
LZ network design. The following sub-section reviews previous research 

contributions in LZ management at the strategic level. 

Literature review on LZ network design 

LZ network design, i.e., defining the number and location of LZ, is a 
strategic decision aiming at both satisfying users’ demands and 
enhancing the proper use of the scarce curbside space (Comi et al., 
2017). This review on data-driven methods for LZ network design 
identified contributions that inform decisions on LZ number definition, 
LZ service assignment and ICT for LZ monitoring. 

Fig. 1. Decision levels in LZ management.  

Table 1 
Summarized list of references addressing LZ management decisions.  

Decision Level Scope Type of Decision Relevant questions Contributions 

Strategic 
decisions 

Infrastructure Number of LZ, 
service assignment 

What is the demand for LZs at different locations?Where 
and how many LZs should be allocated?How many 
parking stalls should be provided? 

(Aiura and Taniguchi, 2005; Dezi et al., 2010; Jaller, 
et al., 2013; Gardrat and Serouge, 2016; Muñuzuri et al., 
2017; Roca-Riu et al., 2017; Alho et al., 2018; Prata et al., 
2018; Dey et al., 2018; Letnik et al., 2018, 2019; Tamayo 
et al., 2018; Pinto et al., 2019; Letnik et al., 2020; Ochoa- 
Olán et al., 2021; Comi et al., 2022) 

Regulations LZ authorization 
process 

How do public agencies plan the allocation of LZs in the 
city? What are the relevant criteria? 

ICT Stationary 
technology for LZ 

What is the most suitable LZ technology for meeting the 
city’s sustainability-related objectives? 

Private 
Operation 

Resource allocation 
for urban deliveries 

What transportation means should be allocated for urban 
deliveries based on the LZ network? 

Tactical 
decisions 

Infrastructure LZ Dimensions What is the size of LZ parking stalls? (Boussier et al., 2011; McLeod and Cherrett, 2011; 
Cherrett et al., 2012; Patier et al., 2014; Velázquez- 
Martínez et al., 2016; Comi et al., 2017; Figliozzi and 
Tipagornwong, 2017; Cao and Menendez, 2018; Iwan 
et al., 2018; Yang et al., 2019; Low et al., 2020; Mor et al., 
2020; Pinto and Lagorio, 2020; Sayarshad et al., 2020; 
Regal-Ludowieg et al., 2022; Castrellon et al., 2022) 

Regulations Duration and 
pricing conditions 

What length of space should be provided to LZs? 
How to design space and time regulations by vehicle size 
and technology? What is the typical duration of an 
operation in each LZ? What is the distribution of 
operations’ durations for each LZ? 

ICT Mobile technology 
for LZ 

What is the most suitable mobile technology for 
involving actors in the efficient use of LZs? 

Private 
Operation 

Type of vehicle for 
urban deliveries 

What is the most cost-efficient split of vehicle 
technologies to comply with emissions and traffic 
restrictions? 

Operational 
decisions 

Infrastructure Public space 
management 

Which LZs are underutilised and which are fully used at 
times? What is the demand (i.e. number of vehicles and 
parking durations) for LZs per time of day? What is the 
likelihood that a parking stall is available at each LZ at 
different times of the day? 

(Alho et al., 2014; Comi et al., 2018; Delaître and 
Routhier, 2010; Ezquerro et al., 2020; Galindo-Muro 
et al., 2020; Gatta and Marcucci, 2016; Letnik et al., 2020; 
Lopez et al., 2019; Muñuzuri et al., 2019; Nourinejad and 
Roorda, 2017; Santos Junior and Oliveira, 2020; Zhang 
and Thompson, 2019; Jaller et al., 2021; Dalla Chiara 
et al., 2022) 

Regulations Enforcement 
mechanisms 

Which LZs have the highest number of violations? 
What are the most common types of violations, types of 
vehicles and parking durations? What are the features of 
the most common violators? How can the routing of 
wardens be allocated and designed? 

ICT Users’ interactions 
with LZ ICT 

How can a data-sharing scheme be designed to foster the 
efficient use of LZs? 

Private 
Operation 

Routing planning What is the best route based on LZ availability during the 
day? How many customers should be served per vehicle 
stop?  
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Regarding the LZ number definition, several studies have taken this 
number as a system input given by public authorities or road network 
designs (Aiura and Taniguchi, 2005). Others follow design guidelines or 
quantitative models that support the definition of this number based on 
freight operations’ needs and curbside capacity (CERTU, 2009). 
Underestimating this number could provoke double parking and in
crements in total driving distances (Letnik et al., 2020), but over
estimating it could lead to extra costs and negative effects on cities’ 
sustainability (Malik et al., 2017). 

One common approach to estimate the number of areas needed to 
cover freight parking demand is by approximating the ratio D/C. De
mand (D) is calculated as the sum of the total establishment’s product of 
deliveries frequency in a week by delivery time, and capacity (C) is the 
number of time bins by week, e.g., 90 in (Muñuzuri et al., 2017) or 80 in 
(Alho et al., 2018). This method does not consider that the relationship 
between the number of deliveries and the number of stops per route is 
not linear which may lead to an inaccurate consideration of distances 
between each establishment and LZ (Pinto et al., 2019). 

Overcoming this drawback has motivated the development of 
discrete optimization problems that define the number and size of LZ 
using deterministic parameters of distance and service time but without 
considering the multiple establishments that a single vehicle can serve 
per stop (Dezi et al., 2010; Pinto, Lagorio and Golini, 2019). Comi et al. 
(2022) proposed a two-step procedure for estimating LZ number using 
queueing theory and discrete-event simulation, contributing to the 
modelling of the dynamic and stochastic behaviour of urban freight 
operations. 

The coverage radius of each LZ is one of the constraints for these 
types of models to represent the maximum walking distance between LZ 
and establishments. It is assumed as 50 m in (Dezi et al., 2010; Alho and 
de Abreu e Silva, 2015; Tamayo et al., 2018; Muñuzuri et al., 2019), 100 
m in (McLeod and Cherrett, 2011), and up to 200 m in (Ochoa-Olán 
et al., 2021). Shorter distances contribute to cargo accessibility and are 
convenient for drivers/porters. In (Santos Junior and Oliveira, 2020), 
the authors found that a maximum distance of 75 m provides a good 
level of cargo accessibility service. 

Once defined the LZ number, LZ network design requires micro- 
location assessments and establishments allocation to LZ, i.e., LZ ser
vice assignment. Contributions to modelling LZ service assignment differ 
in data collection processes, parameters estimation, modelling structure, 
and solving algorithms. Freight curbside demand estimations are the 
most common input for these models. Traffic surveys and sample sur
veys are traditional approaches to collecting data (Dezi et al., 2010; 
Muñuzuri et al., 2017; Ochoa-Olán et al., 2021) and support the 
implementation of Freight Trip Generation (FTG) models (Sánchez-Díaz, 
2017). FTG models estimate weekly deliveries using as predictors the 
number of employees, the total retail area, and the establishments’ in
dustrial sector (Gardrat and Serouge, 2016; Alho et al., 2018). The static 
nature of the collected data, mismatches between stated data in surveys 
versus real behaviours, aggregation/generalization errors, and the un
clear relationship between establishments’ freight demand and parking 
demand, are all pitfalls that remain unsolved in the literature 
(Ochoa-Olán et al., 2021; Comi et al., 2022). 

Besides freight generation, delivery durations are also needed to 
estimate freight curbside demand. Durations have been a given 
parameter (Dezi et al., 2010; Letnik et al., 2018), a random value based 
on observed data (Alho et al., 2018; Pinto et al., 2019), or a dependent 
variable on factors such as the vehicle type, stop type, the number of 
stops in the round, the density of the zone and type of activity delivered 
(Gardrat and Serouge, 2016; Castrellon et al., 2022). 

Regarding modelling structure, several optimization procedures 
have supported decisions on LZ service assignment: warehouse location- 
routing problem (Aiura and Taniguchi, 2005); maximized capacity 
coverage (Alho et al., 2018); MinDist-MiniMax approaches (Muñuzuri 
et al., 2017; Prata et al., 2018); quadratic allocation problem (Tamayo 
et al., 2018); capacitated maximum covering location; discrete-event 

simulation (Pinto et al., 2019); and fuzzy k-means clustering analysis 
(Letnik et al., 2018). 

In terms of technology, several initiatives in Europe have been 
implemented to improve LZ management (Letnik et al., 2018). Conclu
sions from these implementations suggest further research in testing 
dynamic LZ management based on remote technology tools for reser
vation, use, monitoring and control. Also, some cities in the US have 
moved on to the installation of stationary technology as in-ground 
sensors, time-lapse photography, and parking meters (Dey et al., 2018; 
Dalla Chiara et al., 2022). Evidence showed challenges related to 
installation and maintenance costs, battery life, sensor communication, 
manual procedures for data download and analysis, limited space for the 
technology installation, and accuracy. 

This paper sheds light on the need for LZ strategic decisions sup
ported by analytical techniques that capture dynamic parking behaviour 
through technological implementations. SLZ take advantage of the 
possibility of big data gathering to overcome the drawbacks of demand 
estimation. New technologies help incorporate parameters such as 
walking distances taken from GIS tools, establishments locations, 
measured durations from the whole population of operations, and 
greenfield analyses for asymmetric urban morphologies. 

Data analytics approach for SLZ network design 

This paper proposes a three-step procedure for the SLZ network 
design shown in Fig. 2. The first step consists of defining the number of 
LZ for the study area, followed by the optimal service assignment opti
mization of LZ based on establishments’ locations, access to the curb
side, and freight demand (second step). Finally, the third step 
corresponds to the evaluation of stationary technology that will capture 
data needed for LZ monitoring. In this section, greenfield analysis and 
integer optimization methods are proposed for steps 1 and 2 respec
tively, of the proposed procedure for SLZ network design. 

Step 1 – Definition of the number of LZ: Greenfield analysis 

Greenfield analysis is a traditional tool in facility location problems 
where a continuous and unrestricted space is explored for deciding 
infrastructure location. A spatial clustering analysis serves as the first 
approximation for gravity centres identification, i.e., centroids, and thus 
the number of LZ that provide service coverage to the establishment 
from a study area. The data needs, models, and outputs for the greenfield 
analysis implementation are shown in Table 2. 

The k-means clustering algorithm is one of the most popular unsu
pervised machine learning models to make N data partitions or clusters 
Ci such that N = {C1,C2,⋯,CN}. In the context of LZ greenfield analysis, 
the algorithm clusters each point from the data set X = {x1, x2,⋯, xM}, 
where xj represents each establishment location, to the closest centroid 
(gravity centre) calculated. The most widely used clustering criterion is 
the sum of the squared Euclidean distances between each data point xj 

and the centroid ni (cluster centre) of the subset Ci which contains xj. 
K-means algorithm has had performance improvements such as k- 

means++ with a randomized seeding technique for centroids initiali
zation (Arthur and Vassilvitskii, 2006). The authors proposed a modified 
k-means++ algorithm to consider actual walking distances and to assign 
more weight to establishments with higher freight curbside demand. 
Given that urban form determines paths and walking distances, this 
change in the algorithm was needed to avoid underestimations of 
Euclidean or Manhattan distance assumptions for connecting two loca
tions in a city zone with irregular morphologies, i.e., impossible to link 
by either a straight line or orthogonal trajectories. Also, adding more 
weight to establishments with higher freight demand makes the algo
rithm locate clusters’ centroids, i.e., potential LZ location, closer to 
freight-intense establishments. The proposed algorithm is as follows: 

J.P. Castrellon et al.                                                                                                                                                                                                                            



Transportation Research Interdisciplinary Perspectives 24 (2024) 101034

5

1. Select a centroid n1 at random from the data set x.  
2. Use Equation (1) to calculate the weighted squared walking (WSW) 

distance from each other establishment in the dataset to n1, and 
randomly choose the second centroid n2 from X according to the 
observed distances. The higher the WSW distance between xj and n1, 
the higher the chance to pick xj as centroid n2. 

WSWj∈M = τj‖xj − ni‖
2 (1) 

Where: 
WSWj∈M = Weighted squared walking distance from establishment j 

to centroid ni. 
τj = Freight parking demand from establishment j. 
xj = Location of establishment j. 
ni = Location of centroid i. 
‖xj − ni‖ = Walking distance using GIS. 
Estimation of τj depends on data availability. Some studies assume 

FTG calculations or survey data (Ochoa-Olán et al., 2021). Since LZ app- 
based management tools commonly record data on vehicle arrivals λ and 
durations μ, the Equation (2) uses these inputs for estimating parking 
demand per establishment j based on Little’s Law from queueing theory 

(Little, 1961). θ is the acceptable curbside service level that public au
thorities may expect (Kalahasthi et al., 2022). 

τj =
λμ
θ

(2) 

Data availability may allow calculations of λ and μ by commodity 
type, zone of the city, time of the day, day of the week, etc. Since the 
model requires demand estimations aggregated by LZ, using data at 
establishments level will require assumptions about the number of es
tablishments served per vehicle stop. Deterministic factors have 
assumed 1.5 deliveries/stop (Letnik et al., 2018) or 3 deliveries/stop 
(Jaller, Holguín-Veras and Hodge, 2013). The definition of this factor 
can vary depending on establishments area or establishments density in 
a specified city area. In this paper, parking demand per hour from each 
establishment was computed according to the following expression 
based on Equation (2): 

τjt =
λktμc

θ
WAk

j (3) 

In Equation (3), λkt represents the arrival rate calculated with 
parking data from LZ k at time t. μc corresponds to the specific parking 
duration computed for the economic category c that the establishment j 
belongs to. θ keeps the interpretation from Equation (2) and in this 
paper it assumes a value of 85 %. WAk

j denotes the weighted factor for 
the area proportion that establishment j represents among all the ones 
that belong to the same cluster k.  

3. Repeat the same procedure with subsequent centroids, but instead 
randomly choose those according to the WSW distance to the closest 
of the centroids already selected 

The algorithm iterates by decreasing ϕ such that, 

ϕ =
∑

x∈X
minn∈NWSWj∈M (4) 

K-means++ hyperparameter is the number of clusters N, i.e., number 
of LZ. Since this information may not be known beforehand, a modified 
elbow method analysis is proposed to evaluate model outputs based on a 

Fig. 2. SLZ network design flowchart.  

Table 2 
Greenfield analysis workflow.  

Input Data Model Output 

Establishments’ 
location 

Machine Learning 
clustering models – 
performance comparisons 
are needed to identify the 
best algorithm (e.g., k- 
means, DBSCAN) based on 
the urban form 

Number of potential LZ 

Establishments 
economic activity 

Walking distance 
between 
establishments 

Approximate location of 
the LZ 

Spatial information 
from the study area 
(maps, roads…) 

Vehicles’ arrival rates Establishments allocation 
to potential LZ 
represented by cluster’s 
centroids. 

Parking durations  
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‘covering principle’ i.e., the longest distance an operator is willing to 
walk from the LZ (Pinto, Lagorio and Golini, 2019). The algorithm it
erates on different values of N until finding the output that satisfies the 
maximum walking distance dmax constraint. After several iterations 
varying the number of clusters, the ‘covering principle’ analysis will 
allow identifying the number of LZ as an input for the service assignment 
model. 

Density-based spatial clustering of applications with noise (DBSCAN) 
is a different clustering algorithm that avoids the definition of the 
number of clusters as a hyperparameter as in k-means++. This method 
picks one random point xi from the data set X, and it attempts to build a 
cluster by grouping its ∊− neighbourhoods, i.e., directly reachable points 
from xi. The hyperparameter ∊ is the maximum distance between a pair 
of points to be considered from the same cluster. The following is the 
DBSCAN algorithm proposed in (Ester et al., 1996):  

1. Select an establishment xi at random from the data set X.  
2. Calculate the distance coverage from establishment xi and reach all 

the possible neighbours in a maximum distance ∊. For LZ greenfield 
analysis, this distance follows the calculation defined in Equation 
(1).  

3. If no such establishment is available, xi is labelled as noise. 
4. If some are available, for these establishments, their directly reach

able establishments are added, and so on, until the cluster cannot be 
expanded any further.  

5. Then, it selects another non-visited establishment and performs the 
same steps, until all establishments have been visited.  

6. We then know the clusters and the noisy points. 

In the results section, a performance comparison between k-mean
s++ and DBSCAN is discussed for the specific case study. 

Step 2 – Service assignment model: Integer linear programming 

Greenfield analysis provides the estimated number of LZ needed in a 
city area. A multi-objective optimization model would skip the cluster 
analysis implementation, solving both the number and service assign
ment of LZ to establishments. Nonetheless, decision-makers should have 
known beforehand the possible LZ locations as a model input. In the 
absence of this knowledge, greenfield analysis represents a convenient 
approach to first define rough LZ locations. Although, the preidentified 
clusters’ centroids could have been located at unfeasible locations. 

The optimization model below adjusts greenfield results by deter
mining the best allocation of LZ to establishments based on feasible LZ 
locations, i.e., considering curbside features and infrastructure avail
ability. The data needs, models, and outputs of the service assignment 
model are shown in Table 3. 

The proposed optimization model aims at solving the so-called 
generalized assignment problem (GAP) by examining the minimum 
cost assignment (i.e., minimum public space use) of a certain amount of 
jobs (i.e., freight parking demand) to a certain number of agents (i.e., LZ 
stalls), such that each job is assigned to one agent subject to capacity 
restrictions of the latter (Cattrysse and Van Wassenhove, 1992). Thus, 
the model objective is determining the optimum allocation of LZ stalls to 
establishments that satisfies freight parking demand during the time 

window t, from establishments located around a maximum walking 
distance dmax. 

The objective function in Equation (5) optimizes the demand for 
public space from L/U operations by minimizing the distance dij trav
elled from the LZ i, that belong to the N set of LZ predefined in the 
greenfield analysis, to the establishment j, multiplied by the binary 
variable eijt if an establishment j is served from the LZ i or not, i.e., the 
movement i→j is performed at time t. 

Min
∑

i∈N

∑

j∈M
dij

∑

t∈T
eijt (5) 

subject to 
∑

i∈N
eijt = 1∀j ∈ M, ∀t ∈ T (6)  

∑

i∈N
dijeijt ≤ dmax∀t ∈ T (7)  

∑

j∈M
eijtτjt ≤ Sit∀i ∈ N, ∀t ∈ T (8)  

eijt ∈ {0, 1} ∀i ∈ N, ∀j ∈ M, ∀t ∈ T (9)  

Sit ∈ N∀i ∈ N,∀t ∈ T 

Equation (6) is the single sourcing condition which also ensures that 
parking service needs from each establishment j are always satisfied at 
each time window. In Equation (7), the model restricts walking dis
tance from LZ to establishments dij to a maximum dmax. Equation (8) 
compels the model to satisfy LZ capacity constrain by doing Sit , the 
number of stalls of LZ i, greater than the parking needs τjt for all the 
establishments at time t. τjt is calculated using Equation (3) according to 
establishment cluster features such as area, economic activity, and time 
of the day. Due to data availability in the case study, λi and μi are sto
chastic parameters. Based on Equation (8) shadow prices can be 
analyzed to estimate public space occupation rates. Equation (9) es
tablishes the binary character of the decision variable eijt and the non- 
negative integer character of the stalls number Sit . The number of 
stalls is obtained following expression in Equation (10). 

Sit =
⌈
eijtτjt

⌉
(10)  

Data description from a case study: The City of Vic (spain) 

The City of Vic is a town in Catalonia (Spain) located 69 Km from 
Barcelona with a population of 45,040 and a density of 1,500 in
habitants per Km2. The main economic activities are food industry, 
service industry, agriculture, and construction (Statistical Institute of 
Catalonia, 2021). Fig. 3 shows the location of 348 establishments. The 
parking data for the study was provided by Parkunload®. The company 

Table 3 
Optimum service assignment analysis workflow.  

Input Data Model Output 

LZ number and location 
(from greenfield analysis) 
and list of feasible locations 
close to clusters centroids 

Integer linear 
programming for LZ 
service assignment to 
establishments 

Optimum allocation 
of LZ to 
establishments 

Parking demand Optimum time- 
variant number of 
parking stalls per LZ 

Establishments’ area  

Fig. 3. LZ Location in Vic (Spain).  
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run a pilot test between June 2018 and December 2019 in collaboration 
with the Vic municipality, where the system was implemented in 8 LZ at 
the city centre (Fig. 3). 

LZ are located between 40 m (LZ2 to LZ3) and 200 m (LZ1 and LZ2) 
from each other and have different capacities. LZ3 has the lowest ca
pacity with two stalls, and it is 12 m in length, followed by LZ1 and LZ6 
with four stalls and 20 to 23 m in length, LZ2 has six stalls and 46 m in 
length, and LZ7 has 7 stalls and 43 m in length. LZ4, LZ5 and LZ8 are the 
LZ with the largest capacity, having 8 stalls and between 46 and 49 m in 
length. 

Operations at each LZ were reported using the Parkunload app. Users 
checked-in once they parked at the LZ, providing information about 
vehicle size and technology, economic activity, and driver identifica
tion. A total of 103,967 operations took place from July 2018 until 
December 2019. These records correspond to the whole universe of 
operations in the city centre during the studied period. The number of 
operations per year and average occupation rates computed according to 
Equation (3) are shown in Fig. 4. Since LZ occupation rates did not 
exceed 18 % during the observed time window, an assumption of 
overcapacity makes the analysis of LZ network design pertinent to figure 
out how to make the most of the available public space. 

Drivers also used the app to check-out from the LZ after completing 
L/U operations. The difference between initial and final time gave the 
total parking duration. Probability distributions for arrival rates and 
durations are estimated in (Kalahasthi et al., 2022). Arrival rates fol
lowed a negative binomial distribution with specific λ per LZ and time of 
the day (Table 4). Weibull distribution had the best score in fitting 
parking durations with estimated μ for economic activities and LZ ac
cording to hypotheses tests. Kruskal-Wallis non-parametric test failed to 
reject the null hypothesis about the no significant difference among 
parking durations for LZ 1 – 4 and 6 (test statistic H = 9.2895 and p- 
value = 0.0542). The same test rejected the null hypothesis of no sig
nificant difference among parking durations per economic activity (test 
statistic H = 36.9998p-value < 0.05), i.e., parking durations vary ac
cording to the economic activity as listed in Table 5. 

Establishments’ data correspond to coordinates of 348 points located 
around the main street and main square of the city centre where the LZ 
need to be assessed. Based on OpenStreetMap (OSM) data, manually 
augmented with data read from Google Maps, for each establishment 
there are attributes such as economic activity (category and subcate
gory), total area (m2), and access points on the road. Walking distances 
among establishments, from them to the cluster centroids – used in the 
greenfield analysis –, and from them to the LZ – used in the service 
assignment optimization – were calculated using Google Maps API 4.4.5 
function in Python 3.7.10. 

Data analytics implementation and discussion 

The scope of this case study starts from a greenfield analysis that 
would evaluate the number of LZ and their service coverage along with 
LZ size definitions. By having this approach, the authors contrasted the 
current network design (base case with the current LZ locations and 
sizes) against the proposed network design resulting from the SLZ data 
analytics approach for strategic decisions. 

Greenfield analysis 

Greenfield analysis compared the performance of the DBSCAN and k- 

Fig. 4. (Un)loading operations per LZ in Vic.  

Table 4 
Arrival rates.   

λ(vehicles / hour)  

LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 LZ7 LZ8 

8 h  2.67  3.25  1.91  5.53  6.46  2.77  5.00  4.67 
9 h  2.67  3.62  2.06  6.56  7.96  3.22  5.90  4.96 
10 h  2.21  3.32  1.96  6.17  7.17  2.92  5.12  4.59 
11 h  1.23  1.93  1.24  3.33  3.63  1.71  2.77  2.84 
12 h  0.53  0.72  0.50  1.32  1.35  0.73  1.13  1.21 
13 h  0.60  0.78  0.57  1.28  1.29  0.63  1.19  1.38 
14 h  1.00  1.31  0.92  2.09  2.93  1.19  2.38  2.40 
15 h  1.17  1.43  1.10  3.01  4.40  1.66  3.27  2.74 
16 h  0.84  1.23  0.87  2.82  3.58  1.41  3.03  2.48 
17 h  0.76  0.85  0.50  1.81  2.68  0.87  1.98  1.56 
18 h  0.35  0.28  0.13  0.59  0.93  0.28  0.52  0.38 

Source: Modified from (Kalahasthi et al., 2022). 

Table 5 
Parking durations.       

μ(min)  

μ(min)  Economic Activity Mean Std. Dev 

LZ Mean Std. Dev  Unspecified 22.33 11.58 

LZ 1  18.30  11.68  Install & Maintenance  14.71  10.57 
LZ 2  17.46  11.35  Transport & parcels  22.18  11.54 
LZ 3  17.77  11.68  Construction  19.04  11.58 
LZ 4  17.27  11.22  Local commerce  20.15  11.19 
LZ 5  18.06  11.51  Commercial Agent  14.86  10.40 
LZ 6  18.00  11.64  Food and Markets  16.23  10.66 
LZ 7  17.74  11.58  Automotive  16.00  11.65 
LZ 8  17.80  11.65  NA*  15.77  10.71 

*NA = Not applicable. 
Source: Modified from (Kalahasthi et al., 2022). 
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means++ algorithms from the Scikit-learn library. Comparison metrics 
corresponded to the number of establishments outside the 75 m walking 
distance from the cluster centroids. The walking distance threshold was 
selected as 75 m based on results from (Santos Junior and Oliveira, 
2020). The analysis began with DBSCAN since it does not require a 
predefined number of clusters. Instead, it needs a hyperparameter ε as 
the maximum distance between two establishments to be considered 
within the same cluster. Different ε values from 30 m to 75 m were tested 
to evaluate the best performance based on the ‘coverage principle’ 
metric. 

Results showed that ε = 0.47 was the cutoff point. Diminishing ra
tions in the performance metric are no longer worth with additional 
reduction in ε. With this hyperparameter, the number of clusters was 
five (5) as shown in Table 6. k = 5 was also defined as a hyperparameter 
for the k-means++ algorithm according to ‘coverage principle’ metric. 

Greenfield analysis concluded that five (5) centroids can cover, in a 
walking distance no greater than 75 m, 67.5 % and 83.9 % of the es
tablishments in DBSCAN and k-means++ algorithms, respectively. 
Nonetheless, their location could not be feasible according to city plans 
for LZ, but they provide an estimate on the number of LZ that suit es
tablishments’ needs in terms of distance, i.e., LZ service coverage. 

The main difference between DBSCAN and k-means++ is that the 
former looks for connectivity while the latter search for compactness. In 
other words, DBSCAN (Table 6 a) group establishments based on how 
close they are to each other while k-means++ (Table 6 b) group them 
based on how close they are to the centroid. This latter logic is more 
suitable for the purposes of LZ location since the aim is to minimize the 
distance between LZ (cluster centroid) and establishments. Nonetheless, 
algorithm performance will strongly depend on the urban form. 

Results from the greenfield analysis provided a general grasp of the 

Table 6 
(a) DBSCAN, (b) k-means++.  

(a) DBSCAN ε = 47m 

Cluster #Est. Area avg. Area std. Walking distance metrics 
C1 39 292.69 129.03 mean 62.304 
C2 204 224.80 152.22 std. 48.222 
C3 13 386.23 153.04 25 % 28.000 
C4 48 352.91 185.83 50 % 58.000 
C5 44 424.31 154.22 75 % 79.000 
Total 348   113 establishments above 75 m  

(b) k-means++ k = 5 

Cluster # Est. Area avg. Area std. Walking distance metrics 
C1 40 293.25 127.41 Mean 39.465 
C2 88 240.65 142.65 std. 35.966 
C3 75 247.64 194.34 25 % 8.000 
C4 75 229.02 137.91 50 % 29.500 
C5 70 418.14 164.73 75 % 62.250 
Total 348   56 establishments above 75 m  
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need for establishments’ connectivity and accessibility to LZ. Clustering 
analysis allowed the assessment of LZ service coverage needs based on 
both walking distances and how intense the freight activity was for each 
establishment. According to the results, DBSCAN seems to be more 
suitable for portering operations that imply walking from one estab
lishment to another after parking in a LZ. This fact is evident when 
evaluating the number of establishments per cluster. C2 is the most 
densely populated since it connects 204 establishments located near the 
city’s central square (58.6 % of the total demand). Nonetheless, when 
analyzing distances from the centroid to establishments, the threshold of 
75 m is violated in more than 25 % of the cases. This condition led to the 
decision of choosing k-means++ results as the input for the location- 
allocation optimization. 

Both algorithms grouped bigger establishments assumed to have 
more intense freight activity, into a separate cluster, i.e., C5, which 
corresponds to the furthest zone from the city’s central square. Subse
quent analysis on tactical decisions regarding durations, pricing and LZ 
dimensions should consider this condition to differentiate LZ 
management. 

K-means++ results allow decision-makers to have a first approach to 
strategic decisions related to how many LZ a specific city area needs, 
where they should be located and the estimated demand for public space 
at different locations. Matching clustering results to space availability 
and city plans for LZ is a unique process for every city and even for every 
city area, so conclusions about the best algorithm for greenfield analysis 
could not be generalizable. For the case of Vic centre, k-means++ per
formed well keeping most of the establishments within a 75 m radius 
and the centroids closer to valid LZ locations. 

By matching centroid locations from the k-means++ algorithm with 

the city plan for LZ, i.e., current LZ locations at the case study, the 
following LZ were selected as the input for the location-allocation 
model: LZ1 (C1), LZ4 (C2), LZ5 (C3), LZ6 (C4) and LZ8 (C5). Under 
this selection, around 96 % of the establishments satisfied the walking 
distance constraint from at least one of the LZ. 

Service assignment model 

The extended educational license of Lingo® 18.0.56 run the opti
mization model described for LZ service assignment. A total of 17,450 
variables, 3,540 constraints and the branch-and-bound solution method 
were required for solving this integer linear programming problem. 
Fig. 5 shows the number of stalls allocated after convergence per LZ 
during the day computed using Equation (10). Maximum system ca
pacity at peak hours optimized the base case by almost 80 %. Fig. 5 also 
presents occupation rates during the day at each LZ based on the shadow 
price analysis from capacity constraint in Equation (8). 

The optimized service assignment to establishments had a significant 
impact on occupancy levels, as demonstrated by the results. Average 
occupancy levels increased from 18 % in the current scenario to 80 % in 
the optimized scenario, while also freeing up curbside space for other 
users, as freight operations varied throughout the day. The total number 
of LZs was reduced from eight in the current scenario to five in the 
optimized one. The number of stalls at each LZ needed to satisfy freight 
parking demand was also reduced, e.g., maximum stalls activated 
(current → optimized) in LZ1: 4 → 2, LZ4: 7 → 2, LZ5: 8 → 4, LZ6:4 → 
1and LZ8: 8 → 1. 

The objective function had its minimum value at 13,021 m after 
convergence, meaning the total distance covered from the assigned LZ to 

Fig. 5. Number of stalls per LZ (top) and occupation rates (bottom).  
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establishments. Given the case study conditions regarding the LZ 
infrastructure oversupply, upper limits for the variable Sit did not 
represent a bounding constraint. However, this might not be the case for 
conditions where there is limited infrastructure for freight parking op
erations. In those cases, the sensitivity analysis should consider an 
additional capacity constraint, i.e., Sit ≤ Kit , where Kit is the maximum 
number of stalls at LZ i as used in (Muñuzuri et al., 2017). While 
changing the maximum walking distance limit, i.e., dmax, made the 
objective function sensitive to reach feasible solutions. Although service 
coverage was enhanced by allocating LZs to establishments within 
walking distance of no more than 75 m, this constraint was relaxed up to 
130 m in the sensitivity analysis due to 6 % of the establishments were 
left out of the 75-meter range. Despite this constraint relaxation, the 
upper limit of 130 m is still convenient in last-mile deliveries as reported 
in (Ochoa-Olán et al., 2021). 

The service assignment optimization model provided the tools for 
answering how many stalls should be available during the day at each LZ 
and the establishments allocated to each LZ. Unlike greenfield analysis, 
service coverage is not the only target at this step, but also the efficient 
use of the scarce public space. By dynamic sizing of LZ during the day, 
unoccupied places can be destined for alternative uses, i.e., pedestrian 
space, bikes, or private vehicles parking. Case study results confirmed 
the assumption of LZ overcapacity and provided a clearer idea to 
decision-makers about freight space allocation. The proposed two-step 
method thus expands upon past research (e.g., Comi et al., 2022) by 
considering the stochastic behaviour of parking demand by using big 
data about parking operations and flexible sizes of LZs across time. 

Conclusions 

The paper deployed a data analytics approach for SLZ network 
design, starting with the definition of the SLZ concept itself and the 
scope of the strategic, tactical, and operational decisions. The study 
focused on the strategic decisions for SLZ network design. Through a 
case study, machine learning and optimization methods illustrated the 
use of app-based data to support decisions and the potential policy im
plications of using data analytics for LZ network design. 

When planning LZ infrastructure, public policy agencies face the 
trade-off between land use optimization (urban plans) and service pro
vision (need for efficient operations). The deployed SLZ modelling 
approach allows decision-makers to find equilibrium in their choices 
based on clustering analysis for the need for service provision, and 
service assignment optimization for the adequate scarce public space 
allocation to freight operations. For instance, dynamic urban land use 
for LZ, e.g., per hour, provides a solution to find that system equilibrium. 

The proposed data analytics approach for strategic decisions 
demonstrated the feasibility of designing an SLZ network using app- 
based systems to collect relevant data on parking demand. The SLZ 
features constitute the advantage, compared to traditional collection 
methods, of having measured data from the whole universe of parking 
operations, instead of samples or stated data from freight surveys. SLZ 
also implies software capabilities on GIS and machine learning that 
unlock the possibility of dynamic decisions over time, based on real-time 
data feedback and ongoing validations. 

Research on tactical and operational aspects of LZ management is 
needed to complement strategic decisions. Simulation techniques and 
big data analytics are on the agenda to further research that informs 
these decisions. Also, guidelines for gathering data, technologies 
assessment, data analytics and their practical implications can be the 
focus of future research. 
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