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A B S T R A C T

High-fidelity full-field micro-mechanical modeling of the non-linear path-dependent materials demands a
substantial computational effort. Recent trends in the field incorporates data-driven Artificial Neural Networks
(ANNs) as surrogate models. However, ANNs are inherently data-hungry, functioning as a bottleneck for
the development of high-fidelity data-driven models. This study introduces a novel approach for data
augmentation, expanding an original dataset without additional computational simulations. A Recurrent Neural
Network (RNN) was trained and validated on high-fidelity micro-mechanical simulations of elasto-plastic
short fiber reinforced composites. The obtained results showed a considerable improvement of the network
predictions trained on expanded datasets using the proposed data augmentation approach. The proposed
method for augmentation of scarce data may be used not only for other kind of composites, but also for
other materials and at different length scales, and hence, opening avenues for innovative data-driven models
in materials science and computational mechanics.
1. Introduction

Classical high-fidelity numerical simulations of the elasto-plastic
response of Short Fiber Reinforced Composites (SFRCs) require Finite
Element (FE)- or Fast Fourier Transform (FFT)-analysis, which demands
a substantial computational effort [1]. Since, numerical simulations are
a crucial part to an iterative design process, there is a need for faster,
yet accurate, computational modeling of the non-linear response of
SFRCs [2]. However, data-scarcity of high-fidelity simulations remains
a limiting factor for accurate data-driven models. Therefore, in this
study, we have developed a data augmentation approach for deep-
learning of composites, with the application of a surrogate model for
the elasto-plastic response of SFRCs using high-fidelity data.

SFRCs have promising lightweight applications across various indus-
tries, including aerospace, automotive, marine, and civil engineering
applications [3–5]. These materials possess a high strength and ratios
(compared to unfilled matrices) and can be manufactured quickly and
at low-cost using injection molding, enabling the material to form com-
plex 3D shapes [5]. Specific applications, e.g. inelastic energy absorp-
tion during high impacts [6], require an understanding of the materials
non-linear elasto-plastic response. The macro-mechanical response of
an SFRC is highly dependent on a wide variety of micro-structural
parameters, including morphological and constitutive properties [7–9].
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To quantitatively predict the behavior of SFRCs, micro-mechanical
models, including low-fidelity mean-field models or high-fidelity full-
field models, are used [9]. Full-field models analyzes a Representative
Volume Element (RVE) to obtain a homogenized material response by
volume averaging, using FE [6,8,10] or FFT [1,2]. These models have a
strong predictive capability. However, simulations are computationally
expensive and RVE generation is challenging when it comes to high
fiber aspect ratios and high fiber volume fractions [11–15]. As a
result, despite recent advances in the field, modeling non-linear path-
dependent SFRCs still requires a considerable computational effort.

Recently, there have been developments of data-driven modeling
of composites using ANNs (see e.g. [16–23]). ANNs offer several ad-
vantages over conventional models as they enable fast and efficient
calculations of complex correlations [21,24–26]. To model plasticity,
Mozaffar et al. [16] implemented a Recurrent Neural Network (RNN)
model, and accurately predicted the non-linear path-dependent behav-
ior in a 2D model. One shortcoming of such an RNN is the limited long-
term memory. Instead, Bonatti and Mohr developed a self-consistent
RNN, the response of which did not depend on the path-sampling size,
i.e. it was independent of the number of strain-increment [21]. More-
over, there have been developments in mechanistically informed neural
networks to ensure coherence with the laws of physics [18,22]. Liu
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et al. [22] developed a physics-based neural network model in which
the surrogate model is composed of two ANNs: one which calculates
the yield and the elastic response, and a second ANN for the non-
linear plasticity response. The recent advances of ANN architectures
have solved certain challenges, however, the RNNs rely on a large
training dataset, which is considered a bottleneck for training accurate
RNN-based constitutive models [18,26].

Since a large amount of data remains crucial for future develop-
ments in the field, transfer learning approaches have been proposed to
address this issue. This approach could be employed to adopt a network
trained on one material and to be used for new materials with smaller
additional datasets [27]. Recently, Ghane et al. [28] used transfer
learning to address initialization challenges and sparse data issues for
usage of RNNs for cyclic behavior of elasto-plastic woven composites.
This approach can also be used to develop accurate data-driven models
by initially training an ANN using a large amount of low-fidelity data,
and then apply transfer learning using a small high-fidelity dataset [23,
29]. However, this approach requires multiple datasets for initial pre-
training and subsequent fine-tuning of the networks. Therefore, it may
not be applicable when the sources of data are limited.

In this study, we are proposing a data augmentation approach to
expand an original and small high-fidelity dataset, without a need
for additional simulations. This approach is particularly useful when
multiple sources of data are not available, and expanding the available
data is expensive, time-wise and/or cost-wise. The proposed approach
is to consider the simulations (and/or experimental results) input and
output in multiple configurations i.e. to rotate the available data from
the original coordinate system to multiple coordinate systems. The
proposed approach is applied to micro-mechanical FE/FFT simulated
data of non-linear elasto-plastic response of SFRCs. Using the imple-
mented data augmentation approach, we have successfully developed
an RNN as a surrogate model for non-linear elasto-plastic response
of SFRCs, using only a limited number of original full-field micro-
mechanical simulations. This is a novel approach to drastically increase
a dataset size, which could be significant for future developments of
ANN surrogate models not only for composites but also for other kind
of materials.

The rest of this paper is structured as follows. Section 2 outlines
the development of the high-fidelity original data. This includes RVE
generation of SFRCs with variety of fiber orientation distributions,
randomly evolving strain paths, and the homogenization of the micro-
structure response using FE- or FFT-analysis. Section 3 describes how
the original datset was expanded using the proposed data augmentation
approach. Section 4 provides an in-depth explanation of the RNN set-
up and its architecture. Section 5 presents the results of training an
RNN on various extent of rotated data and discusses the significance
and limitations of the proposed approach. Section 6 finishes this paper
with some final remarks about the conclusions of this study.

2. Original data

This study relies on the original data generated by Cheung and
Mirkhalaf [23], in which SFRCs with a specific elasto-plastic matrix and
elastic fibers, a range of different fiber orientations and fiber volume
fractions were considered. More details about the material model used
for the matrix can be found in Section 1 of the supplementary material.
RVEs with two different phases were generated and spatially discretized
according to the type of analysis used to solve the boundary value
problem (conforming mesh for FE-analysis and voxels for FFT-analysis).
In addition to the material properties, 6D-strain paths were randomly
generated to cover the non-linear path-dependent response. The data
was generated using Digimat-FE, which solves the boundary value
problem for each RVE geometry. In the following subsections, there is
a detailed explanations of each step necessary to produce the original
2

data.
Fig. 1. Orientation of a short fiber (𝒑) in a coordinate system, described by two angles
𝜃 and 𝜙 [30].

2.1. Random orientation tensor generation

The orientation of short rigid fibers within SFRCs is influenced by
the characteristics of the surrounding viscous fluid during the man-
ufacturing process. This orientation has a significant impact on the
mechanical properties of the composite. SFRCs are stronger and stiffer
in the orientation of the short fibers, while more compliant in the
direction of least orientation of fibers [30]. Advani and Tucker [30]
originally described the probability distribution function of fiber orien-
tation, denoted as 𝜓 . This distribution is related to a set of even-ordered
tensors known as orientation tensors. These tensors help quantify the
orientation of fibers within a composite material. Fiber orientation is
described using two angles, 𝜃 and 𝜙, as shown in Fig. 1. The fiber
orientation 𝒑 is given by

𝒑 =
⎡

⎢

⎢

⎣

sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

⎤

⎥

⎥

⎦

. (1)

The probability (𝑃 ) of a fiber direction (𝒑), exisiting between 𝜃1 and
(𝜃1 + 𝑑𝜃) and 𝜙1 and (𝜙1 + 𝑑𝜙) is given by

𝑃 (𝜃1 ≤ 𝜃 ≤ 𝜃1 + 𝑑𝜃, 𝜙1 ≤ 𝜙 ≤ 𝜙1 + 𝑑𝜙) = 𝜓(𝜃1, 𝜙1) sin 𝜃1 𝑑𝜃 𝑑𝜙. (2)

he orientation distribution function 𝜓(𝒑) is periodic repeating with
:

(𝜃, 𝜙) = 𝜓(𝜋 − 𝜃, 𝜙 + 𝜋), (3)

(𝒑) = 𝜓(−𝒑). (4)

he integral over the unit sphere is equal to one:

∫

2𝜋

𝜙=0 ∫

𝜋

𝜃=0
𝜓(𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙 = ∮ 𝜓(𝒑) 𝑑𝒑 = 1, (5)

he components of the second order orientation tensor (a) is given
y:

𝑖𝑗 = ∫𝛺
𝑝𝑖𝑝𝑗𝜓(𝒑)𝑑𝒑. (6)

In this study, we used the method developed by Friemann et al. [19]
o generate random reference orientation tensors. For a 3D orientation
ensor, eigenvalues (the components of a diagonal orientation tensor)
ere sampled as a set of three positive numbers summing up to one.
he eigenvalues of the randomly generated orientation tensors are
hown in Fig. 2. Subsequently, the diagonal orientation tensor were
otated to obtain the final orientation tensor, by applying a random
otation tensor generated with Arvo’s algorithm [31]. An example of a
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Fig. 2. Eigenvalues of the randomly generated diagonal orientation tensors.
Source: Adapted from [23].

Fig. 3. An example figure of randomly generated orientation tensor.

randomly generated orientation tensor is shown in Fig. 3. In the case of
planar reference orientation tensors, one diagonal component was set
to zero. Two numbers were sampled for the 𝑥 and 𝑦 directions, with
their sum equal to one. The tensor was then randomly rotated around
the 𝑧-axis, followed by a 90-degree rotation in the 𝑥, 𝑦, or 𝑧-axis. For the
uni-directional orientation tensor, the first, second, or third component
of the diagonal was randomly selected and set to 1, with all other
components being 0.

2.2. Random strain path generation

Random strain paths were generated following the procedure de-
veloped by Friemann et al. [19], resulting in a random 6D strain
walk. Firstly, the number of drift directions (nDrif t) was randomly
sampled from (1, 2, 5, 10). Then, each component of the 6-dimensional
vector representing the drift direction was sampled individually from
a normal distribution with a mean of 0 and a standard deviation of 1.
Subsequently, the drift directions were normalized to have a magnitude
of 1. This normalized drift direction was then repeated a set number of
times (determined by the number of time steps, set as 100, divided by
nDrif t). The previous steps were iterated for nDrif t times with a new
drift direction until 100 time steps was reached. For each time step, a
perturbation was introduced by sampling a random noise vector from
3

a standard distribution with a mean of 0 and a standard deviation of 1,
these noise vectors were then scaled by a gamma value ranging from
0 to 1. Finally, a cumulative sum was computed by adding both the
drift and noise to obtain the path. The path was then scaled so that the
maximum strain equaled the specified maximum strain, which ranged
from 0.01 to 0.05.

2.3. RVE size determination and FE/FFT-simulations

The RVE size determined by Cheung and Mirkhalaf [23], to include
sufficient microstructural detailed to accurately capture the non-linear
elasto-plastic response. The approach follows the criteria proposed by
Mirkhalaf et al. [32] for determining RVE size, i.e. the coefficient
of variation in deformation behavior should be less than a desired
value; and the average responses should fall within a desirable error
range. RVE sizes were selected based on a statistical analysis, which
optimizes computational time with data accuracy. The approach also
limits the maximum RVE size for 3D fiber orientation distributions to
ensure computational efficiency. Once the RVE size was determined,
FE/FFT-analysis was employed using Digimat-FE.

It should be mentioned that a single fiber length was considered
for the RVE generations. Recently, Mentges et al. [33] showed that
using a Representative fiber length, accurate predictions are obtained
(comparable to simulations considering a fiber length distribution).

2.4. Specific loading test simulations

In addition to the random 6-dimensional loading data, specific load-
ing tests were simulated, too. These were performed to later evaluate
the effectiveness of the trained RNN on standard loading conditions.
These were cyclic loading tests with the strain components going from 0
to 0.035, then to −0.035, and returning to 0. The loading cases included
uniaxial normal stress (𝜎11), uniaxial shear stress (𝜎12), biaxial stress in
two normal directions (𝜎11 + 𝜎22), biaxial stress in normal and shear
(𝜎11 + 𝜎23), and a plane strain (𝜀11 + 𝜀22). Each loading test was applied
to five different RVEs with random orientation tensors. Table 1 provides
the properties of each RVE.

3. Data augmentation approach

Instead of increasing the dataset with conducting more expensive
simulations, this study proposes to augment data using the original
dataset. This approach includes rotation of the 6D input and output
data to multiple confiduratons using randomized rotation tensors. This
is schematically shown in Fig. 4. Using this approach, it is possible to
investigate whether data augmentation of multi-scale micro-mechanical
simulations, is a feasible strategy to increase the dataset size, to en-
hance the RNN prediction capabilities while capturing the non-linear
elasto-plastic response. Therefore, the training dataset, including the
orientation tensor, strain path and stress evolution, was augmented by
using fast random rotations, by implementing the Arvo’s [31] algo-
rithm. Each second order tensor, i.e. the orientation, the strain, and the
stress tensors, can be represented by a 3 × 3 matrix:

𝒂 =
⎡

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13
𝑎22 𝑎23

𝑎33

⎤

⎥

⎥

⎦

, 𝜺 =
⎡

⎢

⎢

⎣

𝜀11 𝜀12 𝜀13
𝜀22 𝜀23

𝜀33

⎤

⎥

⎥

⎦

,𝝈 =
⎡

⎢

⎢

⎣

𝜎11 𝜎12 𝜎13
𝜎22 𝜎23

𝜎33

⎤

⎥

⎥

⎦

. (7)

In the Arvo’s algorithm, the rotation tensor (𝑹) is generated with angle
𝜃 sampled randomly from 0 to 2𝜋. Matrix representation of the rotation
tensor is given by

𝑹 =
⎡

⎢

⎢

cos(𝜃) sin(𝜃) 0
− sin(𝜃) cos(𝜃) 0

⎤

⎥

⎥

, for 𝜃 ∈ [0, 2𝜋]. (8)

⎣ 0 0 1⎦
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Table 1
Orientation tensor components, fiber volume fraction for each of the specific test samples.

Sample 𝑎11 𝑎22 𝑎33 𝑎12 𝑎13 𝑎23 𝑣𝑓
#1 0.0197 0.4926 0.4877 0.0172 −0.0223 0.2963 0.1152
#2 0.5193 0.3062 0.1745 0.0613 −0.1175 −0.1690 0.1320
#3 0.6291 0.2851 0.0858 0.3868 0.0636 0.0443 0.1409
#4 0.7748 0.0946 0.1306 0.0540 0.1060 −0.0576 0.1142
#5 0.4435 0.2642 0.2923 −0.2709 −0.0629 0.0234 0.1314
Fig. 4. An illustration showing the data augmentation approach considering multiple
configurations and their corresponding coordinate systems.
Source: The RVE contour plot is taken from [34].

A unit vector (𝒗) is generated with angle 𝜙 sampled randomly from 0
to 2𝜋 and 𝑧 sampled randomly from 0 to 1:

𝒗 =

⎡

⎢

⎢

⎢

⎣

cos(𝜙)
√

𝑧
sin(𝜙)

√

𝑧
√

1 − 𝑧

⎤

⎥

⎥

⎥

⎦

, for 𝜙 ∈ [0, 2𝜋], and 𝑧 ∈ [0, 1]. (9)

Then, a negatively scaled Householder transformation (−𝑯) is per-
formed:

−𝑯 = 2𝒗𝒗𝑇 − 𝑰 , (10)

where, 𝑰 is the second order identity tensor. A random rotation tensor
(𝑴), is defined by

𝑴 = −𝑯 ⋅𝑹. (11)

The random rotation tensor (𝑴) was applied to the strain, orientation,
and stress tensors:
⎧

⎪

⎨

⎪

⎩

𝒂𝑟
𝝈𝑟
𝜺𝑟

⎫

⎪

⎬

⎪

⎭

= 𝑴 ⋅

⎧

⎪

⎨

⎪

⎩

𝒂
𝝈
𝜺

⎫

⎪

⎬

⎪

⎭

⋅𝑴𝑇 . (12)

Effectively, the coordinate frame of the training data has been ran-
domly rotated in the 3D space, as illustrated in Fig. 5.

3.1. Validation of augmented data

For validation of the data augmentation method, it would be ideal
to conduct a comparison between a rotated data sample and actual
simulations on the corresponding rotated RVE. However, since the RVE
generation is a stochastic process, it is very challenging to generate the
4

exact rotated RVE for validation. We have the possibility to assign the
desired orientation tensor to Digimat-FE, but the actual generated RVE
has a different orientation tensor compared to the reference (assigned)
orientation tensor, except for unidirectional (UD) fiber orientations.
Therefore, two UD RVEs were used to validate the data augmentation
approach. Firstly, a UD RVE with fibers aligned along the 𝑥-axis and
loaded with a random 6D strain path was simulated as a reference.
Then, another UD RVE with a rotated orientation tensor 90-degree
around the 𝑧-axis (i.e. fibers aligned with the y-axis) was generated,
and the strain path was also rotated 90 degrees around the 𝑧-axis before
performing the second simulation. Finally, the macro stress results from
the rotated RVE (second simulation) were rotated back to the reference
coordinate system with a negative 90-degree rotation around the 𝑧-axis
and compared with the macro stress results from the reference RVE
(first simulation). Comparison of the homogenized stress components
is given in Figure 1 of the supplementary material. As expected, the
obtained results are almost the same, except for some very small
differences. The minor differences can be attributed to the fact that
the two RVEs had different realizations i.e. fibers were positioned
differently in the two RVEs. And hence, some statistical differences
between the results are expected. Therefore, it can be said the obtained
results validates the use of the proposed data augmentation method via
rotation of the RVEs and corresponding simulation results to different
configurations.

4. RNN model development

An RNN model architecture was chosen for training and testing,
to evaluate the data augmentation approach. The initial RNN model
implemented in this study was first developed by Friemann et al. [19]
and further developed by Cheung and Mirkhalaf [23].

4.1. Neural network model architecture

The RNN has 13 inputs, comprising of 6 unique orientation tensor
components, a sequence of 6 strain tensor components, and a fiber
volume fraction. The output of the RNN is a sequence of 6 unique
stress tensor components. Thus, ensuring that complex 6-dimensional
stress–strain evolutions could be generated.

The RNN architecture was composed of three Gated Recurrent Unit
(GRU) layers [35], each with 500 hidden states. The GRU updates
for the next time input. In this study, 100 time steps were utilized,
however, the RNN architecture is not limited to any number of time
steps. Following the GRU layers, there exist a dropout layer [36] with
a 50% dropout rate. After that, there is the final layer including 6
neurons (for the 6 output stress components). Fig. 6 illustrates the RNN
architecture.

4.2. Training of the neural network

The original data was divided into a training, validation, and test
datasets including 80%, 15% and 5% of the data, respectively. The
training dataset was limited due to the computational effort required
to produce full-field FE/FFT-simulations. The RNN model was initially
trained on the original dataset of 547 data samples, each including 100
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Fig. 5. A representation of the proposed data augmentation approach using random rotations. The second order orientation, strain, and stress tensors are rotated from one
configuration to another configuration using a rotation tensor relating the corresponding coordinate systems.
Fig. 6. The RNN architecture in which, each GRU unit contains 500 hidden states.
time steps. Each sample was randomly rotated, in the range from 1–
20 times, effectively increasing the dataset by the number of rotations
added.

To effectively train the neural network, the default Matlab loss
function for time-series regression was utilized in this study. This
function incorporates the sequence length (𝑆), the number of outputs
(𝑅), the target (𝑡), and the network prediction (𝑂):

loss = 1
2𝑆

𝑆
∑

𝑅
∑

(𝑡𝑖𝑗 − 𝑂𝑖𝑗 )2. (13)
5

𝑖=1 𝑗=1
The loss function was minimized using ADAM optimizer. Default values
of parameters such as gradient decay factor (𝛽1 = 0.9), squared gradient
decay factor (𝛽2 = 0.999), and the offset (𝜀 = 1𝑒 − 8) were chosen in a
suitable range of neural networks [37]. L2-regularization and gradient
clipping were also incorporated to prevent overfitting and exploding
gradients respectively [38,39].

Optimizing hyperparameters is critical to effectively train the neural
networks. Particularly, this includes maximum epochs, minimum batch
size, initial learning rate, learning rate drop period and factor, and
gradient threshold. These are optimized based on learning rate decay
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Fig. 7. MeRE and MaRE of networks trained on different datasets (original and augmented ones) for random loading test dataset. The bars represent the average MeRE and MaRE
of the von Mises stress by comparing the networks predictions with the FE/FFT simulations. On the horizontal axis, ‘R’ stands for the number of rotations applied to each data
sample in the dataset (R0 represents the original data set).
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Fig. 8. Results of one of the test dataset samples for networks trained with original, 3
augmented, and 20 augmented datasets, showing the von Mises stress calculated from
network prediction compared with the FE/FFT simulations.

in relation to the number of iterations. Bayesian optimization func-
tion [40] in Matlab was incorporated to optimize the hyperparameters,
allowing for up to 65 trials with the objective of minimizing validation
loss. The final optimized parameters were determined by selecting the
iteration with the lowest validation loss from the best trial.

In this study, training hyperparameters were optimized initially
using the original dataset. They were iteratively checked as more
rotations were added to the dataset yet did not add significant improve-
ments to the performance. Therefore, in the range from zero rotations
to 15 rotations, the hyperparameters were kept constant, i.e. identical
to the original data. Finally, they were additionally optimized for 15
and 20 rotations.

5. Results & discussion

The trained RNN was evaluated based on its predictive capabilities
in capturing the non-linear elasto-plastic responses of SFRCs, with
various amount of augmented data. Subsequently, the implementation
of data augmentation via random rotations was evaluated. Following
this, specific loading cases, such as uniaxial, biaxial stress, and plane
strain loading cases, were examined to assess the RNN’s ability to
6

predict non-random stress–strain paths. t
5.1. Evaluation metrics

The trained RNN was evaluated based on how accurate it could
predict the von Mises stress, as given in Eq. (14):

𝜎𝑉 =
√

1
2

[

(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2
]

+ 3(𝜎212 + 𝜎
2
13 + 𝜎

2
23). (14)

From this, the mean relative error (MeRE) and the maximum relative
error (MaRE) were calculated:

MeRE =

√

∑𝑇
𝑡=1(𝜎

𝑉
𝑡 − �̂�𝑉𝑡 )2

max(𝜎𝑉𝑡 )𝑇
, (15)

aRE =
max(𝜎𝑉𝑡 − �̂�𝑉𝑡 )

max(𝜎𝑉𝑡 )
. (16)

he von Mises stress was chosen as a metrics because it allows for an
valuation that incorporates all 6 stress components. Furthermore, the
on Mises stress is physically relevant for determining the material’s
ehavior, providing a meaningful metrics for evaluating the accuracy
f the network predictions.

.2. Testing results for randomly evolving strain paths

The RNN model was initially evaluated for its accuracy in predicting
he stress evolution of the test dataset, i.e. the dataset including 5%
f the original data. A consistent decrease in both MeRE and MaRE
as observed as the number of augmented datasets increased from the
riginal data to 20 times augmented datasets, as illustrated in Fig. 7.
he results show the error values for networks trained with different
atasets (original and augmented ones). The number of random rota-
ions, applied to each simulation, effectively expands the dataset by
hat amount. In each dataset, new random rotations were used. For
nstance, the R2 dataset does not contain the same rotations as R1;
ather, it includes twice as many distinctly different random rotations.
herefore, each dataset comprises unique random rotations specific to

ts corresponding number.
Data augmentation, achieved by adding 20 randomly rotated stress–

train paths, reduced the MeRE by almost 50%, from 0.0659 to 0.03398.
herefore, the RNN effectively predicted complex anisotropic non-

inear elasto-plastic deformations. An example figure of the predicted
andom path in relation to the high-fidelity simulated data, is given in
ig. 8. It can be clearly seen that the augmented datasets are improving

he network predictions.
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Fig. 9. MeRE and MaRE of networks trained on different datasets (original and augmented ones) for specific loading test dataset. The bars represent the average MeRE and MaRE
of the von Mises stress by comparing the networks predictions with the micro-mechanical simulations.
To investigate the sensitivity of the RNN to the randomness of
rotations, we conducted multiple repetitions of the R15 dataset (each
time, different rotations were applied). Each repetition resulted in
slightly different performance metrics, indicating some sensitivity to
the data augmentation process. The original MeRE of 0.0369 deviated
by the value of 0.0021 from the average of the repeated experiments
(0.0390), with a standard deviation of 0.003. This suggests that while
there is a minor impact from the randomness of data augmentation,
the overall performance variation remains relatively small. Table 2
summarizes the MeRE and MaRE values for each repetition, along with
the calculated mean and standard deviation across these repetitions.

Table 2
The values of MeRE and MaRE for multiple repetitions of R15 augmented dataset
(in each repetition, 15 different rotations were applied).

Measure MeRE MaRE

Original 0.0369 0.0755
Repeat 1 0.0346 0.0711
Repeat 2 0.0424 0.0858
Repeat 3 0.0413 0.0844
Repeat 4 0.0380 0.0780
Repeat 5 0.0405 0.0830

Mean 0.0390 0.0796
Standard deviation 0.0030 0.0057

5.3. Specific loading tests results

The trained RNNs were also tested on specific loading cases, par-
ticularly cyclic loading cases of uniaxial stress, biaxial stress and plane
strain. This type of loading is commonly applied to materials to assess
their performance. However, it is fundamentally different compared to
random strain paths, as some stress or strain components are consis-
tently set to zero. The MeRE and MaRE for specific loading tests are
shown in Fig. 9, and the detailed results can be found in Tables 2 and 3
of the supplementary information. Once again, the RNN model exhib-
ited accurate predictive capabilities while using augmented datasets.
The average MeRE for all test samples was drastically decreased by
the data augmentation approach, from 0.20272 to 0.0628. Detailed
results for the specific test data for R0, R3 and R15 networks are
shown in Fig. 10. Improvement can be observed across all loading
conditions. Thus, expanding the dataset resulted in a substantial re-
duction in prediction errors, aligning more closely with high-fidelity
7

FE/FFT-simulated data.
Furthermore, the RNNs stress–strain predictions together with the
original micro-mechanical simulations for a uniaxial stress cyclic load
is given in Fig. 11. The network trained on the original dataset poorly
matches the shape of the cyclic loading curve. However, as more
rotations are added, the predicted output progressively aligns closely
with the simulated data. Similarly, for a biaxial normal stress loading
case (𝜎11 and 𝜎22), a load cycle is analyzed. From the output stress
components, the von Mises stress is calculated and given in Fig. 12.

The obtained results in this study show the effectiveness of the
proposed data augmentation method. It can dramatically reduce the
required computational/experimental cost for developing data-driven
models. For instance, producing 3D models using experimental data
would be challenging since typical testing rigs only allow for spe-
cific loading scenarios [18]. However, fatigue or other mechanical
behaviors of SFRCs are crucial for accurate modeling, yet are typically
unsupported by classical models [4]. Experimental results may be
utilized to discover unknown constitutive laws. For example, surrogate
models trained on experimental data have demonstrated improved
predictions of strain hardening in titanium under uniaxial stress [41].
By implementing test-rig setups, one may produce stress–strain paths
in a limited number of directions. Such a limited dataset could then
be easily expanded using the proposed data augmentation approach.
By allowing a network to train on experimental data, it allows for
modeling of unknown laws and facilitate better predictions of the
material behavior. This could be crucial for advancing the design of
composites and other materials. Thus, this approach to augment data
has valuable potentials for advancements in a wide range of industries.
It should also be mentioned that despite the obtained great results, the
method could potentially be improved by choosing the rotations angles
in a systematic way. In other words, whether or not random rotations
are optimal for this approach remains as an open question and requires
further investigations.
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b

Fig. 10. Specific loading tests results for R0 (left), R3 (middle), and R15 (right) networks. Different loading cases are represented by the color of the bar, and the line on each
ar indicates the corresponding MaRE.
Fig. 11. Stress–strain plot illustrating the results of a uniaxial stress (𝜎11) loading test
on sample 3, for networks trained with original, 3 augmented, and 20 augmented
datasets compared with FE/FFT simulations.
8

Fig. 12. Results of a specific loading test on sample 5 under biaxial stress loading
(𝜎11 + 𝜎22) for networks trained with the original, 3 augmented, and 20 augmented
datasets, showing the von Mises stress calculated from networks predictions compared
to micro-mechanical simulations.
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6. Conclusions

Macroscopic behavior of different composite materials, including
SFRCs, depends on micro-structural parameters. Therefore, establishing
a structure–property relationship requires the use of micro-mechanical
models. By using a computational homogenization method applied to
realistic RVEs, mimicking the actual material micro-structure, highly
accurate predictions are obtained. Nonetheless, difficult RVE genera-
tions and computationally expensive simulations remain as main chal-
lenges. More recently, data-driven methods, using ANNs, have been
proposed as an alternative method to solve these issues. Yet, the
data-hungry nature of ANNs poses a challenge for generation of re-
quired data for training and validation of an ANN model, which limits
advancements of data-driven models.

In this study, we addressed the challenge of limited high-fidelity
data for training ANNs by introducing a novel approach–augmenting
the original dataset through rotations. Using the proposed method, the
original dataset of limited high-fidelity simulations was expanded to
varying extents by using different amounts of random rotations. An
RNN was trained and validated using different datasets (the original
dataset and different augmented datasets) of path-dependent non-linear
elasto-plastic behavior of SFRCs. The results demonstrated that the
proposed data augmentation approach significantly mitigated the data
requirement for deep-learning-enhanced modeling of SFRCs.

We believe that the proposed data augmentation approach is not
exclusive to SFRCs and may be used for not only other composites,
but also other kind of materials such as polymers, metals, ceramics etc.
Also, the data augmentation method could potentially be applied to
lower scale models such as Molecular Dynamics simulations to develop
efficient surrogate models. This can dramatically reduce the required
time and computational resources for dataset developments, and hence,
results in accurate and remarkably efficient data-driven models for
modeling and designing materials.
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