
Thesis for The Degree of Doctor of Philosophy

Enhancing Localization, Selection, and

Processing of Data in Vehicular

Cyber-Physical Systems

Bastian Havers-Zulka

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2024

Enhancing Localization, Selection, and Processing of Data in Vehicu-
lar Cyber-Physical Systems

Bastian Havers-Zulka

© Bastian Havers-Zulka, 2024
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-002-0
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5460.
ISSN 0346-718X

Department of Computer Science and Engineering
Division of Computer and Network Systems
Chalmers University of Technology
SE-412 96 Gothenburg,
Sweden
Phone: +46(0)31 772 1000

Cover image:

A modern vehicle, equipped with an on-board computer that stores and processes

data from a visual sensor, connected to a remote server (vehicle artwork generated

with DALL·E 3).

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

“But need alone is not enough to set power free: there must be
knowledge.”

- Ursula K. Le Guin

i

Enhancing Localization, Selection, and Processing of Data
in Vehicular Cyber-Physical Systems
Bastian Havers-Zulka

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

Connected devices on the edge of the Edge-to-Cloud (E2C) continuum are
producing increasing amounts of data that hold the key to unlocking valuable use
cases among a wide range of applications. In the vehicular domain, connected
vehicles in large fleets (called Vehicular Cyber-Physical Systems or VCPSs)
sense and collect terabytes of data such as time series and video, enabling
everything from predictive maintenance to autonomous drive. For VCPSs the
computing devices located onboard vehicles are not dimensioned to process all
the data produced onboard. Simultaneously, communication to the cloud, where
computing resources are more readily available, relies on bandwidth-limited and
costly carrier-operated cellular connectivity. As transmitting all raw data to the
cloud for analysis incurs increasing costs and processing latencies, and the edge
devices lack the capability to perform all required data analyses, the questions
of where and how to process which data become paramount and form the
foundation of this thesis. The first part of this thesis gives an outline of my work
by introducing relevant background topics, motivating the research questions
and describing the contributions of this thesis. These contributions are then
contained in the five chapters that make up the second part: in Chapter A, I
present the DRIVEN framework consisting of a novel lossy online time-series
compression algorithm with tuneable bounded error for the edge, as part of a
pipeline from edge to cloud that includes online data clustering, and evaluate
the tradeoffs between data savings and reduced analysis accuracy from lossy
compression. In Chapter B, I show how our work on Data Localization helps
in discovering those vehicles in a connected fleet that have data relevant to a
user-defined analysis task quickly and efficiently. Chapter C proposes Ananke,
the first forward provenance framework for Stream Processing, enabling a
route for selecting relevant data inside streaming sources that are ubiquitous in
VCPSs. In Chapter D, I present the Nona framework that solves the problem
of forward provenance for evolving sets of Stream Processing queries and thus
allows data selection for modern analysis flows in which queries are constantly
altered and redeployed. Finally, in Chapter E, I introduce a comprehensive
requirements list for and an implementation of a VCPS learning simulator
that enables the efficient evaluation of distributed data analysis algorithms for
connected vehicular networks. This thesis makes significant steps forward for
utilizing edge resources more efficiently, while also setting the basis for further
development of novel distributed data analysis algorithms in VCPSs.

Keywords: Stream Processing, Edge-to-Cloud Continuum, Distributed Data
Analysis, Provenance, Vehicular Cyber-Physical Systems

iii

Acknowledgments

Thank you,
Vincenzo, for taking me onto this six-year journey, for having my back, engaging
in fruitful discussions on and off-topic, belaying me literally and figuratively,
and an always open door; Marina, for all the guidance and motivation you
provided, and your ability to put things into and see things from the right
perspective; Romaric, for all fruitful collaborations in the office and the climbing
gym; Dimitris and Hannah, for doing fantastic work together and creating
a great atmosphere in the offices; and Philippas, for providing wisdom and
examining my PhD studies.
Thank you,
everyone I’ve had the pleasure to work with at Volvo Cars; Peter Härslätt,
Ashok Koppisetty, Max Petersson, Ivana Hrvoj, Hampus Grimmemyhr and
Erik Hjerpe for enabling, being a part of, and believing in my research and my
project; and Asli, Herman, Robin, and Koen, and all my former and present
team members.
Thank you,
all the people and friends I’ve met at Chalmers; Christos, Fazeleh, Georgia,
Thomas, Kalle (also for interesting discussions), K̊are, Martin, Oliver, and
Valentin, for mastering our PhDs together, in and outside the office; and
Ahmed, Aljoscha, Amir, Aras, Babis, Carlo, Elad, Erik, Francisco, Huaifeng,
Ivan, Jacob, Jingyu, Joris, Kim, Magnus, Mohamed, Nasser, Olaf, Philippas,
Tomas, Vinh, Wania, and many more.
Thank you,
dear parents and dear sisters, for supporting me throughout my life, for helping
me get to where I am now, and for always believing that I will not throw
in the towel before reaching the finish line; and dear friends in Gothenburg,
including Anshuman, Alina, Birte, David, Érika, and Steffi, for helping me
keep my spirits high; and to all my friends in Germany, including Paul and
Lea, who helped make Sweden feel closer.
And, most of all, thank you,
Linn, my wife and friend, for your unwavering love and support in my life;
without you, I would not even have started this thesis; and Minna, the most
fantastic daughter one could ever wish to have, for filling every day with joy.

v

vi

Funding Sources: I wish to acknowledge financial support by VINNOVA,
the Swedish Government Agency for Innovation Systems, projs. “Onboard-
/Offboard Distributed Data Analytics (OODIDA)” (DNR 2016-04260) and
“Automotive Stream Processing and Distributed Analytics (AutoSPADA) /
OODIDA Phase 2” (DNR 2019-05884) in the funding program FFI: Strategic
Vehicle Research and Innovation.

Research Papers and
Contributions

Appended Research Papers

This thesis is based on the following research papers (the capital index letter
refers to the corresponding chapter of this thesis):

[A] Havers, B., Duvignau, R., Najdataei, H., Gulisano, V., Papatri-
antafilou, M., and Koppisetty, A.C., “DRIVEN: A Framework for
Efficient Data Retrieval and Clustering in Vehicular Networks”, Future
Generation Computer Systems. Vol. 107, p. 1-17 (2020).

[B] Duvignau, R., Havers, B., Gulisano, V., and Papatriantafilou, M.,
“Time- and Computation-Efficient Data Localization at Vehicular Net-
works’ Edge”, IEEE Access. Vol. 9, p. 137714-137732 (2021).

[C] Palyvos-Giannas, D., Havers, B.∗, Papatriantafilou, M., and Gulisano,
V., “Ananke: A Streaming Framework for Live Forward Provenance”,
Proceedings of the VLDB Endowment. Vol. 14 (3), p. 391-403 (2020).

[D] Havers, B., Papatriantafilou, M., and Gulisano, V., “Nona: A Frame-
work for Elastic Stream Provenance”, under submission (2024).

[E] Havers, B., Papatriantafilou, M., Koppisetty, A.C., and Gulisano, V.,
“Proposing a Framework for Evaluating Learning Strategies in Vehicular
CPSs”, Proceedings of the 23rd International Middleware Conference
Industrial Track, Part of Middleware 2022, p. 22-28 (2022).

∗The first two authors contributed equally to this publication.

vii

Other Research Papers

The following research papers, while published during my PhD studies, are not
appended to this thesis due to contents that overlap with those of appended
publications or that are complimentary to the thesis.

Havers, B., Duvignau, R., Najdataei H., Gulisano, V., Koppisetty,
A.C., and Papatriantafilou, M., “DRIVEN: A Framework for Efficient
Data Retrieval and Clustering in Vehicular Networks”, Proceedings of
the 35th IEEE International Conference on Data Engineering (ICDE),
p. 1850-1861 (2019).

Duvignau, R., Havers, B., Gulisano, V., and Papatriantafilou, M.,
“Querying Large Vehicular Networks: How to Balance On-Board Work-
load and Queries Response Time?”, Proceedings of the IEEE Intelligent
Transportation Systems Conference (ITSC) 2019, p. 2604-2611 (2019).

Gulisano, V., Palyvos-Giannas, D., Havers, B., and Papatriantafilou,
M., “The Role of Event-Time Order in Data Streaming Analysis”,
Proceedings of the 14th ACM International Conference on Distributed
and Event-based Systems, p. 214-217 (2020).

Havers-Zulka, B., “Distributed and Communication-Efficient Contin-
uous Data Processing in Vehicular Cyber-Physical Systems”, Licentiate
Thesis (2020).

viii

Personal Contributions

I contributed to Chapter A, Chapter D and Chapter E as lead designer and
main implementer throughout, with the exception of the clustering algorithm
Lisco adapted and extended in Chapter A, which was developed in collaboration
with all other authors. I prepared and performed the evaluations and was
the chief responsible for writing the manuscripts in these three publications.
In Chapter C, Dimitris Palyvos-Giannas and I shared all roles equally. In
Chapter B, I was the chief responsible for the evaluations and co-responsible in
the design and implementation led by Romaric Duvignau. Romaric Duvignau
and I contributed equally to the writing of that manuscript.

ix

Contents

Abstract iii

Acknowledgements v

Research Papers and Contributions vii

I Thesis Overview 1
1 Introduction . 3

2 Vehicular Cyber-Physical Systems (VCPSs) 6

2.1 Defining Characteristics 6

2.2 Key Challenges for Data Processing 8

3 Background . 11

3.1 Stream Processing . 11

3.2 Time-Series Data Compression 13

3.3 Provenance in Stream Processing 15

3.4 Complementary Data Mining Techniques 17

4 Research Methodology . 20

5 State-Of-The-Art and Research Questions 22

5.1 Lossy Time Series Compression on the Edge 22

5.2 Discovering and Selecting Relevant Data 23

5.3 Evaluating Novel Vehicular Distributed Data Processing
Algorithms . 26

6 Thesis Contributions . 27

6.1 Low-Overhead Tuneable Lossy Time Series Compression
on the Edge . 27

6.2 Data Localization . 28

6.3 Stateful In-Stream Data Selection 30

6.4 Validation of Distributed Data Processing Algorithms
for VCPSs . 32

7 Conclusions . 33

xi

xii

II Main Chapters 35

A - Investigating Tradeoffs from Lossy Time Series Compression
at the Edge 37
A1 Introduction . 40
A2 Preliminaries . 41
A3 System Model and Problem Statement 44
A4 Overview of the DRIVEN framework 46
A5 Evaluation . 53
A6 Related Work . 69
A7 Conclusions . 71

B - Time- and Computation-Efficient Data Localization at the
Edge 73
B1 Introduction . 76
B2 System Model and Problem Statement 78
B3 Data Localization Algorithms 82
B4 Evaluation . 91
B5 Related Work . 107
B6 Conclusions . 108

C - Forward Provenance for Data Selection in Stream Processing111
C1 Introduction . 114
C2 Preliminaries . 116
C3 Definitions and Problem Statement 119
C4 Discerning Alive and Expired Tuples 121
C5 Algorithmic Implementation . 124
C6 Evaluation . 130
C7 Related Work . 140
C8 Conclusions . 141

D - Data Selection via Dynamic Forward Provenance 143
D1 Introduction . 146
D2 Preliminaries . 148
D3 Problem Formalization . 151
D4 Guaranteeing Completeness and the Expiration Promise 155
D5 Algorithmic Implementation . 159
D6 Evaluation . 163
D7 Related Work . 171
D8 Conclusions . 171

E - Evaluating Distributed Analysis Algorithms in VCPSs 173
E1 Introduction . 176
E2 Related Work . 177
E3 Problem Statement and Requirements 178
E4 Architecture Proposal . 181
E5 A Prototype Implementation: Roadrunner 183
E6 Conclusions . 187

CONTENTS xiii

Bibliography 189

Part I

Thesis Overview

1. INTRODUCTION 3

1 Introduction

The speed of light and data
movement energy will limit what
cloud-only solutions can deliver.

- Ada Gavrilovska [140]

A large share of today’s data growth occurs along the Edge-to-Cloud (E2C)
continuum [140] that encompasses networked devices in hierarchies from low-
powered and embedded edge devices up to powerful and scalable cloud servers.
This growth in data produced by sensors and recorded by heterogeneous devices
is rapid: projections suggest exponential growth of the datasphere, with a
doubling of data output roughly every three years [167] - from about one
zettabyte (= one billion terabytes) in 2010 to 200 zettabytes in 2025 [184]. To
illustrate this, the information from 200 zettabytes, printed out to book pages,
suffices to cover the entire surface area of the world, including water, in a stack
of paper about 30 cm high(a). This surge in information led to the the term Big
Data to characterize the vast, constantly growing datasets whose processing
marks some of the greatest computational challenges today.

Big Data is already allowing for groundbreaking insights and developments
across diverse domains, from analyzing stock market shifts [14] to predicting the
wearing down of a car’s brake pads [103], and from training AI assistants [26] to
progresses in autonomous mobility ([68], [206]). Due to its immense potential,
Big Data has been likened to a new economic asset, often referred to as ”the
new oil” or as the equivalent of raw gold [200]. Big Data is invaluable for
offering up unforeseen insights through exposing hidden correlations. The
sheer size of modern data sets plays a pivotal role for the development of
novel Machine Learning tools such as image recognition [115] and recent Large
Language Models [26] that mark the advances of digital automation.

Similar to oil and raw gold, where maximum value is unlocked through
extraction and refining or mining and goldsmithing, Big Data has to be ag-
gregated, moved, and analyzed to eventually lead to insights that help solve
problems. Just as the demand for petroleum products has encouraged the
development of novel machinery that facilitates the various extraction and
processing steps of crude oil, the interest in data products has led to the
development of new processing techniques and paradigms that can cope with
Big Data. However, as Big Data continues to grow in size and velocity, existing
data processing techniques and paradigms must be further refined, and the
demand for innovations continues. The following trends exemplify those issues,
and present further avenues for development:

First, while data growth follows an exponential path, the average mobile
data speed is recently growing only linearly [183]. While new technologies such
as 5G are being introduced and next-generation technologies researched [105], it
requires time and large investments for novel cellular standards to find a wider
adoption. Simultaneously, data is increasingly sensed at the edge of networked

(a)Assuming 300 words per page and a page thickness of 0.1 mm.

4 THESIS OVERVIEW

systems, for example by low-powered sensors in smart factories or measuring
devices distributed throughout modern vehicles. Transmitting this data to
powerful cloud servers for analysis strains the communication infrastructure
and introduces additional latencies into the data processing from sending large
data over networks not dimensioned for this purpose. One approach to avoiding
bottlenecks created from the growing chasm between network bandwidth and
data volumes, especially for data produced towards the far ends of the E2C
continuum where wired network access becomes impossible, is to process data
close to where it is being produced. This is summed up by Ada Gavrilovska’s
quote in the beginning of this section: while computing hardware in the cloud
is powerful and scalable, reliance on the cloud alone increases latencies and
strains the communication infrastructure as data has to be transported from
the edge inwards.

Second, continuing with the processing difficulties faced in the E2C con-
tinuum, in 2020, it was estimated that the amount of data produced already
exceeded the worldwide storage capacity by a factor of ten [184]. While from
2010 to 2020, the data output increased by a factor of thirty, in the same
time span the cost of disk storage went down only by a factor of three [137].
Data growth is already outpacing the decreases in storage cost, and at current
trajectories that gap is poised to widen. As a consequence, one must be aware
that not all raw data can be stored before it is processed, especially given that
a large share of the data is produced on edge devices that are low-powered,
numerous, and thus especially cost-sensitive.

Combining the trends of data growth versus mobile speeds, and storage
availability and costs especially in the edge domain, an additional aspect
emerges: Maybe not all data should be treated equally. While it is generally
not possible to judge which data is important for a certain analysis without
having seen the data, smart and efficient pre-emptive filtering and selection can
ease the stress both on communication networks and storage and processing
facilities. That way, only selected data becomes subjected to costly operations
such as transmission, storage or full in-depth analysis, while less relevant or
possibly redundant data is weeded out early.

The above discussions, while relevant for numerous systems that can be
characterized under the E2C continuum, are especially significant for Vehicular
Cyber-Physical Systems (VCPSs) - Systems of connected vehicles, equipped
with onboard sensors and computing units, that can communicate wirelessly
with the cloud. In this thesis, I will discuss novel techniques that help alleviate
communication and processing bottlenecks by distributing computation in
VCPSs and leveraging Stream Processing, a continuous and iterative processing
paradigm that does not require data to be stored before it is processed. Note
that, while this thesis highlights VCPSs, the presented ideas and techniques
are equally relevant for other systems in the E2C continuum.

Organization This thesis consists of two parts. The first one, beginning
with this Introduction, continues in Section 2 with a more detailed presentation
of VCPSs. Section 3 then overviews preliminaries relevant for approaching
data processing near the edge; Section 4 presents the research methodology I

1. INTRODUCTION 5

applied; Section 5 motivates the research questions that structure and guide
the work; Section 6 overviews and discusses the contributions of this thesis;
and Section 7 concludes with a summary and an outlook.

The second part of this thesis, Part II, contains the detailed thesis contri-
butions in five chapters, as disseminated in the publications resulting from my
PhD studies.

6 THESIS OVERVIEW

2 Vehicular Cyber-Physical Systems (VCPSs)

Due to the large value inherent to the data produced in them, and the special
challenges arising, for example, from the mobility of the system’s actors, VCPSs
are of special interest for this thesis. In the following, I will present their defining
characteristics, before framing the key challenges for data processing in such
systems against the backdrop of VCPSs.

2.1 Defining Characteristics

For decades, cars were equipped only with a small set of analog sensors that
operated independently and presented information directly to the driver. Ex-
amples of these include mechanical vehicle speed or engine temperature gauges.
The sensor output was processed directly by the human in charge: to acceler-
ate or brake depending on the speedometer reading or to let the engine cool
should the temperature gauge indicate overheating. It took until the late 1970s
for the first connected sensors to be installed in cars, together with the first
microcontroller-based control unit in the form of an engine control module to
optimize the combustion process. This module could take autonomous control
decisions based on input from temperature and exhaust flow sensors [70].

The size of a vehicle’s sensor set has only grown in the decades since, from
around 20 in the early 2000s to more than 100 in vehicles today [69]. Looking at
the data amounts created in a modern vehicle, one is facing several gigabytes per
hour [44] - an amount of data that in the 1970s could barely fit storage systems
the size of a vehicle. Already a decade ago, the literature started considering
cars as producers of Automotive Big Data ([21], [106]). With the ongoing
introduction of advanced semi-autonomous driver assistance technologies, the
industry is seeing the addition of even higher-bandwidth sensors such as Radar,
multiple stereo and 3D cameras, and LiDARs (an array of laser-based distance
sensors that create a 3D map of the surroundings) to the already complex
sensor set of vehicles. As an example, a Volvo EX90 will include, in addition to
dozens of traditional lower-bandwidth sensors, eight cameras, five radars, and
a LiDAR sensor generating more than two million data points per second [133].
The data amounts produced by these novel sensors are orders of magnitude
larger than those of tire-pressure sensors and simple GPS beacons [203] used in
traditional vehicles, leading to a drastic increase in data produced per vehicle.

With increasing demands for active safety functionality (such as emergency
breaking or driver monitoring for drowsiness detection) and convenience driver
assist functions (such as highway pilots and parking assistants), cars have also
been equipped with more powerful computing hardware. Modern hardware [145]
can fuse heterogeneous sensor data and execute complex assignments such as
running inference for computer vision models. In spite of this, cars are very
resource-constrained systems: the computing hardware is tailored precisely to
cater to the needs of safety- and general driving-critical functionalities to reduce
costs that are multiplied over entire vehicle fleets. Furthermore, CPU and
GPU power draws can become concerning when competing for range among
battery-electric vehicles.

2. VEHICULAR CYBER-PHYSICAL SYSTEMS (VCPSS) 7

vehicle

central serverdatasensors

on-board

unit

Figure 1: VCPS: A wirelessly connected vehicle fleet. As the detailed view on the
left shows, each vehicle possesses an on-board unit that can process data generated
by the vehicle’s sensors. The on-board units effectively form the edge of the network.
At the central server, analyses over the data from the edge can be coordinated.

Moreover, it is important to note that while Automotive Big Data from
individual cars can be important to provide individualized analysis and func-
tionality, the larger interest is in data from larger fleets that span tens of
thousands of vehicles. This is where Automotive Big Data becomes truly big
and valuable. Some examples of applications include online congestion moni-
toring in smart cities, the development of novel applications such as hazard
warning systems [32] and platooning (vehicles autonomously following each
other close enough to minimize air drag for follower vehicles [13]), diagnostic
applications such as Predictive Maintenance (e.g., [160]), driver interaction
analysis to cater to new driver requirements and preferences ([73], [175]), and
of course the development of Autonomous Driving. Estimated to be worth
some 1.5 Trillion USD by 2030, car data and corresponding applications are
on track to become a main ground of operations for vehicle manufacturers and
fleet owners [138].

As vehicles are increasingly connected to the internet (and, in some capacity,
directly to each other; [44], [162]), an entire fleet of vehicles can be seen as a
single connected system - a VCPS, with cars sensing data and having some
limited computational headroom on an on-board computer able to process and
store sensor data. Via their internet connectivity, cars can communicate to
central servers. These can be seen as an abstraction for rented capabilities
in the cloud, or on-premise servers at vehicle fleet owners. The sensors and
on-board computers are located at the outskirts of the system, physically
separated from the central server, and constitute the edge. Figure 1 shows a
sketch of such a VCPS. As an example application, an analyst in Figure 1 at
the central server could request to transmit LiDAR point cloud data from the
edge to the server for further processing (an example use case from Chapter A),

8 THESIS OVERVIEW

or they could task the vehicles to report whether they have passed a point of
interest in the last day (from Chapter B). In other cases, however, insights may
be needed at the edge itself to, for example, employ Machine Learning models
trained on data from the vehicles on the vehicles themselves (see Chapter E).

2.2 Key Challenges for Data Processing

In the following, I will describe in more detail two of the defining characteristics
of a VCPS, connectivity and processing capabilities, to highlight the resulting
challenges for data processing.

Connectivity Almost every vehicle sold today is equipped with a cellular
antenna to communicate via carrier-operated networks with the cloud [162].
This connection relies on 3G, 4G or 5G wireless technology. As mentioned in
Section 1, even the fastest cellular connectivity available is limited compared
to the amount of data that can be sensed at the edge. An additional factor
limiting the amount of data that can be transmitted is the monetary cost of
using such carrier-operated networks.

It should be noted that further communication technologies for vehicles
exist. Chiefly, these are V2V, used to describe a short-range vehicle-to-vehicle
link, and cellular V2X [100], which incorporates short- and long-range commu-
nication with other vehicles, road-side units, or cellular networks. V2V or V2X
communication can avoid carrier-operated networks and thus offer interesting
possibilities for reducing communication costs. However, the required short
range between vehicles poses challenges, with an accompanying body of litera-
ture (e.g., [144]). According to an industry study [43], V2V and V2X are not
yet widely rolled out(b). Unless otherwise stated, I focus in my work on the
use of a direct cellular link for VCPSs(c).

Processing capabilities To process the data from more than 100 sensors
and perform operations such as emergency braking or lane-keeping, modern
vehicles possess special-purpose on-board computers whose capabilities vary
depending on their specific use case. However, novel semi- and fully autonomous
vehicles (with especially the latter still being in the experimental or concept
phase) require the real-time processing of large amounts of camera, Radar
and LiDAR data and are usually equipped with a central (and possibly re-
dundantly implemented) computing unit comparable to or exceeding modern
consumer hardware (an example is the DRIVE platform by chip manufacturer
NVIDIA [145]). With power draws in the range of 200 to 2000 W [71], these
computing units compete with other components of the vehicle for the total

(b)In the US, for example, the promise of V2V was considered unfulfilled and parts of the
allocated communication spectrum had to be returned [11].
(c)Exact details of the used communication protocols are orthogonal to the techniques

presented in this thesis and abstracted in my work. Thus, the routing of messages through
the network is not covered in detail. Sophisticated routing solutions in V2X networks could
allow the delivery of messages from the cloud to individual vehicles similar to direct cellular
links; likewise, vehicles can talk to other vehicles indirectly using cellular connectivity.

2. VEHICULAR CYBER-PHYSICAL SYSTEMS (VCPSS) 9

available electric power, an effect that is exacerbated in battery-electric vehicles
in which battery capacity further limits the power headroom. Consequentially,
additional and spontaneous analyses deployed on the on-board computer can
only be allowed to have a relatively small impact. This is in contrast to the
central server in a VCPS, which can be situated in the cloud to be easily
scalable, and can be assumed to be dedicated to performing data analysis, both
in terms of computation and storage.

With connectivity bottlenecks and limited, but distributed processing capa-
bility on the one hand, and the large interest in processing Automotive Big
Data on the other, three key questions arise:

Key Questions for Data Processing in VCPSs

1. Where in a VCPS should data be processed?

2. How should data be processed?

3. Which data should be prioritized?

Where in a VCPS should data be processed? Focusing first on the
Where?, we observe the following: While data is sensed at the system’s edge,
where typically for low-powered devices available processing power is limited, the
powerful central server can leverage orders of magnitude more resources. Thus,
it can appear that processing the data from one or several vehicles centrally is
a good solution to the cars’ being resource-constrained in their computational
capabilities. However, as raised in [40], considering the limitations imposed by
the wireless network, transmitting raw data from the vehicles to the central
server quickly becomes infeasible for analyses that require large amounts of
data from many vehicles. In addition to insufficiencies of the network, which
cannot sustain transmitting the required data amounts for analysis of VCPS
data (as also highlighted in [28]), the costs for moving this much data over
carrier-operated networks would be prohibitive. Moreover, with automotive
fleets in the range of 100,000s of vehicles, processing and storing the raw data
from all vehicles can still exceed the central processing and data management
infrastructure [106].

On the other end of the spectrum of distributing the analysis in a VCPS,
all computation is done on the vehicle’s computing units, and the central server
only serves to initiate the data processing. Thereby, costs and bottlenecks
imposed by data transmission can be almost completely avoided. However,
the demanded analysis may exceed the available local computing budget of
an on-board device (as noted in, e.g., [130], [209]), or the analysis may need
to span the data from several vehicles and thus be impossible when done in a
completely siloed fashion. As recognized in [136], efficient approaches to pushing
calculations to the edge of the E2C continuum in a VCPS need to adapt the
respective analysis pipeline in order to utilize the available computational power
in the complete network (central server and edge nodes), while minimizing the
transferred data amounts.

10 THESIS OVERVIEW

How should data be processed? The answer to the question of How? is
strongly coupled to the use case at hand. However, any approach that involves
storing large amounts of data on the vehicle before they are processed on-board
or sent to the cloud inherently creates additional latency for the analysis, and
may require large storage facilities on-board because of the vast data amounts
produced. Transmitting raw data immediately after its generation from the
vehicle to the cloud only to store it there before processing has the same
drawbacks for time-sensitive analysis. Furthermore, while storage appears less
constrained in the cloud, storing the data from large fleets of vehicles can still
prove to be costly.

To forego the shortcomings of a storage-intensive approach, Stream Process-
ing emerges as a strong candidate paradigm for data processing in low-power
and storage-constrained systems. Instead of traditional data processing that
first gathers all data into one place and then performs a global analysis, Stream
Processing assumes that there is no end to the data, and that new data will
continuously be produced. With this assumption, Stream Processing can con-
tinuously analyze data and does not need to wait for some global aggregation
of all data first, reducing the amount of storage needed. While it does allow
analyses that span large amounts of data at once, it also covers those use cases
where results are required continuously and as quick as possible. Additionally,
Stream Processing scales well with the available hardware and thus lends itself
favorably to resource-constrained environments encountered on the edge.

Which data should be prioritized? Performing costly operations (such as
data transmission and extensive analysis) only on data relevant for a use case at
hand can alleviate pressure from the system bottlenecks, freeing up processing
capabilities and bandwidth from the edge to the center. As an example, by
identifying those vehicles in the fleet that have recorded relevant data, it is
possible to instruct only these identified vehicles to transmit their data to the
central server for centralized analysis, or to push such an analysis only to them
(if such an identification can be done quickly and computationally cheaply).

On the level of streams of data from a set of sensors, relevant data can
be identified and marked for further processing, transmission or storage -
effectively selecting data for further use, and allowing to discard or de-prioritize
less relevant pieces of data. In an example adapted from Chapter C, an analyst
may want to select only those video frames from a vehicle’s front camera for
further analysis that show a cyclist stopping in front of the vehicle, and discard
all other frames. This example also shows that such selection in many cases
must be stateful, taking into account not only a single piece of data (a single
frame), but several over time (here, to decide whether the cyclist was stopping
or simply crossing in front of the vehicle).

In the following chapter, I will present techniques and paradigms that are
helpful in approaching these three questions.

3. BACKGROUND 11

3 Background

3.1 Stream Processing

Big Automotive Data is continuous in nature: as vehicles are driven, their
sensors continuously generate data, sensing evolving physical phenomena, be it
outside the car, in the cabin, or inside the engine or battery pack. This type of
data is only somewhat compatible with classical database technologies such as
SQL or noSQL, which are built on the predicate of first-the-data-then-the-query :
data sets are collected, stored, and subsequently queried and processed, which
can incur several drawbacks when faced with continuous data. Storing data
before it is processed leads to inherent latency, as first a complete data set has
to be compiled. Thus, results pertaining to early data may be outdated by the
time the complete data set is compiled and the analysis generated. Also, large
storage capacities are required to (at least temporarily) store the complete data
set. Finally, it may be required, but computationally expensive, to reprocess
large chunks of data in this batch fashion once novel raw data arrives.

data center

Qcar

Qcar

Qcar

Qcenter

v1

v2 vn

Join

WS: 60s
avg_speed:=avg(speed)

avg_speed > 100km/h

area:=getArea(GPS)

WS: 60s
KB: any

Join

WS: 60min
KB: area
fastest:=get_fastest_id()

Sink

tuples

stream

operator

<123s, v1, (57.723, 11.848), 96km/h>

<174s, v1, (57.712, 11.842), 114km/h>
<123s, A>

<174s, B>

<180s, v1, 105km/h>
<240s, v1, 105km/h, A>

AggregateFilterAggregateSource

Map

vehicle's on-
board unit

<timestamp, vehicleID, (latitude, longitude), speed> <timestamp, areaCode>

Figure 2: A Stream Processing query that detects the fastest vehicles
per area (A/B) every hour. The source produces tuples with the schema
⟨timestamp, ID, (lat,lon), speed⟩. The query is distributed; some stages (Qcar) are
deployed on-board vehicles and some (Qcenter) at the central server.

12 THESIS OVERVIEW

The Stream Processing paradigm [180] represents an alternative to classic
database designs: instead of storing data first and deploying queries later to
generate insights, the query is defined first. Subsequent new data is continuously
queried upon entering the processing pipeline, and incremental aggregations
ensure that updated results can be obtained without having to reprocess past
data. To give a more thorough introduction to Stream Processing, the following
paragraphs will detail its key notions.

Streams, Operators and Queries

A Stream Processing query is a set of transformations that act on streams of
data [85], resulting in a Directed Acyclic Graph (DAG) through which the
data streams flow. An example query could be the processing of a stream of
positional reports from a fleet of vehicles to continuously find out which is the
fastest car in the last hour in a certain geographic area, as shown in Figure 2.
Such queries are processed by Stream Processing Engines (SPEs) as Apache
Flink [29] or Storm [10]. Data travels in the streams as tuples, which commonly
are timestamped with regards to the physical time of their creation (the event
time), for example the time a sensor reading has occurred. Each query begins
with one or several sources. For example, these can be a single physical sensor
that continuously reports sensor readings, such as a GPS receiver or a wheel
speed sensor, a group of sensors such as a rotating LiDAR (e.g. a Velodyne
HDL-64E which consists of 64 individual laser distance sensors [155]), or an
interface to an upstream system such as a database or a message broker service.
In Figure 2, the source is a GPS receiver that emits the timestamp, GPS
position, and current speed of the vehicle. The tuples produced by sources are
called source tuples. From the source(s), source tuples flow to operators, the
semantic units that manipulate and create tuples. Operators may have several
input and output streams (in Figure 2, the Join operator has two inputs).
Eventually, tuples end up as sink tuples at sinks, which may be file sinks that
write incoming tuples to storage, or interfaces to other downstream processing
and storage systems.

Operators can be subdivided into two types, stateless and stateful operators.
Stateless operators act on individual tuples and produce one or more output
tuples. Their statelessness means that the operator does not keep a state that
evolves with the tuples, and thus the possible output tuples do not depend on
previously seen tuples. Examples of stateless operators are the Map and Filter
operators, which are also employed in Figure 2 to map from GPS location to
geographic area or to filter out tuples with a too low speed reading. Stateful
operators, on the other hand, process delineated groups of tuples that typically
span finite time periods either relative to the processing time or relative to
the tuples’s event time. These time periods are called windows. Examples of
stateful operators include the Aggregate and Join, also depicted in the figure:
The first Aggregate collects all tuples in a 1-minute window and produces one
output tuple with the average speed of the aggregated tuples, while the Join
matches any pair of tuples from its two input streams within the last minute,
producing an output tuple carrying both the average speed and the mainly

3. BACKGROUND 13

visited location. Using keys of the input tuples, parallel instances of stateful
operators that each ingest only a partition of tuples can be deployed: as an
example, the second Aggregate in the figure produces the ID of the fastest
vehicle of the last minute keyed by (KB) area. While these native operators
are common to most widely used SPEs, many SPEs allow the implementation
of user-defined operators that extend the native operators’s functionality.

Watermarks

It can in general not be assumed that the timestamps of tuples inside a stream
are sorted. For example, tuples may be read from sources that already deliver
the data disordered, or they become disordered inside a query because of
parallel operator instances. To reliably observe the passage of time in spite
of disorder, the concept of watermarks [99] has been adopted by many SPEs
(e.g., [10], [29]), which provides a partial order on streams and thus bounds
disorder. Thereby, watermarks can enable deterministic (and reproducible)
processing.

Applicability in VCPSs

Having evolved for distributed, parallel and elastic online analysis (see, e.g. [29]),
and scaling from low-powered devices (see, e.g., Chapter A) to manycore systems
(Chapter C), the Stream Processing paradigm is favorably employed in E2C
systems [46] such as VCPSs. An example of a Stream Processing application
deployed in a VCPS is shown in Figure 2. This application is distributed
between n vehicles v1, . . . , vn, and a central server. Qcar, the first part of
the query and a subgraph of the application DAG, is deployed in parallel at
each vehicle. The last operator of Qcar produces tuples that are wirelessly
transmitted to the data center, where the second part of the query is deployed,
Qcenter. The DAG of the query is thus purposely split into connected subgraphs,
in this case to exploit computational resources on the vehicles and reduce the
amount of data sent wirelessly by performing aggregate operations already on
the vehicle.

3.2 Time-Series Data Compression

As underlined in Section 2.1, the amount of data generated especially in
VCPSs is growing rapidly, thereby stressing the computing and communication
infrastructure. At the edge, available storage is typically smaller than at central
utilities, and transmission to these may be costly and slow [161]. At central
utilities, while storage capacity is larger, usually the data from a large number
of edge devices has to be stored. As we have seen, one way to reduce raw
data amounts is through filtering, aggregation or prioritization. A widely used
additional approach is the compression of raw sensor data, which can alleviate
the storage bottlenecks occurring at the edge and at central utilities as well as
reduce the cost and duration of data transmission [15], [91].

While the goal of data compression is always to find a smaller represen-
tation of data, different families of techniques rely on different paradigms for

14 THESIS OVERVIEW

data compression, and optimize for different metrics. One such metric is the
faithfulness of the data after undergoing compression and then decompression
(reconstruction). Some techniques exist that achieve compression in a loss-
less fashion, e.g. Delta Compression [181] for integer values or data-agnostic
dictionary compression as used in the DEFLATE algorithm of ZIP [52]. Other
approaches aim at approximating time-series data, for example [33], [61], incur-
ring a loss in precision of the compressed representation. Here, I will focus on
lossy compression of numerical multivariate time-series data.

Piecewise-Linear Approximations (PLAs) of Time-Series Data

Numerical multivariate time-series data is a series of timestamped data points
describing a N + 1-dimensional curve, with time being one of the dimensions.
By pairing each of the N dimensions with time, it can be decomposed into 2N
univariate time series, where every time series has just one variable that depends
on time. As one example, let us regard the point cloud created from a rotating
LiDAR (see [91]). A LiDAR column is a rotating stack of usually 64 laser-based
distance sensors that, after one full rotation, create a three-dimensional map
of the surroundings through the angle and distance of objects that reflect the
laser beams back to the stack. Mapping this to 64 two-dimensional time series,
one obtains one time series per laser.

To compress a univariate time series, one approach is to calculate a piecewise-
linear function that best approximates the original data (see Figure 3 for an
example involving the time series of a single laser from a LiDAR). The set
of all linear segments of the approximation results in a (typically) smaller
encoding than the uncompressed data, although the viability of the method is
subject to the underlying data (some techniques are adaptive and can avoid
producing a larger representation [58]). Being lossy, a PLA of, for example, a
LiDAR point cloud may result in a slightly distorted point cloud due to the
approximation error, once decompressed. That may mean that the physical
objects that appear in the cloud appear as shifted from their true position, but
the required storage space for this point cloud may be drastically reduced by
placing points in the cloud along straight lines where possible [91].

Although differing in their approach and optimized for various metrics
(e.g., fast search [127]), many of the PLA techniques in the literature have
in common that they allow varying the approximation error or maximum

Figure 3: A piecewise-linear
approximation of the dotted grey
time-series (coming from a Li-
DAR) via the orange segments si.
The inset shows the approxima-
tion errors between the original
and linearly approximated data.
Segments are expressed via three
parameters: their length, slope,
and y-intercept (n,m,b).

linear
segments

raw data

errors =(n,m,b)
 =(15,-0.23,5.95)

s1

s1

s2

s3

s4

s4

s5

s6

3. BACKGROUND 15

deviation between the original data and the piecewise-linear representation.
A larger error typically results in longer segments and thus a reduced size of
the encoding. Thus, approximation techniques can typically achieve smaller
representations than lossless compression algorithms such as DEFLATE.

By trading off space and accuracy in the form of approximation errors,
time-series data compression via PLA can be used as a building block in analysis
workflows, allowing larger compression (and thus larger error) for less sensitive
analyses and smaller compression in more critical situations. In the LiDAR
examples, slightly distorting point clouds in the range of centimeters may be
permissible for creating a 3D map of the environment, whereas the precision
requirements for collision detection using a point cloud are much stricter.

Continuous Compression

Besides lossy or lossless compression, other aspects are important for the
applicability of compression, such as whether the compression scheme requires
a single or multiple passes over the data. Several widely used compression
techniques fall into the latter category, and need additional passes, for example,
to normalize a time series [126] before compressing it. This approach can allow
to find optimal representations (with respect to target characteristics such
as size) by improving iteratively. For unbounded and fast-paced streaming
data in resource-constrained environments like VCPSs, multiple passes may be
less suited. To this end, single-pass, continuous compression algorithms that
spend a constant time per ingested data point can offer rapid compression at
small computational footprints. While single-pass algorithms for compression
can not outperform multi-pass alternatives in regards to compressed data
size (as multiple passes allow for continued optimization of the compressed
representation), single-pass lossy compression presents a viable option in VCPSs
by trading off accuracy and computational demands [81].

3.3 Provenance in Stream Processing

Complex data processing can involve numerous transformations of raw input
data in parallel and in pipelines that are increasingly more complex than simple
extract-transform-load (ETL) workflows serving simply to move data from one
system to another. As an example from VCPSs, consider the analysis pipeline
from Figure 2. Here, data is mapped, aggregated over different windows of
times, filtered, joined, and eventually aggregated over many vehicles (and
thus many partial pipelines) to generate the final output. In such pipelines,
with strong dependencies between various pieces of data in various parts of
the pipeline, it becomes more difficult with every additional transformation
to understand how and why a certain (intermediate) output was produced.
The history of intermediate results and transformations, down to the input
data, that eventually leads to the production of an output is also called the
latter’s lineage or provenance. Such provenance can exist at different levels of
granularity, where fine-grained data-level provenance precisely connects pieces
of data that are causally related.

16 THESIS OVERVIEW

There are two main reasons for the interest of analysts in the provenance of
a piece of data [78]: (i) first, complex data pipelines, like all complex software
applications, usually require extensive debugging and search for errors. The
provenance of data can help to discover why a pipeline is not working as
expected, or why it is producing erroneous results, or even why expected results
are missing [154]. Tracing back the relationships between individual data items
to detect where in a pipeline an error originated can be of crucial importance
for fixing, improving, or verifying the correctness of an analysis workflow. (ii)
Second, provenance can be essential in explaining a result in regular operation
of the pipeline. In the example pipeline from Figure 2, where final results
are the ID and geographic area (A/B) of the fastest vehicle in the last hour,
provenance allows analysts to trace back exactly to those initial position and
speed readings from an individual car that eventually led to such a result.
Knowing that exact input data may enable further analysis to, for example,
redefine the geographic areas to balance the speeding reports between areas A
and B. Going further than debugging and explaining, when connecting to the
idea of the prioritization of relevant data from Section 2.2, Which data should
be prioritized?, provenance provides a mechanism for selecting relevant input
data. This can be achieved by shaping a query such that only relevant input
data leads to results, and then delivering this relevant data using provenance.

For short pipelines, or finite input data, provenance can be obtained manu-
ally, for example by rerunning a pipeline for different parameters or by altering
the input and observing changes in the output. However, keeping track of
provenance quickly becomes intractable for complex pipelines and may even
be impossible in Stream Processing applications where the input data cannot
be stored to be replayed. Even more, such procedures can be too slow in
latency-sensitive applications that require provenance as soon as possible to
make critical low-latency decisions, or deliver relevant input data quickly. Thus,
especially for fast-paced Stream Processing applications, the generation of
provenance has to be automated using provenance frameworks.

Fine-Grained Backward Provenance The provenance defined in the
preceding examples usually traces from the outputs to the inputs of a query.
This directionality is captured in the term Backward Provenance [77], [150].
Backward Provenance produces a set of disconnected graphs, where each
graph contains on the one hand the result, and on the other all input tuples
contributing to that result, making it a useful tool for debugging applications
and error-hunting. Backward Provenance for a Stream Processing query can
itself be represented as a stream that regularly produces new elements as soon
as the underlying query produces an output.

An example is shown in Figure 4 for two queries that process a stream
of positional reports of two vehicles (red/mint), with updated reports being
produced every five minutes. The first query, Qa, produces alerts a

i if 2/3 of
reports of the last 15 minutes fall into region R, and Qb produces alerts bj if
the car’s mean speed in that time window is greater than 110km/h. The two
timelines in the figure show output streams of both queries, carrying the alerts
(where the time window leading to the production of the alert is indicated)

3. BACKGROUND 17

and, using fine-grained Backward Provenance, also the input tuples causing
these alerts. As shown in the figure, some input tuples (here, t12, t

2
2, t

3
2 from

vehicle 2) even contribute to several alerts and are part of multiple graphs.

3.4 Complementary Data Mining Techniques

In this subsection, I will highlight two additional data mining or analysis
techniques that are used in the second part of this thesis and that serve as
examples of common techniques for mining data from VCPSs and similar
systems.

3.4.1 Distance-Based Clustering

Clustering of data is an important problem in data analysis. The core idea is
to group data into sets or clusters, where the intra-cluster similarity among
a certain dimension is maximized. A clustering operation thus assigns every
data point in the input set to one of several output sets. Various similarity
metrics exist for generating clusters. Here, I will focus on Euclidean distance
clustering: the Euclidean distance between two points is the shortest distance
between them in the Euclidean space, such as R3, the space of all real numbers.
Various additional parameters can shape the output of a clustering operation,
as shown in the following example:

Considering the input data set {1, 2, 2.5, 6, 9, 9.5, 10} (ordered for ease
of exposition), the clustering using (i) these points’ Euclidean distance, (ii)
demanding a maximum distance maxDist between clustered points of 3, and
(iii) a minimum cluster size of 3, is {1, 2, 2.5} and {6, 9, 9.5, 10}. For maxDist =
2, the output would be {1, 2, 2.5}, {9, 9.5, 10}, while {6} can be classified as
noise (6 has no neighbors at most maxDist = 2 away, and as a single point
does not fulfill the minimum cluster size).

every 5 min, using tuples from last 15 min:

Qa: report car if > 2/3 of reports in

Qb: report car if mean speed > 110km/h

alerts

alerts

mean speed: distance travelled/15min

all tuples processed
until 8:21

RR

10km

Figure 4: Two queries, Qa and Qb, are processing an input stream of positional data
tuples from the cars v1 and v2. For each query, the stream of fine-grained Backward
Provenance is shown as the alerts (outputs) from each query connected to the input
tuples that causes the respective alert.

18 THESIS OVERVIEW

To find an optimal clustering for some parameter choice, it may be required
to perform several passes over the input data to perform all required distance
comparisons for discovering which data points have minimal distance to which
cluster. Such an approach can be slow or infeasible for very large or unbounded
datasets. However, if the data structure of the input data admits some ordering,
it can be possible to skip certain comparisons. Taking the above example, if
the data is delivered in the order {1,2, 2.5,6, 9, 9.5} and a maximum distance
between clustered points of maxDist = 3 is given, data point 2 does not need
to be compared to any point to the right of point 6, as any such point will have
a distance larger than the maxDist (because the data points are delivered in
order). Such order in some dimensions of the input data can even admit a
constant number of comparisons per input point, when it is known that there
is a minimum distance between two consecutive data points (as for example
for a rotating LiDAR, see Chapter A). This finally allows for a processing of
data points in a Stream Processing fashion - in these cases, clustering can be
performed efficiently even on low-powered hardware on very large or unbounded
input datasets.

3.4.2 Federated Machine Learning

In this section, I will give a brief and high-level summary of Federated Machine
Learning (FL).

Machine Learning (ML) nowadays commonly refers to Deep Learning,
in which high-dimensional functions (or ML models) with large numbers of
parameters are fitted to input data to minimize a loss function. The loss
is a measure of the difference between the output of the function, usually a
prediction, and the true value for an input. For example, the input could be the
image of a bird, the prediction could be ”hawk”, while the true value is ”eagle”.
In this example, the loss would be greater than zero, since the prediction is not
accurate. The fitting process is called training, and proceeds by calculating
the sum of the loss over a number of samples from the input data for some
choice of parameters, before then adapting the parameters such that the loss
decreases. This process continues until the loss is satisfactory.

Remarkably, it has been shown (one of the first times in [139]) that the
parameters of instances of the same model, trained on independent data sets
from the same domain, can be averaged over several models to yield a new
model. This model then performs good predictions on not only each of the
independent data sets, but on the whole domain [139]. This circumstance is
subject to several qualifications, such as how similar the independent data
sets are and how long the models have been trained before the parameters
are averaged. However, in the optimal case, a model for a totality of data
generated by averaging over models for subsets of the data is identical to a
model for the totality of data generated by training directly on the complete
data.

This idea finds concrete use in the sub-field of FL, and can lead to large
communication savings. In FL, first, models are trained on subsets of data,
and then an averaged model is created and used to replace all models. Then,

3. BACKGROUND 19

these models are trained again on the respective subsets (in this process,
their parameters diverge again), a new averaged model is generated, and the
replacement occurs again. This process is repeated until the averaged model
has a satisfactory loss value, or a certain number of repetitions have been
reached. Here, it is unnecessary to have access to the actual input data of
the individual models to generate the averaged model, only the parameters of
the individual models are required. As one main benefit, the parameters of a
model typically have a much smaller size than the data used to generate these
parameters - thus, FL can be a technique to reduce the number of data that
needs to be exchanged when creating a model.

As an example for a VCPS, a subset of vehicles could train a model(d)

for some specific use case on data sensed by the vehicle itself, and then
the parameters of the model are uploaded to the cloud, averaged over all
participating vehicles, and sent back to the vehicles where they replace the
local models. Thus, possibly significantly less data is exchanged than when
the raw data is sent by each vehicle to the cloud, where a model is trained
over the totality of data, and then said model is sent back to each vehicle.
Typically, however, the process of averaging models and sending them back
and forth has to be repeated many times, with every such round reducing the
advantage of not having to send raw input data. Even in these cases, FL can
be advantageous, as it conserves the privacy of every vehicle’s driver - only the
parameters of a model trained on their data are sent to the cloud, not the data
itself. This makes it difficult or impossible to draw conclusions on the actual
data used to generate the parameters(e).

(d)Note that the training of ML models is computationally costly, and more computational
headroom is required onboard compared to simply using a pre-trained model to make
predictions. Thus, even modern cars designed to make use of ML models may not be
dimensioned to perform onboard ML training.
(e)With additional effort, contributions from individual models and thus individual users

can be completely obscured [25].

20 THESIS OVERVIEW

4 Research Methodology

For this thesis, I have followed a set of guiding principles for performing research,
where applicable. In this section, I will give a high-level overview of these.

Approach and Formalization

My approach to research began with the identification of data analysis re-
quirements in the E2C continuum with a specific focus on VCPSs, and the
subsequent discovery of a gap in existing research. This involved the search
for and study of relevant related works to substantiate the identification of a
suspected research gap and to identify the required formalisms to reason about
the problem appropriately. To cover various parts of the spectrum of possible
research problems, I regarded different layers of abstraction:

1. Complete system perspective: problems whose scope is a complete
system of connected edge nodes and central server.

2. Sliced system perspective: problems whose scope is a single edge
node connected to the central server.

3. Pure node perspective: problems that focus on the processing inside
a single node (edge or central server).

It should be noted that these are not mutually exclusive perspectives on
problems of distributed data analysis, as, for example, solutions to problems
from the pure node perspective (3) extend also to distributed scenarios (1, 2).

The identified problems were then formalized using either existing for-
malisms, or by introducing novel ones that extend the existing language. In
the case of problems involving Stream Processing, my basic formalisms are
adapted from the work on the Dataflow model [3]. Where possible, I utilized
graphical representations of my ideas to help guide both my research and the
later presentation.

Analytical and Empirical Evaluation

Solutions were proposed through novel algorithms based on a system design ap-
propriate for the problem. The verification of proposed solutions then occurred
first in an abstracted formal manner, followed by an empirical experimental
evaluation based on implementations of algorithms.

The formal proofs relied on the usage of theorems and corresponding
deductions in a mathematical manner that leverages the earlier formalization
of the problem. This step was performed in an iterative fashion, where an
adapted problem solution is followed by a formal investigation.

Having formally verified and investigated a proposed solution, I then created
an implementation from the solution’s algorithm and the suggested system
design. This implementation followed the following standards:

4. RESEARCH METHODOLOGY 21

• Programming language: Stream Processing algorithms were implemented
with Apache Flink [29] due to its large adoption in both research and
industry. Performance-relevant system aspects were written in Java, and
Python was used where the existing software ecosystem required it as
well as for experiment orchestration.

• Goal: the goal of the implementation was to fulfill the algorithmic re-
quirements and be user-friendly enough for thorough evaluation (and
documented enough for reproducibility, see following subsection), while
avoiding the use of additional resources required to bring the implemen-
tation to a production level.

The evaluation experiments required input data for the analysis that was to
be improved by the solution. When choosing such input data, the following
aspects were considered:

• Relevance: Real-world data was used where possible to verify the proposed
solutions in real-world applications. Proprietary data from Volvo Cars
posed the highest standard for relevance of the solution.

• Availability: To interact with the research community and encourage re-
producibility, publicly available data must be included in the evaluations.

Where possible, I thus used both proprietary (to demonstrate the highest levels
of relevance) and publicly available datasets (to enable reproduction and further
research).

Results Dissemination

For all major results of my research, I strove for publication in peer-reviewed
and established conference proceedings and journals, to receive proper feedback
from the review process that could be used to improve my work. I included
publicly available code repositories for both my implementations and my
evaluations where possible. The aim was to design a code repository that is
approachable and enables easy reproduction and verification of all experiments
and corresponding figures in my publications, requiring additional step-by-step
instructions as well as scripts that aide in performing the experiments and
figure plotting.

To bring my results from the level of research to industrialization, I dissem-
inated my results, in addition to academic platforms, at appropriate industry
fora, and initiated and engaged with work on industrial proof-of-concepts based
on my research.

22 THESIS OVERVIEW

5 State-Of-The-Art and Research Questions

After the introduction into techniques and paradigms that are relevant for
this thesis and the presentation of some guiding research methodology, I will
now motivate the research questions at the basis of this work. These emerge
from requirements posed by E2C continua for fashioning data analysis more
efficiently, and from the current state-of-the-art. Noting that distributed,
parallel, and low-latency approaches and algorithms are essential in all cases,
the research questions cover data compression at the edge, Data Localization
and Selection, and the validation of distributed data analysis algorithms in a
VCPS.

5.1 Lossy Time Series Compression on the Edge

Moving less data from the edge to the cloud alleviates pressure on the com-
munication infrastructure and can lead to direct monetary savings if usage of
carrier-operated cellular networks can be reduced (see Section 2.2). A direct
approach for reducing the transferred data volume is to compress the data on
the edge before transferring it. As shown in Section 3.2, a host of techniques
exist that are specialized for compressing time-series data such as that produced
in E2C continua on edge devices. However, given the constraints posed by the
latter in the form of small computational capabilities (see Section 2.2), such
compression must have a low overhead; and faced with fast-paced continuous
data streams, compression that uses only a single pass over the data is advan-
tageous. A compression technique optimized specifically for edge devices is, for
example, presented in [81]. Optimizing compression and resource usage, the
authors opt for lossy PLA compression (see Section 3.2) with a small memory
footprint and instruction count per operation. As lossy PLA produces straight
segments that approximate the raw data points, best-fit-line techniques can
produce arbitrarily large deviations between the line representation and the
raw data. However, in many application such as those that are safety-critical
in VCPSs, a certain precision of the data is crucial. Any deviations from the
raw data introduced by compression will lead to inaccuracies downstream in
the analysis pipeline, and such inaccuracies may render the use of boundlessly
lossy compression impossible. In [81], the author’s technique bounds the maxi-
mum deviation per segment and thus gives some precision guarantees, but an
evaluation of the downstream effect of the overall reduced precision was not
presented.

It thus remains to investigate how the usage of continuous, lossy compression
in a VCPS analysis pipeline with data originating on the edge impacts the
eventual accuracy of the analysis. Even more, the trade-offs between size of
the compressed data and analysis accuracy must be investigated together with
computational overheads to enable analysts to tune compression according to
their respective needs.

Thus, I formulate the first research question:

5. STATE-OF-THE-ART AND RESEARCH QUESTIONS 23

Research Question 1 (RQ 1)

How does continuous lossy time series compression on the edge of a VCPS
Stream Processing pipeline affect accuracy and overheads of the pipeline?

5.2 Discovering and Selecting Relevant Data

As underlined in Section 1 and Section 2.2, not all data sources and not
all data coming from a specific source may be of equal importance. If the
analysis question at hand requires specific types of data, or specific events in
the data, it is possible to separate valuable from invaluable data semantically.
In this context, I use the terms Data Localization and Stateful In-Stream Data
Selection (or simply, Data Selection) for the process of selecting data or data
sources that are of specific interest. Selection of data sources or data itself can
ease downstream pressure on the processing pipeline when heavy analysis is
performed only on selected data, or it may even be a required part of an analysis
pipeline to, for example, anonymize certain pieces of data on the edge before
they are transmitted to a central server. Similar to compression (explored in
Research Question 1 or RQ 1), it can also reduce the amount of data that must
be transmitted and thus ease constraints in network infrastructure and reduce
costs for data transmission.

Data Localization

In many systems in the E2C continuum, the sensor set carried by edge devices
can be assumed to be known. Thus, the types of data expected from each edge
device are known a-priori. With this knowledge, analysis workflows can be
designed to include only those edge devices that have the appropriate sensor
set, be it when the demands are for the edge devices to transmit raw data, or
to perform some analysis already on the edge. However, in many cases, it is
possible to designate even finer characteristics of those data sources or edge
devices suitable for an analysis than just their general type. As an example,
if analysts want to investigate the behavior of vehicles on parking lots in a
VCPS, identifying all those vehicles in the VCPS that have been at parking
lots can be an important first step of the pipeline. Once these vehicles have
been selected, the proper analysis task may then be deployed only to them, or
data be requested only from them, instead of broad centralized data collection
involving also unsuitable data sources. Such unrefined selection can result in
the transmission of data of low value, or excessive data amounts. With data in
VCPS being distributed in a highly skewed fashion, a simple random selection
of vehicles is not guaranteed to provide a subset of vehicles with relevant data
sources [53].

We call the task of selecting edge nodes and relevant data sources Data
Localization: the identification of edge devices that carry data relevant to an
analysis question. The process of Data Localization itself induces overhead
on the edge devices, and as such should be designed as efficiently as possible.
Special consideration must be taken as Data Localization requests for various

24 THESIS OVERVIEW

analyses could be deployed simultaneously over the same edge devices. Simul-
taneously, it is desirable that Data Localization can be performed quickly, so
that any additional latency introduced is minimized.

There is a body of work for general querying for data inside vehicular
networks, usually focusing on vehicle-to-vehicle communication inspired by
peer-to-peer approaches [129], [197] or relying on communication with road-side
units [5], [51]. However, the specific usage of the architecture of the network
in these works, relying, for example, on advantageous positioning of road-
side units, can fail to translate to modern VCPSs that lack V2V and V2X
connectivity. In [53], the authors introduce a continuous querying mechanism
that localizes relevant data in a fleet, but it does not aim at reducing the overall
number of queried vehicles and thus may introduce cumulative overheads on
the fleet that can be further minimized.

With this background, I pose the following second research question:

Research Question 2 (RQ 2)

How can we in a VCPS select relevant data sources while balancing cumulative
computational overhead and duration of the localization procedure?

Stateful In-Stream Data Selection

In systems with constantly evolving data streams, Stream Processing offers
the possibility to filter data via the Filter operator directly (introduced in
Section 3.1). This allows some basic selection of relevant data. However, the
Filter operator is stateless, operating only on a per-data-point basis, and does
not take previous data points into account for selection. Thus, the Filter
operator must be used in combination with other, possibly stateful, operators,
to create the precise selection mechanism required for the analysis at hand.
In that case, however, all data not passing the Filter will be discarded, while
data that does pass the Filter is aggregated and may thus not be in the shape
required for further analysis.

Backward Provenance in Stream Processing, here introduced in Section 3.3
and realized efficiently in [151], can deliver all input data to a Stream Processing
pipeline that causally leads to an output from the pipeline(f). As explained
in Section 3.3, a Stream Processing pipeline can be tailored such that only
relevant input data generates an output. Then, using Backward Provenance,
one can effectively select the relevant input data, even for complex, stateful,
and concurrent queries.

For fine-grained Data Selection, however, Backward Provenance presents
several drawbacks. First, it potentially delivers source data multiple times (if
a piece of source data contributes to multiple outputs; see, e.g., input tuple
t12 in Figure 4 that contributes to results from two queries), and second, it
omits temporal information from the provenance data. As an example, if a

(f)Generally, this holds not only for input data to the pipeline itself but also for intermediate
streams of data inside the pipeline. For ease of exposition, we discuss here only the first case,
but note that the ideas hold for intermediate data as well.

5. STATE-OF-THE-ART AND RESEARCH QUESTIONS 25

piece of input data timestamped 10 :00 contributes to a result at 10 :05 and
is then selected, such selection could be premature if the same piece of input
data contributes to another result at 10 : 10 due to the input data’s lifetime
in the pipeline. Such multiple contributions can, for example, enable a more
complex prioritization among selected data. An example is found in Chapter C,
with a Stream Processing query in which the input data consists of camera
frames from a vehicle. In that example, there are two types of query outputs,
namely alerts on crossing pedestrians or cyclists in front of the vehicle. If now
an input frame contributes to a pedestrian alert first, and then later to a cyclist
alert (e.g., because the cyclist pipeline runs slower), any decision taken before
the second contribution may be premature. Backward Provenance does not
indicate when it is safe to make a decision and thus omits the tuple’s liveness.

In a nutshell, the need for a more potent In-Stream Data Selection mech-
anism in Stream Processing is summarized in the following third research
question:

Research Question 3 (RQ 3)

How can we efficiently and in a stateful fashion select relevant data within a
set of Stream Processing sources in a live and duplicate-free manner?

Cormode, Garofalakis, Haas, et al. have stated that “[I]t has been increas-
ingly realized that extracting knowledge from data is usually an interactive
process, with a user issuing a query, seeing the result, and using the result
to formulate the next query, in an iterative fashion”. Especially against the
background of ever-evolving patterns in data streams and changing analysis
questions, constant adaptation of deployed queries is necessary to gain the
desired insight and to adapt to changes in the data. From these statements it
follows that Stateful In-Stream Data Selection should be provided not only live
and without duplicates, but even for evolving sets of queries. In such evolving
sets, queries can be added and removed at run time of the system without
interrupting the execution. State-of-the-art Backward Provenance [151], while
enabling some features of Data Selection as outlined above, works only for
static sets of queries that are known a-priori and is thus unfit also in the addi-
tional criterion of dynamicity to provide Data Selection for modern analysis
workflows.

It can be expected that additional complications arise from providing
indications of the selected data’s liveness when input data can contribute to
results of queries added during the run time of the system, as such a system has
to constantly adapt to the changing query conditions. At the same time, queries
that analysts want to add have to be admitted as quickly as possible (and,
likewise, if an analyst wants to remove a query), to keep additional latencies
minimal and the system responsive.

From this, I formulate my next research question:

26 THESIS OVERVIEW

Research Question 4 (RQ 4)

Can we enable Stateful In-Stream Data Selection within dynamic sets of
Stream Processing sources for modern analysis workflows?

5.3 Evaluating Novel Vehicular Distributed Data Process-
ing Algorithms

The research questions posed in this work touch both upon more isolated and
sliced views of single or few edge devices connected to central servers as well
as large networks with many edge devices. In the former case, challenges of
evaluating and validating research approaches and frameworks may involve the
simulation of network conditions (Chapter A) and the usage of appropriate
hardware stand-ins for VCPS devices (Chapters C, D) to various extents.
Challenges posed from these experimental settings, however, are compounded
when working with the assumption of many edge devices communicating in
various ways with the central server and possibly each other. Even more, in the
perspective of a larger system such as a VCPS, devices may lose connectivity
because of their mobility, may be turned off and thus leave, or turned on and
join the edge. Such phenomena of intermittent communication and device
turnover or churn can critically impact the behavior of any algorithm designed
to disseminate information or distribute communication in VCPSs. To help
to explore RQ 2 in a more realistic setting, for example, we must assume that
the members of the network change during the execution of a data localization
algorithm.

There exist separate frameworks for simulating wireless communication [31],
[189] and also frameworks that simulate movement of agents in traffic [67], [131],
as well as approaches that combine communication and movement [171], [178].
With access to real-world trajectory data from vehicles, it is, however, possible
to validate VCPS settings using even more realistic assumptions by replaying
actual vehicle data, furthermore, the artificial generation of movement data
can present unnecessary overhead. In addition, using layers of abstraction for
communication instead of a full fine-grained communication simulation can
facilitate the experimentation setup and make it more approachable, enabling
experimentalists and researchers to focus on the distributed algorithm to be
tested.

With these qualifications, I raise my final research question:

Research Question 5 (RQ 5)

How can we validate distributed data processing algorithms for the realm of
VCPSs efficiently?

6. THESIS CONTRIBUTIONS 27

6 Thesis Contributions

Having introduced research questions that guide this work, this section now
outlines the contributions contained in each of the main chapters in addressing
those questions. For a quick overview, the following table provides a mapping
between the research questions and the chapters:

Mapping research questions to chapters

Chapter A Chapter B Chapter C Chapter D Chapter E

Edge
Compression

Data
Localization

In-Stream
Data

Selection

Dynamic
Data

Selection

Distributed
Analysis

Evaluation

RQ 1

RQ 2

RQ 3

RQ 4

RQ 5

6.1 Low-Overhead Tuneable Lossy Time Series Compres-
sion on the Edge

In response to RQ 1, “How does continuous lossy time series compression on
the edge of a VCPS Stream Processing pipeline affect accuracy and overheads
of the pipeline?”, I have in Chapter A designed a complete Stream Processing
pipeline for data originating on a vehicle. This data is sent wirelessly to a
central server. There, it is clustered (see Section 3.4.1) in an online fashion,
enabling use cases such as the generation of 3D environments from LiDAR
data or city maps that track traffic density over time. Online lossy compression
is introduced as a module running on the vehicle that continuously generates a
smaller representation of the data streamed to it before the compressed data is
transmitted. At the central server, the data is received and decompressed in
an online fashion before it is continuously clustered.

The contribution of this work consists of three parts. First is the adapted
online clustering algorithm, which is based on [142], a clustering algorithm
for LiDAR point cloud data that has a constant overhead per data point and
thus enables clustering in an online fashion. In the chapter, this algorithm is
extended to process any type of data in which the data structure exposes the
dimensions that are relevant for clustering(g).

(g)An example: for rotating LiDARs, points that are generated close in time can have a
bounded difference in space, which is then mirrored in the timestamp-sorted data structure
or data stream. When clustering LiDAR data with distance-based clustering, thus the data
structure already partially exposes the distance between points.

28 THESIS OVERVIEW

The second and main contribution is the development of a lossy piece-wise
linear (PLA) online compression algorithm (here implemented in the SPE
Apache Flink [29]) that gives a maximum error bound for each compressed
data point, has an amortized constant overhead per data point, and allows the
independent compression of time and signal channels for time-series data. Using
as input parameters only the maximum length of each compressed segment
and the maximum error bound allowed, a tuneable trade-off between accuracy
and size of the compressed representation is offered. This algorithm is shown
in the chapter’s evaluation section to run with low overheads even on hardware
representative of the computational headroom on modern vehicles.

The final contribution is the extensive evaluation of the effect of maximum
error bound on (i) the faithfulness of compressed to raw data, (ii) the data size,
(iii) the duration of the data transmission for simulated network speeds (where
stronger compression results in smaller data sizes that are faster to transmit,
but take longer to generate because of higher computational overheads), and
(iv) the accuracy of the final clustering analysis. The evaluation shows that for
the presented use cases and raw data types, the maximum error bound can
be tuned such that data size reductions are substantial while accuracy losses
remain small. In the use cases presented, the algorithm achieves data sizes that
are only between 5 and 35% of the raw data size, while the clustering analysis
retains over 90% of its accuracy. For almost-lossless compression (in which the
faithfulness of the compressed data is high), the presented PLA compression
scheme outperforms common DEFLATE compression (used by zip) by factors
of 2 to 10 in data size.

The compression algorithm in this work has been tested in real automotive
environments at Volvo Cars and is, as of this writing, used in production
on-board of test vehicles to compress data before transmitting it, furthermore
validating its applicability in real-life scenarios.

To summarize, the work in Chapter A answers RQ 1 by presenting a
novel online lossy compression algorithm that allows to balance between the
compression size and the analysis accuracy. The downstream effect of this
algorithm is extensively evaluated along a range of use cases, illustrating one
path to ease the latency and network bottlenecks presented by data transmission
from the edge to the cloud.

6.2 Data Localization

RQ 2 asks “How can we in a VCPS select relevant data sources while balancing
cumulative computational overhead and duration of the localization procedure?”.
To answer this question, I have in Chapter B designed a family of algorithms
to efficiently distribute requests for Data Localization in VCPSs. I assume such
VCPSs to consist of vehicles that each store a different and unknown set of
data of varying size and composition, and a central server at which requests for
a minimum number of data sources fulfilling some condition are issued. The
condition is sent out from the central server to a subset of vehicles which check
whether the condition holds on their data and reply with an answer consisting
only of yes or no. Every vehicle answering positively is counted as one localized

6. THESIS CONTRIBUTIONS 29

data source. In this scenario, the role of the algorithm family I introduce is to
find N vehicles on which the condition holds. However, every vehicle contacted
by the central server with a request will spend some unknown amount of work
searching its data (this amount depends on the condition to be checked and
the local data amount).

In this work, I attempt to minimize the cumulative work done by the fleet
resulting from checking query conditions and do not focus on search optimiza-
tions on-board the vehicles. To achieve this minimization, the algorithms
should avoid selecting an excessively large subset of vehicles that are tasked
with checking the condition. Simultaneously, the algorithms should find N
suitable vehicles as quickly as possible. I present four algorithms overall that
position themselves at various points along the axes of time and workload, with
two of them posing as baselines. The first is an eager algorithm that sends the
request to every available vehicle, resulting in maximum load but minimum
overall duration. The second, a lazy algorithm, is proceeding in rounds, asking
a minimum number of vehicles each round and proceeding once the asked
vehicles have responded, with potential further rounds to discover remaining
data sources. This latter algorithm is likely to ask a minimum number of
vehicles, but may take maximum time in the worst case.

The main contribution described in this chapter lies the remaining two
algorithms, the balanced and fair algorithm. These position themselves between
the two baselines and can be parameterized to yield desirable results for both
speed and total workload. These algorithms both proceed in rounds, using
knowledge gained in earlier rounds about the share of vehicles that hold
relevant data as wells as mechanisms to start new rounds prematurely before
all contacted vehicles have responded. In introducing the algorithms, I present
different models of the fleet, ranging from a synchronous, static model in which
communication is instantaneous and all vehicles require equal time for checking
the query condition, to an asynchronous, dynamic model in which the vehicles
dynamically join and leave the fleet, query checking times vary depending
on data and composition on each vehicle, and communication is modelled
with a distribution of varying latencies. To model realistic demands for Data
Localization, I evaluate up to 15 simultaneous Data Localization requests (all
requiring different conditions to be checked) that are deployed concurrently
over the vehicle fleet, with vehicles involved in multiple requests answering
those in a first-in-first-out fashion.

The evaluation, performed on hardware representing available computing
capacity on modern vehicles, using two real-world data sets, shows how the
balanced and fair algorithms can achieve speedups of up to 40 times compared
to the lazy baseline, while consuming only a third of the resources of the eager
baseline. A Data Localization procedure using the algorithms proposed in
Chapter B may thus be used as a first step in an analysis pipeline that removes
the necessity of involving excessive amounts of vehicles in an analysis. Thereby,
the number of irrelevant data transmitted (when the next step in the pipeline is
data transmission) or of work done by the vehicles unnecessarily (when analysis
is to be pushed to the edge) can be significantly reduced.

In the process of localizing vehicles with suitable data, the algorithms

30 THESIS OVERVIEW

dynamically update their knowledge of the data distribution. As I additionally
show in the evaluation of Chapter B, this results in approximations of the data
distribution that are obtained as a by-product of the localization procedure
but can stand by themselves as important insights about data in the fleet.

In summary, Chapter B answers RQ 2 with a family of algorithms that
provide a tuneable knob to analysts for localizing data in a VCPSs while
balancing the cumulative computational overhead and the overall duration of
the procedure.

6.3 Stateful In-Stream Data Selection

To answer RQ 3, “How can we efficiently and in a stateful fashion select
relevant data within a set of Stream Processing sources in a live and duplicate-
free manner?”, I take in Chapter C the idea of Backward Provenance in
Stream Processing (see Section 3.3) as a starting point to develop the notion
of Forward Provenance: Forward Provenance provides a bipartite contribution
graph connecting in a Stream Processing query all inputs with those outputs
they have contributed to. This graph can directly be traversed forwards (from
inputs to outputs), but just as well backwards. It is free from duplicates (unlike
in Backward Provenance, which delivers a sequence of disjointed graphs that
may contain inputs multiple times, should they have contributed to multiple
outputs) and furthermore live, containing special labels on each input and
output that indicate which parts of the graph are still subject to change.
As an example, if an input contributes to a first output, but effects from
said input reverb in the Stream Processing query after the first output is
produced (because the input contributes to intermediate results that are still
in processing), it is possible that further contributions in the form of more
output tuples are created in the future. This contribution window closes once
all intermediate results that the input has contributed to are not in processing
anymore. Forward Provenance recognizes this and provides an upper bound
on when the contributions from an input are actually finalized, taking into
account the lifetime of the contributions of an input across an arbitrary number
of parallel queries that all process the same input stream. Once contributions
from an input are finalized, the neighborhood of said input in the graph will
not change anymore in the future, providing an important guarantee for further
analysis of the contribution graph.

As such, Forward Provenance is suited to not only advance well-discussed
applications of Backward Provenance such as debugging, but provides a tool
for selecting data in Stream Processing pipelines. Tailor-made queries can
ensure that relevant data becomes part of the contribution graph via Forward
Provenance, the absence of duplicates leads to an overall data reduction, and
the live properties of the graph ensure that further processing on selected data
occurs only once the provenance information about that data is final. As an
advanced example application, the results of a Stream Processing query can
serve as annotations for the inputs (that are obtained by traversing the graph
from the input to the results), and by having multiple types of results that
the input can contribute to (from parallel pipelines), Forward Provenance can

6. THESIS CONTRIBUTIONS 31

deliver multiple annotations per input tuple that can become processed once
the input is finalized to evaluate its overall importance.

In Chapter C, after defining and reasoning about Forward Provenance
in Stream Processing, I present a framework called Ananke that is based
in Apache Flink and that provides all aforementioned properties of Forward
Provenance. I prove its correctness, present a custom implementation and one
based solely on out-of-the-box Stream Processing operators, and fully evaluate
the Ananke framework along a range of real-world and benchmark use cases.
The evaluations show that additional overheads from Forward Provenance for
the most efficient implementation range from 0 to 14%, and I furthermore
evaluate Ananke’s performance against database solutions that create the
Forward Provenance graph on-demand, incurring significantly higher latencies.

From Static to Dynamically Evolving Sets of Queries I introduce
Forward Provenance in Chapter C for sets of Stream Processing queries that
are static over the whole run time, meaning that the composition of queries for
which Forward Provenance is provided does not change. Evolving from this,
Chapter D introduces the notion of Forward Provenance for dynamic sets of
queries, where a) there exists no a-priori knowledge of the queries when the
system is started, and b) queries are added and removed from the set of queries
for which Forward Provenance is provided upon user requests. As such, this
work addresses RQ 4, “Can we enable Stateful In-Stream Data Selection within
dynamic sets of Stream Processing sources for modern analysis workflows?”.

I answer this question positively in Chapter D and formalize the require-
ments for Forward Provenance under dynamic query sets. I first demand that
the guarantees provided under static conditions hold in the dynamic scenario.
Then, I describe how queries can be added to and removed from the set of
queries in question at run time while continuously providing liveness information
in the graph. Crucially, I present how this can be done without re-activating
input data that was previously marked as final by re-feeding such input data
to newly added queries. Eventually, I present Nona, the first framework that
provides Forward Provenance in Stream Processing in such dynamic scenarios,
and prove that it delivers on the presented requirements.

I provide an extensive evaluation of Nona, using real-world and benchmark
data on hardware on both ends of the E2C continuum, from single devices over
low-power clusters to a powerful manycore server. The evaluation exemplifies
the architectural overheads necessary for adding and removing queries at run
time to and from a Stream Processing system as well as for providing Forward
Provenance in these cases. While the architectural requirements partially lead
to better performance at larger resource utilization, the added overheads for
providing dynamic Forward Provenance are shown to be minimal. Furthermore,
I show that Nona accommodates the addition and removal of queries within
only a few hundreds of milliseconds, all while continuously providing Forward
Provenance for every deployed query.

With this contribution, I enable the selection of data in Stream Processing
queries for modern workloads, in which queries are added, removed, and re-
deployed in response to changes in requirements and novel discoveries from the

32 THESIS OVERVIEW

data.

6.4 Validation of Distributed Data Processing Algorithms
for VCPSs

RQ 5 asks, “How can we validate distributed data processing algorithms for
the realm of VCPSs efficiently?”. I approach this question in Chapter E,
where I contribute a complete requirements list for any tool that can stand
as an answer to RQ 5. I base this requirements list on concrete experiences
gathered at Volvo Cars, related work, and my own observations from performing
research involving such algorithms (shown e.g. in Chapter A and Chapter B).
The resulting prioritization of characteristics around the modelling of the
vehicle fleet, support for modern data processing frameworks (especially from
the field of Machine Learning), communication simulation, metrics provision
and flexibility demands tools that have hitherto not been presented in the
literature. Outlining a proposal for the architecture of such a tool, I finally
present Roadrunner, a prototype implementation fulfilling the requirements for
validating distributed data processing algorithms in VCPSs efficiently.

Furthermore, to evaluate the possibilities presented by Roadrunner, I con-
tribute a novel distributed Machine Learning algorithm that extends the
assumption of star-shaped topology usual for Federated Learning (see Sec-
tion 3.4.2) with the notion of vehicle-to-vehicle communication. As shown
in the chapter, such an algorithm leads to a more accurate Machine Learn-
ing model with the same communication budget that traditional Federated
Learning requires. The evaluation, leveraging real-world data, showcases Road-
runner’s capabilities by providing fine-grained metrics at every point in the
simulation, where Roadrunner replays GPS traces, coordinates the training of
Machine Learning models on powerful hardware similar to that required on
modern vehicles, simulates the communication between vehicles and a central
server and collects and aggregates metrics.

With tools such as Roadrunner, future focus can be placed on the devel-
opments of such distributed algorithms rather than on the tools required to
evaluate them.

7. CONCLUSIONS 33

7 Conclusions

This thesis proposes and evaluates a host of ideas and techniques for tackling
the challenges of analysing data in VCPSs with their inherent challenges of
imbalanced data generation and distributed computation capabilities. As the
growth in data continues to outpace the growth in mobile bandwidth and
storage, and cost and power concerns cement the computational capability
gradient from edge to cloud, distributed algorithms and Stream Processing are
explored in this work to help in resolving analysis bottlenecks. The resulting
frameworks and algorithms are in many cases agnostic of the specific analysis
at hand, focusing instead on the transmission and selection of data before the
final data mining step occurs, or the matter of how novel distributed algorithms
can be tested in VCPSs.

In the following, I will present conclusions from and future directions for
the four main chapters:

Low-Overhead Tuneable Lossy Time Series Compression on the Edge

Chapter A shows that for many pipelines from edge to cloud, a balance can be
found that significantly reduces the data volumes that need to be transmitted
using novel and low-overhead lossy compression while retaining a high analysis
accuracy. This enables analysts to either gather more data from more vehicles,
leading to improved insights, or to spend less on data transfer and benefit from
the greater speed of the analysis pipeline.

As the PLA representation of raw data can be constructed with small
additional overheads, one avenue for future work is the application of PLA
compression at an even earlier stage inside a VCPS: in fact, each vehicle itself
can be regarded as its own decentralized system, with hundreds of networked
sensors around central processing units. Pushing compression even further to
the edge and thus close to those small sensors could allow for better usage
of the bandwidth inside the vehicle, while still allowing to keep the reduced
data footprint for wireless communication with a data center. This would
require experimentation with even lower-powered hardware than in Chapter A
to investigate whether additional overheads could be sustained by such low-
powered devices. Insights from this work would extend to similar systems such
as modern factories with networks of sensors that continuously monitor the
production process.

Data Localization

The Data Localization algorithms in Chapter B balance between computational
overheads induced on the edge devices and the time needed for the localization
procedure, enabling analysts to discover data both quickly and efficiently, as
the evaluation shows. With such Data Localization as the initial step of any
data gathering or analysis pipeline, the amount of excessive or irrelevant data
and work inside a VCPS can be significantly reduced, freeing up resources for
more workloads deployed in parallel over the fleet, and saving communication

34 THESIS OVERVIEW

costs.
While the proposed algorithms are adaptive, gathering knowledge of the

distribution of data on the edge devices per Data Localization request, they
do not yet take into account correlations between requests. Estimating the
strengths of such correlations can be one avenue for future exploration, essen-
tially re-using knowledge gathered in past requests to optimize the execution of
future ones. Our results are based on static data on the edge devices, but the
inclusion of dynamically evolving data on the edge could make such re-use of
knowledge more challenging, as knowledge of the past may become less relevant
as the data evolves.

Stateful In-Stream Data Selection

Chapters C and D introduce and then extend the notion of Forward Prove-
nance in Stream Processing to enable Stateful In-Stream Data Selection even
for dynamically evolving sets of Stream Processing queries. The presented
frameworks allow analysts to focus on writing stateful queries that create alerts
on relevant data, and then to obtain this relevant data at low overheads in
a format that makes processing it safe (through guarantees on liveness) and
efficient (through the structure of the provided graph).

To provide deeper functionalities of Data Selection, one avenue is to regard
the results of a Stream Processing query, which Forward Provenance connects
with the contributing inputs, as labels on said inputs. Multiple concurrent
queries, producing various types of results, can thus be seen as providing a
variety of labels to the input data, that can be combined once input data is
final to provide a single- or multidimensional scoring for the data. These input
data annotations can be used to prioritize data among several dimensions,
allowing for example to keep the most recent and most relevant data in a buffer
while continuously discarding old and low-priority data. With the capability of
removing and adding queries, the labels given to particular types of inputs can
dynamically change over time to adapt to changing requirements.

Evaluation of Distributed Analysis Algorithms in VCPSs

The novel VCPS simulation and evaluation framework presented in Chapter E
allows researchers to focus on the distributed analysis algorithm at hand.
Thereby, the development of, for example, state-of-the-art distributed ML
algorithms leveraging the structure of the VCPS network is enabled. This, in
turn, can help to further reduce the amount of data communicated in VCPSs
when training ML models, and thus open up more use cases.

Simulating compute-intensive processes such as distributed Machine Learn-
ing, in which many vehicles train Machine Learning models possibly simul-
taneously, could be sped up significantly by extending the simulation tool
to leverage not only single but multiple GPUs, with each one used for exe-
cuting the current work of a single vehicle. Especially for larger and more
compute-intensive models, such an extension will be rewarding.

Part II

Main Chapters

Chapter A

Investigating Tradeoffs from Lossy Time

Series Compression at the Edge

Bastian Havers, Romaric Duvignau, Hannaneh Najdataei, Vincenzo
Gulisano, Marina Papatriantafilou, Ashok Chaitanya Koppisetty

The following is an adapted version of the work published in Future Generation
Computer Systems, Vol. 107, p. 1-17, as “DRIVEN: A framework for efficient
Data Retrieval and clustering in Vehicular Networks”. Any changes serve only
to retain the consistency of this thesis.

Abstract

The growing interest in data analysis applications for Cyber-Physical Systems
stems from the large amounts of data such large distributed systems sense
in a continuous fashion. A key research question in this context is how to
jointly address the efficiency and effectiveness challenges of such data analysis
applications.

DRIVEN proposes a way to jointly address these challenges for a data
gathering and distance-based clustering tool in the context of vehicular networks.
To cope with the limited communication bandwidth (compared to the sensed
data volume) of vehicular networks and data transmission’s monetary costs,
DRIVEN avoids gathering raw data from vehicles, but rather relies on a
streaming-based and error-bounded approximation, through Piecewise Linear
Approximation (PLA), to compress the volumes of gathered data. Moreover, a
streaming-based approach is also used to cluster the collected data (once the
latter is reconstructed from its PLA-approximated form). DRIVEN’s clustering
algorithm leverages the inherent ordering of the spatial and temporal data
being collected to perform clustering in an online fashion, while data is being
retrieved. As we show, based on our prototype implementation using Apache
Flink and thorough evaluation with real-world data such as GPS, LiDAR and
other vehicular signals, the accuracy loss for the clustering performed on the
gathered approximated data can be small (below 10%), even when the raw data
is compressed to 5-35% of its original size, and the transferring of historical
data itself can be completed in up to one-tenth of the duration observed when
gathering raw data.

40 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

A1 Introduction

Large distributed Cyber-Physical Systems (CPSs) such as vehicular networks [205]
(among others) are behind many of the current research threads in computer
science. One of the aspects many of such research threads share has its roots
in the large amounts of data sensed continuously in large distributed CPSs. As
discussed in the literature, the benefits and possibilities CPSs’ data enables (e.g.,
online congestion monitoring, platooning and autonomous driving in the case
of vehicular networks) are bound to many challenges, spanning efficient analy-
sis [150], efficient communication [112], [216], security [170] and privacy [86].
A key aspect in this context is the need for solutions that can jointly address
several such challenges [82], since solutions that focus on and/or excel in only
one aspect but fall short in others might be impractical in real-world setups.

A1.1 Challenges

When focusing on aspects such as data communication and analysis, a well
known challenge is given by the imbalance between the amounts of data sensed
and produced by the sensors deployed in such CPSs (a modern vehicle, on the
road today, senses more than 20GB/h of data [44]) and the infrastructures’
capacity of gathering them within small time periods to data centers [59].
Even when data is not to be transmitted continuously, but only for a limited
time period and for some selection of sensors, the required bandwidth may far
exceed the available one (e.g., a single LiDAR sensor of an autonomous car
produces around 7MB/s, cf. Section A4.1). In this case, solutions focusing on
efficient data analysis need to account for communication aspects too, in order
for the latter not to result in a major bottleneck. The inherent limitations of
traditional batch and store-then-process (DB) analysis techniques, which on
their own cannot sustain the data rates of relevant applications, need thus to
be overcome by taking into account the end-to-end transformation process of
raw data into valuable insights. Specifically, considering which data – as well as
how much data – is moved through a certain analysis pipeline. Because of this,
a complementary challenge gravitates around how to take advantage of the
high cumulative computational power of CPSs’ edge sensors and devices, since
the porting of a given sequential analysis tool (e.g., clustering) to an efficient
parallel and distributed implementation and its deployment are not trivial.

A1.2 Contributions

We present the DRIVEN framework, which copes with the aforementioned
challenges for a common problem in vehicular networks’ applications, namely
that of gathering and clustering of vehicular data. In a nutshell, the DRIVEN
framework jointly addresses the challenges of data gathering, online analysis
and leveraging of edge devices’ computational power by:

1. leveraging a lossy compression technique, based on Piecewise Linear
Approximation (PLA), that significantly reduces the amounts of data to
be gathered from vehicles,

A2. PRELIMINARIES 41

2. leveraging state-of-the-art online clustering techniques such as Lisco [142],
which overcome the limitations of batch-based ones, and

3. relying on the data streaming paradigm to transparently achieve dis-
tributed and parallel deployments.

As we further elaborate in the remainder, a data analyst interested in
gathering and clustering data sensed by a set of vehicles over a given period of
time can do so by specifying parameters about (i) the type of data to be gathered,
(ii) the maximum error that can be introduced while compressing the data to be
retrieved (because of the PLA-based compression) and (iii) the specifications for
the clustering of data. The DRIVEN framework then compiles this information
into a streaming application that is deployed both at the vehicles providing
the data as well as at the analyst’s data center. To support modularity, the
framework also allows the analyst to define additional components for the
resulting application that can be used to process the data before the latter is
clustered.

An extensive literature exists about clustering, its porting to the streaming
protocol and the leveraging of approximation techniques to improve (along
with certain criteria) the clustering process, as we discuss in Section A6. In this
context, our contribution does not aim at surveying all existing solutions nor at
comparing them. Rather, the contribution focuses on providing evidence of how
a streaming application that can (i) jointly leverage the computational power
of both edge and central components of a CPS and (ii) allow for partial data
loss when gathering information can provide a healthy tradeoff between data
reduction and pipeline speed on the one hand and accuracy loss on the other,
despite requiring more data processing components (e.g., to compress and
decompress the data gathered from the vehicles) than a centralized counterpart
(which needs all the raw data to be gathered). As we show in our empirical
evaluation, based on a prototype implementation using Apache Flink and
recently proposed streaming-based PLA and clustering methods, and four real-
world use cases, DRIVEN is able to reduce the duration of data transmission
by up to 90% while incurring a bounded loss on the clustering quality. The
rest of the paper is organized as follows. We introduce preliminary concepts
in Section A2 and the considered system model and problem statement in
Section A3. We then present the DRIVEN framework in Section A4 and our
evaluation in Section A5. Finally, we discuss related work in Section A6 and
conclude the paper in Section A7.

A2 Preliminaries

We begin this section by discussing preliminary concepts about data streaming,
PLA, distance-based clustering and logical latency.

A2.1 Data Streaming

The data stream processing paradigm (aka data streaming) [180] emerged as an
alternative to the traditional store-then-process one. Thanks to its fast evolution

42 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

over the last decades, modern Stream Processing Engines (SPEs) allow for
distributed, parallel and elastic online analysis [29]. At the same time, efficient
designs and methods are in focus in the literature for computationally-expensive
streaming analysis [84]. As discussed in [180], the data streaming paradigm
has been defined to take into account the challenges proper of large systems
gathering data through millions of sensors (as discussed in Section A1). Thus,
many applications rely on it in many CPSs, including vehicular networks [12],
[46], [147].

In data streaming, each sensor produces a stream of data, a sequence of
tuples that share the same schema composed by attributes ⟨y0, y1, . . . , yk⟩,
where y0 is a physical or logical timestamp and the other k attributes depend
on the sensor producing the stream. We assume that each stream delivers
tuples in order based on y0 as in [18], [108] (or leverages sorting techniques
such as [104], [207]). Streaming applications, also referred to as continuous
queries (or simply queries, in the remainder) are defined as Directed Acyclic
Graphs (DAGs) of streams and operators. Each operator defines a function that
manipulates its input tuples and potentially produces new output tuples, while
streams specify how tuples flow among operators. Modern SPEs such as Apache
Flink [29], which we use to implement the DRIVEN framework, provide many
operators that can be composed into queries (and also allow for users to define
ad-hoc operators). It should be noted that streaming operators are expected
to enforce one-pass analysis [180] and can temporarily maintain a window of
the most recent tuples when an aggregation function (such as clustering) is
to be performed on them [84]. As mentioned in Section A1, space and time
complexity reduction through approximation and/or partial data loss have been
discussed in many flavors in the context of streaming applications. Proposed
solutions include load shedding, sketches, histograms and wavelets [16], [17],
[49], [182]. In DRIVEN, we rely on PLA, further discussed in the following
section.

A2.2 Piecewise Linear Approximation

Computing a PLA of a time series is a classical problem that aims at representing
a series of timestamped points by a sequence of line segments while keeping the
error of the approximation within some acceptable error bound. We consider
here the online version of the problem, with a prescribed maximum error ∆,
i.e., (i) the time series is processed one point at a time, the output line segments
are produced along the way, and (ii) the projected points along the compression
line segments always fall within ∆ from the original points. Figure A1 gives an
example of a PLA: original data points (crosses on the figure) from the input
stream are compressed and forwarded on the output stream as line segments
(solid lines) or singletons (squares), so that a reconstructed stream (bullets and
squares) can be generated from the PLA of the original stream (we refer the
reader to Section A4 for more details about why both segments and singletons
are defined and the conditions upon which they are forwarded).

In the extensive literature dealing with such an approximation (among
others [22], [64], [111]), it is clearly stated that the approximation’s main intent

A2. PRELIMINARIES 43

Input Stream

0

1

2

3

4

Time

Output
Stream

⟨4, a
1
, b1
⟩

⟨4, a
2
, b2
⟩

⟨1, y
3
⟩
⟨1, y

4
⟩

a1
= 0.5

1, b1
= 0.8

3

•
•

•
•

a2 = −0.09, b2 = 1.41

• • • •

□

y3 = 3

□

y4 = 0

a5 = 0, b5 = 2

• • • • •

Figure A1: Example of a Piecewise Linear Approximation using maximum error
∆ = 0.5.

is to reduce the size of the input time series for both efficiency of storage and
(later) processing. This entails a practical trade-off between a bounded precision
loss and space saving for the time series representation. Recent works on PLA
[58], [81], [134], [201] increasingly place the focus on the streaming aspect of
the compression process, and advocate low time/memory consumption as well
as small latency while achieving a high compression, in order for PLA to be
feasibly implemented on top of, or close to, a sensor’s stream.

In this work, we use a best-fit line approximation together with a streaming
output mechanism, both introduced in [58] and briefly described in Section A4.2,
balancing trade-offs associated with PLA in a streaming context.

A2.3 Distance-Based Clustering

Clustering is a core problem in data mining; it requires to group data into
sets, known as clusters, so that intra-cluster similarity is maximized. There are
various clustering methods that use different similarity metrics. Among them,
distance-based clustering methods are able to discover clusters with arbitrary
shapes and form the clusters without a-priori knowledge about their number [87].
For ease of reference we paraphrase the definition of distance-based clustering
from [172]:

Definition A1. [Distance-based clustering] Given n data points, we seek to
identify an unknown number of disjoint clusters using a distance metric, so
that any two points pi and pj are clustered together if they are neighbors, i.e.,
if their distance is within a certain threshold. To announce the set of points
as a cluster (rather than noise), its cardinality should be at least a predefined
number of points minPts.

In a recent work [142], distance-based clustering (for the Euclidean distance
case) is studied in the data streaming paradigm to introduce a new approach,
named Lisco. This approach enables the exploitation of the inner ordering of
the data to maximize the analysis pipeline in order to facilitate the extraction
of clusters and contribute to real-time processing. In this paper, we use and
adapt Lisco as the clustering approach to shape clusters based on distance

44 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

similarities without knowing the number of clusters in advance. We discuss
more details of Lisco and its adaptations in Section A4.3.

A2.4 Logical Latency

In data streaming literature [84], the term latency usually refers to the (physical)
time difference between the production of an output tuple and the processing
of the last input tuple contributing to (or triggering the creation of) the former.

This latency definition is usually employed to evaluate the processing perfor-
mance of a given streaming-based solution. When sequences of multiple input
tuples are aggregated together following the processing of a later tuple without
an a-priori known size for the length of such sequences (as in a PLA segment,
given that the length of each segment depends on the points it approximates),
users can also be interested in the logical latency introduced by the aggregation
mechanism. We refer to the notion of logical latency as the number of tuples
processed between a given tuple and the first tuple that triggers the aggregation
of the sequence to which the former belongs. More concretely, with a sequence of
n tuples being aggregated together ⟨y0ℓ , y1ℓ , . . . , ykℓ ⟩, . . ., ⟨y0ℓ+n, y

1
ℓ+n, . . . , y

k
ℓ+n⟩

and ⟨y0j , y1j , . . . , ykj ⟩ the tuple that triggers their aggregation (with j ≥ ℓ+ n),

the logical latency for any tuple ⟨y0i , y1i , . . . , yki ⟩ is j − i for i ∈ [ℓ, ℓ+ n].

A3 System Model and Problem Statement

We consider systems consisting of a set of many vehicles and one analysis
center, in which data analysts are interested in gathering data from such a
set of vehicles and, subsequently, clustering that data at the analysis center.
Each vehicle Vi is equipped with an embedded device which provides limited
computational capacity; Vi also mounts a set of sensors, each producing a
stream of tuples composed by attributes

〈
y0, . . . , yk

〉
, i.e., the physical or

logical time of each reading and the measurements at that time, respectively.
Based on what is found in modern vehicular networks, we assume that each
type of sensor produces readings with a given periodicity and that each vehicle
is equipped with a storage unit that is used to maintain the sensors’ readings
(for the sensors deployed in the vehicle) during a given fixed period of time
(e.g., during the last month). Notice that lossy data compression techniques
such as PLA are not applied to the data before storing it since the allowed
error bound is not known before the analyst triggers a data gathering request.

For ease of exposition, we assume in the remainder that (historical) data is
stored locally at each vehicle and retrieved only when requested. We nonetheless
investigate in Section A5.6 the logical latency incurred in a scenario in which live
readings are streamed to an analysis center immediately after their compression.

We also assume that 2-way communication exists between the analysis center
and each vehicle to deploy queries and to forward the sensed data, respectively.
To isolate the effects of DRIVEN on data gathering and analysis from non-
deterministic factors such as varying speeds and reliability of the underlying

A3. SYSTEM MODEL AND PROBLEM STATEMENT 45

Vehicle i

...
Sensor j Time

<y0,y1,...,yk>

Temporary storage for the
vehicle’s sensor data

Analysis center

Mainframe
server

Embedded
device

2-way communication to
forward (from the analysis
center) requests for data
and gather the latter

Data analyst, interested
in gathering data from
the vehicles in order to
cluster it

Figure A2: System model overview for DRIVEN.

communication layer, we assume this 2-way communication to provide constant
upload and download speeds and no packet loss (cf. Section A5.3).

Based on the given system model illustrated in Figure A2, the goal of the
DRIVEN framework is to leverage the data streaming paradigm (i.e., to define
queries that gather and cluster data as DAGs of operators that can run in a
distributed and parallel fashion both at the vehicles and the analysis center)
while (i) only requiring analysts to provide information about the analysis’
semantics (i.e., which data to gather and the distance criteria to cluster it)
without composing and deploying the overall streaming query themselves and
(ii) allowing for approximations in order to improve the performance (i.e.,
reduce the time) of retrieving the data sensed by the vehicles.

A query in the DRIVEN framework is expressed as

Q(V,T,S,∆, [qpre,]{clustering parameters}),

where:

• V is a set of vehicles’ ids,

• T is the period of time covered by the data to be gathered (included in
the period covered by the vehicles’ storage unit or referring to data being
sensed live by the vehicle),

• S specifies the set of sensors producing the data (thus allowing the
DRIVEN framework to identify the operators needed to gather the
stream(s) of data they produce),

46 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

• ∆ specifies the maximum error that can be introduced during the com-
pression step while retrieving the data by the DRIVEN framework, and
is further composed of k + 1 fields, namely ∆1,∆2, . . . ,∆k for a sensor
with k attributes, plus ∆0 for the (logical) time attribute,

• qpre is an optional streaming query that defines pre-clustering analysis,
and

• {clustering parameters} is the set of parameters used by DRIVEN’s
clustering component (further described in Section A4.3.2).

We refer the reader to Section A5 and Table A1 for concrete examples of
queries Q and possible values of the above parameters. Notice that, being a
streaming query, each DRIVEN application can be extended with additional
operators to further process the found clusters (we do not discuss this since it
is complementary to our work).

In order to quantify the improvement (in terms of efficiency) and the cost
(in terms of precision) of the DRIVEN framework, we compare with a baseline
that gathers and processes all the raw rather than the approximated data.

A4 Overview of the DRIVEN framework

In this section, we present an overview of DRIVEN. To facilitate the presen-
tation, we first introduce a use case that serves as a running example in our
discussion (we later evaluate it, together with others, in Section A5).

As discussed in Section A3, each query run by DRIVEN is a streaming
continuous query deployed at both the vehicles and the analysis center, with
dedicated operators for efficient data retrieval and clustering.

A4.1 Sample Use Case: Study Vehicles’ Surroundings

In our running use case example, the analyst is interested in performing the
clustering of LiDAR data of a bounded time interval as a preprocessing step
for offboard object detection. This may help, e.g., in better understanding and
improving the performance of a resource-constrained onboard object detection
algorithm in a certain driving situation, and may be automatically triggered
by an event such as a pedestrian crossing the road in front of the vehicle. We
assume vehicles equipped with a set of LiDAR (light detection and ranging)
sensors such as the ones of a Velodyne HDL-64E [155], which mounts 64
non-crossing lasers on a rotating vertical column and which, at each rotation
step, shoots these lasers and produces a stream of distance readings based
on the time the reflected light rays take to reach back to the sensors. Each
sensor can shoot the laser 4000 times per rotation for up to 5 rotations per
second, resulting thus in millions of readings per second for the whole set of
sensors [142] (around 7MB/s). For each stream ⟨α, ρ⟩ produced by one of the
LiDAR sensors, the logical timestamp α allows identifying at which rotation
step the distance ρ has been measured (i.e., with which angle in the horizontal

A4. OVERVIEW OF THE DRIVEN FRAMEWORK 47

Lidar lasers’
data

compress

merge

cluster

decompress

At the vehicle

At the analysis center

qpre

Figure A3: Overview of the modules deployed in the resulting streaming continuous
query for the LiDAR use case.

plane). Notice that each reading from a sensor can be converted into a 3D
point in space based on α, ρ and the elevation angle of the sensor itself.

The analyst is thus interested in the data produced over a certain period of
time (e.g., covering a full rotation) by the 64 sensors mounted in each LiDAR de-
ployed in the vehicles moving in the given urban area and relies for the clustering
on a function that checks whether the Euclidean distance between any two points
is within a certain threshold. Based on the query description in Section A3,
the analyst could then run a query Q(V,T,S,∆, qpre, {Clustering parameters})
for each vehicle of interest, where:

• V and T specify from which vehicle the data should be gathered and
which portion of such data should be gathered, respectively,

• S refers to the sets of LiDAR sensors,

• ∆ = (∆α,∆ρ) defines the maximum approximation error that is allowed
when compressing the LiDAR data, bounding the rotation angle error
and the distance measurement error, respectively,

• qpre defines an operator merging the data from the different sensors (as
further discussed in Section A5), and

• {clustering parameters} is the set of parameters later described in Sec-
tion A4.3.2.

Figure A3 presents an overview of the modules deployed in the resulting
streaming continuous query (each of which will be composed by one or more
streaming operators, as also described in the following section).

A4.2 Data Retrieval and PLA Approximation

As discussed in Section A1, DRIVEN relies on streaming PLA to forward
a compressed and lossy representation of data. To build the PLA, we use

48 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

Figure A4: Best-fit lines of a set of points: solid for the first 10 points, dashed for
including the 11th point (marked in green).

a construction method named Linear, introduced in [58], which combines
several approaches of previous works on PLA such as using a best-fit line
approximation [22], [81], [111] for minimizing errors and maintaining convex
hulls [64], [201] for efficiently checking the violation of the error bound by the
approximation. We also use here continuous processing through the output
protocol proposed in [58] in conjunction with Linear, in order to balance
the different trade-offs associated with PLA in streaming environments (i.e.,
compression ratio, reconstruction latency, and individual errors).

The Linear method successively updates a best-fit line through the latest
not yet approximated points, until the maximum error produced by the segment
approximation exceeds the tolerated error bound ∆. Updating such an estimate
takes O(1) operations per point, but checking if the line does not violate the
error condition can take up to O(n) if n points are currently being approximated
(worst-case). However, rather than a naive sequential check that always results
in the worst-case cost, by keeping track of two particular convex hulls U and
L along the way (at an extra amortized O(1) operations per tuple), we can
check the error condition in O(|U |+ |L|) by only traversing both hulls, whose
sizes are rarely higher than a few units in practice (as also observed in our
extensive experimental evaluation). Figure A4 illustrates the process where
input points are plotted as crosses and tolerated errors around the points are
drawn as vertical line segments; the best-fit line for the first 10 points is a plain
line that stays within the bounded error. By adding the 11th point (marked
green), the best-fit line violates the error bound on the sixth input point (or
equivalently, at the sixth input point, the approximation line is below the lower
convex hull L depicted on the figure).

PLA Comp.
⟨y0i , y1i , . . . , yki ⟩
sensor stream

⟨i, y1i ⟩

PLA Comp.

...

PLA Comp.

⟨i, y0i ⟩

⟨i, yki ⟩

PLA Decomp.

PLA Decomp.

...

PLA Decomp.

⟨n, a, b⟩ n ≥ 2

or ⟨1, y1i ⟩

t PLA

yk PLA

Wireless
transmission

y1i
′

yki
′

y0i
′

⟨y0i
′
, y1i

′
, . . . , yki

′⟩
reconstructed stream

Figure A5: PLA compression / decompression flowchart with y1’s channel detailed.

A4. OVERVIEW OF THE DRIVEN FRAMEWORK 49

Algorithm A1 PLA output logic

1: ▷
Receive ⟨i, yi⟩, while maintaining convex hulls Ui−1, Li−1 & best-fit
line li−1 covering n ≥ 2 points

2: li ← newBestFitLine(li−1, ⟨i, yi⟩)
3: Ui, Li ← updateConvexHulls(Ui−1, Li−1, ⟨i, yi⟩)
4: n← n+ 1
5: if lineBreaksHulls(li, Ui, Li) then
6: if n = 3 then ▷ output singleton
7: output ⟨1, yi−2⟩
8: else ▷ output segment
9: output ⟨n− 1, slopeOf(li−1), interceptOf(li−1)⟩

10: else
11: if n = nmax then ▷ max length reached
12: output ⟨nmax, slopeOf(li), interceptOf(li)⟩
13: else ▷ wait for ⟨i+ 1, yi+1⟩
14: continue

For the input sensor stream, composed of tuples of the form ⟨y0, y1, . . . , yk⟩,
the different components of the PLA compression, as illustrated(A1) in Fig-
ure A5, are:

1. Split: The sensor stream is split in k+1 streams, one for each application-
related attribute plus one additional for the timestamps. More precisely,
the i-th input tuple ⟨y0i , y1i , · · · , yki ⟩ will generate ⟨i, yℓi ⟩ on channel ℓ’s
stream for each 0 ≤ ℓ ≤ k.

2. PLA Compression: Each stream is compressed in parallel by computing
its PLA (as depicted in Figure A1, Section A2.2) using its associated error,
i.e., channel ℓ uses ∆ℓ. Each compressor generates a PLA representation
as a stream of triplets ⟨n, a, b⟩ or singletons ⟨1, y⟩; ⟨n, a, b⟩ is generated for
compressing n input values into a line segment whose linear coefficients
are (a, b), whereas ⟨1, y⟩ is generated to reproduce a single input(A2)

of value y. In more detail, this is presented in Algorithm A1: the
PLA compressor always attempts to first build the longest possible
approximation segment < nmax (of length 256, in our evaluation, cf.
Section A5), but when one such segment has only length n = 2, thus
covering only two tuples ⟨k − 2, yk−2⟩ and ⟨k − 1, yk−1⟩, ⟨k − 2, yk−2⟩ is
then output as a singleton ⟨1, yk−2⟩. The PLA compressor continues the
construction of a new approximation line segment beginning with the
tuple ⟨k− 1, yk−1⟩ and the current tuple ⟨k, yk⟩ (this explains the output
delay associated with the singletons of Figure A1). This scheme helps to
mitigate an inflation phenomenon observed when compression is low (it

(A1)For simplicity, the figure does not show the operators in charge of components 1 and 5.
(A2)Note that we add 1 in singleton tuples because both singletons and triplets are forwarded
using the same channel, and thus require a prefix that distinguishes them when deserializing
incoming data.

50 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

improves the compression when a single outlier tuple lies between two
segment-compressible sequences of tuples).

3. Diffusion: The k + 1 streams are wirelessly transmitted to the analysis
center.

4. PLA Decompression: All streams are decompressed in parallel. The
decompression algorithm is straightforward: after having already recon-
structed i values on channel yℓ, we either generate n outputs y′i+1, . . . , y

′
i+n

such that y′j = a · j + b for i+ 1 ≤ j ≤ i+ n if the next received record

is ⟨n, a, b⟩ on yℓ’s transmitted PLA stream, or alternatively, we produce
y′i+1 = y if ⟨1, y⟩ was received.

5. Final Reconstruction: The final step is to merge the k+1 decompressed
streams to rebuild records with identical structure as the initial input
stream. In particular, to reconstruct the i-th tuple ⟨y0′i , y1

′

i , . . . , yk
′

i ⟩ on
the output stream, we need to wait for the k + 1 decompressors to have
produced at least i reconstructed values on their respective channel.

The compression scheme suggested here compresses all k attributes of a
stream as well as the timestamp in the same manner (i.e., by using the tuple
counter i for each tuple ⟨i, yℓi ⟩ on a sensor attribute yℓ). This differs from the
scheme suggested in [90], where a counter was used only for the timestamp
stream ⟨i, y0i ⟩ while the remaining attributes of the stream were compressed
using the original timestamps, and decompressed using the reconstructed
timestamps. As explained in [90], this scheme could not guarantee a bounded
reconstruction error at all times as errors from timestamp reconstruction could
propagate to the reconstruction of other channels. The new scheme proposed
here results in similar compression and performance figures on our evaluated
data, as discussed later in Section A5, and guarantees a bounded reconstruction
error.

A4.3 Data Clustering with Lisco

As described in Section A2, distance-based clustering approaches form clusters
using a given distance metric. Since computing the distances of one tuple from
all the other tuples in a certain dataset in order to find the ones within a
threshold distance would incur an O(n2) complexity when running all-to-all
comparisons, it is necessary to prune the search space. For this purpose, several
clustering approaches have an intermediate step after data acquisition and
before the main clustering algorithm. This additional step builds an extra
supporting data structure (e.g., a kd-tree [66]) in order to organize the collected
data before performing the clustering. In this way, a batch-based processing
is introduced which results in an average O(n log n) cost [193] but requires
multiple passes over the data (possibly affecting the performance).

Lisco is a recently proposed method that overcomes the batch processing
disadvantages through a single-pass continuous distance-based clustering (Eu-
clidean in the original paper [142]) that exploits inherent orderings of data

A4. OVERVIEW OF THE DRIVEN FRAMEWORK 51

(when such orderings are present). The intuition behind Lisco is to store the
data in a simpler data structure that preserves such inherent ordering and
therefore eliminates the need for an extra supporting sorting data structure. In
the original paper, it is discussed (and empirically observed) that storing and
organizing data tuples using Lisco have O(1) complexity and can be performed
during the data acquisition step which results in an average O(n) cost.

While we rely on the LiDAR-based use case to overview DRIVEN and its
clustering component, our implementation of Lisco within DRIVEN opens up
for the clustering of other data too, as we discuss in the following.

A4.3.1 Clustering LiDAR Data (Intuition)

Figure A6 a) shows Lisco’s intuition for clustering LiDAR data. As shown,
for a certain point p hit by a laser, the search for neighbors within a certain
(Euclidean) distance can be limited to a certain set of lasers and angles (based
on p’s distance and angles). The neighbor mask, containing possible points hit
by such lasers (and for the given angles), specifies the portion of data outside
of which neighbors can not be found for p. This limits the search space for

At the vehicle

Point hit by a laser

Adjacent points hit by same
laser with different angles

Adjacent points hit
by different lasers

with equal angle

Object in the surroundings

Range of angles (for same
laser) where hit points
could be p neighbors

Range of lasers (for same angle) where
hit points could be p neighbors

Mask containing all angles
and lasers for which hit
points could be p neighbors

LiDAR

At the analysis center

p

qpre
<α,θ,ρ>

p’

p

Function getMaskSize limits the
search space to possible neighbors of p

Function areNeighbors
checks if p and p’ belong to
the same cluster

Data structure
maintained by Lisco

Laser shot (for a given elevation angle)

a)

b)

Figure A6: Example of how the search space for a point p (for the LiDAR use
case) can be limited to points potentially reported by lasers (and with certain angles)
within a mask centered in p (a) and the corresponding 2D matrix maintained by
Lisco (b).

52 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

p’s neighbors to the points measured for the given range of angles and lasers.
Notice that such points must be checked since not all angles and lasers falling
within the given ranges necessarily hit a point that is a neighbor of p, as shown
in the figure. Internally, Lisco can then maintain incoming points in a 2D array.

A4.3.2 Lisco Generalization in DRIVEN

The Lisco implementation in DRIVEN maintains data in an n-dimensional
array and clusters incoming tuples while they are stored in it. One of the n
dimensions is given by the y0 attribute while the other optional n−1 dimensions
can be specified as attributes of the tuple’s schema. In this way, the analyst
can leverage any implicit sorting carried by one or more attributes of the
tuples produced by qpre (aside from the timestamp itself) to speed-up Lisco’s
clustering. To do this, the first clustering parameter defined by the analyst is
an optional list of attributes to define the additional n−1 dimensions of Lisco’s
internal multi-dimensional array. It should be noticed that, for each attribute
yk specified as a dimension by the analyst, the latter must also specify the
range of values observable for it, for DRIVEN to setup Lisco’s internal data
structure.

The second and third clustering parameters are the functions int[n]

getMaskSize(Tuple τ) and boolean areNeighb(Tuple τ1,Tuple τ2). The
former function specifies how far (in the sense of indexes) Lisco should explore
any of the n dimensions of the array around tuple τ , to search for potential
candidates for clustering. Lisco employs the return values of this function to
create the neighbor mask and bound the search space around τ . Internally,
Lisco runs the aggregation over any of the n dimensions as soon as the latter
is filled for a given value (e.g., when all the tuples sharing the same y0 values
are received). The latter function is used to check if two tuples falling into the
same neighbor mask should be clustered together or not.

Finally, the analyst must also specify the minimum number of pointsminPts
to differentiate clusters from noise (Definition A1).

Continuing the example in Figure A6 b), the schema of the tuples produced
by qpre could in this case carry attributes ⟨α, θ, ρ⟩, where α is the logical
timestamp that refers to a certain angle of the LiDAR sensor, θ is the elevation
angle (based on the laser producing the reading) and ρ is the measured distance.
To store the tuples, Lisco could be instructed to keep data in a 2D matrix
where consecutive readings from the same laser are assigned to columns and
the different lasers are assigned to different rows (as done in [142]). In this
way, the ordering of two dimensions of the tuples would be kept. Using the 2D
matrix to store the data, int[n] getMaskSize(Tuple τ) can be implemented
to return the neighbor mask of a tuple τ in terms of a limited number of rows
and columns around τ . Finally, the areNeighb(Tuple τ1,Tuple τ2) can be
implemented to check whether the Euclidean distance between the readings of
tuples τ1 and τ2 is within the threshold defined by the analyst.

A5. EVALUATION 53

A5 Evaluation

We evaluate in here the tradeoffs in compression, approximation error, retrieval
time and clustering quality for DRIVEN. We first present the datasets used,
the software and hardware setup and then discuss four different use cases in
which historic data is gathered and clustered. Finally, we gauge PLA’s compres-
sion performance by comparing it to a lossless, general-purpose compression
technique (ZIP) and discuss the concept of inherent logical latency of PLA
compression to investigate the impact of DRIVEN on queries gathering live
rather than historic data.

A5.1 Data

We use three datasets in our evaluation.

1. The Ford Campus dataset [155], providing data generated by a Velo-
dyneHDL64E roof-mounted LiDAR (see Section A4.1 for an overview of
LiDAR) from one vehicle. Each file in the dataset corresponds to one full
rotation of the LiDAR, which consists of 64 individual lasers mounted
in a column. According to our system model (Section A3), each of the
64 lasers is an individual sensor, with the sensor ID being the sensor’s
fixed elevation angle. In our implementation, each laser stores its data in
a dedicated file.

2. The GeoLife dataset, containing GPS data collected in the GeoLife
project by 182 users over ca. three years [213]–[215]. We use a subset of
the dataset with vehicular GPS traces in the Beijing area.

3. The Volvo dataset, provided by Volvo Cars. This dataset consists of
CAN data(A3) and GPS traces from 20 hybrid cars and was collected in
Sweden in the years 2014 and 2015.

A5.2 Software and Hardware Setup

We implemented Lisco in Python 3.6 and the PLA components (see Sec-
tion A4.2) in Apache Flink 1.5.0. The segment length n of the PLA compressor
is bounded by 256 to limit its bandwidth consumption to 1 byte, while the
parameter minPts is set to 10 in all experiments (this parameter is adopted
from [142]).

We use as a stand-in for the vehicle node an ODROID-XU3 single-board
computer to approximate the low-power processor of a vehicle, equipped with a
Samsung Exynos 5422 Cortex-A15 2.0GHz quad-core and Cortex-A7 quad-core
CPU and 2 GB of LPDDR3 RAM at 933MHz. For the analysis center, we use
a server with an Intel(R)
Core(TM) i7-4790 3.60GHz quad-core CPU and 8GB of RAM. The ODROID
and the server are connected via Ethernet. We reduce the connection bandwidth

(A3)CAN (Controller Area Network) is a vehicular communication bus standard over which
sensor data, fault messages, etc. can be transmitted.

54 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

using the tool trickle [65] to simulate four different upload speeds for the
ODROID: slow (8KB/s, in the range of 2G), medium (500KB/s, in the range
of 3G), fast (1000KB/s, in the range of 4G) and very fast (10000KB/s, in the
range of 5G).

A5.3 Evaluation Metrics

DRIVEN is evaluated for four use cases among four dimensions:

• Average error : The average error Ȳ = 1
N

∑N
i=1 |yi − y′i| between original

values yi and reconstructed ones y′i.

• Compression ratio: The size of the compressed data divided by the raw
data size.

• Adjusted rand index : The clustering obtained from the approximated
data compared to the clustering obtained from the original data via the
adjusted rand index.(A4)

• Gathering time ratio: The time needed to gather the approximated data
(including compression / decompression overheads) divided by that taken
to gather the raw data.

For all use cases, we use the term baseline to refer to a setup in which raw
data (i.e, with no compression) is gathered and clustered.
In addition to the four evaluation dimensions explained above, we also evaluate
the Logical Latency for the Ford Campus and GeoLife datasets (we refer the
reader to Section A2.4 for a definition of logical latency).
Since simulating the communication behavior of a large vehicular network is
beyond the scope of this work (and based also on the observation that real
behavior would depend on factors we cannot predict, such as the position of a
certain vehicle), experiments studying the gathering time are set up to favor
the baseline over DRIVEN and thus avoid bias. More concretely, gathering
time is measured for the collection of each sensor’s data without concurrent or
parallel transfers from multiple vehicles, thus avoiding overheads (e.g., packet
losses) proportional to the size of the transmitted information (i.e., higher for
the baseline, given that raw data is larger in size than the compressed one, as
we show in the following).

In the following, results are presented through violin plots. Violin plots
show the distribution of the underlying data along their vertical axis, with the
mean marked by a horizontal bar. All the presented plots contain data from at
least 55 experiment runs.

(A4)The rand index of two partitions (or sets of clusters) A,B is a symmetric measure that
counts how many pairs of elements in partition B are clustered exactly as in partition A.
The adjusted rand index extension takes into account accidental random clusterings (see
[192] for more details).

A5. EVALUATION 55

Table A1: Queries Q(V,T, S,∆, qpre, {clustering parameters}) for evaluation. See
Section A3 for explanation of query arguments.

Q
1
:
L
iD

A
R

V
T

S
∆

q
p
r
e

c
lu
st
e
ri
n
g
p
a
ra

m
e
te
rs

1
1
0

L
iD

A
R

∆
α

=
0
.0
0
0
5
ra

d
,

m
e
rg

e
6
4
la
se
rs

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e

τ
)
:

v
e
h
ic
le

ro
t.

∆
ρ
∈

[0
.1
,
0
.2
,
0
.5
,
1
,
5
,
1
0
]
m

a
d
d

la
se
r
id

r
e
t
u
r
n

g
e
t
M
a
s
k
S
i
z
e
I
n
R
o
t
(
τ
)

6
4

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e

τ
1
,

T
u
p
l
e

τ
2
)
:

la
se
rs

r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
0
.
5
m

Q
2
:
1
-V

e
h
ic
le

1
-D

a
y

V
T

S
∆

q
p
r
e

c
lu
st
e
ri
n
g
p
a
ra

m
e
te
rs

1
1
d
a
y

G
P
S

∆
t
=

1
s,

w
i
n
d
o
w
A
g
g
r
(
5
s
)

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e

τ
)
:

v
e
h
ic
le

∆
x
,
∆

y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

e
m
it

la
te
st

tu
p
le

r
e
t
u
r
n

1
2

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e

τ
1
,

T
u
p
l
e

τ
2
)
:

r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
5
0
m

Q
3
:
1
-V

e
h
ic
le

1
4
-D

a
y

V
T

S
∆

q
p
r
e

c
lu
st
e
ri
n
g
p
a
ra

m
e
te
rs

1
1
4

G
P
S

∆
t
=

1
s,

w
i
n
d
o
w
A
g
g
r
(
1
0
s
)

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e

τ
)
:

v
e
h
ic
le

d
a
y
s

∆
x
,
∆

y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

a
d
d

d
a
y
id

r
e
t
u
r
n

1
5
,

1
4

e
m
it

la
te
st

tu
p
le

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e

τ
1
,

T
u
p
l
e

τ
2
)
:

r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
1
0
0
m

Q
4
:
C
a
r
u
s
a
g
e

g
r
id

s

V
T

S
∆

q
p
r
e

c
lu
st
e
ri
n
g
p
a
ra

m
e
te
rs

2
0

7
G
P
S

∆
t
G

=
1
s,
∆

t
e
=

∆
t
c
=

0
.0
0
5
s

a
d
d

d
a
y
id

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e

τ
)
:

v
e
h
ic
le
s

d
a
y
s

e
le
c
tr
ic

R
P
M

∆
x
,
∆

y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

fi
n
d

d
ri
v
e
m
o
d
e

r
e
t
u
r
n

7
,

2
,

2

c
o
m
b
.
R
P
M

∆
ω
e
,
∆

ω
c
∈

[1
,
5
,
1
0
,
2
0
,
5
0
,
1
0
0
]
H
z
a
d
d

to
g
ri
d

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e

τ
1
,

T
u
p
l
e

τ
2
)
:

r
e
t
u
r
n

c
o
u
n
t
e
r
D
i
s
t
(
τ
1
,
τ
2
)
≤
1
)

A5.4 Use Cases

A5.4.1 Q1 LiDAR

This is the use case presented in detail in Section A4.1. In accordance with our
system model, the data for each of the 64 lasers is stored on-vehicle as a stream
of ⟨α, ρ⟩ with the azimuth angle α (logical timestamp) and the distance reading
ρ. The query for this use case is detailed in Table A1. Based on the query,
all the sensor reading streams from the last ten rotations from each of the 64

56 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

Figure A7: Q1: Sketch of data structure produced by qpre.

0.0

0.5

1.0

1.5

2.0 (a) Average error on ρ

0.00

0.05

0.10

0.15

0.20
(b) Compression

0.1 0.2 0.5 1 5 10

∆ρ [m]

0.5

0.6

0.7

0.8

0.9

(c) Adjusted rand index

0.1 0.2 0.5 1 5 10

∆ρ [m]

0.0

0.5

1.0

(d) Gathering time ratios

slow medium fast

Figure A8: Q1: (a) - (c) Compression and clustering statistics for various ∆ρ; (d)
gathering time ratio for various ∆ρ and different network speeds.

LiDAR lasers from one vehicle are successively compressed on-vehicle with
some maximum errors ∆α,∆ρ on the logical timestamps α and the distance
readings ρ. Each compressed stream of laser readings is then successively
sent to the analysis center, where the streams are decompressed. Query qpre
assigns each tuple its laser id and the horizontal angle θ, providing to Lisco the
data structured as the 2D matrix (Figure A7) to Lisco. The tuples are added
column-wise (see colored column) by qpre with decreasing laser id θi (the id
of the i-th laser) from top to bottom and increasing rotation angle αi

j (the
j-th rotation step of the i-th laser) from left to right. This merging of data
from different sensors is performed deterministically [84] based on the logical
timestamp α carried by the tuples.

As clustering parameters, Lisco is instructed to check the Euclidean distance
between pairs of tuples; to accomplish that, it searches for candidates in a
maximum α, θ - area around tuple τ defined by getMaskSizeInRot(τ), which
calculates the angles α, θ of the horizontal and vertical laser beams who could hit
points that are within distance ϵ = 0.5m from the sensor reading corresponding
to τ , as they bound the ϵ-neighborhood of the latter, while also ensuring that
only points within the same rotation are part of the mask.

Through the way that data is maintained in the 2D matrix, this defines a
rectangular area (i.e., mask) in the matrix around τ (cp. Section A4.3.1).

A5. EVALUATION 57

The compression statistics for this use case can be seen in Figure A8 (a)
and (b) expressed via violin plots. The angle α is in all cases compressed
with a maximum error ∆α of 1.5× 10−3rad, yielding an average error on α of
3.4× 10−5 ± 1.0× 10−5rad (average ± standard deviation). ρ is compressed
for values [0.1, 0.2, 0.5, 1, 5, 10]m. In (a), it appears for larger values of ∆ρ that
the average error is about one order of magnitude smaller than the maximum
error (this is true for small ∆ρ too, although harder to appreciate in the graph).
The compression as a ratio of compressed vs. raw file size in (b) shows that
LiDAR data can already for a maximum error ∆ρ = 0.1m be compressed below
(median) 10% of the raw size, which we attribute to the regularity of the logical
timestamps α as well as to the existence of stretches of ρ = 0 in the raw data
(these occur when the laser is not reflected, cp. Section A4.1). For increasing
maximum error, the compression ratio decreases only slightly, which indicates
that almost maximum compression is reached early. The long tails towards
lower compression hint at single files with data that is harder to compress than
the average. For ∆ρ = 1m, the data transmitted in this use case (10 rotations
of the LiDAR, which are completed in 2s) is around 750KB. Transmitting
this live is possible with network speeds of 3G or larger. The comparison of
the resulting clusters from query Q1 with the baseline is shown in Figure A8
(c) (as only points within the same rotation may be clustered, we compare
the resulting clusters between the same rotations, not between the sets of ten
rotations). One observes that for increasing ∆ρ the similarity between the
clusters of approximated and baseline data decreases. However, for ∆ρ = 0.1m,
the median compression ratio is already below 0.10, while the median adjusted
rand index is larger than 0.95, indicating that a large compression can be
achieved without a large loss of precision in the clustering.

Figure A8 (d) shows the end-to-end gathering time ratio for the three
network speeds. While there is no significant decrease for increasing maximum
error (according to the compression ratio that also decreases only slightly for
larger ∆ρ), for all network speeds data gathering times are reduced to between
60% for fast networks down to less than 15% for slow networks.

A5.4.2 Q2 1-Vehicle 1-Day

In this use case, the analyst requests the GPS data of a single day from one
vehicle in order to cluster all points within a predefined distance and timespan.
This could, e.g., serve to identify areas of slow traffic or areas where the vehicle
stopped. Based on our system model, the data is stored on-vehicle as a stream
of tuples ⟨t, x, y⟩ with the timestamp as the actual measurement time and the
x, y attributes being the coordinates in meters.

The query Q2 for this use case is described in detail in Table A1. The

Figure A9: Q2: Sketch of data structure produced by qpre.

58 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

0

5

10

15
(a) Average error on x, y

x-coord

y-coord

0.0

0.2

0.4

0.6 (b) Compression

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

(c) Adjusted rand index

Figure A10: Q2: (a), (b) Compression statistics; (c): Adjusted rand index.

GPS position data stream from one day and one specific vehicle is compressed
on-vehicle with some error ∆t on the timestamps and errors ∆x = ∆y on the
vehicle’s GPS coordinates and sent to the analysis center. There, the stream of
decompressed tuples is aggregated by qpre in tumbling windows of 5 seconds,
and for each window, only the latest tuple is returned as soon as the window
completes. The data provided to Lisco structured as a 2D matrix is sketched
in Figure A9 (the colored field contains the last added tuple). If a window is
empty because no data exists for the corresponding time period, the field in
the data structure will also remain empty.

As clustering parameters, Lisco is instructed via getMaskSize(τ) to check
the last 6 indexes of the 1D array, reducing the search space for neighbors
and ensuring the clustering only of points that are also close in time. The
clustering decision is taken by the function areNeighb(τ1,τ2) on the basis of
the Euclidean distance between the x, y-coordinates of the two tuples.

The compression statistics are given in Figure A10 (a), (b). We choose in
this case a fixed error ∆t = 1 s for the compression of the timestamps, resulting
in an average error of (0.095 ± 0.090) s. ∆x and ∆y are chosen to be equal
and ∈ [1, 2, 5, 10, 20, 50] m. Figure A10 (a) shows the average error on both
coordinates as a function of the maximum errors, with the average errors being
roughly one-third of the allowed maximum error. Figure A10 (b) shows the

A5. EVALUATION 59

total compression achieved for each maximum error: assuming a measurement
uncertainty for GPS data on the order of few meters, maximum compression
errors of less than ten meters may be assumed to be small. Still, these result
in compression ratios that can be lower than 0.2. This may be explained with
straight roads, resulting in long, linear segments in the GPS data, as well
as regularity of the timestamps. The violin plots’ long upward tails hint at
individual files with lower compressibility. The results for the comparison of
the resulting clusters from approximated and raw data are shown in Figure A10
(c): for small maximum errors ∆x,∆y, the adjusted rand index is close to 1,
but it decreases for larger maximum errors.

The gathering time ratios are shown in Figure A11 (a). The median is
around 1.3 for faster networks and does not decrease for increasing compression.
This shows that DRIVEN in this use case is only beneficial for a slow network.
More insight is gained from Figure A11 (b), showing the gathering time ratios
as a function of the baseline data size for a medium speed network. For small
data sizes, the additional time overhead of the compression and decompression
procedure increases the gathering duration over directly transmitting the raw
sample. For larger sample sizes, the gathering time ratio approaches 1 for
all maximum errors ∆x,∆y. This gives an approximation for the minimum
size of data to be collected given the network bandwidth and the compres-
sion/decompression overheads, as we further show in the remainder (we stress
nonetheless that our evaluation setup favors raw data gathering, as explained
in Section A5.3).

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

1.5

(a)
slow medium fast

0.05 0.10 0.15 0.20

raw data size [MB]

1.0

1.2

1.4

(b)
1m

2m

5m

10m

20m

50m

Figure A11: Q2: Gathering time ratios for various (a) maximal errors for different
network speeds and (b) raw data sizes (rolling average over 13 values, different colors
are used for distinct values of ∆x,∆y) for a medium speed network.

60 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

days

Figure A12: Q3: Sketch of data structure produced by qpre.

0

5

10

15 (a) Average error on x, y

x-coord

y-coord

0.0

0.5

1.0 (b) Compression

1 2 5 10 20 50

∆x,∆y [m]

0.25

0.50

0.75

1.00

(c) Adjusted rand index

Figure A13: Q3: (a), (b) Compression statistics; (c) Adjusted rand index.

A5.4.3 Q3 1-Vehicle 14-Day

In this use case, the analyst requests the GPS data from one specific vehicle
from the last 14 days, to possibly identify routes that one vehicle follows
regularly. The query Q3, described in the query overview in Table A1, differs
from Q2 in the period covered by the data and in the task of qpre: upon
consecutively receiving the GPS streams for each day and windowing (with
10 second windows) as in the previous use case, each tuple is also assigned
an identifier for the day. As soon as the stream for one day is processed, it is
added column-wise to a data structure as shown in Figure A12 (the first entry
of each tuple is the day identifier id, t is the number of seconds from midnight
on day id). Lisco can thus process the GPS stream of each day as soon as it is
received. In contrast to the previous use case, Lisco is now instructed to search

A5. EVALUATION 61

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

(a)

slow medium fast

0.0 0.2 0.4 0.6 0.8

raw data size [MB]

0.5

1.0

(b) 1m

2m

5m

10m

20m

50m

Figure A14: Q3: Gathering time ratios for various (a) maximal errors for different
network speeds and (b) raw data sizes (rolling average over 13 values, different colors
are used for distinct values of ∆x,∆y) for a medium speed network.

the last 15 cells in the direction t, and all cells in the direction “days” (14
ensures that all days are encompassed), for tuples within a Euclidean distance
of 150 m.

The compression statistics may be found in Figure A13 (a), (b) and are
similar to those seen in Figure A10 (a), (b), as the same data type with only
increased sample size is used. Here the constant maximum error ∆t = 1 s
results in an average error of (0.093 ± 0.081)s. The evaluation of clustering
qualities is shown in Figure A13 (c), also with similar results to the previous use
case. The addition of the attribute “days” for Lisco seemingly has only a small
influence, suggesting that in the majority of samples there is no significant
number of inter-day clusters.

Figure A14 (a) shows the measured gathering time ratios. The median
gathering time ratios are below 0.35 for all values of the maximum errors for a
slow network, and for faster networks around 0.75, although also samples with
ratios greater than 1 are present. As shown in Figure A14 (b) (for medium
network speeds), this is due to samples with raw data size smaller than 200KB
(at medium network speeds). For samples larger than 200KB, gathering time
ratios for all values of ∆x,∆y are smaller than 1.

A5.4.4 Q4 Car Usage Grids

In this use case, the analyst wants to investigate if a fleet of hybrid cars uses
the same drive mode (electric/traditional) on the same routes at similar times
of the day. To perform this query, the analyst requests GPS data as well as the
combustion engine and electric rear axle engine (ERAD) RPMs (rotation per

62 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

5373
6
6
5 6 6

3 2
3

1 1 2
1
2 1 1

73

6364

3 3 2 3
3
3
3 3 3

3 3
3

...

day 1

day 4

day 3

day 2
electric

combustion

(p1, p2)

(p3, p4)

g
ri

d
 o

f
d

a
y
 1

(a)

electric
combustion

(b)

Figure A15: Data structure of Q4. (a): Sketch of data structure produced by qpre.
(b): Example of one grid (instead of showing the number of vehicles per drive mode
and cell, only colors indicate the cell occupation).

minute) time series, requiring three different time series from three different
sensors, for one week from 20 hybrid cars. The three time series in tuple
notation are ⟨tG, x, y⟩ for GPS (physical timestamp [s], x-coordinate [m] and
y-coordinate [m]), ⟨te, ωe⟩ for the ERAD RPM (physical timestamp [s], RPM
[Hz]) and ⟨tc, ωc⟩ for the combustion engine RPM (physical timestamp [s],
RPM [Hz]). Using this data, a map is created for each day, and clusters of
identical drive mode (electric/combustion engine use) between different days
and different locations on the map are created to identify routes for which a
certain drive mode is preferred.

Over a rectangular geographic grid of 150 × 150 cells, the GPS trace of
a car Vi during each day of the requested week is discretized. For each cell,
characterized by the time period T during which Vi was present within the cell’s
boundaries, the combustion and electric engine RPMs during T are regarded
and a decision is taken whether the car was in combustion or electric mode
during T . Each cell contains a counter for each mode, and if Vi is found to
be in a certain mode while in that cell then the corresponding mode counter
is increased. For each day, each Vi can only contribute to each cell’s counter
once. This is repeated for all Vi, i ∈ {1, . . . , 20}, such that a map is created for
each day of the week containing the cells visited (including drive mode) by all
vehicles.

This pre-processing task is performed by qpre, and a sketch of the data
structured as a 3D matrix that is passed to Lisco is visualized in Figure A15(a):
The coordinates (p1,p2) and (p3,p4) are located at the corners of the geograph-
ical grid (which in this sketch is a 9× 9 grid). The first dimension of the 3D
matrix is time (day of the week), the other two are geographic x, y-coordinates.
A concrete example grid for one day is shown in Figure A15(b) (for visibility,
the counters for each cell are represented with only a color marker).

The query Q4 is formally described in the query overview in Table A1.
Two grid cells, represented by tuples τ1, τ2, become clustered in accordance
with counterDist(τ1, τ2) if the difference in both cells’ electric or both cells’
combustion mode counter is smaller than or equal to 1.

A5. EVALUATION 63

[∆x = ∆y,∆ωe ,∆ωc]
1 [1 m, 1 Hz, 1 Hz]
2 [2 m, 5 Hz, 5 Hz]
3 [5 m, 10 Hz, 10 Hz]
4 [10 m, 20 Hz, 20 Hz]
5 [20 m, 50 Hz, 50 Hz]
6 [50 m, 100 Hz, 100 Hz]

Table A2: Q4: Maximum-error sets used. As three different time series are requested,
three different error parameters are given (for GPS, ∆x = ∆y).

The time channels tG, te, tc (for GPS, electric engine RPM and combustion
engine RPM) are compressed with ∆tG = 1 s; ∆te = ∆tc = 0.005Hz, resulting
in average errors of (0.49± 0.06)s, (142± 72)µs and (921± 161)µs, respectively.
The remaining channels are compressed for six sets of maximum errors shown
in Table A2.

We assume for the evaluation that there is no change in network and analysis
center performance for gathering the data from 20 vehicles at once, and thus

5 10 20 50

∆x,∆y [m]

0

5

10

15
(a) Average error on x, y: GPS

x-coord

y-coord

1 5 10 20 50 100

∆ωe ,∆ωc [Hz]

0

5

10

15

(b) Average error on ERAD/engine RPM

ERAD RPM

engine RPM

1 2 3 4 5 6

maximum-error set #

0.00

0.05

0.10

0.15

0.20 (c) Compression

1 2 3 4 5 6

maximum-error set #

0.7

0.8

0.9

1.0

(d) Adjusted rand index

Figure A16: Q4: (a) Average error on the x- and y-coordinate for several values
of the maximum compression errors ∆x,∆y for GPS data; (b) average error on
the ERAD and engine RPM for several values of the maximum compression errors
∆ωe ,∆ωc ; (c) compression statistics for different maximum-error sets (see Table A2);
(d) adjusted rand index.

64 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

1 2 3 4 5 6

maximum-error set #

0.4

0.6

0.8
(a)

10 20 30 40 50

raw data size [MB]

0.5

0.6

0.7

(b) 1

2

3

4

5

6

Figure A17: Q4: Gathering time ratios for (a) a very fast network speed and (b)
for various raw data sizes (rolling average over 13 values, different colors are used for
different maximum-error sets) for a very fast network.

simulate the query on one vehicle only (i.e., utilizing one ODROID as in the
other use cases).

The compression and clustering statistics for this use case are shown in
Figure A16: (a) is the average error on the x, y-coordinate of the GPS time
series for different values of ∆x = ∆y. The average errors for the first two error
sets are not displayed, due to the low geospatial precision of the GPS time
series the average error on the GPS coordinates is on the order of 10−5m for
∆x = ∆y ∈ {1m, 2m}. (b) is the average error on both the ERAD and the
combustion engine RPM, which are roughly one order of magnitude smaller
than the allowed maximum errors ∆ωe ,∆ωc . (c) shows that already for the
maximum-error set #1 a median compression of 12 % can be achieved, down
to 2% for #6. This is explained by long stretches of inactivity of either the
ERAD or the combustion engine, resulting in long stretches of constant zero
readings in their respective time series. These stretches can be compressed well
with PLA. The adjusted rand indices in (d) remain in the median above 0.9
until maximum-error set #6, indicating that the analysis accuracy in this use
case is quite robust towards compression.

Gathering time ratios for a very fast network are shown in Figure A17 (a)
for the six different maximum-error sets. For the smallest individual maximum
errors at maximum-error set #1, the gathering time ratio is below 0.65, and for
increasing individual maximum errors the gathering time ratio decreases slightly
more to 0.55, but is almost constant. This may be due to the almost-constant
compression for higher maximum-error sets, see Figure A16 (c). Figure A17
(b) shows the gathering time ratios for the same very fast network speed for
various raw data sizes. For all maximum-error sets, the gathering time ratio

A5. EVALUATION 65

tends to decrease for increasing raw data size. The noisy behavior of the curves,
which is almost identical for each maximum-error set, may hint at individual
files that are harder or easier to compress than other files of similar raw data
size.

A5.5 Compression Evaluation

To gauge the performance of our PLA compression technique, we compare
it with the DEFLATE compression algorithm used for ZIP compression. We
choose ZIP because of its general-purpose nature, widespread use and lossless
compression. Here, we show a comparison for the data used in Q1 (LiDAR) and
Q2 (GPS). In our experiments, we zip for each separate channel nzip consecutive
points (thus nzip · size(float) bytes) and take the average over all channels per
file. The results are plotted in Figure A18, with ”×” marking the compression
achieved with PLA plotted in nzip’s column corresponding to the average
segment length obtained through DRIVEN (be reminded that the segment
length with our PLA method varies and depends on the underlying data; only
the maximum segment length is specified and set to 256 points). We set here the
maximum tolerated errors to minimal-loss values, i.e., ∆ρ = 0.01m for LiDAR,
and ∆x = ∆y = 1m for GPS, cf. Figures A8 (a), A10 (a). For comparable
segment lengths, the ZIP representation is 2-10 times larger, indicating the
advantages of lossy, piecewise linear compression for this type of data and
scenario. Even when zipping all the available data (nzip =∞), the gap remains
stark, which further hints at the validity of our PLA implementation. Moreover,
allowing for larger segment lengths would limit the usefulness in a live data
gathering scenario, as shown in the following subsection.

10 50 120 256 512 ∞
nzip

0.00

0.25

0.50

0.75

1.00

co
m

p
re

ss
io

n

PLA

PLA

ZIP compressibility

LiDAR

GPS

Figure A18: Compression ratios using ZIP for varying segment lengths nzip. ”×”
marks the compression achieved with PLA for equivalent average n for smallest
maximum errors (almost lossless).

66 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

A5.6 Logical Latency

Lastly, we evaluate DRIVEN by studying the logical latency observed when
compressing data from the Ford Campus and GeoLife datasets. By doing this,
we can thus estimate the live gathering time incurred when performing PLA
compression on live data (which can be approximated by the average segment
length multiplied with the sampling period of data being clustered, since this
is orders of magnitude larger than emission time, as well as transmission and
reconstruction delays).

Notice that we do not present results for the Volvo dataset in this case,
since the different order of magnitude of sampling period between GPS and
ERAD/engine data (seconds versus milliseconds) results in GPS data (already
discussed for the GeoLife dataset) being the one dominating the live gathering
time delay for compression of live sensed data. More concretely, given the GPS’
data sampling period of 5 s and the ERAD/engine RPMs sampling period of
40 ms, the shortest possible segment of GPS’ data (approximating 3 points)
results in an average live gathering time of 10 seconds while the longest possible
segment of ERAD/engine RPMs data (approximating 256 points) results in an
average live gathering time of approximately 5 seconds.

Based on our description of logical latency (Section A2.4), the logical
latency incurred by DRIVEN can be modeled as follows. For the stream of
values y, the logical latency is obtained as the difference j − i where ⟨j, yj⟩
is the last tuple read before the compressor sends information that triggers
the i-th tuple’s reconstruction on the decompressor side; two situations are
then possible: either processing ⟨j, yj⟩ triggers the emission of a line segment
⟨n, a, b⟩ and in this case ⟨i, y′i⟩, with j − n − 1 ≤ i ≤ j − 1, is reconstructed
among n− 1 other tuples using the segment’s information, or ⟨j, yj⟩ triggers
the emission of a singleton ⟨1, y′i⟩ where then i = j − 2 (since 3 tuples are read
before emitting a singleton, the logical latency is always 2 in this case). Logical
latencies are bounded by the maximum segment length (this occurs for the
first tuple on a maximum-length segment), and the average logical latency
corresponds (when omitting singletons) to half the average segment length.
When no compression is performed, logical latencies are 0. For an input tuple
⟨y0i , . . . , yki ⟩ (which is split into ⟨i, y0i ⟩, . . . , ⟨i, yki ⟩), the combined logical latency
is the maximum logical latency of the individual tuples ⟨i, y0i ⟩, . . . , ⟨i, yki ⟩, as
the original tuple can only be reconstructed as soon as all its attributes have
been individually reconstructed. The compression scheme used in DRIVEN,
i.e., the PLA construction method Linear coupled with a streaming-based
protocol, has been shown in [58] to produce logical latencies one to two orders
of magnitude smaller than other state-of-the-art PLA construction algorithms.

In addition to calculating the average logical latencies of the Ford Campus
and GeoLife datasets, we further study to which extent the logical latencies
can be reduced by reducing one parameter of our PLA compression scheme:
the maximum segment length (set to 256 tuples in our evaluation).

Figure A19 shows the individual and combined average logical latencies
as violin plots for different compressions measured over the (a) LiDAR (Ford
Campus) and (b) Beijing GPS (GeoLife) datasets. The red violin plot on the

A5. EVALUATION 67

0.1 0.2 0.5 1 5 10

∆ρ [m]

0

50

100

(a)
angle distance combined

1 2 5 10 20 50

∆x,∆y [m]

0

25

50

75

100

(b) time

latitude

longitude

combined

Figure A19: Distribution of logical latencies in number of tuples for (a) the LiDAR
(Ford Campus) and (b) the Beijing GPS (GeoLife) dataset as a function of the
respective maximum errors. The logical latency for the angle/time coordinate is
displayed over the y-axis (red), as their corresponding maximum errors are constant
over each of the two datasets.

left of both (a) and (b) displays the distribution of average logical latencies for
the (logical) timestamps. As the (logical) timestamps are only compressed with
a constant maximum error (∆α = 0.0015rad for LiDAR, ∆t = 1s for GPS),
only one violin plot is shown per dataset for the (logical) time channel.

The span of the violin plots for different compressions is small for both (a)
and (b), meaning that the logical latency depends more on the type of data
than on the specific file of a certain datatype. Second, the combined logical
latencies for both datasets are dominated by the latency of the timestamp
channel. As this channel is quite linear, and thus easily compressible, we expect
the longest segments for the timestamp channel and thus a large logical latency.
Concretely, this means that other channels have to wait for the time channel
to be decompressed before an original tuple can be reconstructed.

68 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

For the GeoLife GPS dataset, used in Q2 − Q3, the average difference
between two timestamps in the original data is 5s. Thus, neglecting transmission
time, it takes on the order of 100× 5s = 500s to reconstruct an original input
tuple for GPS data with the aforementioned sampling rate.

For the Ford Campus LiDAR dataset, used in Q1, there are 20000 readings
of the logical timestamp channel α per second (see Section A4.1). Combined
with a logical latency on the order of 100 tuples, this results in an average
reconstruction time of at least 0.005s.

In the use cases investigated in this evaluation, those latencies carry little
significance, as historic data is gathered. In these cases, where the data is
replayed at much higher than live speeds, the transmission duration is dominant
for the data gathering time. When live data is requested, however, the logical
latency can lead to significant delays, but this is inevitable for PLA compression.
The logical latency is strictly linked to the segment lengths of the PLA and
can be reduced either via a smaller maximum segment length or via a smaller
maximum error threshold, resulting in a PLA with shorter segments. For the
combined logical latency, these changes will have greater effects if applied on
the time channel, which due to its compressibility is dominant overall in our
evaluation.

Figure A20 shows the logical latency and the compression for the LiDAR
and GPS dataset (each averaged over all contained channels) for different
values of the maximum segment length using constant error bounds (LiDAR:
∆ρ = 1m, ∆α = 0.0015rad; GPS: ∆x = ∆y = 10m, ∆t = 1s). This figure
motivates the choice of n = 256 for the maximum segment length, as for this
value the compression is maximal. For higher n, the compression does not

50

100
(a) LiDAR

16 64 256 1024 4096 16384

n (logarithmic scale)

20

40

60

lo
g
ic

a
l

la
te

n
cy

(b) GPS

0.10

0.15

0.12

0.14

0.16

0.18

co
m

p
re

ss
io

n

Figure A20: Average logical latency (over all channels) and compression for different
maximum segment lengths n (n = 256 is the maximum segment length chosen in this
evaluation).

A6. RELATED WORK 69

increase further, as the maximal length of segments is an inherent characteristic
of the data used (for a given maximum compressor error). The compression
even becomes slightly worse as more data must be allocated for transmitting
the segment length (i.e., two bytes are needed for n > 256). The logical
latency increases with increasing segment length, and becomes stationary as
the maximum inherent segment length is reached.
If lower logical latency is desired for a query, this figure shows that in turn
lower compression will be achieved. However, depending on the region within
the plots, large gains in logical latency can be achieved with comparatively
smaller losses in compression, especially noticeable in the n = 64 . . . 256 region.

A5.7 Summary of Evaluation Results

The evaluation shows that, compared to the baseline, DRIVEN can maintain
an adjusted rand index greater than or equal to 0.9 for the clustering of
approximated data while compressing the raw data to less than 5%, 20% and
2.5% for LiDAR, GPS and a combination of GPS and other vehicular signals,
respectively - outperforming lossless ZIP compression by factors of 2− 10 for
LiDAR and GPS. Also, DRIVEN affords speed ups exceeding ×10 in data
gathering times for large-enough amounts of data (at least 200KB per sensor in
our setup). Still, the logical latency inherent to PLA must be considered when
working with live data. This logical latency can also be significantly decreased
using an appropriate maximum segment length.

A6 Related Work

Clustering, as a core problem in data mining, has been extensively studied in
the last decades (see e.g., the survey [102] and the references therein). The
two main trends in clustering algorithms differ on what should be considered
as a cluster, either privileging well-balanced ball-like clusters (as in the widely-
studied k-means approach) or rather focusing on local density leading to
arbitrarily shaped clusters (e.g., DBSCAN [66]-style). Other features that can
distinguish existing clustering algorithms include their sensitivity to outliers
(not interesting data that should be ignored in some applications), their ability
to work with any distance function or the required level of parametrization.

Research on data streaming has also investigated how traditional batch-
based clustering can be ported to the continuous domain. Clustering for large
fast-coming streaming data has been widely studied in the last decade [177],
focusing on producing approximations of the batch-clustering algorithm. Facing
high-rate data streams, attention has indeed been paid to maintaining statistical
summaries of the streamed data in order to generate on-demand clustering.
Focus on recent data is captured by clustering only a recent window (using either
landmarks, sliding windows, or assigning decreasing weights to older data) of
points [177]. In [187], the authors design a fully streaming clustering algorithm
(as the streaming version of a recently proposed clustering algorithm [168]),
computing the exact same clustering of its batch-based counterpart. Similar to

70 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

the clustering algorithm described here, the clustering is density-based (hence
for arbitrarily shaped clusters), works with any distance function but uses a
different notion of dissimilarity between objects. However, contrary to our work,
the ordering of data is not exploited resulting in O(n) time for the processing
of a single point (while clustering n points).

Various solutions in the literature use approximation techniques together
with streaming-based clustering methods to improve the performance, in one
or more dimensions, of different clustering problems. Replacing time series by
shorter representations [27] such as Discrete Wavelet / Fourier Transforms or
Symbolic Aggregate Approximation to facilitate the processing and enhance
the performance of several data mining algorithms (including clustering) has
been a long trend in time series data mining [165]. Differently from our work,
PLA or similar techniques (such as piecewise aggregate or piecewise constant
approximation) are used to replace a time series by a lighter version to be later
processed, as for clustering of time series in [128]. In our work, the objects
being clustered are not the time series but the input points themselves and
PLA is used to gather data efficiently (i.e., the data stream eventually clustered
has the same length as the original one). To the best of our knowledge, this
joint leveraging of streaming and PLA was not discussed before.

Concerning the generation of the PLA of a time series, there is an extensive
literature covering it (e.g., [64], [111], [134], [201]) while focusing on different
aspects of the approximation (errors, number of segments, processing time, etc.).
Among recent works targeting sensor streams, we note the Embedded SWAB
algorithm [22] (a modification of the well-known SWAB [111] segmentation)
dedicated to the compression of wireless sensor raw data before transmission.
The experimental study measuring power consumption shows that using PLA
pays off in embedded devices by balancing out the computation overhead
with reduced communication, thus reducing energy consumption. The authors
note that the abstraction size is crucial in wireless sensor networks, thus
motivating the study of trade-offs between small errors and high compression,
which is one of the focal points of this work, in the context of the considered
applications relevant in industrial settings. We also measure the time spent
in the decompression process in our work and advocate that information
retrieval from the measured data is also faster with PLA than with raw
data transmission. In another recent work [81], the authors devise a PLA
algorithm with a small memory footprint and average instruction count for
resource-constrained wireless sensor nodes. They use a best-line approximation
(similarly to us) but with no intercept (so more segments are produced), and
the approximation error is bounded by segment instead of by point.

In an earlier work [90], a preliminary demonstration of DRIVEN can
be found. In contrast to that work, we here propose a new algorithmic
implementation of our multi-channels PLA compression that enables exact
error guarantees through completely independent processing of time and other
channels of a sensor and additionally resulting in better compression ratios.
Moreover, we provide a more extensive evaluation that extends previous results
to larger data volumes and higher network speeds. Furthermore, the present
work investigates the effects and limitations of applying DRIVEN in live data

A7. CONCLUSIONS 71

gathering scenarios and introduces an additional experiment advocating for
the benefits of using PLA versus standard lossless ZIP compression.

A7 Conclusions

We have presented here the DRIVEN framework for data retrieval and cluster-
ing in vehicular networks. The framework, implemented in a state-of-the-art
SPE, provides simultaneously an efficient way for gathering data and perform-
ing clustering on said data based on an analyst’s queries. Information retrieval
is achieved using PLA for compressing the input stream in a streaming fash-
ion. Once uncompressed, the approximated stream is fed to a distance-based
streaming clustering algorithm. Both the approximation and the clustering are
parameterizable for allowing different applications to be run by the framework.
Through thorough experimentation using real-world GPS and LiDAR data as
well as other vehicular signals, we show the versatility of the framework in being
able to answer different types of queries of historical data involving various
clustering requests for vehicular networks, and also show that compression in
data retrieval speeds up the transmission of gathered data while being able to
preserve a very similar clustering quality compared to raw data transmission.
Data can be reduced to 5−35% of its raw size, reducing drastically the duration
of the gathering phase for large volumes of data, with only a small accuracy
loss on the clustering.
We furthermore have evaluated the application of DRIVEN in a live-data
scenario and studied the additional (and inherent) latency from the PLA
compression, which can nevertheless be reduced for a predictable loss in com-
pression, and gauged the compression capabilities of our PLA implementation
using ZIP compression.

The idea behind DRIVEN is to leverage the cumulative power of edge
devices to improve data analysis applications that are traditionally deployed
entirely at data centers and that require all input raw data to be first gathered
centrally. The solution we propose in this paper can be enhanced along different
dimensions in future work. First, other techniques (e.g., Symbolic Aggregate
Approximation - SAX) can be leveraged at the vehicles to reduce the amount
of data to be forwarded, and it is thus interesting to study how such techniques
would perform along with the performance metrics we take into account in
this paper. Second, given that many other machine learning techniques are
commonly used in cyber-physical systems’ data analysis, their integration (and
possible porting to the streaming paradigm) within DRIVEN is also of interest.
Finally, it is also important to notice that the computational power of each
edge device (be it a vehicle or something else) can be used in conjunction with
the data center’s one in several ways. While we study a solution that leverages
the edge device’s computational power to approximate and compress raw data,
we also believe that distribution of machine learning tasks (e.g., learning over
different subsets) is a way to leverage such computational power that is worth
exploring and can enable efficient and effective solutions.

72 A - TUNEABLE TIME SERIES COMPRESSION AT EDGE

Chapter B

Time- and Computation-Efficient Data

Localization at the Edge

Romaric Duvignau, Bastian Havers, Vincenzo Gulisano, Marina
Papatriantafilou

The following is an adapted version of the work published in IEEE Access, Vol.
9, p. 137714-137732, as “Time- and Computation-Efficient Data Localization
at Vehicular Networks’ Edge”. Any changes serve only to retain the consistency
of this thesis.

Abstract

As Vehicular Networks rely increasingly on sensed data to enhance functionality
and safety, efficient and distributed data analysis is needed to effectively leverage
new technologies in real-world applications. Considering the tens of GBs per
hour sensed by modern connected vehicles, traditional analysis, based on
global data accumulation, can rapidly exhaust the capacity of the underlying
network, becoming increasingly costly, slow, or even infeasible. Employing
the edge processing paradigm, which aims at alleviating this drawback by
leveraging vehicles’ computational power, we are the first to study how to
localize, efficiently and distributively, relevant data in a vehicular fleet for
analysis applications. This is achieved by appropriate methods to spread
requests across the fleet, while efficiently balancing the time needed to identify
relevant vehicles, and the computational overhead induced on the Vehicular
Network. We evaluate our techniques using two large sets of real-world data in a
realistic environment where vehicles join or leave the fleet during the distributed
data localization process. As we show, our algorithms are both efficient and
configurable, outperforming the baseline algorithms by up to a 40× speedup
while reducing computational overhead by up to 3×, while providing good
estimates for the fraction of vehicles with relevant data and fairly spreading the
workload over the fleet. All code as well as detailed instructions are available
at https://github.com/dcs-chalmers/dataloc_vn.

https://github.com/dcs-chalmers/dataloc_vn

76 B - DATA LOCALIZATION AT EDGE

B1 Introduction

With the recent advancements in connected Vehicular Networks [44], often
facilitated by Vehicular Ad Hoc Networks (or VANETs) [107], the automotive
industry is witnessing an unprecedented growth of possible ways for leveraging
the fine-grained data sensed in modern vehicles and enhance drivers’ safety and
experience. If accessed in a real-time fashion as it is being sensed, such data can
lead to fresh, up-to-date insights for analysts and practitioners [153]. Similarly
to how Mobile Edge Computing [196] pushes parts of data analysis applications,
previously run entirely in the cloud, towards mobile users, to achieve lower
latency and bandwidth consumption, Vehicular Edge Computing [130] aims
at better utilizing the cumulative computational power of Vehicular Networks
while coping with high-mobility networks and the challenges stemming from
their dynamic topologies and communications. When focusing on data analysis
in the context of Vehicular Networks, a critical challenge is that of data
gathering [91], [119] for subsequent analysis. While in the past companies
could potentially afford the central gathering of all the data sensed by an
entire fleet of vehicles (see [73], [175] for applications and services in VANETs),
a modern vehicle can now generate several gigabytes of data per hour [44],
making this approach infeasible in terms of infrastructure and costs - which
could be alleviated by enforcing the collection of just enough data from relevant
vehicles only.

Several recent studies in the literature are focusing on how to avoid general
central data gathering by transitioning to models in which the data selection
processes, or even the analysis itself, are pushed towards the vehicles [46],
[152], [188], for efficient and continuous filtering [150], preprocessing through
online compression [58], [91], and conversion of raw data into information in
Federated Learning [139]. However, these distributed analysis models often lack
mechanisms that attempt to involve only valid vehicles into the analysis, to thus
avoid unnecessary computational load and data transfers or other hindrances
to the analysis. As an example, Federated Learning on vehicles [132] requires
the involvement of vehicles that have gathered sufficient suitable data in order
not to hinder the learning process [212]. Furthermore exacerbating the issue of
vehicle selection are skewed data distributions on vehicles [53], [63] and data
minimization directives such as the European GDPR, which dictate to minimize
exposure risk and thus overall involvement of customer vehicles. To find vehicles
possessing data relevant to an analysis task, one has to overcome the lack of
a-priori knowledge about which vehicle has collected which data, without
centrally gathering said data first, by leveraging the vehicles’ computational
power. As vehicles possess only application-specific computational hardware
that is not provisioned for more general tasks, it is furthermore paramount to
avoid unnecessary computational strain on the fleet.

B1. INTRODUCTION 77

Contribution

In light of the present challenges concerning the transition from central to
distributed, edge data gathering and analysis in large fleets of vehicles, we pose
the following question:

How can data residing on the edge nodes of a Vehicular Network be localized
efficiently through request-spreading from a central coordinator to the vehicles?

The manner of spreading requests is regulated by a data localization algorithm
orchestrated at a central coordinator that has to be aware of the completion
time and the computational overheads induced on the fleet of vehicles. Once
a request is sent from the coordinator to a vehicle, the latter checks locally
whether a set of conditions is satisfied by the stored data (e.g., whether the
data spans a given time interval, or whether the data indicates that the vehicle
is associated with a specified geographical position, speed, driving mode, etc.),
and returns a compact answer indicating whether the conditions hold. When
performing traffic flow analysis, for instance, this could be used to efficiently
compute a certain statistic (e.g., the average speed) only based on vehicles
driving above a certain speed, within a city center, or during rush hour, or
to mark these vehicles for a subsequent analysis. With the ultimate goal of
collecting a certain amount of answers from vehicles matching a given set of
conditions, we propose efficient data localization algorithms, that can also cope
with dynamic connectivity, and benchmark them against baseline algorithms.
Our evaluation, based on realistic queries and also assessing the spreading of
requests using real vehicular data, shows that our data localization algorithms
provide up to a 40× speedup and less than one-third of the computational
overhead, compared with baseline algorithms optimizing only one of the metrics.

The typical characteristics of Vehicular Networks include recurrent topology
changes due to vehicles’ high-speed mobility and properties of the underlying
road network (including communication-challenging environments such as
bridges, tunnels, etc.). Though this challenging aspect can impede successful
communication between a central coordinator and vehicles, our work accounts
for it with algorithms able to react rapidly to dynamic connectivity issues. To
the best of our knowledge, we are the first to formulate and analyse the problem
of localizing data in a vehicular fleet, as well as to propose algorithms that can
tune the key trade-off between resolution time and overhead on the vehicles
and the communication network. The remainder of the paper is organized
as follows: We introduce the System Model in Section B2. We present in
Section B3 baselines and propose novel algorithms for solving data localization
queries by spreading a set of requests over a fleet of vehicles. We lay out
our evaluation methodology in Section B4.1 and cover the evaluation of the
proposed algorithms in Section B4.2. We discuss related work in Section B5,
before concluding the paper with a summary in Section B6. In the Appendix,
we discuss the relation of the present paper to an earlier conference article that
presented first results on a preliminary formulation of the problem for a subset
of the system types considered here.

78 B - DATA LOCALIZATION AT EDGE

B2 System Model and Problem Statement

B2.1 Problem Definition

We consider the following model: a fleet V of k vehicles, also referred to as
nodes, is equipped with different types of sensors s1, s2, . . . from the fixed
sensor set S, e.g., S = {GPS, steer, break, . . . }. We define the continuous
timestamped record sequence recorded by the sensor si ∈ S at vehicle v ∈ V as

si(v) = (t0, x0), (t1, x1), . . .

where xj is the sensor reading at time point tj . All vehicles are connected via a
two-way communication channel to a central coordinator C, e.g., a datacenter.
Data analysts require C to process data localization queries q1, . . . , qr, with
each query focusing on some subset of the possible sensors for some time span
of recorded data.

A (data localization) query here corresponds to the task of identifying n
vehicles in the fleet with relevant data. In more detail, a query q carries a
specific condition P that must be fulfilled by vehicles’ data to be relevant for q
and every query specifies some number of positive answers n (responses from
distinct vehicles with relevant data, where a “positive” or yes-answer implies
that P holds locally) that must be collected to resolve q before a potential
next analysis step involving only these n vehicles with relevant data can follow.
kq is the number of vehicles in the fleet on which P holds, and QR = kq/k is
the query rate or average answer rate of a query q. We assume k ≫ kq > n,
thus n vehicles with relevant data can indeed be found for a query q. To check
if a particular vehicle v fulfills q’s condition P for some query q, a request
r(q) is sent to v and after checking P locally, v responds to C with its yes-
or no-answer (and potentially some additional data). If a vehicle v receives a
new request r(q′) corresponding to another query q′ while already processing a
previously received one r(q), then r(q′) is added to v’s local task queue; once
v has terminated its processing of r(q), v’s task queue is then processed in
FIFO order. Naturally, not every vehicle can answer positively to every request,
because of lack of data or because the data is found not suitable to answer
that particular query. The required number of answers is meant to localize a
sufficient amount of data from the vehicles to be meaningful for the analysis
task at hand, while avoiding excessive participation.

Notice that contacting exactly the number of vehicles given by the analyst
is not necessarily enough, as some might not answer or have data that does not
satisfy the condition. On the other hand, contacting too many vehicles might
result in some of them wasting some of their computational power to inspect
data that is not actually needed by the analyst. Thus, we need to require just
enough positive answers (e.g., for statistical significance or for reducing the
likelihood of identifying individuals in the data), but not too many (because of
the time needed to collect all the data [90], [91], the induced computational
load, and potential network stress).

We will use the notation q.P for the condition and q.n for the minimum
number of answers required to complete the data localization query q. The

B2. SYSTEM MODEL AND PROBLEM STATEMENT 79

condition P specifies (i) which sensors are relevant to the query and (ii) an
overall condition that local data must satisfy for the vehicle to acknowledge
that its data can be part of the desired analysis. In the following: Sq ⊆ S is a
subset of sensors which are relevant for the query q (by default Sq = S); and
(tstart, tend) are time bounds spanning q’s time interval of interest such that for
every participating node v and every sensor of type si ∈ Sq, only the portion
of local data {(t, x) ∈ si(v) | tstart ≤ t ≤ tend} is examined (if not specified,
the full recorded data is considered).

Example query To interactively check the traffic flow within a certain area A
of a city, an analyst wishes to identify n = 100 vehicles in a k = 100000 vehicles
fleet, with P = “driven within area A in the last hour, with an average speed
greater than 50km/h over a 10 minutes window, and with GPS measurements
spaced by at most 5s from each other”. In this query, assuming the query is
created at 9:00, Sq = {GPS}, (tstart, tend) = (8:00, 9:00), and A is a bounding
box or geofence approximating the area of interest. Notice that, in this example,
to check if any period of 10 minutes (representing only 12000 data points for 100
cars with 5 seconds GPS readings) within the last hour fulfills the condition, a
centralized solution requires between n · 3600/5 (considering at least n vehicles
need to answer) and k · 3600/5 data points to be transmitted, i.e., 72000 to
7200000 data points; that is, in order to check the existence of any period of
10 minutes of consecutive readings with speed greater than 50km/h, since the
coordinator has no information whether they exist (and in which portion of
the hour), the entire hour needs to be retrieved and checked. Checking the
condition on-board the vehicles alleviates this data transfer and only short
yes/no answer messages need to be communicated with the coordinator.

Applications In the aforementioned example query, the mere collection
of affirmative or negative answers from the fleet can already provide a good
estimation of the fraction of vehicles that satisfy P in the fleet (and thus quantify
the traffic flow in the area in question). This defines a first set of applications, in
which a query itself gives rise to a statistical insight by providing a population
estimate. As hinted in the example, transmitting raw data from a random
sample of the fleet in the above example to check at the coordinator whether
P holds for a vehicle would incur significantly higher communication costs,
while yielding the same insight. In addition to the first set of applications, the
coordinator node C can ask the vehicles which answer positively to subsequently
perform tasks suitable only to them. These tasks can include transmitting
raw data, performing statistical summaries such as averages or other aggregate
functions over the local data, or higher-level computations on-board the vehicle
over the relevant data, such as training an Artificial Neural Network. However,
we do not consider the query post-treatment in this work and concentrate on the
aspect of data localization. That is, we focus on finding a suitable set of vehicles
that will participate in the query resolution process. One may note that some
of the subsequent tasks could be answered alongside P ’s verification, entailing
minor changes in the processing time of the query. The aggregated value could
be transmitted with the vehicle’s yes/no-answer to C without significantly

80 B - DATA LOCALIZATION AT EDGE

changing the resolution time. For computationally heavier analysis tasks or
those requiring substantially longer time (such as data transfers from the
vehicles), we consider that the post-treatment is executed in a way independent
of the selection process, i.e., vehicles will always first inform C if they validate
P before executing the post-treatment.

B2.2 Fleet Model

The fleet V of vehicles that can be contacted encompasses the totality of
vehicles that are equipped to take part in answering requests incoming from
the coordinator C. As vehicles in V may be switched off, we introduce the
active set of vehicles Vt ⊆ V at a time t as the ones switched on and willing to
participate in the data localization queries’ resolution process. A realistic fleet
is a dynamic entity where vehicles leave and join impromptu (thus, vehicles
are being switched on and off). We differentiate two variants of the underlying
system model depending on how the fleet Vt evolves during the resolution of a
batch of queries.

We first consider a static fleet model. In that model, the set of contactable
participants is always fixed, hence we do not consider that new vehicles may
join the fleet or that vehicles may leave within the time interval spent resolving
a particular query. Thus, Vt = V for all t.

In the dynamic fleet model, the set V of all vehicles (such as all vehicles
from a company fleet) is larger than the active set Vt at time t, unlike in the
static model. The active set evolves through time with the possibility for new
vehicles to join and for old ones to leave. Contrary to the static model, a vehicle
may be switched off (that is, leaving the active set) during the resolution of
a particular query q and may not send its answer for q to C; similarly, new
vehicles that were absent at the start of q’s resolution may join the active fleet
at any time during q’s resolution process.

To quantify the amount of vehicles leaving the fleet over time, we rely on
the notion of churn. Given a period ∆, we define the churn at time t based on
the number of vehicles that leave the fleet during the period [t−∆, t) but that
were part of the fleet during the period [t− 2∆, t−∆). More formally:

Definition B1. Churn∆(t): The number of vehicles that were part of Vt′ for
all t′ ∈ [t− 2∆, t−∆) but that leave the fleet at any t′′ ∈ [t−∆, t), divided by
the size of Vt.

Note that while the churn takes into account only vehicles leaving the fleet,
the number of vehicles joining the fleet can be obtained through the size of the
active fleet and the value of the churn.

B2.3 Communication Model

We assume that the coordinator C has no access to the vehicles’ local data other
than through communication with them; thus, the amount of work needed to
test q.P for a query q cannot be estimated before checking P locally on the
appropriate vehicle. We further assume that C will always successfully contact

B2. SYSTEM MODEL AND PROBLEM STATEMENT 81

any active vehicles and as soon as a vehicle does not communicate for a certain
period of time, it is considered inactive.

In the likely event that the local requested data is missing, the involved
vehicle does not satisfy q.P and it answers negatively. Similarly, active vehicles
unwilling to participate in a query’s task (for privacy or other reasons) can be
modeled by negative answers.

In the dynamic fleet model, new vehicles signal their presence once they
become active and ready to answer potential requests. Since connection to C
can be lost at any point in time (e.g., driving through a tunnel or reaching a
poorly covered geographical area), we assume that once a vehicle v has become
inactive, it cannot be reached by C and drops all currently processed queries;
hence, C will not receive any answers from v for the queries it was processing
at the time. This allows abstracting the high degree of node mobility and its
effect on communication by possibly short interruptions in the active status of
the vehicles; here, individual packet losses are neglected as overall they can be
compensated by configuring a lower transfer rate and higher latency for the
underlying communication channel.

B2.4 Performance Metrics

We associate with each query three performance metrics:

1. Query Resolution Time, the elapsed time between deploying a partic-
ular query q at C and q’s resolution, i.e., when q.n positive answers have
been collected at C.

2. Fleet Workload, the overall computing load on the vehicles defined as
the sum of individual processing times (local workloads) of all vehicles
involved in processing the received requests associated with the query.

3. Fairness of the algorithms, the standard deviation of the cumulative
local workloads between the vehicles that received a request, representing
how fair the spread of the fleet workload is.

Notice that optimizing for both (1) and (2) at the same time is not straight-
forward, as they compete. More concretely, query resolution time is minimized
by simply asking all vehicles in the fleet and ignoring answers after n positive
answers are retrieved (thereby maximizing the Fleet Workload required per
query, which is further exacerbated when queries are executed in parallel or
are computationally expensive, see Section B4.1.3) while the fleet workload is
minimized for instance by asking one vehicle at a time in a round-robin fashion
(implying high time overhead).

The amount of uncertainty in the model is an additional challenge: each
query requires different amounts of time per vehicle that can hardly be foreseen.
The reasons for this are twofold:
(i) Query semantics. As it is unknown how much relevant data a vehicle has
collected, it can not be estimated beforehand how long it will take for this
vehicle to search for the property required by the request. Likewise, some
queries may be answered positively as soon as the first matching instance is

82 B - DATA LOCALIZATION AT EDGE

found in the data, whereas a negative answer requires checking all potentially
relevant data.
(ii) Computing capacity. A vehicle that is contacted may be performing other
processing with higher priority and equally unknown completion time before it
can start answering the latest received request at hand.

B3 Data Localization Algorithms

We present here algorithms that select a subset of vehicles among the kq
vehicles satisfying P for a single query q = (P, n) assuming kq ≥ n. For a
set of queries q1, . . . , qr, each query can be resolved by executing at C, either
sequentially or concurrently, the procedures described hereafter. Without
further assumptions on the distribution of nodes satisfying P , it is natural to
randomly and uniformly send requests to nodes within the pool of nodes that
have not been requested yet. However, other factors (such as the number of
requests currently being processed on the vehicle, historical local computation
load, etc.) can be used to bias the selection process. Since in our setting,
queries are relatively short to solve (from a few seconds to minutes at most),
we consider that algorithms do not need to send another request to a vehicle
that has answered negatively, in case its newest acquired data now satisfies the
property P . We hence assume in our analysis that a vehicle’s to a query q does
not change over the whole period of the algorithms’ execution.

We present in this section four algorithms focusing on different measures:

• BASEEAGER, a baseline approach that optimizes the resolution time
needed to answer q,

• BASELAZY, a baseline approach that optimizes the number of contacted
vehicles (hence minimizing required communication and reducing fleet
workload), and ensures no more than n positive answers are ever received,

• BALANCEREQUESTS, a new approach that balances the trade-off identified
through the two baseline algorithms, in order to quickly collect n answers
without inducing excessive load on the vehicular nodes, and

• BALANCELOAD, an approach that extends BALANCEREQUESTS by priori-
tizing the least-used vehicles during the selection process to balance the
workload.

The Base* algorithms introduced in this work are meant to benchmark the
Balance* algorithms against edge cases (i.e., optimizing only one aspect) of
the spectrum of possible trade-offs.

The four algorithms can maintain the following sets in each execution:

• F ⊆ V , the set of contacted vehicles since the beginning of the algorithm;

• A, the set of all answers from vehicles v ∈ F that have been received by
the coordinator;

B3. DATA LOCALIZATION ALGORITHMS 83

• R ⊆ A, the subset of positive answers (where each answer contains
whether P holds plus metadata identifying the sending vehicle, see Sec-
tion B2.1) among all the ones received.

We begin by introducing these algorithms in the context of an idealized
model in which the fleet is static and the on-board execution is synchronous,
before presenting the algorithms in our complete static (Section B3.2) and
dynamic model (Section B3.3).

B3.1 Data Localization in the Synchronous Static Model

To ease the introduction of the algorithms, we consider in this subsection
a synchronous model (in the next subsections we present the generalization
of the algorithms for the asynchronous model): communications with C are
instantaneous and all nodes need a constant amount of time to check the
property P , i.e., one “round” is the time to check any request on one vehicle.
Hence, after a round of time has elapsed, C has received answers (yes/no) from
all nodes that were asked during that round. In this simplified situation, only
two aspects have to be considered in order to measure the performance of data
localization procedures: (1) the total number of rounds needed at C to receive
n answers, and (2) the number of nodes m that have checked if q.P holds
(which is equivalent to the fleet workload on the vehicles, since each contacted
vehicle has spent exactly one round checking the request). Note that for clarity
we discuss the behavior of the algorithms in the case of answering a single data
localization query q.

BASEEAGER - synchronous, static

Presented in pseudocode in Algorithm B1, BASEEAGER aims to optimize a
query’s resolution time, by immediately querying all available nodes; this
resolves the query in a single round (under our assumption that enough vehicles
with relevant data are in the fleet). Indeed, consider any other algorithm A that
does not contact at least one node v during the first round. In the situation
that kq = n and P holds on v, only kq − 1 answers are received after a single
round of communication and a second one is required to retrieve all required

Algorithm B1 BASEEAGER

1: function BaseEager(V, q) ▷ fleet V , query q with n = q.n
2: R← ∅ ▷ set of collected positive answers
3: for v ∈ V do
4: send(q, v) ▷ send request r(q) to vehicle v

5: while |R| < n do
6: r ← receive() ▷ block till receiving next answer
7: if positive(r) then
8: R← R ∪ {r}
9: output R

84 B - DATA LOCALIZATION AT EDGE

answers; hence, A is not optimal in regards of the resolution time. Executing
Algorithm B1 to obtain all needed answers leads nonetheless to a large strain
on the vehicular nodes. In particular, the number of queried nodes is always k,
independently of kq and n. Thus, all nodes always participate in q’s resolution,
even though the number of required answers n might be relatively small.

BASELAZY - synchronous, static

This Algorithm is presented in pseudocode in Algorithm B2. The focus of
this algorithm is on reducing the computational overhead and communication
induced on the fleet. To ensure that only the minimum number of nodes are
being requested to check P , one must ask at most as many new nodes as the
number of currently missing positive answers. Any algorithm satisfying such an
assertion is associated with a minimal fleet workload, and the best algorithm
in this category selects randomly as many nodes as possible by asking m “new
nodes” for each round where there are m missing answers. Once n positive
answers are received, the procedure stops. In an edge case, every vehicle in
the fleet has to be contacted to achieve this. Since the algorithm contacts m
vehicles per round, the algorithm will proceed the slowest for m = 1. When
(n− 1) yes-answers are collected in the first round and the last yes-answer is
obtained after asking every single other vehicle in the subsequent rounds, this
results in a resolution time of k − n+ 1 rounds.

However, on average BASELAZY requires fewer rounds, as claimed by Propo-
sition B1 below. When sending a request to a vehicle that has not participated
so far, the probability of receiving a yes-answer is in general (kq − r)/(k − f)
where f = |F | is the number of vehicles already requested and r = |R| ≤ n the
number of positive answers already received. In the following, we assume for
simplicity that the probability of obtaining a yes-answer is constant and equal

Algorithm B2 BASELAZY

1: function requestRandVehicle(q, F)
2: v ← random(V, F) ▷ random vehicle in V excluding F
3: send(q, v)
4: output v

5: function BaseLazy(V, q) ▷ fleet V , query q with n = q.n
6: F ← ∅ ▷ set of asked vehicles
7: R← ∅ ▷ set of collected positive answers
8: for 1 ≤ i ≤ n do
9: F ← F ∪ { requestRandVehicle(q, F) }

10: while |R| < n do
11: r ← receive()
12: if positive(r) then
13: R← R ∪ {r}
14: else
15: F ← F ∪ { requestRandVehicle(q, F) }
16: output R

B3. DATA LOCALIZATION ALGORITHMS 85

to QR = kq/k during the full execution of the algorithm; this corresponds to
our typical use-case where n is much smaller in comparison to both kq and k.
The number of rounds used by the algorithm can then intuitively be shown
to be logarithmic by the following reasoning: When requesting x vehicles in a
round, approximately x ·QR positive answers are received, thus if xi denotes
the number of requests sent in round i, we have xi ≈ xi−1 · (1 − QR), as
vehicles answering negatively trigger another request. Setting x1 = n, we get
xi ≈ n · (1 − QR)i and we obtain r ≈ log1/(1−QR)(n) when requiring xr = 1
(when the algorithm roughly concludes). More formally, we argue that:

Proposition B1. BASELAZY solves a single query in the static, synchronous
case on average in O(log(n)) rounds.

Proof. Let us visualize the query resolution as follows. Let P = p1, . . . , pn be n
random processes that aim to retrieve one answer each to the query, and each
process will remain active until it acquires a positive answer. BASELAZY can
be seen as sending one request per round for each process that is still active
and doing nothing for the ones that have already got a yes-answer. Under
our assumptions, during a certain round, pi ∈ P retrieves a positive answer
with constant probability p = QR and a negative answer with probability
1 − p. Each process, being independent of the others, will need 1/p rounds
on average to acquire a yes-answer (geometric distribution with parameter p).
The number of rounds M(p, n) that is necessary for all processes to stop is
thus the maximum of n independent geometric random variables of parameter
p. The expected value E (M(p, n)) is known [62] to be bounded by

Hn

ln 1
1−p

≤ E(M(p, n)) <
Hn

ln 1
1−p

+ 1

where Hn is the n-th harmonic number. Using Hn = lnn+O(1), one obtains
that E(M(p, n)) = log 1

1−QR
(n) +O(1) for a constant QR.

Similarly, BASELAZY sends on average requests to significantly fewer vehicles
than in the extreme case, as shown by the following Proposition B2:

Proposition B2. BASELAZY solves a single query in the static, synchronous
case asking on average n/QR vehicles.

Proof. Following the presentation of the previous proof, the number of requested
vehicles is obtained as the sum of n independent geometric random variables,
each of which has an expected value of 1/p = 1/QR. By linearity of expectation,
we obtain that n/QR vehicles will receive a request.

BALANCEREQUESTS - synchronous, static

We introduce now an efficient scheme to achieve a low fleet workload while
resolving queries within few processing rounds, balancing the tradeoffs of
BASEEAGER (high workload) and BASELAZY (slow query resolution time). The

86 B - DATA LOCALIZATION AT EDGE

Algorithm B3 Balance*-skeleton

1: function Balance*(V, q, α, β) ▷ fleet V , query q with
n = q.n, α > 0, β ∈ (0, 1]

2: p← 1 ▷ estimation of probability to answer yes
3: F ← ∅ ▷ set of requested vehicles
4: A← ∅ ▷ set of collected answers
5: R← ∅ ▷ set of collected yes-answers
6: while |R| < n do ▷ until n answers are collected
7: askNewBatch(α, p)
8: while waitForAnswers() do
9: receiveAndUpdate()

10: p← max{ |R|
|A| ,

1
|A|+1

} ▷ update probability

11: output R

main idea behind BALANCEREQUESTS is to employ QR, the share of vehicles
in the fleet on which q.P holds, to scale the number of vehicles contacted in
each round such that the expected number of positive answers is equal to the
number of total outstanding positive answers. As QR is unknown during the
execution of the query, we replace it with the running estimate p = |R|/|A|,
and show in Section B4.2.4 that p gives a reasonable estimation of QR.

We will present various implementations of the Balance* algorithms based
on the skeleton algorithm shown in Algorithm B3, which proceeds as follows:
Keeping track of p, F,A,R, the algorithm concludes by returning R, the set of
yes-answers. To achieve this, the algorithm begins by contacting a new batch
of vehicles in askNewBatch(), and then proceeds to receive answers from the
contacted vehicles using receiveAndUpdate until waitForAnswers() evaluates
to false. At this point, the algorithm updates the value of p using the answers
received so far, and loops back to the beginning; the loop is continued until
|R| = n, i.e., a sufficient number of yes-answers has been acquired.

In the synchronous model and with a static fleet, algorithm BALANCEREQUESTS

employs those variants of askNewBatch() and waitForAnswers() described in
Algorithm B4. askNewBatch() has as input the running estimate p and a pa-
rameter α, and proceeds as follows: m marks the currently missing yes-answers
n− |R|. We denote by

ℓ =

⌈
α · m

p

⌉
(2.1)

the adjusted expected number of vehicles to contact to receive the outstanding
m answers, employing the running estimate p. The parameter α > 0 allows
the algorithm to depart from the estimated expected number of vehicles to
contact to get the remaining answers, by sampling more or fewer vehicles. This
allows to either shorten (when α > 1) the average number of rounds needed
to resolve q while potentially increasing the fleet workload, or on the contrary
(when α < 1) to slow down q’s processing by being more prudent and avoiding
requesting more vehicles than necessary (and thus getting closer to receiving
exactly n answers at the end). Having contacted ℓ vehicles or exhausted the
fleet of vehicles, the function returns. BALANCEREQUESTS then enters a loop of

B3. DATA LOCALIZATION ALGORITHMS 87

Algorithm B4 BALANCEREQUESTS - synchronous, static

1: procedure askNewBatchAux(α, p,m)
2: ℓ← ⌈α ·m/p⌉ ▷ new vehicles to contact
3: for 1 ≤ i ≤ ℓ do
4: if |F | < k then ▷ if fleet not exhausted yet
5: F ← F ∪ { requestRandVehicle(q, F) }

6: procedure askNewBatch(α,p)
7: m← n− |R| ▷ remaining yes-answers to collect
8: askNewBatchAux(α, p,m)

9: procedure receiveAndUpdate()
10: r ← receive()
11: A← A ∪ {r}
12: if positive(r) then
13: R← R ∪ {r}

14: function waitForAnswers()
15: output |A| ̸= |F |

receiving answers until waitForAnswers() returns true, i.e., until all contacted
vehicles have sent an answer.

Following the general logic of the Balance* algorithms described in Algo-
rithm B3, the value of p is then updated as

p = max

{
|R|
|A|

,
1

|A|+ 1

}
, (2.2)

where the second case is used when no positive answers have been received
during the first round(s), i.e., |R| = 0. A next batch of vehicles is then
contacted, until n yes-answers are received.

BALANCELOAD - synchronous, static

This algorithm does not have an equivalent in the synchronous model, as it
attempts to balance the individual workloads of each vehicle. In the syn-
chronous model, the workload of each vehicle answering a request is identical
by assumption (as all vehicles answer a request synchronously). We thus defer
introducing this algorithm to the following section.

B3.2 Data Localization in the Asynchronous Static Model

We now generalize the algorithms presented in the previous section to the
asynchronous data localization model, i.e., when request processing time is
both vehicle- and context-dependent. In a typical vehicular environment, one
cannot generally assume bounds on neither the time a vehicle needs to process
a request nor on the communication delays in the network. Consequently, the
algorithms have to adapt to the following scenarios: (1) how to avoid being

88 B - DATA LOCALIZATION AT EDGE

blocked by the slowest-answering vehicles; and (2) how to deal with vehicles that
answer late? While BASEEAGER and BASELAZY achieve their respective goals
without adaptations in the asynchronous model, we tune BALANCEREQUESTS

to the asynchronicity and furthermore extend it to yield BALANCELOAD. In
addition to asynchronicity, we now also extend to the more general case of
more than a single data localization query deployed simultaneously. As a
reminder, vehicles possess a FIFO task queue (see Section B2.1) in which
incoming requests are stored and processed sequentially.

BASEEAGER - asynchronous, static

Shown in pseudocode in Algorithm B1, BASEEAGER optimizes the time required
to answer a single query q by contacting all vehicles upon receiving it. In our
asynchronous model, the query resolution time then needed for a single q is
the best possible and corresponds to the n-th fastest positive answer received
at C. In contrast to that, the fleet workload is also the highest possible, as all
k vehicles have processed r(q). Note that the guarantee on fastest resolution
does not hold in the case of multiple simultaneous queries: Let us assume
that vehicle v gives the n-th fastest yes-answer to query q in the single-query
case. However, when r(q) is received by v, v is busy processing another request
r(q′); thus v will wait before answering r(q), which would conclude the query q.
Thus, the execution time of q is dependent on the presence and order of other
concurrent queries on the requested vehicles.

BASELAZY - asynchronous, static

Shown in pseudocode in Algorithm B2, BASELAZY optimizes the number of
requested vehicles (hence minimizing needed communication to spread all
requests) by contacting a new vehicle only when strictly needed. Since in our
asynchronous model it is not guaranteed nor assumed that vehicles will have
similar answer times (only that they will answer at some point), this algorithm
does not necessarily imply a minimum load on the network. Indeed, it might
be the case that requesting more vehicles that require shorter processing times
to answer will use fewer resources overall.

Algorithm B5 BALANCEREQUESTS - asynchronous, static

1: procedure askNewBatch(α,p)
2: m← n− |R| − p · (|F | − |A|) ▷ remaining yes-answers,

corrected by late ones
3: askNewBatchAux(α, p,m) ▷ cf. Algorithm B4

4: procedure receiveAndUpdate() ▷ same as Algorithm B4

5: function waitForAnswers(β)
6: output |A| < β · |F | ▷ share β of contacted vehicles

has answered

B3. DATA LOCALIZATION ALGORITHMS 89

BALANCEREQUESTS - asynchronous, static

The asynchronous variant of BALANCEREQUESTS (Algorithm B5) is similar in
essence to its round-based version described in Section B3.1 but needs to take
into account that not all contacted nodes reply at the same time (as they do
in the synchronous model). To do so, we change the behavior of the function
waitForAnswers(), as shown in Algorithm B5; it accepts a new parameter
β ∈ (0, 1]: a certain proportion of answers over all requested vehicles that we
will wait to receive before re-evaluating the running estimate of yes-answer
share p and proceeding to the next batch of selection (see Algorithm B3). When
β = 1, the algorithm waits for the reception of all answers before continuing;
this is effectively the case in the synchronous model, Section B3.1. Setting
a lower value for β allows us to make a decision without having to wait for
the slowest vehicles. Another change is about taking into account vehicles
that have not yet answered when a new iteration starts. Based on previously
received answers, we estimate that a fraction p of the |F | − |A| requested
vehicles that have not yet answered, will eventually answer positively while the
next batch of vehicles is already being sent requests. This allows to reduce
the number of vehicles asked in the next iteration, and thus reduce excessive
participation. This change is applied in askNewBatch() (Algorithm B4): we
adjust the number of vehicles to contact next, ℓ, by

ℓ =

⌈
α ·

(
n− |R|

p
− (|F | − |A|)

)⌉
(2.3)

Those ⌈p · (|F | − |A|)⌉ vehicles are hence counted as expected answers when
calculating ℓ.

BALANCELOAD - asynchronous, static

This is a variation of the previous algorithm that presents a further refinement
of vehicle selection, differing in how the ℓ vehicles are selected during each batch
in askNewBatch(), as shown in Algorithm B6. Instead of randomly selecting
new nodes to request, vehicles having low local workload or involved in only a
few concurrent data localization queries are picked first in the selection phase.
The main difference with Algorithm B5 is that instead of requesting a random
vehicle using requestRandVehicle() among the not yet requested ones (see
requestRandVehicle() in Algorithm B2), vehicles are selected in the order of
their lowest local workload measured as (1) number of simultaneous requests
being processed on the vehicle (for the concurrent execution of several data
localization queries) and (2) reported local processing time since the start. As
shown in Algorithm B6, vehicles are for that purpose stored in an updatable
priority queue W (initialized in a call to init()) where vehicle v’s priority is
defined as a tuple of [no. of parallel queries, total local workload]. As shown
in line Algorithm 9 of askNewBatch() in Algorithm B6, the vehicle v with
the lowest priority is contacted first. After sending a request to v, its priority
is updated by increasing the first field of the priority tuple, no. of parallel
requests, by one. Likewise at line Algorithm 17 of receiveAndUpdate(), upon

90 B - DATA LOCALIZATION AT EDGE

Algorithm B6 BALANCELOAD - asynchronous, static

1: procedure init()
2: global W ▷ priority queue
3: W .insertAll(V, [0, 0]) ▷ initially, all vehicles have same priority

4: procedure askNewBatch(α,p)
5: m← n− |R| − p · (|F | − |A|)
6: ℓ← ⌈α ·m/p⌉
7: for 1 ≤ i ≤ ℓ do
8: if |F | < k then
9: v → W .getLowestPriority() ▷ get vehicle with fewest paral-

lel queries, lowest workload
10: send(q, v)
11: W .updatePriority(v,[+1,+0]) ▷ increase no. of parallel queries of v

12: procedure receiveAndUpdate()
13: r ← receive()
14: A← A ∪ {r}
15: if positive(r) then
16: R← R ∪ {r}
17: W .updatePriority(r.v, [−1,+r.workload])

▷ update priority: decrease no. of parallel queries
of sender of r (r.v), increase workload

18: function waitForAnswers(β) ▷ same as Algorithm B5

reception of an answer r from vehicle v, v’s priority is updated by reducing
the number of its parallel requests, and increasing the total local workload
registered in W for v by the workload transmitted alongside r.

B3.3 Data Localization in the Asynchronous Dynamic
Model

The dynamic fleet model introduces vehicles dynamically joining the fleet
(which is detected at C) and leaving the fleet (undetected). We describe here
adaptations in the presented data localization algorithms to handle both types
of events, i.e., vehicles joining and leaving the fleet.

BASEEAGER - asynchronous, dynamic

The algorithm is a straightforward extension of BASEEAGER defined for the
dynamic model: all active vehicles get asked upon starting processing a new
query at C. Vehicles leaving the fleet will not provide any answer whereas
vehicles arriving receive all unresolved queries upon becoming available.

BASELAZY - asynchronous, dynamic

This algorithm could be blocked indefinitely if any of the involved vehicles leave
the fleet before the moment when all answers are collected: indeed, the algorithm
waits for receiving a negative answer before asking a new vehicle. To deal with

B4. EVALUATION 91

leaving vehicles, we introduce a timer set upon sending a request. A timeout
is then considered equivalent to a negative answer and triggers requesting
one of the remaining available vehicles; if the timeout vehicle answers later
than its corresponding timer, the answer is accepted in case of a yes-answer
and ignored in case of a negative one. Contrary to BASEEAGER, new vehicles
may get requested (upon receiving a negative answer or timeout event at C)
some time after they become active. However, a new arrival by itself will not
trigger directly the transmission of a request, except in the particular case
of unresolved queries that have already exhausted the pool of known active
vehicles.

BALANCEREQUESTS and BALANCELOAD - asynchronous, dynamic

Contrary to BASELAZY, the Balance* algorithms as designed for the static
setting are not at risk of becoming blocked by vehicles exiting the fleet. Indeed,
they both already have a mechanism to ask a new batch of vehicles before
having answers from all the vehicles that had been requested earlier (through
the β parameter, cf. Algorithm B5) and can hence deal with a dynamic fleet
where some vehicles leave the fleet. However, over the long run, the estimation
of the probability p of answering positively will be less accurate, as vehicles
that have left will be excluded from the estimation (only received answers are
taken into account); also, if a proportion greater than 1 − β of the vehicles
currently checking requests associated with a particular query leaves the fleet
during the algorithm execution, no new batch of vehicles will ever get contacted
even though there might be plenty of available vehicles. To circumvent these
issues, we also introduce timers in those algorithms: a timeout is equivalent
to receiving a negative answer, i.e., a negative answer is added to the set of
received answers A, which is used for p’s computation and for testing when
the β threshold has been crossed. If a vehicle answers positively later than its
timer, it is added to the set of known positive answers R; this has no further
effect on A, but slightly modifies the calculated value for p as

p = max

{
|R|
|A|

,
1

|A|+ 1

}
.

We note that timers help the estimation p to take into account both the positive
answering rate and the fleet churn rate when computing the size of the next
vehicle batch to request.

B4 Evaluation

B4.1 Methodology

To investigate the performance of the proposed algorithms, we evaluate them
on two large real-world sets of vehicular data. In this section, we first describe
in detail the datasets and the induced churn in each of them (see Definition B1)
and the experiment setup used for our study. We then present a set of common

92 B - DATA LOCALIZATION AT EDGE

queries that will serve to benchmark the different algorithms, including longer-
running versions of such queries for our dynamic fleet model. Finally, we show
the distribution of data over the fleet and the query answer rates in the studied
datasets.

B4.1.1 Datasets

Our evaluation encompasses two datasets (one public, one proprietary) that
differ in the number of active vehicles and the rate of churn (see Figure B1),
the distribution of data per vehicle (see Figure B3), as well as the types of data
included in the dataset.

Geolife Dataset

The first dataset consists of trajectories collected within the scope of the
Microsoft Research Asia Geolife (version 1.3) project by 182 users over approxi-
mately four years [214]. The trajectories were collected from diverse users using
different mobile devices and feature predominantly vehicular usage (by car, taxi,
or bus). The original dataset consists of 18670 GPS traces containing between
50 and 92,645 records of the form timestamp (s), latitude (deg), longitude (deg).
After pre-processing the data, we used 10528 files, each for one day of usage of
one user (cf. Figure B1(a) for the number of vehicles over the course of 24h).

Volvo Dataset

The second dataset consists of CAN data and GPS traces from 20 hybrid
cars internally collected by Volvo Car Corporation [90], [91] in the year 2015.
After pre-processing, we generate 3462 trace files, each corresponding to a daily
usage of one vehicle (cf. Figure B1(b)). Among the large quantity of CAN
data, we have concentrated on two signals, the combustion engine rotation
and electric engine rotation. These can be combined, leading to three possible
driving modes: electric, combustion, and hybrid. Each trace in this dataset
hence contains records of the form timestamp (s), latitude (deg), longitude
(deg), driving mode (e/c/h) (cf. Figure B1(b) for the vehicle number over the
course of 24h).

Vehicles leaving and joining the fleet in the datasets

Churn∆(t), measuring the fraction of vehicles leaving the fleet within a prede-
fined time interval ∆, influences how fast queries get resolved (see Definition B1).
In the studied datasets, the churn is evaluated to be between 2% (for ∆ = 30
seconds) and 38% (∆ = 15 minutes), see Figure B1(a) and Figure B1(b). In a
general sense, churn not only describes vehicles leaving the fleet while the latter
is processing requests but also associates with communication issues due to the
high node mobility, with many vehicles featuring intermittent short activeness
periods, typical of dense urban driving. A non-negligible churn causes problems
to data localization algorithms as explained in Section B3.3. In the majority
of our experiments (Section B4.1.4 to Section B4.2.4), there is negligible churn

B4. EVALUATION 93

00:00 04:00 08:00 12:00 16:00 20:00 24:00

500

1000

1500

#
a
ct

iv
e

v
eh

ic
le

s

of vehicles

0.1

0.2

0.3

C
h
u

rn
∆

(t
)

∆ = 30s ∆ = 60s ∆ = 300s ∆ = 900s

(a)

00:00 04:00 08:00 12:00 16:00 20:00 24:00

0

200

400

600

800

#
a
ct

iv
e

v
eh

ic
le

s

of vehicles

0.0

0.1

0.2

0.3

0.4

C
h
u
rn

∆
(t

)

∆ = 30s ∆ = 60s ∆ = 300s ∆ = 900s

(b)

Figure B1: Number of active vehicles and churn during one day in the (a) Geolife
and (b) Volvo dataset (see Definition B1 for a formal definition of churn).

in the fleet during query execution when regarding the timescale for query
resolution (with queries lasting only up to 30s, and 0.02 ≤ Churn30s ≤ 0.08 as
shown in Figure B1(a), Figure B1(b)). Longer queries, subject to longer churn
intervals, are studied in Section B4.2.5.

Dynamic changes to the active fleet pool are also based on arriving vehicles.
While vehicles joining the pool do not alter the execution of the requests being
currently processed by the fleet, new vehicles support the execution of the
running queries when the number of vehicles with positive answers to a query
is scarce or declining due to non-negligible churn (exacerbated for the Volvo
dataset with its lower active vehicles count).

B4.1.2 Experiment Setup

We will present here the components and key settings of the evaluation of
our proposed algorithms, involving the adaptation of real-world datasets and
parameters.

94 B - DATA LOCALIZATION AT EDGE

Query response time calculation

To evaluate our algorithms, we define 15 queries to be run locally on the vehicles
(presented in Section B4.1.3). The requests are programs written in Python
that are transferred to the vehicle via mobile broadband communication, then
executed on-board the vehicle over their already stored data (1 day each); size(q)
denotes the amount of code and extra data(B1) that needs to be transferred
from C to each vehicle in order for the latter to be able to process r(q) on-board.
The elapsed time R(v, q) (in milliseconds) needed between the coordinator
sending a request message r(q) for query q to a vehicle v and the reception of
the corresponding answer is approximated as

R(v, q) = Tl +
size(q)

Td
+ Tp(v, q) (2.4)

where Tl is a round-trip latency for wireless communication, Td is the wireless
link data rate, and finally Tp(v, q) is the time needed by the vehicle to decide
if it can answer positively to r(q) or not. The transmission time of the answer,
considering that the answer is of constant and small size (for a yes/no reply
and a constant amount of additional information such as the vehicle id, the
time it took for the processing, etc.), is neglected here (it can be accounted as
part of Tl).

Resolution time of concurrent queries

The experiment process is done as follows. The coordinator node C receives
a certain number of queries in a random uniform order and starts the batch
of sending requests to vehicles in the same order as the queries’ arrival times.
The queries are then resolved in parallel by the vehicles and C reacts to
each message reception by either just updating its internal statistics for the
corresponding query q or by spreading the request r(q) over the fleet to a
new set of vehicles. As introduced in Section B2.1, vehicles possess a task
queue processed in FIFO order. This approach simplifies the vehicles’ internal
computing architecture and is well suited in situations for which the remaining
computing resources on-board the vehicles (if any) can be used to process
security-sensitive applications. A vehicle v hence starts processing a request
as soon as v is done with the processing of its already queued tasks. When
considering multiple queries concurrently processed at C, the reception time
R′(v, qk) of v’s answer to the request r(qk) corresponding to the k-th received
query qk at v is obtained as

R′(v, qk) = max{R′(v, qk−1) + Tp(v, q), tk +R(v, q)} (2.5)

where t1 < t2 < · · · < tk indicate the sending times of requests r(q1), . . . , r(qk)
to vehicle v, and with R′(v, q1) = R(v, q1) where R(v, q) is calculated using
Equation 2.4.

(B1)For example, GPS positions of Points of Interests (POIs) such as parking lots or fuel
stations.

B4. EVALUATION 95

20 40 60 80 100 120

latency [ms]

0.00

0.05

re
la

ti
v
e

fr
eq

u
en

cy

a
v
er

a
g
e:

5
6

m
s

Figure B2: Distribution of wireless round-trip latencies Tl (modeled after [146]).

Real-world values used for the parameters

In our set of experiments, we have set Td = 10Mb/s, which is within current
4G/LTE download rates(B2) (similar results are obtained using 5G parameters).
To model a non-deterministic but realistic 4G round-trip latency Tl, we sample
Tl randomly from the Gamma distribution shown in Figure B2, as modeled
after the results from a study of 4G latencies across several mobile carriers
in the UK [146]. To have a fair estimation of Tp(v, q), we have computed all
queries on a vehicular processing unit representative [90], [91]: an ODROID-
XU4 single-board computer to approximate the limited processing headroom
of a vehicle, equipped with a Samsung Exynos 5422 (Cortex-A15 2.1GHz
Quad-Core and 1.4GHz Quad-Core CPUs) and 2 GB of LPDDR3 RAM at
933 MHz. We then use the computed time measured on the vehicular stand-in
as Tp(v, q) for every possible vehicle v and query q. Based on the measured
transfer time (through an Ethernet link with software-capped bandwidth to
Td = 10Mb/s), size(q)/Td expressed in ms is very well approximated by the
size of data to transfer expressed in Kb.

B4.1.3 Selected Data Localization Queries

In this subsection, we present our selection of data localization queries used
for the static and dynamic fleet scenarios. Please note that these queries
are tailored to the two datasets/fleets employed, each of which has a known
(geographic) focus. In the general case, basic a-priori knowledge, e.g., vehicle
type or region (which can be assumed to be known to the vehicle manufacturer),
can be used to select a subset of a fleet before deploying the actual query over
the now filtered fleet.

Queries for the static fleet

We introduce here a set of 15 queries, representative of possible vehicular
analysis tasks. The queries match typical interesting events occurring in
Vehicular Networks [101] (driving close to POIs such as parking spaces, detecting
traffic jams, etc.), thus giving meaningful insights into the fleet’s behavior.
They were chosen to represent different requirements (on time interval, queried

(B2)To take into account packet losses, Td is chosen inferior to typical broadband bandwidth.

96 B - DATA LOCALIZATION AT EDGE

Table B1: Selected query conditions and their parameters (QR = share of positive
answers over the dataset, G = Geolife and V = Volvo).

Key
Time Size (Kb) Condition to fulfill “q.P” QR
span in G/V for G for V in G in V

Q1 8-12 0.3 At least 1 record during the time span 56 60

Q2 0-24 7.5/19.9
Driven within 50m
of any parking lot

25m 42 43

Q3 17-18 1.3 Continuous records with ζG
a with ζV

a 29 28
Q4 0-24 0.5 Driven through City area with ζV 18

Q5 17-18 1.1
Maximum speed

reached over 89km/h
over 99km/h 12

Q6 0-24 1.6
Instant speed over
42km/h for 10min

for 18min 8

Q7 0-24 1.4
Driven in Downtown

with ζG consecutive records
with ζV ′ a 5

Q8 17-18 0.8 Passed by City area Downtown area 4
Q9 12-13 0.7 Stayed in City area for all time span 1

Q10 0-24 3.8/7.7 Stopped at any gas station for a short durationb 1

The queries below are only defined for the Volvo dataset.

Q11 0-24 4.8 Combustion engine used less than 10% of the time 34
Q12 0-24 5 Driven on electric mode only outside City area 25
Q13 0-24 4.4 Driven using hybrid mode for 10min 10

Q14 0-24 6.6
Instant speed on electric mode

reached over 100km/h
7

Q15 0-24 4
Passed by 3 distinct electric

vehicle charging stations on electric
4

a ζG = (80, 5), ζV = (85, 10), ζV ′ = (300, 10), where ζ = (τ, δ) requires at least τ
consecutive measurements spaced at least δ seconds apart.

b For Geolife, we require ζG records within 50m of a gas station; for Volvo the vehicle
must stop (speed = 0km/h) for 10min within 20m of it.

sensors, geographic constraints, sampling constraints, etc.). They furthermore
have distinct positive answer rates ranging from about 60% to about 1%.
Table B1 presents (cf. Section B2 for notations) the query q’s key (Q1 to
Q15), the time interval tstart − tend given in hours, size(q) given in Kb, the
description of the condition q.P , and the average answer rate QR (rounded
to closest percentage) for Geolife and Volvo datasets. The parameters of the
first 10 queries have been slightly tuned between the two datasets (in Table B1
the additional column for q.P ’s description indicate differing parameters in the
query’s condition in Volvo) so that each query in both datasets has a similar
fraction of positive answers. Recall that size(q) corresponds to the size of the
program plus the extra data required to check q.P , cf. Section B4.1.2. Of the
queries, 10 are run over both datasets whereas 5 additional queries focus on
signals only contained within the Volvo dataset. Two geographical zones are
defined for both datasets: City is the area of a large city chosen within the
dataset and Downtown is a sub-area within City thought of as its heart. In our
experiments, if not stated otherwise, all queries will require n = 50 answers to
get resolved. Setting an adequate value for the parameter n is a non-trivial task
that is both query- and data-dependent and is linked to the post-treatment of
the vehicle selection process and the end-application. For the case of statistical
estimation of the true answer rate QR, The impact of the choice of n with the
presented algorithms is explored thoroughly in Section B4.2.4, where the value
n = 50 is shown to provide a good trade-off between estimation accuracy and
excessive vehicle involvement over the queries analysed in this work.

B4. EVALUATION 97

0.0MB 2.9MB 5.8MB 8.7MB 11.6MB 14.5MB 17.4MB

data volume (Volvo)

0.00

0.05

0.10

0.15

0.20

0.25

re
la

ti
v
e

fr
eq

u
en

cy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
er

a
g
e

a
n

sw
er

ra
te

Geolife

Volvo

0.0MB 0.1MB 0.2MB 0.3MB 0.5MB 0.6MB 0.7MB
data volume (Geolife)

shaded
bars

solid lines

Figure B3: Left axis: Histogram of data volumes per car over each respective
dataset. Right: Average answer rate for a vehicle with a certain amount of data.
Results shown for the Geolife (red) and Volvo (blue) datasets.

Queries for the dynamic fleet

As mentioned in Figure B4.1.1, short queries (in terms of resolution time) entail
a similar behavior in a dynamic fleet as the fleet remains stable during the
time used to resolve the query. All queries defined so far fall in this category,
as most of the time, they get resolved in less than one second – whereas the
churn for 30s is below 5% of vehicles (cf. Figure B4.1.1). To be able to observe
differences in the algorithms’ behaviors, we introduce “long” versions of the
ad-hoc queries previously introduced and described in detail in Table B1. The
long versions are obtained by multiplying both the transfer time of the requests
and the time needed to process them by a constant of 1000, for a realistic
distribution of answering times representative of a fleet with a higher amount
of local data or heavier computational tasks used for queries’ conditions.

B4.1.4 Distribution of Data and Query Answers Rates

The average answer rates over all queries as well as the distribution of the
data volumes are presented in Figure B3 for the Volvo and Geolife dataset;
the x-axes range over data volumes in MB within Volvo (lower axis) and
Geolife (upper axis) datasets. For Geolife, the average query answer rate (red
line) appears to be positively linked to the data volume (shaded red bars);
thus, vehicles with larger amounts of data will have a higher chance to answer
requests. For Volvo (blue line), the average query answer rate is almost flat,
which indicates that vehicles with a large amount of data (shaded blue bars)
are roughly as likely to answer ”yes” to a request as vehicles with only little
data. Concerning the distribution of data volumes among the fleet (shaded
bars), the Volvo dataset presents a significantly longer tail, indicating that
inter-vehicular differences in data volume are greater.

98 B - DATA LOCALIZATION AT EDGE

B4.2 Evaluation Results

We show in this section the experiments’ results. To compare the performance
of the different algorithms, we will use the evaluation metrics defined in Sec-
tion B2.4, namely the query resolution time and the fleet workload. To show
the results, we will frequently use violin plots, which indicate the median of
a distribution with a horizontal bar, while the distribution itself is shown
vertically in shaded color.

B4.2.1 Parametrization of the Algorithms

To choose well-fitting parameters for our evaluation, we explore the parameter
space for BALANCEREQUESTS in the Geolife and Volvo dataset. We run 10000

(a)

(b)

Figure B4: Maximum query resolution time and fleet workload (static model) needed
to resolve all queries over the Geolife and Volvo datasets for BALANCEREQUESTS for
different α, β. Circle size scales with maximum query resolution time (red) and fleet
workload (blue), respectively.

B4. EVALUATION 99

times the query sets with different values for the parameter α (proportion of
vehicles to ask; higher value translates to asking more vehicles) and β (fraction
of vehicles to wait before asking next batch; higher fraction translates to longer
waiting time between two request batches). For each run, we measure the
time needed to resolve all queries (i.e., the maximum query resolution time
among the query set) and the fleet workload and present them on a 2D plot in
Figure B4 (note that absolute values are given in Figure B5).

Based on the fleet workload (blue) displayed in Figure B4, in both datasets,
for lower values for β and higher values for α, more vehicles than necessary tend
to be requested while not waiting for everyone’s answer before requesting a new
batch of vehicles. The consequence in this setting is on the one hand a high
analysis cost, as more vehicles participate in the queries resolving task, but on
the other hand, the resolution time is relatively lower than other configurations
of (α, β). Focusing on the maximum query resolution time (red), the situation
is different between the Geolife or Volvo dataset: When vehicles tend to answer
“no” because of lack of data (as for the Geolife dataset, cf. Section B4.1.4),
hence responding much quicker than positive vehicles, and β is rather small,
the estimation p (cf. Algorithm B3) of positive answers will be too low; then
(as β is small) many vehicles are requested rapidly in the first few rounds. The
consequence is a shorter resolution time but higher fleet workload, as seen in
the Geolife experiments. On the contrary, if the data is distributed over the
fleet more fairly (as for the Volvo dataset, cf. Section B4.1.4), and when β is
low, there will be a bias towards positive answers with queries that require a full
data scan before they can be answered negatively, whereas vehicles answering
positively need only find the first matching record(s). The consequence is
that p becomes an overestimation of the real fraction of yes-answers and one
observes a succession of small batches of vehicles being requested, as observed
in the Volvo experiments. When β approaches 1, the estimation p becomes
unbiased and better trade-offs are obtained; however, note that a high β is
impractical for longer queries, as is shown in Section B4.2.5. For the remainder
of this section, we set α = 1.25 and β = 0.7 as these values present a suitably
balanced trade-off between the two measured performance metrics over both
datasets; other nearby values for (α, β) produce similar results that only slightly
advantage one metric over the other, as explained above.

B4.2.2 Comparison of the Algorithms in the Static Model

To give a general idea of the resolution time for the different queries, we present
quantitative results in Figure B5 (an intra-algorithms comparison is done in
Figure B6): the query resolution time is measured over 10000 experiment
repetitions consisting in resolving all 10 (Geolife, (a)) / 15 (Volvo, (b)) queries
arriving in random order; for the Volvo dataset, Q9 and Q10 have been removed
here and for all following experiments as all vehicles end up being contacted
(there are fewer than 50 positive answers in this case, violating the assumption
kq > n from Section B2.1). The main findings to note are: BASEEAGER’s and
BASELAZY’s resolution time varies clearly depending on the queries’ answer rate
(lower answer rate QR is associated with larger resolution times, see Table B1

100 B - DATA LOCALIZATION AT EDGE

1 2 3 4 5 6 7 8 9 10

103

(i)

1 2 3 4 5 6 7 8 9 10

104

(ii)

1 2 3 4 5 6 7 8 9 10

103
(iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

103
(iv)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13

102 (i)

1 2 3 4 5 6 7 8 9 10 11 12 13

104

(ii)

1 2 3 4 5 6 7 8 9 10 11 12 13

103 (iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q11Q12Q13Q14Q15

103
(iv)

(b)

Figure B5: Query resolution time (in ms) (static model) for all valid queries executed
over the (a) Geolife and (b) Volvo dataset for (i) BASEEAGER, (ii) BASELAZY,
(iii) BALANCEREQUESTS, (iv) BALANCELOAD.

for QR per query), while BASELAZY is one to two orders of magnitude slower;
and BALANCEREQUESTS and BALANCELOAD present similar query resolution
times that do not vary significantly with the queries’ answer rate (except for
Q2 and Q10 [Geolife]). Also, note these computationally heavier queries Q2,
Q10 (requiring to check spatial proximity to multiple points of interest) get
resolved significantly slower than lightweight queries. BASEEAGER shows large
variations in resolution time for the same algorithm and query because, contrary
to all other algorithms, the algorithm itself is purely deterministic and highly
dependent on the order in which queries arrive: indeed, if a “heavy” query is
sent first to every vehicle, all the nodes will need to process it before moving
on to the next query (cf. the FIFO task queue as described in Section B2.1),
potentially slowing down subsequent lighter queries (this also explains why
the balanced-algorithms may outperform BASEEAGER by contacting smaller
subsets of vehicles, see Figure B10).

As a summary, Figure B6 presents the query resolution time (left side)
and fleet workload (right side) over all queries for the four algorithms relative

B4. EVALUATION 101

B
aseE

ager ∗

B
aseLazy

B
alR

eq

B
alLoad

102

103

104

105

q
u
er

y
re

so
lu

ti
o
n

ti
m

e
[m

s]

×
1
.0

×
8
4
.0

×
2
.1

×
1
.9

×
1
.0

×
3
4
.0

×
2
.1

×
2
.3

B
aseE

ager

B
aseLazy ∗

B
alR

eq

B
alLoad

105

106

107

fl
ee

t
w

o
rk

lo
a
d

[m
s]×

3
.8

×
1
.0

×
1
.2 ×
1
.7

×
1
7
.0

×
1
.0 ×
1
.6

×
1
.5

Geolife

Volvo

Figure B6: Query resolution time (left) and fleet workload (right) (static model)
of the four algorithms for the Geolife (red) and Volvo dataset (blue). The starred
algorithm is the respective baseline, the y-axis is logarithmic to suit the different
scales.

to the average resolution time of BASEEAGER and the average fleet workload
of BASELAZY, respectively (marked by stars). The query resolution time is
almost two orders of magnitude higher for BASELAZY (in the Geolife dataset)
than for BASEEAGER, whereas the Balance- algorithms are almost as fast as
BASEEAGER, which shows the best resolution times in both datasets. For the
fleet workload, BASELAZY outperforms BASEEAGER by a factor of up to 17.
The Balance* algorithms perform again well in this metric on both datasets,
having an average cost close to the baseline.

Finally, BALANCEREQUESTS’s fleet workload shows the dependence on the
distribution of data in the fleet: with skewed data (as in the Geolife dataset), it
outperforms BALANCELOAD by a margin of 40%, whereas in a uniformly spread
dataset (e.g., Volvo) it performs marginally worse.

B4.2.3 Fairness of the Algorithms

The presented algorithms distribute clearly differently the workload over the
vehicles. We measured the standard deviation σload of the local workloads
between the vehicles with non-zero workloads, for executing all queries (cf.
Section B4.1.3) over 10000 experiments and for both datasets, presented by
Figure B7. Low values of σload indicate that all vehicles have a similar workload,
and vice versa for high σload. In BASEEAGER, the workload is distributed
deterministically as every vehicle checks every query (even though the execution
order may vary in different runs), and thus the value for BASEEAGER results
only from vehicles needing different times to execute all queries. The inter-
dataset differences may be explained by the fact that Geolife exhibits larger
variance in the average answer rate between vehicles, cf. Figure B3. All other
data localization algorithms show a smaller spread of the workload, hence a
fairer distribution, as more vehicles have similar workloads. BASELAZY provides

102 B - DATA LOCALIZATION AT EDGE

BaseEager BaseLazy BalReq BalLoad

0

1000

2000

3000

σ
lo
a
d

[m
s]

Geolife

Volvo

Figure B7: Standard deviation σload of local workloads (static model) between
vehicles over both datasets and 10000 experiments.

the fairest outcome in this sense in the Geolife dataset, closely matched
by BALANCEREQUESTS and BALANCELOAD, while the latter provides small
improvements over the three in the Volvo dataset.

B4.2.4 Estimation of the Fraction of Yes-Answers

In all previous experiments, the number n of required answers was set to 50.
This section now investigates how this parameter influences the outcome of
the different presented data localization algorithms. Recall that the number
of required answers allows one to select a fixed number of vehicles from the
fleet satisfying the query’s condition for further analysis. One may estimate
in this fashion the true fraction QR of vehicles satisfying the query in the
full fleet, with a higher number of required answers providing intuitively a
better estimation of that fraction. The estimation is given by n/m, where
n yes-answers have been collected over m total received answers. Here, the
validity of the aforementioned intuition will be investigated. Figure B8(a)
presents the average absolute error ∆QR = |QR− n/m| on the estimation of
yes-answers among the fleet for the first five defined queries with QR = 56/60%,
42/43%, 29/28%, 18% and 12%, respectively (Geolife/Volvo, cf. Table B1 for
details about the queries), and n ranging from 10 to 175 required answers.
For each n and each algorithm, 10000 experiments were conducted where all
5 queries are being resolved in parallel. Then, for each experiment and each
query, the share n/m of yes-answers provided by the algorithm at the moment
that the particular query is resolved is recorded. Since BASEEAGER asks every
vehicle in the fleet, the estimation is provided based only upon the fastest
vehicles to answer and ends up providing the least precise estimation of all
tested algorithms. On the contrary, BASELAZY, by asking one vehicle at a time
chosen randomly upon receiving negative answers, bases its estimation on a
purely random pool of vehicles, hence providing the best estimation unbiased by
the time vehicles require to answer the query. In between, BALANCEREQUESTS

and BALANCELOAD provide reasonable trade-offs; as both base their estimation
on the first 70% of vehicles to answer a particular query (as β = 0.7), they
both feature bias as BASEEAGER, but to a lesser degree. The main difference
between the two algorithms is that BALANCELOAD introduces another bias

B4. EVALUATION 103

0.05
0.10
0.15

Q1

BaseEager BaseLazy BalReq BalLoad

0.125
0.150

0.05
0.10 Q2 0.1

0.2

0.1
0.2

Q3
0.10
0.15

0.05
0.10

Q4 0.025
0.050

1
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

Geolife

0.025
0.050
0.075

Q5

n

∆QR

1
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

Volvo

0.06

0.08

(a)

0.00

0.25

0.50

BaseEager BaseLazy BalReq BalLoad

n = 25 n = 50 n = 75
0.00

0.25

0.50∆
Q
R
/
Q
R

Volvo

Geolife

(b)

Figure B8: (a) Average absolute error ∆QR and (b) relative error ∆QR/QR of
the estimation of yes-answers (static model) for queries Q1 −Q5 with different data
localziation algorithms over both datasets.

on top of using the 70% fastest vehicles, which is selecting vehicles with a
current lower load rather than random ones as in BALANCEREQUESTS; this
additional bias seems strongest in Q2 in the Volvo dataset. On most queries,
the balanced algorithms perform nearly as well as BASELAZY. We note that they
present almost identical estimations except for query Q2, where BALANCELOAD,
prioritizing spreading the queries fairly among the fleet, under-performs in the
Volvo dataset. Figure B8(b) summarizes the estimation performance of all four
algorithms on both datasets by presenting the average relative error ∆QR/QR
of the estimation of yes-answers for the 10000 experiments. The advantage
of the introduced algorithms is clear: they provide mostly good estimates
independently of the required number of answers, especially considering the
low values of n compared to the size of the fleets (Geolife: 10528; Volvo:
3462), while the disadvantage of the secondary bias of BALANCELOAD becomes

104 B - DATA LOCALIZATION AT EDGE

apparent again in the Volvo dataset.

B4.2.5 Comparison of the Algorithms in the Dynamic Model

Recall that in the dynamic model, vehicles may join and leave the fleet at
any time during a query’s resolution. For the churn values to be in line with
those observed in real setups (cf. Section B4.1.3), we have modeled the arrival
and departure of vehicles during a time interval by using real-world traces: in
the following experiments, the set Vt representing the fleet at time t consists
of all vehicles that have records within 7.5s of t. Furthermore, here long
queries defined in Section B4.1.3 have been used where the multiplicative factor
has been set to 1000. This shifts the fastest vehicles from answering within
milliseconds to seconds and the slowest from a few hundreds of milliseconds to
minutes (on selected queries); similarly, the transfer time of 1-20ms becomes
1-20s (the equivalent of 1-20 MB of data having to be transferred per query).
The timeout (introduced in Section B3.3) is set to 100s and the number of
answers required per query is set to n = 50 as in previous experiments.

1 2 3 4 5 6 7

102

(i)

1 2 3 4 5 6 7

103

(ii)

1 2 3 4 5 6 7

103

(iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

103
(iv)

(a)

1 2 3 4 5 6

102

(i)

1 2 3 4 5 6

103

(ii)

1 2 3 4 5 6

102 (iii)

Q1 Q2 Q3 Q4 Q11 Q12

102 (iv)

(b)

Figure B9: Query resolution time (in s) (dynamic model) and all valid queries
executed over the (a)Geolife and (b) Volvo dataset for (i) BASEEAGER, (ii) BASELAZY,
(iii) BALANCEREQUESTS, (iv) BALANCELOAD.

B4. EVALUATION 105

Figure B9 presents the query resolution time in the dynamic model following
the same conventions as Figure B5. We use in the experiments a query batch of
7 queries (Geolife dataset) and 6 queries (Volvo) with a starting time of 18:00;
the remaining other queries were discarded as not solvable considering only
vehicles active past that point in time. The main outcomes in regards to the
adaptation of the algorithms to dynamicity are as follows: (i) BASEEAGER’s and
BASELAZY’s resolution time is less dependent on the queries’ positive answer
rate; (ii) BALANCELOAD performs similarly to BALANCEREQUESTS with a slight
improvement thanks to spreading the requests over more vehicles, which then
decreases the chance that a vehicle leaves the network before having emptied its
local request queue; and (iii) queries that require new arrivals to get resolved,
such as Q12, display high resolution times regardless of the spreading algorithm
used (however, we note that in these situations, BALANCEREQUESTS is more
likely to fail to collect enough answers, as it does for Q12 in Figure B9 b).

Figure B10 shows, as a summary, the average query resolution time and
fleet workload over all selected queries(B3) of both datasets for each algorithm
relative to BASEEAGER and BASELAZY, respectively (in a similar fashion as
Figure B6). Contrary to the static setting, where the best-performing of the
Balance- algorithms varies depending on the distribution of data over the fleet
(cf. Section B4.2.2), in a dynamic environment, BALANCELOAD clearly performs
best. BALANCEREQUESTS displays overall favorable trade-offs, performing close
to each baseline, but slightly slower and with a higher cost than BALANCELOAD.
The latter performs close to or better than BASEEAGER in terms of time, and
better than BASELAZY in terms of load. This is the consequence of the way the
vehicles are selected in the algorithm; those with the lowest current local load
are requested first (hence favoring freshly arrived vehicles), which in our datasets

(B3)All queries described in Figure B9, except for Volvo where Q12 has been excluded from
the resolution time plot, as it did not always terminate.

B
aseE

ager ∗

B
aseLazy

B
alR

eq

B
alLoad

0

250

500

750

1000

1250

1500

q
u
er

y
re

so
lu

ti
o
n

ti
m

e
[s

]

×
1
.0

×
1
1
.0

×
1
.9

×
1
.2

×
1
.0

×
3
.6

×
1
.2

×
0
.9

1

B
aseE

ager

B
aseLazy ∗

B
alR

eq

B
alLoad

0.0

0.5

1.0

1.5

fl
ee

t
w

o
rk

lo
a
d

[s
]

×106

×
5
.2

×
1
.0

×
0
.8

9

×
0
.7

4

×
1
.5

×
1
.0

×
1
.3

×
0
.7

8

Geolife

Volvo

Figure B10: Query resolution time (left) and fleet workload (right) (dynamic model)
of the four algorithms for the Geolife (red) and Volvo dataset (blue). The starred
algorithm is the respective baseline.

106 B - DATA LOCALIZATION AT EDGE

biases the selection process towards vehicles with higher chances of answering
positively or vehicles answering faster (see discussion in Section B4.2.1). A
clustering of relevant data in those vehicles may further exhibit the causes of
BALANCELOAD’s higher performance.

B4.2.6 Summary of the Results

Table B2 summarizes the average resolution time and relative fleet workload
(compared to BASEEAGER) over all queries for all algorithms and datasets in the
static and dynamic fleet model. On average, the proposed algorithms resolve
queries up to 40 times faster than BASELAZY while consuming only 1/3rd of
the resources of BASEEAGER (BALANCEREQUESTS, static model, Geolife).

The presented solutions (a well-tuned BALANCEREQUESTS and BALANCELOAD)
provide substantially improved trade-offs of query resolution time versus on-
board workload compared to baseline solutions, and allow tuning between the
tradeoffs by varying the estimation of required vehicles to ask in the next itera-
tion (via the parameter α) and the waiting times for slow-processing vehicles
(via β). Furthermore, a query’s resolution time in the proposed algorithms is
shown to not be negatively impacted by a low positive answer rate among the
fleet.

BALANCELOAD, presenting shorter resolution time and slightly larger fleet
workload, produces a workload more fairly spread over the vehicles; however, it
may provide a less accurate estimation of the fraction of positively answering
vehicles once queries are resolved. BALANCEREQUESTS provides the most
balanced trade-offs overall, performing almost as good as each baseline solution
both when considering a uniform distribution of positive answers (Volvo dataset)
or a skewed distribution (Geolife dataset). Finally, BALANCELOAD is overall
more suited to “dynamic” scenarios, i.e.,when the queries require long enough
processing times for the fleet churn to become noticeable.

Table B2: Summary of the results (average over all queries) for both datasets, all
algorithms, and static & dynamic models.

Resolution time (s) Fleet workload (s)
Algorithm

Geolife Volvo Geolife Volvo
BASEEAGER 0.27 0.20 10715 1667
BASELAZY 22.65 6.75 2823 103
BALANCEREQUESTS 0.55 0.40 3616 162st

at
ic

BALANCELOAD 0.52 0.48 4816 148
BASEEAGER 105 204 1484451 168280
BASELAZY 1105 556 293245 115858
BALANCEREQUESTS 197 148 281650 141771

d
y
n
am

ic

BALANCELOAD 132 220 227068 101282

B5. RELATED WORK 107

B5 Related Work

Having studied in this work the problem of how to localize, efficiently and in a
distributed manner, relevant data in a vehicular fleet for analysis applications,
in the following paragraphs we discuss work about topics that associate with
or have similarities to the problem.

The traditional approach to query a set of vehicles has been through
SQL-inspired languages [97], [204], [210] to process continuous queries on live
vehicular sensors’ data. Two main differences with the current work are that
in previous works (i) “queries” were usually initiated by vehicles themselves
(e.g., [5], [51], [120], [123], [124], [211]) and (ii) the full fleet was queried upon
receiving new queries (as in [121]), contrary to our work in which a known and
fixed set of general queries is deployed from a centralized point to the fleet and
only some vehicles in the current fleet may have relevant data to answer the
queries. Also, many works in the field are based on an advantageous usage of
geographical properties of the distribution of Road Side-Units (among others
[5], [51], [118], [120]), whereas our work is only based on the already widespread
mobile broadband infrastructure as well as data analysis capabilities already
in place at car manufacturers’ data centers. Query-answering mechanisms for
Vehicular Networks in the literature also predominantly concentrate on using
the architecture of the network (for instance using pre-existing P2P approaches,
as in [116], [129], [197] or 2-tier architectures [39], [186]) to resolve the query. In
this work, we do not presume any connections between vehicles; this positions
our work in readily deployable technologies on modern vehicles. A querying
approach for vehicle selection was recently studied in [53] in which a request is
sent to all available vehicles to detect candidates to participate in Federated
Learning. The vehicles send updated responses to the query over time as they
are collecting new data, and eventually a subset of the vehicles that answered
positively is chosen. In contrast, our algorithms attempt to limit the number
of vehicles that are queried for data, thus allowing for more concurrent queries,
while novel data discovery is only supported via new queries.

The problem of localizing the relevant data or “data localization” features
many similarities with the concept of data aggregation in wireless sensor
networks [92], [113], [117], [148], [164]. Usual aspects of data aggregation that
differ from data localization include a continuous aspect (rather than an on-
the-fly query approach for data localization) and dissemination of information
to nearby nodes (rather than to a single sink node for data localization). Since
the focus taken here is on the localization of data, approaches for efficient
data gathering [58], [90], [91] and aggregation do well complement the initial
localization phase. The way our algorithms have been designed also relates to
the large field of information gathering (see [36] and references therein). In
both concepts, online decisions are iteratively taken to gain knowledge of a
hidden state. For instance, in [37], the authors design near-optimal algorithms
to pick the right set of tests in order to maximize the value of information, with
applications to medical diagnosis and troubleshooting. Note such approaches
can be used to design the right set of queries (similar to the aforementioned
tests) to resolve a particular task whereas our work concentrates on how to

108 B - DATA LOCALIZATION AT EDGE

efficiently and distributively resolved those queries.

The fundamental opposing metrics studied in our paper that are the time
to resolve the queries and the computational overhead induced on the fleet
are similarly observed in the field of job scheduling in distributed computing.
Parallel and redundant job execution can decrease job execution times in
heterogeneous environments (e.g., through speculative scheduling in MapReduce
[208]), at the cost of increasing contention and overall workload [6]. In contrast,
in our work parallel execution is always required, and no node is a priori known
to be fundamentally able to fulfill a given task.

In vehicle data analysis, privacy aspects are important when dealing with
for example location-based services [42], [95], [202] and privacy-preserving
cloud-based query processing [118]. We suggest that our work, by allowing to
check whether a certain number (chosen by the analyst) of vehicles meets a
given condition, can complement applications where privacy is supported by
aggregating data from many sources.

B6 Conclusions

This work proposes two distributed algorithms for data localization in Vehicular
Networks. To the best of our knowledge, this paper is the first to propose a data
localization mechanism over a Vehicular Network through request spreading,
focusing on acquiring only a limited number of answers from the fleet and
considering as a performance metric the computing workload of the vehicles.
The focus lies on the vehicle selection phase necessarily performed prior to
data gathering over large vehicular fleets, typically for selecting vehicles that
triggered a particular condition or event [90], [91], [119]. As this work also
shows, this vehicle selection mechanism can be used as-is for estimating the
occurrence of particular events in the vehicles’ recent data while incurring
low overhead on the Vehicular Network as a whole. The proposed algorithms
balance (i) the overall time needed to identify a subset of vehicles holding
relevant data and (ii) the local computational overhead each vehicle pays to
check whether a set of properties hold for its data. As shown with analytical
argumentation and experimental evaluation, conducted with real-world data
traces, the algorithms provide means to tune the trade-off between (i) and (ii)
in interesting ways. In particular, it appears that it is possible to significantly
reduce the query resolution time, with only a small extra load imposed on the
vehicles, compared to the baselines that can optimize only one of these metrics
(achieving for example up to 40 times faster resolution while saving more than
65% of the computing resources). These results indicate that the adoption of
a data localization phase prior to the execution of additional analysis steps
for example in a Federated Learning scenario can occur with little overhead
with respect to time and computing resources, thus enabling better learning
outcomes for a comparably small price. Furthermore, our results show that the
distribution of the work to the vehicles can happen fairly, even for skewed data
distributions, to alleviate the risk of overloading individual vehicles. This work
sets the basis for several paths to investigate in the future. One avenue is the

B6. CONCLUSIONS 109

porting of the proposed algorithms to V2V [74] rather than centralized V2I
setups. A second direction is to explore how our algorithms can be integrated
within existing simulators (e.g., with a traffic and/or network simulator) to
produce richer simulation environments for benchmarking smart analysis in
Vehicular Networks. Lastly, investigating the use of correlations between queries
could be a promising way of efficiently selecting those vehicles for a query that
have answered positively to a similar query in an earlier execution by adaptively
changing the parameters of our algorithms during a data localization query’s
resolution.

Appendix

A preliminary formulation of the problem was presented in [59]. The present
article builds on those test results and presents an extensive study that includes
a detailed problem formulation, as well as varying system models and parameters
along with algorithmic designs for them. For comparison, we list here the main
novel contributions of the present work:

1. the system model is made more realistic by introducing a dynamic fleet
model where vehicles can leave and join at any time (Section B2.2);

2. the data localization algorithms presented here are enhanced to adapt
to changes in the set of available vehicles (Section B3.3), in accordance
with the new system model;

3. the evaluation has been updated with use-cases that account for the new
system model (Section B4.2.5);

4. the evaluation is extended with a thorough comparison of the algo-
rithms’ behaviour, using a larger set of performance metrics, as well as
enhanced experiment repetitions for higher statistical certainty, and a
more extensive analysis of the parametrization of the proposed algorithms
(Section B4.2.3, Section B4.2.4);

5. the study includes more realistic modeling of the communication delays
(Section B4.1.2); and lastly

6. the evaluation framework and algorithms are openly published(B4) to
enable replicability of our experiments as well as to spark further research.

(B4)All code and detailed useage instructions are available at https://github.com/

dcs-chalmers/dataloc_vn.

https://github.com/dcs-chalmers/dataloc_vn
https://github.com/dcs-chalmers/dataloc_vn

110 B - DATA LOCALIZATION AT EDGE

Chapter C

Forward Provenance for Data Selection

in Stream Processing

Dimitris Palyvos-Giannas, Bastian Havers∗, Marina Papatriantafilou,
Vincenzo Gulisano

∗The first two authors contributed equally to the publication this chapter is based on.

The following is an adapted version of the work published in Proceedings of
the VLDB Endowment, Vol. 14 (3), p. 391-403, as “Ananke: A Streaming
Framework for Live Forward Provenance”. Any changes serve only to retain
the consistency of this thesis.

Abstract

Data streaming enables online monitoring of large and continuous event streams
in Cyber-Physical Systems (CPSs). In such scenarios, fine-grained backward
provenance tools can connect streaming query results to the source data
producing them, allowing analysts to study the dependency/causality of CPS
events. While CPS monitoring commonly produces many events, backward
provenance does not help prioritize event inspection since it does not specify if
an event’s provenance could still contribute to future results.

To cover this gap, we introduce Ananke, a framework to extend any fine-
grained backward provenance tool and deliver a live bipartite graph of fine-
grained forward provenance. With Ananke, analysts can prioritize the analysis
of provenance data based on whether such data is still potentially being
processed by the monitoring queries. We prove our solution is correct, discuss
multiple implementations, including one leveraging streaming APIs for parallel
analysis, and show Ananke results in small overheads, close to those of existing
tools for fine-grained backward provenance.

114 C - FORWARD PROVENANCE IN STREAM PROCESSING

C1 Introduction

Distributed, large, heterogeneous Cyber-Physical Systems (CPSs) like Smart
Grids or Vehicular Networks [91] rely on online analysis applications to moni-
tor device data. In this context, the data streaming paradigm [180] and the
DataFlow model [3] enable the inspection of large volumes of continuous data
to identify specific patterns [58], [142]. Streaming applications fit CPSs’ require-
ments due to the high-throughput, low-latency, scalable analysis enabled by
Stream Processing Engines (SPEs) [2], [8], [10], [29], [152] and their correctness
guarantees, which are critical for sensitive analysis. Figure C1a shows two
streaming applications, or queries, monitoring a vehicular network to spot cars
visiting a specific area (Q1) or speeding (Q2). Vehicle reports (timestamp, id,
position), or tuples, arrive every 5 minutes; tij is the i-th tuple from car j, ai

j

the i-th alert from query j. This scenario is our running use-case throughout
the paper.

Motivating challenge

CPSs need continuous monitoring for emerging threats or dangerous events [156],
[170], which may result in many alerts that analysts are then left to prior-
itize [56], [173]. For streaming-based analysis, provenance techniques [76],
[151], which connect results to their contributing data, are a practical way to
inspect data dependencies, since breakpoint-based inspection is not fit for live
queries that run in a distributed manner and cannot be paused [50]. Existing
provenance tools for traditional databases target backward tracing, to find
which source tuples contribute to a result [20], [38], [47], [50], [76] (Figure C1b),

Figure C1: a) Two sample queries to monitor car location and mean speed (all
tuples up to time 8:21 are processed), and their b) backward and c) live forward
provenance graphs.

C1. INTRODUCTION 115

and forward tracing, to find which results originate from a source tuple [20],
[47]; however, streaming-based tools only exist for backward-provenance [76],
[151].

The need for live, streaming, forward provenance is multifold: (1) while
backward tracing can give assurance on the trustworthiness of end-results [38],
forward tracing allows to identify all results linked to specific inputs [47], e.g.,
to mark all results linked to a privacy-sensitive datapoint (e.g., a picture of
a pedestrian, in the context of Vehicular Networks) before such results are
analyzed further; (2) live maintenance of the provenance graph avoids data
duplication and allows to start the analysis of provenance data safely (e.g., once
all sensitive results that could be connected to the aforementioned picture have
been marked); (3) a streaming-based forward provenance tool does not require
intermediate disk storage (which might be forbidden for pictures taken in public
areas) and enables lean dependency and causality analysis of the monitored
events. Note that, as shown in our evaluation, providing live, streaming,
forward provenance with tools external to the SPE running the monitoring
queries incurs significant costs that can be avoided by relying on intra-SPE
provenance processing instead.

Contribution

Motivated by the open issues, our key question is:

“Can we enrich data streaming frameworks that deliver backward provenance
to efficiently provide live, duplicate-free, fine-grained, forward provenance for

arbitrarily complex sets of queries?”

We answer affirmatively with our contributions:

• We formulate the concrete goals and evaluation metrics of solutions for live,
duplicate-free, fine-grained, forward provenance.

• We implement a general framework, Ananke(C1), able to ingest backward
provenance and deliver an evolving bipartite graph of live, duplicate-free,
fine-grained, forward provenance (or simply live provenance) for arbitrary
sets of queries. Ananke delivers each result and source tuple contributing to
one or more results exactly once, distinguishing source data that could still
contribute to more results from expired source data that cannot.

• Ananke’s key idea builds on our insights on forward provenance w.r.t. the
backward provenance problem and defines a simple yet efficient approach,
enabling specialized-operator-based implementations, as well as modular ones
that utilize native operators of the underlying SPE. We design and prove the
correctness of two streaming-based algorithmic implementations: one target-
ing to optimize the labeling of the expired source data as fast as possible, and
one that shows how the general SPEs’ parallel APIs are sufficient to parallelize
Ananke’s algorithm, and thus sustain higher loads of provenance data.

(C1)In Greek mythology, Ananke personifies inevitability, compulsion and necessity.

116 C - FORWARD PROVENANCE IN STREAM PROCESSING

• We conduct a thorough evaluation of our Ananke implementation on top
of Apache Flink [29], with real-world use cases and data, and also match
with previous experiments and an implementation that delivers live forward
provenance by relying on tools external to the SPE, for a fair comparison
of Ananke’s overheads.

The implementations used in our evaluation are open-sourced at [75] for
reproducibility. Figure C1c shows Ananke’s live provenance assuming both
queries have processed all tuples up to time 8:21. Each source and sink tuple
appear exactly once in the bipartite graphs. Some tuples are labeled by a
green check-mark, indicating that they are expired and will not be connected
to future results.

Organization: Section C2 covers preliminary data streaming and provenance
concepts. Section C3 provides the definitions we use and also includes a formal
problem formulation. Section C4-Section C5 cover our contribution, later
evaluated in Section C6. We discuss related work in Section C7 and conclude
in Section C8.

C2 Preliminaries

C2.1 Data Streaming Basics

Like Apache Flink [29] (or simply Flink), Ananke builds on the DataFlow
model [3]. Streams are unbounded sequences of tuples. Tuples have two
attributes: the metadata µ and the payload φ, an array of sub-attributes. The
metadata µ carries the timestamp τ and possibly further sub-attributes. To
refer to a sub-attribute of µ , e.g., τ , we use the notation t.τ . We reference φ’s
i-th sub-attribute as t.φ[i] (omitting t when it is clear from the context). In
combined notation, a stream tuple is written as ⟨µ, ϕ⟩ = ⟨τ, . . . , [φ[1], φ[2], . . .]⟩.

Streaming queries (or simply queries) are composed of Sources, operators
and Sinks. A Source forwards a stream of source tuples (e.g., events measured
by a sensor or reported by other applications). Each source stream can be
fed to one or more operators, the basic units manipulating tuples. Operators,
connected in a Directed Acyclic Graph (DAG), process input tuples and
produce output tuples; eventually, sink tuples are delivered to Sinks, which
deliver results to end-users or other applications. In our model, we assume
each tuple is immutable. Tuples are created by Sources and operators. The
latter can also forward or discard tuples.

As source tuples correspond to events, τ is set by the Source to when
that event took place, the event time. Operators set τ of each output tuple
according to their semantics, while φ is set by user-defined functions. Event
time is not continuous but progresses in discrete increments defined by the
SPE (e.g., milliseconds). We denote the smallest such increment of an SPE by
δ. All major SPEs [7], [8], [10], [29] support user-defined operators but also
provide native ones: Map, Filter, Aggregate and Join. Since we make use of
such native operators, we provide in the following their formal description for
self-containment. However, Ananke provides live provenance without imposing

C2. PRELIMINARIES 117

Figure C2: SPEs’ native operators, Source, and Sink.

any restriction on the operators of the query. Figure C2 illustrates the native
operators, the Source, and the Sink.

We begin with stateless operators, which process tuples one-by-one.

A Filter (F) relies on a user-defined filtering condition C to either forward
an input tuple, when C holds, or discard it otherwise.

A Map (M) uses a user-defined function FM (to transform an input tuple
into m ≥ 1 output tuples) and S, the schema of the output tuple payloads. It
copies the τ of each input into the outputs.

Differently from stateless operators, stateful ones run their analysis on
windows, delimited groups of tuples maintained by the operators. Time windows
are defined by their size WS (the length of the window), advance WA (the
time difference between the left boundaries of consecutive windows), and offset
WO (the alignment of windows relative to a reference time; in Flink, this is
the Unix epoch). For example, a window having WS, WA, and WO set to 60,
10 and 5 minutes, respectively, will cover periods [00:05,01:05), [00:15,01:15),
etc. Consecutive periods covered by a window can overlap when WA < WS.
Lastly, the left and right boundaries of a window are inclusive and exclusive,
respectively. We say a tuple t falls in a window [A,B) if A ≤ t.τ < B. As
windows can overlap, a tuple can fall into one or more windows.

We now present stateful operators in more detail.

An Aggregate (A) is defined by: (1) WS, WA, WO: the window size,
advance, and offset, (2) KB: an optional key-by function to maintain separate
(yet aligned) windows for different key-by values, (3) FA: a function to aggregate
the tuples falling in one window into the φ attribute of the output tuple created
for such window, (4) S: the output tuple’s payload schema.

When an output tuple is created for a window (and a key-by value, if KB
is defined), we assume its timestamp is set to such window’s right boundary
[7], [10], [29].

A Join (J) matches tuples from two input streams, r and s. It keeps
two windows, one for r and one for s tuples, which share the same values for
parameters WS, WA and WO. Each pair of r and s tuples sharing a common
key are matched for every pair of windows covering the same event-time period
they fall in. The Join operator relies on the following parameters: (1) WS,
WA, WO: the window size, advance, and offset, (2) KB: a key-by function to
maintain separate (yet aligned) pairs of windows for different key-by values,
(3) P (tr, ts): a predicate for pairs of tuples from the two input streams, (4) FJ :
a function to create the φ attribute of the output tuple, for each pair of input
tuples for which P (tr, ts) holds, and (5) S: the schema of the output tuple’s
payload φ. Similarly to the Aggregate, when an output tuple is created by a

118 C - FORWARD PROVENANCE IN STREAM PROCESSING

Figure C3: The DAG of Q1, Q2 from Figure C1. Source tuples contain reports’
timestamp in µ, and the vehicle ID Vid and position x, y in φ. Source tuples are
forwarded to both queries. Tuples arriving at the Sinks correspond to alerts in
Figure C1.

Join, its sub-attribute τ is set to the right boundary of the window.

In the remainder, we (1) differentiate between stateless and stateful only if
necessary, we (2) assume WO = 0 unless otherwise stated, and (3) assume a
stream can be multiplexed to many operators.

Figure C3 presents Figure C1’s queries. Source S emits tuples of schema
⟨τ, [Vid, x, y]⟩ (timestamp, vehicle ID, x- and y-coordinates). In Q1, Filter F1

forwards tuples within region R, Aggregate A1 counts each car’s reports, and
Filter F2 forwards to Sink K1 only tuples with a count higher than 2 (as tuples
arrive every 5 minutes, the count can only be 1, 2 or 3). In Q2, Aggregate A2

emits the mean speed of each car within the last 15 minutes. Filter F3 forwards
the tuples whose mean speed(C2) exceeds 110km/h to Sink K2.

C2.2 Watermarks and Correctness Guarantees

Because of asynchronous, parallel, and distributed execution, stateful operators
processing tuples from multiple streams can receive such tuples out-of-order.
Hence, receiving a tuple with a timestamp greater than some window’s right
boundary does not imply that tuples received later could not still contribute
to said window.

To ensure result correctness for out-of-order streaming processing [99],
Aggregate and Join rely on watermarks to make such distinction, as suggested by
pioneer as well as state-of-the-art SPEs [29], [99]; the definition is paraphrased
here:

Definition C1. The watermark Wω
i of operator Oi at a point in wall-clock

time(C3) ω is the earliest event time a tuple to be processed by Oi can have from
time ω on (i.e., ti.τ ≥Wω

i ,∀ti processed from ω on).

(C2)In Figure C1, given the grid’s cell size, cars’ mean speed is 120km/h if covering four cells
in three consecutive tuples.
(C3)Notice that from here on, we only differentiate between wall-clock time (or simply time)
and event time if such distinction is not clear from the context.

C3. DEFINITIONS AND PROBLEM STATEMENT 119

Watermarks are created periodically by Sources and propagate as special
tuples through the DAG(C4). Upon receiving a watermark, an operator stores
the watermark’s time, updates its watermark to the minimum of the latest
watermarks received from each of its input streams and forwards its watermark
downstream. For an Aggregate or Join Oi, every time the watermark advances
from Wω

i to Wω′

i , an output tuple is created for each window maintained by Oi

that has a right boundary less or equal to Wω′

i . If multiple results are created,
they are emitted in event-time order.

C2.3 Backward Provenance

Ananke aims at extending frameworks that provide backward provenance
(Section C1). Such frameworks [76], [77], [151] rely on instrumented operators,
i.e., wrappers that add extra functionality to operators. Our contribution can
extend any streaming framework providing backward provenance, assuming
each sink tuple has additional sub-attributes in µ that can be used to retrieve
the unique source tuples contributing to it. Such sub-attributes can be pointers
to source tuples [151] or IDs identifying source tuples maintained in a dedicated
provenance buffer [76], [77]. In the remainder, we rely on a general function
get provenance to retrieve backward provenance.

C3 Definitions and Problem Statement

This section includes the definitions we use to present and prove our contribu-
tion’s correctness, and a formal statement of our goals.

Definition C1. We say a tuple t contributes directly to another tuple t∗ if an
operator produces t∗ based on the processing of t and write: t→ t∗. We then
say t contributes to t∗ and use the notation t⇝ t∗ if t→ t′ → t′′ → . . .→ t∗.
Thus, if t → t∗, then t⇝ t∗.

From the above, a source tuple tS from Source S contributes to a sink
tuple tK received by Sink K, if there is a directed, topologically-sorted path
S,O1, . . . , Oi, . . . , Ok,K and a sequence of tuples tS = t0, . . . , ti−1, ti, . . . , tk =
tK , s.t. ∀i = 1, . . . , k, where ti−1 and ti are input and output tuples of Oi, and
ti−1 → ti for all i = 1, . . . , k.

Definition C2. At time ω, tuple t is active if it can still contribute directly to
a tuple produced by an operator. Otherwise, t is inactive. At time ω, tuple t is
alive if it is active or if there is at least one active tuple t∗ such that t⇝ t∗.
Otherwise, t is expired.

For instance, if a Map produces a tuple t2 upon ingesting tuple t1, the latter
is inactive, but remains alive as long as t2 is being processed downstream (or
as long as t2 itself is alive). Note that all sink tuples are expired by definition.
Using the above, we define the live provenance to be delivered by Ananke:

(C4)Notice that this assumption about in-band watermarks is not a constraint. Different
watermarking schemes that could also be adopted are discussed in e.g., [99], [125].

120 C - FORWARD PROVENANCE IN STREAM PROCESSING

Definition C3. At time ω in the execution of a set of queries Q, being KQ
the set of Q’s Sinks, the live, duplicate-free, bipartite graph forward provenance
F(Q, ω) consists of (1) a set of vertices V , containing exactly one vertex for
each sink tuple forwarded to KQ, and exactly one vertex for each source tuple
contributing to any sink tuple forwarded to KQ, (2) a set of edges E, each edge
connecting a sink tuple with its contributing source tuples, and (3) a set of
“expired” labels L, one for each vertex in V if the tuple it refers to is expired.

Notice that if, at time ω, a vertex in V is alive, then more edges connecting
such vertex to other vertices could be found later in the execution of Q. In
Figure C1c, which shows F(Q, 8:21), new edges could connect the vertices of
tuples not marked as expired to vertices referring to sink tuples that have not
yet been produced.

Given the preceding definitions, we now formulate our goals and the neces-
sary requirements to reach these (using prefix R- for the latter). For brevity,
we refer to vertices containing a source tuple or a sink tuple as source vertices
and sink vertices, respectively, and use the expression expired for tuples and
vertices interchangeably.

Problem formulation Being BQ a set of streams delivering KQ’s sink tuples
with backward provenance retrievable via attribute µ, the goal is to continuously
deliver F(Q, ω)’s V , E and L, for increasing values of ω, as one or multiple
streams, to meet the following requirements:
(R-V) Each vertex referring to a source or a sink tuple is delivered exactly once,
by a tuple ⟨τV , [IDS , tS]⟩ or ⟨τV , [IDK , tK]⟩, respectively. IDi is a unique ID
for the vertex associated to ti;
(R-E) each edge between vertices IDS and IDK is delivered exactly once by a
tuple ⟨τE , [IDS , IDK]⟩, with τE greater than or equal to the timestamp τV of
the connected vertices; and
(R-L) an “expired” label is delivered once for each vertex IDi by a tuple
⟨τL, [IDi]⟩, with τL ≥ τE , for each edge E adjacent to IDi.

For the queries in Figure C1a, Figure C4 shows F(Q, 8:16) and the tuples
delivered to update it to F(Q, 8:22).

While referring to a set of queries Q and a set of Sinks KQ for generality,
our problem formulation is justified even for a single query with exactly one
Source and Sink, because subsequent sink tuples can have overlapping sets of

Figure C4: Live provenance graph for Figure C1’s queries at 8:16 and 8:22, and the
stream of graph tuples received in between.

C4. DISCERNING ALIVE AND EXPIRED TUPLES 121

source tuples (as in the example of Figure C1), and each such source tuple still
needs to be delivered exactly once and later marked as expired.

Performance metrics For provenance to be practical in real-world appli-
cations, its performance overheads need to be small. The efficiency of our
solution is evaluated through its overhead on the following metrics:

• Throughput, number of tuples a query ingests per unit of time.

• Processing Latency, the delay in the production of a sink tuple after all its
contributing source tuples have arrived at the query.

• CPU utilization, the percentage of the total CPU time a query utilizes, across
all available processors (0-100%).

• Memory consumption, the amount of RAM a query utilizes.

We also introduce the provenance latency metric, to quantify the event time it
takes for F(Q, ω)’s components to become available:

• For tuple t’s vertex V , it is computed as τV − t.τ .

• For an edge E, it is computed as τE −max(τSV , τ
K
V), where τSV and τKV are

the timestamps of the vertices connected by the edge.

• For the label L of some vertex, it is computed as τL − τV .

Implementation requirements We want Ananke to be a streaming-based
extension (of Q) that delivers the vertices, edges, and labels of F(Q, ω) through
its output stream(s). A solution can rely on user-defined or native operators
(Section C2). Being a streaming-based extension of Q, the latter’s watermarks
are propagated to Ananke operators, too. For generality, we assume a user-
defined operator needs to support two methods (not invoked concurrently by the
SPE): on tuple(t), invoked upon reception of tuple t, and on watermark(W),
invoked when the watermark W is updated.

C4 Discerning Alive and Expired Tuples

Live provenance needs to discern alive from expired tuples. Even if sink tuples
cannot contribute directly to other tuples, source tuples can be inactive but
alive. As we show, alive and expired tuples can be separated using static query
attributes and the Sink watermarks.

Figure C5 illustrates how a source tuple’s contribution “ripples” through
event time for a query composed of Aggregates A1 and A2, Map M , and Filter
F . A source tuple, tS , falls into two windows of A1, which emit two outputs
that pass through M and contribute to three separate windows in A2. Two of
the three output tuples of A2 get dropped by F , and a single tuple tK arrives at
K. When that happens, it is unknown whether tS will contribute to more sink
tuples - for example, it is uncertain if F will drop the next output of A2. The

122 C - FORWARD PROVENANCE IN STREAM PROCESSING

Figure C5: Sample query showing actual and maximal contributions of a source
tuple to downstream tuples.

figure also explores tS ’s hypothetical maximal contributions: We ignore exact
window placements and examine the extreme case, tuples always falling at the
beginning or the end of windows. We shade all event times that can contain
(direct or indirect) contributions of tS . As shown, the growth of the shaded
region only depends on the window size of stateful operators. Tuple tS can
contribute to any tuple inside the shaded region. Thus, if K’s watermark falls
after that region (W2 in the example), then tS is surely expired. UK denotes
the width of the shaded region. With this intuition, we proceed with proving
the following theorem:

Theorem C1. Given KQ (Definition C3), it is possible to statically compute
constants UK , one for each Sink K ∈ KQ so that: If a source tuple tS has
contributed to a sink tuple tK that arrives at K at time ω or later, then:

tS .τ ≥Wω
K − UK . (3.1)

Inversely, if tS .τ < minK(Wω
K − UK), then tS is expired and cannot contribute

to any sink tuple fed to KQ at time ω or later.

We move bottom-up towards the proof. First, we study pairs of chained
operators, each with one downstream peer in Lemma C1. In Lemma C2, we
focus on longer operator chains before examining arbitrary paths between
sets of operators in Corollary C1 and finally concluding with the proof of
Theorem C1. Here, we use the term operator in a broad sense, also to refer to
Sources and Sinks.

Lemma C1. For any operator Oi with downstream operator Oi+1, and a tuple
ti+1 arriving at Oi+1 at time ω or later, it holds that if an input tuple ti of Oi

contributed to ti+1, then: ti.τ ≥Wω
i+1 −WSi.

Proof of Lemma C1. From the way stateful operators set their output times-
tamps (Section C2), we obtain ti.τ ≥ ti+1.τ −WSi

(C5). Furthermore, from

(C5)Although the assumption about how timestamps are set covers commonly used SPEs, the

C4. DISCERNING ALIVE AND EXPIRED TUPLES 123

Definition C1 we get ti+1.τ ≥ Wω
i+1. Thus, Lemma C1 follows immediately

and it also holds for a stateless Oi by setting WSi = 0.

We now expand the proof to chains of operators.

Lemma C2. For any chain of operators O1 . . . On, their downstream operator
On+1 and a tuple tn+1 that arrives at On+1 at time ω or later, it holds that
if an input tuple t1 of operator O1 contributed to tn+1, then t1.τ ≥ Wω

n+1 −∑n
j=1 WSj.

Proof of Lemma C2. We begin by showing that:

∀t1, tn+1, t1 ⇝ tn+1 ⇒ t1.τ ≥ tn+1.τ −
n∑

j=1

WSj . (3.2)

Let us denote as ti tuples arriving at operator Oi, with ti → ti+1 for i ∈ [1, n+1].
From the proof of Lemma C1, we know that t1.τ ≥ t2.τ −WS1. Plugging in
this relation again into the first term on the right-hand side of the inequality,
we obtain t1.τ ≥ t2.τ −WS1 ≥ t3.τ −WS2 −WS1. Performing this step n
times yields Equation 3.2. Given Definition C1, tn+1.τ ≥Wω

n+1; hence:

∀t1, tn+1, t1 ⇝ tn+1 ⇒ t1.τ ≥ tn+1.τ −
n∑

i=1

WSi ≥Wω
n+1 −

n∑
i=1

WSi.

Corollary C1. Given a set of operators O = {Oi} connected to operator OX

through a set of paths P, for any tuple tX fed to OX at time ω or later, it holds
that if an input tuple ti of Oi contributed to tX , then ti.τ ≥Wω

out −maxp∈P Sp

where Sp =
∑

j∈p WSj.

The above corollary follows directly from Lemma C2 and allows us to
compute the maximum “delay” between tuples traversing the longest path in a
query, enabling us to prove Theorem C1.

Proof of Theorem C1. To prove Equation 3.1, we apply Corollary C1 to any
sink tuple tK arriving at Sink K at time ω or later, and any source tuple tS ,
which gives tS .τ ≥Wω

K − UK . The constants UK = maxp∈P Sp, with P the set
of all paths to sink K, can be computed statically based on the attributes of
the query graph.

The following remark, stemming directly from Theorem C1, introduces a
per-application safety-margin for expired tuples.

analysis holds also for any output timestamp within the window boundaries. If the output
tuples of stateful operator Oi have timestamps that are ∆i from the left boundary Li of the
window, it holds that ti+1.τ ≤ Li +∆i. By definition of the left boundary, for any tuple ti
in the window it is true that ti.τ ≥ Li and the relation becomes ti.τ ≥ ti+1.τ −∆i. Since
WSi is the maximum value of ∆i, using WSi will always give correct results (possibly with
a higher delay).

124 C - FORWARD PROVENANCE IN STREAM PROCESSING

Remark C1. If we define U = maxK UK , then any source tuple tS with
tS .τ < minK Wω

K − U is expired.

C5 Algorithmic Implementation

As mentioned in Section C2, SPEs provide native operators and support user-
defined ones. Here we show how Ananke’s goals can be met by a user-defined
operator (ANK-1, Section C5.1) or by composing native operators (ANK-N,
Section C5.2). While ANK-1 targets the prompt final labeling of F(Q, ω)’s
vertices, ANK-N shows how the APIs for parallel execution commonly provided
by SPEs are sufficient to parallelize Ananke’s algorithm. We study their
trade-offs in Section C6.

Both in ANK-1 and ANK-N, the ID of tS ’s source vertex is based on tS ’s
attributes. Hence, source tuples with equal attributes refer to the same source
vertex. As each sink tuple represents a unique event, it results in a sink vertex
with a unique ID. Since each sink tuple can carry each source tuple at most
once in its provenance, edges are also unique. We discuss in Section C5.3
how to extend Ananke to other ID policies. In the following, we make use
of Remark C1 for distinguishing alive from expired tuples. As mentioned in
Section C3, the set of streams BQ, delivering backward provenance to Ananke,
forwards the required watermarks. For both implementations, we show how
they meet the requirements for vertices (R-V), edges (R-E), and labels (R-L)
from Section C3.

C5.1 ANK-1: Single User-defined Operator

As introduced in Section C3, user-defined operators must support two methods:
on tuple and on watermark. Algorithm C1 covers such methods for ANK-1;
methods unique id() and get id(t) respectively generate a unique ID and
compute the ID of t based on its attributes.

Claim C1. A user-defined operator fed BQ can correctly deliver F(Q, ω) with
Algorithm C1’s on tuple and on watermark methods.

Proof. Upon reception of sink tuple tK from BQ, ANK-1 emits exactly once
the corresponding (1) sink and (2) source vertex, only if its ID was not stored
in the timestamp-sorted set T (i.e., if the corresponding source vertex was not
forwarded before), thus meeting requirement (R-V); (3) edges, and (4) sink
vertex label (L1-11). Set T represents ANK-1’s “memory” about forwarded
source vertices. The emitted tuples carry as timestamp the current watermark
value, thus meeting requirements (R-E), as the edge does not precede the
vertices, and (R-L) for the sink vertices.

Each source vertex IDS in T is purged once the corresponding source tuple
is expired, i.e., when W − U is greater than its τV (L12-17). Upon purging
of IDS , exactly one “expired” label is generated for the corresponding source
vertex, with the current watermark as the timestamp. Since watermarks are
strictly increasing, it is guaranteed that each label has a timestamp higher than
or equal to that of its source vertex, meeting (R-L) for the source vertex.

C5. ALGORITHMIC IMPLEMENTATION 125

Algorithm C1 ANK-1 algorithmic implementation

data Set T of pairs (τ, ID), ordered on τ , and watermark W
1: procedure on tuple(tK)
2: IDK = unique id()
3: emit(⟨W, [IDK , tK]⟩) ▷ Emit sink vertex
4: sourceTuples ← get provenance(tK)
5: for t : sourceTuples do
6: IDS = get id(tS)
7: if (t.τ, IDS) /∈ T then
8: emit(⟨W, [IDS , tS]⟩) ▷ Emit source vertex
9: T ← T ∪ {(t.τ, IDS)}

10: emit(⟨W, [IDS , IDK]⟩) ▷ Emit edge

11: emit(⟨W, [IDK]⟩) ▷ Emit sink vertex label

12: procedure on watermark(W)
13: for (τ, IDS) ∈ T do
14: if τ >= W − U then
15: output

16: emit(⟨W, [IDS]⟩) ▷ Emit source vertex label
17: T ← T \ (τ, IDS)

C5.2 ANK-N: Native Operator Composition

We now present ANK-N, based on native operators. First, we study the case
of U > 0. For ease of exposition, we initially rely on two auxiliary stateful
operators, Delay (D) and Forward Once (FO), that help meet the requirements,
and later show how D’s and FO’s semantics can be satisfied by native operators.
Finally, we cover the case U = 0, where all Q’s operators are stateless.

A Delay (D) operator produces, for each input tuple t with a unique pay-
load φ, an output tuple t′ as a copy of t with t′.τ = delay(t.τ) :=

(
⌊ t.τU ⌋+ 2

)
·U ,

t′.φ = t.φ and U < t′.τ − t.τ ≤ 2U .
A Forward Once (FO) guarantees that, whether one or more tuples are

fed to it sharing the same ID sub-attribute, only the earliest such tuple is
output, with its payload unchanged but its timestamp delayed by delay() as
in D. After such tuple is output, FO produces nothing for the subsequent input
tuples with that ID until a period of U has passed in the input stream. As
identical source tuples that appear at different times in BQ are not spaced apart
further than U (Remark C1) and have the same ID, FO will output unique
source tuples exactly once.

ANK-N overview: Using D, FO and native operators, we construct the
DAG of Figure C6 to meet the requirements from Section C3, with BQ as input.
First, we outline the main idea. Let us consider sink tuple tK from BQ, and
follow its path through the DAG.

Upon processing tK , Mu produces a sink vertex that carries a copy of tK ,
a unique IDK and the character ”K” as sub-attributes of its payload. Mu

126 C - FORWARD PROVENANCE IN STREAM PROCESSING

Figure C6: Overview of ANK-N. Algorithm C2 shows FMu .

also produces, for all source tuples in tK ’s provenance, a source vertex with
character ”S” (carrying an ID based on the source tuple attributes) as well as
an edge. Each edge carries the character ”E” and the IDs of the source and
sink tuples that it connects. In the proof of the following claim, we continue
tracing the paths of ”K”, ”E” and ”S” tuples and show that all requirements
for delivering a live provenance graph are met.

Claim C2. The DAG in Figure C6, using the D and FO operator, as well as
native ones with the mapping function Mu defined in Algorithm C2, once fed
BQ, correctly delivers F(Q, ω).

Proof. We first prove that for each source tuple tS , its vertex, edges, and label
are delivered correctly:
(1) Ensuring tS’s vertex is created once. tS can appear multiple times, as
provenance of multiple sink tuples. Based on Theorem C1, after contributing
to sink tuple tK (timestamped τK), tS cannot contribute to later sink tuples
timestamped ≥ τK + U . Thus, no pair of source tuples with the same ID can
be farther away than U .

As source vertices (marked with ”S”) are forwarded to FO, which is defined
to output each source vertex with a given ID exactly once with τS = delay(τK),
(R-V) is met for source vertices.
(2) Ordering tS’s edges behind the vertex. For every tS in the provenance of
tK , Mu produces the connecting edge ”E”. For these edges to come after tS ’s
vertex, they are forwarded by F1 to D1, which outputs copies of each edge,
with τE = delay(τK), meeting (R-E).

Algorithm C2 Map function FMu of Mu

1: function out=FMu(tK)
2: IDK = unique id()
3: out.add([”K”, tK , IDK]) ▷ Add sink vertex
4: for tS in get provenance(tK) do
5: IDS = get id(tS)
6: out.add([”S”, tS , IDS]) ▷ Add source vertex
7: out.add([”E”, (IDK , IDS)]) ▷ Add edge

8: output out ▷ Produce tuples

C5. ALGORITHMIC IMPLEMENTATION 127

(3) Producing tS’s label correctly. The latest edge E′ involving tS could be
produced by Mu at event time τK +U − ϵ (for ϵ > 0), according to Remark C1.
As E′ will be delayed to τ ′E = delay(τK + U − ϵ) the source label tuple must
be delayed beyond τ ′E to meet (R-L). From FO, the source vertex (which has
been delayed already) is multiplexed to D2, delayed again, and mapped by ML

to a label tuple with timestamp τS,L = delay(delay(τK)) = delay(τK) + 2U
- which is strictly greater than τ ′E , meeting (R-L) for source tuples.

Thus, the components involving tS are meeting the requirements.
We now focus on sink tuple tK ’s vertices, edges, and labels:

(1) Ensuring tK ’s vertex is created once. F2 forwards the single instance of
tK ’s vertex (timestamp τK), meeting (R-V) for sink tuples.
(2) Ordering tK ’s edges behind the vertex. As explained in (2) above, edges
involving tK are delayed to τE = delay(τK) and (R-E) is met.
(3) Producing tK ’s label correctly. The label for tK ’s vertex must not have a
lower timestamp than any edge connected to tK ’s vertex, and these edges are
delayed. As the sink vertex ”K” is multiplexed from F2 to D2 and mapped
to a label by ML, the resulting label has timestamp τK,L = delay(τK) = τE ,
meeting (R-L) for sink tuples.

Thus, the components involving tK also meet the requirements.
Lastly, we now show how Aggregate A emits vertices, edges, and labels in

order. Each tuple, timestamped τ , falls in one window [τ, τ + δ) of A, and a
copy of each tuple is produced by A when A receives a watermark > τ + δ.
As Aggregates emit results in timestamp-order (Section C2), this effectively
sorts A’s outputs. Thus, ANK-N correctly delivers live provenance, meeting
the requirements in Section C3.

We now construct D and FO using native operators:

Delay An Aggregate A, Filter F and Map M (as in Figure C7) can enforce
this operator’s semantics. A and F create the delay, while M restores the
input tuple’s payload, creating a delayed copy of it. As A’s window size is
twice as big as its window advance and KB : φ, any input tuple with a unique
payload falls into two windows and contributes directly to two output tuples
of A, with timestamps spaced U apart. As each output tuple to of A carries
the timestamp of its corresponding input tuple (τorig), the delay induced on
the input tuples can be computed as to.φ[1]− to.τ . F ensures that this delay
is greater than U , which is always the case for exactly one of the two tuples
produced by A for each input tuple - the other is delayed at most U and thus

Figure C7: Composition of the D operator.

128 C - FORWARD PROVENANCE IN STREAM PROCESSING

discarded. In the extreme case, an input tuple t can be delayed by A by 2U
(the window size), namely if t.τ coincides with a window’s left boundary. The
window advance dictates that output tuples produced from t have timestamps
spaced U apart. Thus, there will also be a tuple delayed by U produced by
A - however, this tuple will be discarded by F . This earlier output tuple, in
all other cases where t does not coincide with a window’s left boundary, will
be delayed even less, and thus also discarded. From this discussion, it is also
apparent that the delay for two input tuples t1, t2|t1.τ = t2.τ is identical (as
both t1 and t2 are equally distanced from the left boundaries of the windows
they fall in).

Forward Once FO ensures that from a group of tuples t1, . . . , tn with
increasing timestamps, common key K and tn.τ − t1.τ < U , exactly one tuple
tFO with payload tn.φ is produced. This tuple is delayed from t1 by at least
U and at most 2U . Figure C8 shows how FO can be constructed using two
Aggregates A1 and A2 and a Join J , to satisfy the required semantics. J ’s
predicate is defined as:

FOpredicate(r,s) =((r.τ ≤ s.τ) ∧ (r.φ[2] ≤ s.φ[2]))∨ (3.3)

((s.τ ≤ r.τ) ∧ (s.φ[2] ≤ r.φ[2])) ,

where φ[2] is the count emitted by the Aggregate operators.
The group of input tuples to FO are multiplexed to both A1 and A2. Since

tn.τ − t1.τ < U , and the windows of A2 are offset by U , t1, . . . , tn will land
in either (1) two windows of one Aggregate and one window of the other, or
(2) in exactly one window in both Aggregates.

Figure C9 exemplifies how FO achieves the required exactly-once forwarding
for both cases (C6). A1 and A2 produce output tuples that carry the common
payload of the input tuples and the count c of input tuples per window. Their
window alignment guarantees that a tuple produced by A1 or A2 lands in
exactly two of J ’s windows. Let us now explain the two different cases in detail:

• if t1, . . . , tn fall in one A1 and A2 window, output tuples r and s are then
fed to J . Since r.τ < s.τ and r.φ[2] = s.φ[2], predicate 3.3 holds. When J
emits tFO, it holds that t1.τ + U < tFO.τ ≤ t1.τ + 2U .

(C6)The case in which t1, . . . , tn fall in one window for both A1 and A2 but A1’s window
ends later than A2’s one, and the case in which t′1, . . . , t

′
n fall in two A2 windows and one

A1 window are given by “swapping” A1 and A2.

Figure C8: Composition of the FO operator.

C5. ALGORITHMIC IMPLEMENTATION 129

Figure C9: Illustration of how two different groups of input tuples (non-primed and
primed) are processed by FO’s operators. Each group leads to the emission of one
tuple.

• if t′1, . . . , t
′
n fall in two A1 windows and one A2 window, output tuples

r′1, r
′
2, s

′ are fed to J . Then, two windows of J have one tuple each from
A1 and A2; however, predicate 3.3 holds only for the earlier of the two
windows, in which r has lower timestamp and lower count c. Also in this
case, t′1.τ + U < t′FO.τ ≤ t′1.τ + 2U .

Thus, in both cases, the input is deduplicated and delayed, and the timestamp
of the output tuple tFO/t

′
FO is given by delay(t1/t

′
1).

Corner case

If all operators in Q are stateless, then U = 0. This corner case is not covered
by the above implementation of ANK-N, as D and FO cannot have WS = 0.
If U = 0, each sink tuple and its single provenance source tuple have the same
timestamp; thus, source tuples are immediately expired once event time passes
beyond their timestamp. Each sink tuple will be contributed to by a single
source tuple; however, the latter could contribute to several sink tuples. One
approach for U = 0 is to replace D and FO with identity Maps. The final
Aggregate A will then deduplicate source vertices (and source labels, which
could now be duplicated as well), as they share the same payload and fall into
the same window.

C5.3 Extensions

Ananke associates each sink tuple with a dedicated sink vertex. Hence, our
implementations do not need to deduplicate sink vertices, edges, or sink vertex
labels. Modifying Ananke to allow distinct sink tuples to refer to the same
sink vertex and perform that deduplication is nonetheless trivial, as it simply
requires to store the sink vertex IDs which have already been forwarded (ANK-1)
or to replace the D operators of Figure C6 with FO operators (ANK-N).

130 C - FORWARD PROVENANCE IN STREAM PROCESSING

C6 Evaluation

We study Ananke’s performance relative to the state-of-the-art framework
GeneaLog [151]. In Section C6.1, we compare the performance of queries
(1) without provenance, (2) with GeneaLog’s backward provenance, and (3) with
Ananke’s live, forward provenance (ANK-1 and ANK-N, cf. Section C5). In
Section C6.2, we evaluate the provenance latency for the same use-cases.
In Section C6.3, we compare ANK-1 and ANK-N in-depth, studying their
performance for various configurations. Finally, in Section C6.4 we highlight
Ananke’s strengths in comparison to ad-hoc implementations relying on tools
external to the SPE.

Ananke Implementation

Ananke is implemented in Java in Flink [29]. It instruments the queries without
altering the SPE and uses GeneaLog for backward provenance. We extended
GeneaLog to handle tuples arriving at windows of stateful operators out of
timestamp order (e.g., when there is parallelism). Moreover, GeneaLog re-
quires operator and tuple objects to inherit provenance-specific code. This
non-transparent (or optimized) implementation can introduce a non-negligible
development and maintenance overhead, as implementations need to be al-
tered tying the query implementation to the provenance framework. Here we
introduce an alternative transparent implementation (denoted by suffix /T),
which is based on encapsulation: The query is decoupled from the provenance
capture, which can be enabled through an automated process. As illustrated in
Listing 3.1, the developer simply encapsulates each Flink operator function with
the appropriate framework decorators. Those decorators encapsulate the tuples
inside special meta-tuples that contain the provenance metadata populated
according to the semantics of the underlying operator function, constructing
the provenance graph without user intervention. While more flexible, the extra
abstraction layers of this technique can increase the data serialization overhead
and lower performance. We study both techniques and let the user choose
between flexibility and performance.

Evaluation Setup

To account for the broad range of modern CPSs’ devices, we use (1) Odroid-
XU4 [88] devices (or simply Odroid), mounting Samsung Exynos5422 Cortex-

1 // Provenance decorators highlighted in blue

2 ANK.source(sourceStream)

3 .filter(ANK.filter(t -> t.type ()==0 && t.speed ()==0))

4 .keyBy(ANK.key(t -> t.getKey ()))

5 .window(SlidingEventTimeWindows.of(WS, WA))

6 .aggregate(ANK.aggregate(new AverageAggregate ()))

Listing 3.1 Transparently instrumenting a query

C6. EVALUATION 131

A15 2Ghz and Cortex-A7 Octa core CPUs, 2 GB RAM, running Ubuntu
18.04.2, OpenJDK 1.8.0 252, and Flink 1.10.0 (pinned to the four big cores);
and (2) a single-socket Intel Xeon-Phi server with 72 1.5GHz cores with 4-way
hyper-threading, 32KB L1 and 1MB L2 caches, 102 GB RAM, running CentOS
7.4, OpenJDK 1.8.0 161, and Flink 1.10.0. The execution environment is made
explicit in each experiment.

We study the average throughput, latency, CPU and memory utilization
(Section C3). For real-world use-cases (Section C6.1), we also study the
provenance latency. These experiments are repeated at least ten times and are
at least ten minutes long. Results are presented as averages with 95% confidence
intervals between repetitions. Unless otherwise stated, the parallelism of all
operators is set to one. We evaluate the scalability of ANK-N separately in
Section C6.3.

C6.1 Comparison with the State-of-the-art

To compare with GeneaLog, we study four queries from the domain of CPSs
[151], targeting smart highways and smart grids, and four from smart vehicular
systems. The latter are real-world examples from the automotive industry, with
broader provenance characteristics, more operators, and larger data volumes. To
show Ananke’s support for multiple Sinks, we run queries from the same domain
together and present the aggregated performance results. Each experiment
explores all configurations in Table C1.

Table C1: Query configurations explored in the evaluation.

NP GL ANK-1 ANK-1/T ANK-N ANK-N/T

Provenance - Backward Live Live Live Live
Native Ops - No No No Yes Yes
Transparent - No No Yes No Yes

0

20000

40000

-2
.0

%

-5
.6

%

-1
.7

%

-5
.2

%

Rate (t/s)

0

1

+0
.9

%

+4
.5

%

+0
.4

%

+2
.6

%

Latency (s)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

250

500

+0
.2

%

+1
.0

%

+1
.2

%

+2
.6

%

Memory (MB)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

5

10

+0
.6

%

+0
.7

%

+1
.6

%

+1
.7

%

CPU Utilization (%)

Figure C10: Performance - Linear Road queries.

132 C - FORWARD PROVENANCE IN STREAM PROCESSING

Linear Road We run two queries from the Linear Road Benchmark [12] on
an Odroid. The first query detects broken-down vehicles through consecutive
reports of zero speed and constant position. The second detects accidents from
cars stopped at the same position. Both queries receive reports from vehicles
every 30 seconds, and contain Aggregates and Filters (we refer the reader
to [151] for more details). Each sink tuple depends on 4 source tuples in the
first query and 8 in the second. Figure C10 shows the query performance without
provenance (NP), with GeneaLog (GL), and Ananke with the user-defined
operator (ANK-1, ANK-1/T) or the native operators (ANK-N, ANK-N/T).
The text in Ananke’s bars shows the percentage difference from GL. The
performance impact of both GL and Ananke is small. GL results in about a
3% performance drop for rate and latency and Ananke causes a further drop of
2% for ANK-1 and ANK-N and up to 5.6% for the transparent variants (/T).

Smart Grid Figure C11 shows the performance of two queries from the
smart grid domain, run on an Odroid. The first reports long-term blackouts
by identifying meters with zero consumption for 24 hours. The second detects
anomalies, through meters that report abnormal consumption at midnight
as compensation for the previous day. Both queries receive hourly power
measurements and use Aggregates and Filters; the second also has a Join (we
refer the reader to [151] for more details). On average, a sink tuple depends
on 192 source tuples in the first query and 24 in the second. The provenance
overhead is higher here since the queries have larger aggregation windows and
higher volumes of provenance data. GL results in a 9% rate drop and 3%
latency increase, while ANK-1 (/T) causes a further 2.7% (14.1%) drop in
the rate and a jump of 2.6% (5.2%) in the CPU. For ANK-N (/T), the rate
drops by 7.2% (16.8%) compared to GL and the latency rises by at most 2.5%,
ANK-N’s higher number of operators causes a jump in the CPU, around 14%.

Vehicle Tracking queries This use-case is based on Figure C1. It uses
the GeoLife dataset, composed of 18670 GPS traces of various vehicles over

0

20000

-2
.7

%

-1
4.

1%

-7
.2

%

-1
6.

8%

Rate (t/s)

0.0

0.1

0.2

-0
.2

%

+1
.4

%

+2
.0

%

+2
.5

%

Latency (s)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

250

500

+0
.0

%

+1
.1

%

-0
.1

%

+1
.1

%

Memory (MB)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

20

+2
.6

%

+5
.2

%

+1
3.

3%

+1
3.

8%

CPU Utilization (%)

Figure C11: Performance - Smart Grid queries.

C6. EVALUATION 133

F
ig
u
re

C
1
2
:
R
ea
l-
w
o
rl
d
ex
a
m
p
le

q
u
er
ie
s:

a
)
V
eh

ic
le

T
ra
ck
in
g
q
u
er
ie
s.

τ
,l
a
t,
lo
n
g
iv
e
th
e
ti
m
es
ta
m
p
,
G
P
S
la
ti
tu
d
e
a
n
d
G
P
S
lo
n
g
it
u
d
e
o
f

th
e
ca
r
w
it
h
ID

ca
r I

D
.
b
)
O
b
je
ct

A
n
n
o
ta
ti
o
n
q
u
er
ie
s.

v L
,v

R
a
re

th
e
ca
m
er
a
im

a
g
es

fr
o
m

th
e
le
ft
-
a
n
d
ri
g
h
t-
fa
ci
n
g
ca
m
er
a
m
o
d
u
le
s;

l
is

th
e

L
iD

A
R

p
o
in
t
cl
o
u
d
.
o
bj

is
a
co
n
cr
et
el
y
-b
o
u
n
d
ed

o
b
je
ct

w
it
h
in

a
n
im

a
g
e
o
r
a
p
o
in
t
cl
o
u
d
.

134 C - FORWARD PROVENANCE IN STREAM PROCESSING

4 years around Beijing [214]. We employ 10046 traces of cars driving a full
day each to simulate a large fleet driving simultaneously. Figure C12a shows
the queries, fed tuples carrying the car ID, timestamp, and latitude/longitude.
Q1 calculates the immediate and average speed of the last two minutes per
car, and forwards to K1 tuples with average speed v̄ > 70km/h. Q2 forwards
events with more than 9 coordinates within area B, a region around Yuyuantan
Park in Beijing, to K2. This experiment is performed on an Odroid receiving
the input data via 100MBit/s Ethernet. Sink tuples of Q1 depend on around
30-160 tuples and sink tuples of Q2 depend on 25-250 tuples. As shown in
Figure C13, the performance of Ananke follows the same trend as before. The
impact on rate and latency is small for ANK-1 (/T), at 2-4.5% more than GL
and higher for ANK-N (/T), up to 18.3%. The larger provenance graphs of Q1

and Q2 cause Ananke to have higher resource requirements, with the memory
utilization almost doubling in some cases and the CPU utilization jumping by
up to 57% in the worst case (ANK-N).

Object Annotation queries These queries enrich an in-vehicle computer
vision system based on LiDAR and two cameras. We use the Argoverse
Tracking dataset [35], with 113 segments of 15-30s continuous sensor recordings
of urban driving, plus 3D annotations of surrounding objects. The two queries,
shown in Figure C12b, receive a stream of tuples carrying sets of annotations
OLiDAR,Ocam,L,Ocam,R, of objects found by the vehicle’s LiDAR and a left-
and right-facing camera. These sets contain objects labeled with the type (e.g.,
”pedestrian”), 2D position, and a unique object ID. M1 reproduces all objects
found by the LiDAR, while F1 forwards only bicycles found in front of the
vehicle. A and F2 then forward a tuple to K1 if a specific bike was in front of
the vehicle for more than 11 frames during a 6s window. In Q2, only tuples
referring to pedestrians are forwarded as two streams to a Join. If, during
2s, a certain pedestrian is found by both cameras, the pedestrian has crossed,
and a tuple is forwarded to K2. To simulate powerful, specialized vehicular
hardware, this experiment was performed on the Xeon-Phi server. On average,

0

1000

-3
.4

%

-4
.4

%

-1
5.

1%

-1
6.

1%

Rate (t/s)

0

2

+2
.2

%

+3
.5

%

+1
5.

6%

+1
8.

3%

Latency (s)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

200

+4
9.

2%

+5
8.

0%

+9
1.

8%

+9
5.

5%

Memory (MB)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

10

20

+1
3.

9%

+1
4.

9%

+5
7.

0%

+5
6.

3%

CPU Utilization (%)

Figure C13: Performance - Vehicular Tracking queries.

C6. EVALUATION 135

0

100

200

-4
.3

%

-3
.7

%

-5
.4

%

-6
.1

%

Rate (t/s)

0.0

0.1

0.2

+2
5.

3%

+2
3.

6%

+4
6.

3%

+4
5.

2%

Latency (s)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0

2000

4000

+4
.6

%

+8
.7

%

-6
.2

%

-3
.3

%

Memory (MB)

NP GL
ANK-1

ANK-1/T
ANK-N

ANK-N/T
0.0

0.5

+5
.1

%

+7
.0

%

+3
4.

4%

+3
4.

5%

CPU Utilization (%)

Figure C14: Performance - Object Annotation queries.

Q1’s sink tuples depend on 15-50 source tuples whereas Q2’s ones depend on 2.
The tuples of these queries are much bigger than all previous use-cases, in the
order of kilobytes instead of bytes. As evident by the performance of NP in
Figure C14, these queries are much more demanding. For example, GL drops
21% in rate, mostly due to the large volume of provenance data transferred
between the SPE tasks. Ananke has a small effect on the rate, causing a
further drop of 3.9-6.6%. Latency is affected more, increasing by about 25%
for ANK-1(/T) and 48% for ANK-N(/T), while remaining at small absolute
values. Memory consumption does not change significantly compared to GL.
The CPU grows for ANK-N(/T), similar to previous use-cases.

C6.2 Provenance Latency

We now study the provenance latency (Section C3) for ANK-1 and ANK-N
for the Linear Road (LR), Smart Grid (SG), Vehicular Tracking (VT), and
Object Annotation (OA) queries. The results are shown in Figure C15 in
multiples of U (see Section C5), for vertices (SINK/SOURCE), edges (EDGE),
and labels (SINK-L/SOURCE-L) of vertices. As shown, ANK-1 generally has
a lower provenance latency than ANK-N. The main difference is that, while
ANK-1 can output SOURCE almost immediately (and then store its ID to

SINK
SOURCE

EDGE
SINK-L

SOURCE-L
0.0

0.5

1.0

1.5

P
ro

ve
na

nc
e

La
te

nc
y

(U
) ANK-1

Query
LR
SG

VT
OA

SINK
SOURCE

EDGE
SINK-L

SOURCE-L

ANK-N

Figure C15: Provenance Latency in multiples of U .

136 C - FORWARD PROVENANCE IN STREAM PROCESSING

not output it again), ANK-N delays the production of SOURCE by at least
U to avoid duplicates. This delay propagates to SINK-L (see Section C5.2).
Also, ANK-1 can immediately emit EDGE and SINK-L without any delay (see
Algorithm C1). Both variants have low SINK latency as those are safe to emit
immediately upon arrival of a sink tuple. The variance is close to zero, as
the frequency of watermark updates, the only execution-dependent feature of
provenance latency, does not change between repetitions.

C6.3 ANK-1 vs. ANK-N Trade-offs

Here, we compare ANK-1 and ANK-N for different data characteristics and
query configurations. The experiments, run on the Xeon-Phi server, use
synthetic queries in which Sources feed Ananke (non-transparent) with pre-
populated provenance graphs.

Figure C16 shows the performance for different provenance sizes (x-axis)
and overlaps (bar colors). The former is the number of source tuples each
sink tuple depends on, the latter is the percentage of shared provenance
between subsequent sink tuples. ANK-1 has better performance and lower
resource requirements than ANK-N, due to the simpler algorithm and single-
task deployment. Both ANK-1’s and ANK-N’s performance drops as the
provenance size increases, as more data is maintained and transferred between
tasks. Larger provenance overlaps result in slightly better performance since
fewer source vertices and labels are emitted.

0

5

R
at

e
(t/

s)

×10
3 ANK-1 ANK-N

0.0

2.5

La
te

nc
y

(s
) ×10

−1

0

2

C
P

U
 (%

)

10 50 100
Provenance (#tuples)

0

1

M
em

or
y

(M
B

) ×10
4

10 50 100
Provenance (#tuples)

Provenance Overlap (%)
0 25 50

Figure C16: Performance of the synthetic query for different overlaps and provenance
sizes.

C6. EVALUATION 137

10
3

R
at

e
(t/

s)

ANK-1 ANK-N

10
0

La
te

nc
y

(s
)

10
1

C
P

U
 (%

)

1 4 8
#queries

10
4

2 × 10
4

M
em

or
y

(M
B

)

1 4 8
#queries

Parallelism
1 4 8 16 32

Figure C17: Performance of the synthetic query for different parallelisms and
#queries (logarithmic scale).

Figure C17 studies ANK-N’s ability to take advantage of the scalability
features of the SPE. The x-axis is the number of queries feeding data to Ananke,
and the bars refer to different parallelism values of Ananke. The provenance
size is 50, and the overlap 25%. As shown (in log scale), ANK-N outperforms
ANK-1 for parallelism 4 or higher since ANK-1 does not support parallel
execution. ANK-N’s resource consumption increases with parallelism, making
it better suited for use-cases with more available resources. For both ANK-1
and ANK-N, a higher number of queries results in a drop in performance,
caused by the increased data flow.

C6.4 Comparison with On-demand Techniques

ANK-1 and ANK-N are not the only ways to achieve the goals of Section C3.
Here, we compare Ananke with ad-hoc alternatives relying on existing systems
(external to the SPE) to produce the provenance graph on-demand. These
alternatives can seem appealing due to their additional features, e.g., persistent
storage of backward provenance. Thus, a comparison with them is crucial to
understand the properties of the fully-streaming approach provided by Ananke.

We study alternatives based on database systems with varying performance
and safety guarantees. The first, SQL-P, relies on an established relational
database (PostgreSQL [159]), the second, SQL-I, on a fast, self-contained
relational database running in-memory (SQLite [179]), and the third, NoSQL,

138 C - FORWARD PROVENANCE IN STREAM PROCESSING

on a non-relational database (MongoDB [141])(C7). The SQL implementations
adhere strictly to the goals of Section C3, whereas NoSQL follows a best-
effort principle, without strict ordering guarantees (due to the concurrent
accesses by several threads). In contrast with Ananke, the alternatives produce
the (streaming) provenance graph on-demand. A thread polls the database
periodically and performs the data transforms. We evaluate an aggressive
(suffix /A) polling strategy (as frequently as possible), and a relaxed (suffix /R)
one (polling every second).

We compare ANK-1 with the above alternatives for two real-world experi-
ments (Smart Grid and Vehicle Annotation queries), as well as for a synthetic
one. In addition to previous performance metrics, we also study the delivery
latency of the provenance graph, to assess the benefits and drawbacks of dif-

(C7)A graph database (Neo4J [143]) seems like an obvious choice for provenance data [190],
but our preliminary experiments indicated it performed much worse than the alternatives in
our streaming applications and is thus not presented here.

0

20000

-2
.7

%

-0
.9

%

-5
.1

%

-3
.0

%

-1
4.

3%

-6
.4

%

Rate (t/s)

0.0

0.2

+4
2.

6%

+1
.1

%

+8
.1

%

+4
2.

1%

+8
.8

%

+8
.7

%

Latency (s)

ANK-1
SQL-P/R

SQL-I/R
NoSQL/R

SQL-P/A
SQL-I/A

NoSQL/A
0

2 +5
7.

6x

+4
0.

8x

+1
23

.4
x

+1
1.

1x

+6
.2

x

+7
5.

4x

Delivery Latency

ANK-1
SQL-P/R

SQL-I/R
NoSQL/R

SQL-P/A
SQL-I/A

NoSQL/A
0

20

40

+8
.6

%

+0
.5

%

+7
.7

%

+3
6.

4%

+3
7.

7%

+3
0.

4%

CPU Utilization (%)

Figure C18: Smart Grid: Performance comparison between Ananke and on-demand
implementations.

0

100

200

-1
5.

0%

+2
.4

%

-5
.8

%

-2
4.

4%

-2
5.

6%

-5
.1

%

Rate (t/s)

0.0

0.5

+2
.4

x -5
.9

% +3
9.

4%

+3
.0

x +3
9.

1%

+3
7.

3%

Latency (s)

ANK-1
SQL-P/R

SQL-I/R
NoSQL/R

SQL-P/A
SQL-I/A

NoSQL/A
0

2

+1
83

.6
x

+1
34

.1
x

+4
87

.5
x

+5
4.

4x

+2
8.

0x

+3
05

.1
xDelivery Latency

ANK-1
SQL-P/R

SQL-I/R
NoSQL/R

SQL-P/A
SQL-I/A

NoSQL/A
0

2

-4
.0

%

-3
.5

%

+2
7.

7%

+2
2.

1%

+4
.4

x +3
9.

1%

CPU Utilization (%)

Figure C19: Object Annotation: Performance comparison between Ananke and
on-demand implementations.

C6. EVALUATION 139

ferent polling strategies. This metric expresses the delay (in wall-clock time)
between a graph component (vertex, edge, ”expired” label) being ready to be
delivered and actually being delivered. We do not study memory consumption,
as the usage of external systems with different storage mechanisms creates a
non-uniform measurement environment.

Figure C18 and Figure C19 present the performance of the Smart Grid and
Object Annotation queries, respectively. The text inside the bars indicates the
relative difference from ANK-1. The performance of the on-demand implemen-
tations ranges widely, with relaxed polling (/R) having better rate, latency, and
CPU but more than one order of magnitude higher delivery latency. Aggressive
polling (/A) lowers the delivery latency but severely degrades the other metrics,
in most cases. SQL-I/A achieves the lowest delivery latency (up to 6.2x higher
than ANK-1), whereas SQL-I/R has the least impact on the original queries
(slightly better rate and latency than ANK-1, at the price of 28x the delivery
latency and 4.4x the CPU). SQL-I’s implementation closely resembles ANK-1,
temporarily maintaining in-memory only unsent graph components, instead
of persisting all backward provenance data like SQL-P and NoSQL. This sim-
ilarity in SQL-I’s and ANK-1’s implementations explains their similarity in
performance. NoSQL’s best-effort strategy results in a relatively low impact on
the original queries but multiple orders of magnitude higher delivery latency
than ANK-1, in most cases. SQL-P performs between SQL-I and NoSQL, with
lower delivery latency than NoSQL but a much higher impact on the other
metrics. This is expected, as SQL-P persists the backward provenance (unlike
SQL-I), while also strictly adhering to the goals of Section C3, in contrast with
NoSQL. Both experiments indicate that ANK-1 significantly outperforms all
studied alternatives in most or all metrics.

Table C2 presents the aggregated results of the synthetic experiment, having
a setup(C8) similar to Figure C16, with a provenance overlap of 0% and
provenance sizes 10-100. The relative performance is comparable to the real-
world experiments, with ANK-1 outperforming the alternatives overall. SQL-I
seems to outperform ANK-1 in rate and latency but a detailed examination
of the experimental data indicates that SQL-I can only sustain 40% of the

(C8)For a fair comparison with the on-demand implementations, in this experiment ANK-1
is writing the graph to disk, and thus has a lower performance than in Figure C16.

Table C2: Performance comparison between Ananke and on-demand
implementations in the synthetic query.

ANK-1 SQL-P SQL-I * NoSQL *

/R /A /R /A /R /A

Rate (t/s) 131.3 54.43 54.80 211.4 209.72 19.81 19.75
Latency (s) 1.03 2.86 2.82 0.62 0.70 16.19 16.61
Deliv. Latency (s) 0.07 2.97 0.78 25.10 15.24 27.63 27.29
CPU (%) 1.18 0.97 1.30 1.75 1.97 0.92 0.89

* The values for SQL-I and NoSQL do not reflect the steady-state perfor-
mance, which is significantly lower. Refer to the text for more details.

140 C - FORWARD PROVENANCE IN STREAM PROCESSING

measured rate without exhausting the memory of the system. As, in contrast
to ANK-1, the on-demand alternatives lack a back-pressure mechanism, they
can fetch backward provenance from the SPE faster than they can process
it. This leads to a continuously-increasing provenance backlog (illustrated by
the high delivery latencies). For an in-memory database like SQL-I, this is
unsustainable(C9). While backpressure could be added manually to the studied
alternatives, this would be “reinventing the wheel” as such mechanisms are
available out-of-the-box in Ananke, running inside the SPE.

Among the studied on-demand alternatives to Ananke, SQL-I performs best
but is still disadvantaged by not being streaming-oriented. In contrast, ANK-1
has a much better sustained performance and does not have to maintain ”raw”
provenance. This enables the immediate forwarding of the forward provenance
graph stream to a secondary ingesting system without keeping unnecessary
state, saving space and computational resources.

Evaluation summary

Ananke has similar overheads to the state-of-the-art in backward streaming
provenance while offering live, forward rather than simply backward provenance.
Compared to [151], the best-performing implementations of Ananke incur less
than 5% drop in the rate in all use-cases and less than 3% increase in latency
in all but one use-case. The evaluation shows that Ananke is suitable in
deployments of real-world applications requiring both efficient processing and
live provenance capture. Alternative existing systems fall short in providing
the graph timely and in a sustainable fashion suited to the data streaming
paradigm.

C7 Related Work

Data provenance, extensively studied in databases [38], [48], [94], only recently
started being in focus in data streaming. Early such work [191] focuses on
coarse-grained data stream dependencies. A finer-grained approach, in [195],
produces time intervals which may contain provenance tuples. [98] focuses on
minimizing the storage requirements of streaming provenance but produces
approximate results and lacks support for some native operators (e.g., Join).

To the best of our knowledge, Ananke is the first to deliver live forward
provenance. [50] presents a system for debugging streaming queries with
integrated provenance capture and visualization. However, it focuses on one
SPE [72] and slices of the execution (with the option to lazily create the
complete query provenance). It requires users to declare relationships between
input and output tuples and does not distinguish expired tuples. Likewise,
StreamTrace [20], targeting the Trill SPE [34], assists the development and
debugging of queries with data visualization, relying on provenance through
instrumented operators and ad-hoc query rewriting. Ananke’s provenance graph

(C9)NoSQL suffers from the same issue; however, in this case, it is less critical since NoSQL
does not need to maintain its state in-memory.

C8. CONCLUSIONS 141

allows creating similar visualizations for the end-to-end system provenance.
GeneaLog is the state-of-the-art technique and framework for fine-grained
provenance in streaming applications. It records and traces the provenance
metadata while incurring a small, constant per-tuple overhead. In this work,
we extend GeneaLog to support out-of-order data and use it as the provider
of backward provenance for Ananke. Ariadne [76] is a similar framework for
fine-grained streaming data provenance using instrumentation. However, it
requires variable-length annotations and needs to temporarily store all alive
source tuples (including those that do not contribute to any sink tuples) until
they become expired. The authors hypothesize the use of static query analysis
to discern alive and expired tuples, but without further details. As discussed
in Section C3, Ananke can be adjusted for use with Ariadne or any streaming
backward provenance framework.

C8 Conclusions

We presented Ananke, a framework to extend streaming tools for backward-
provenance and to deliver a live bipartite graph of fine-grained forward prove-
nance. Ananke provides users with richer provenance information, not only
specifying which source tuples contribute to which query results, but also
whether each source tuple can potentially contribute to future results or not.
This distinction can help analysts prioritize the inspection of the large volumes
of events commonly observed when monitoring CPSs. We formally prove
Ananke’s correctness and implement two variations (available in [75]) in Flink.
Through our thorough evaluation, we show that Ananke incurs small overheads
while being able to outperform alternatives relying on tools external to the
SPE. Future work can address (1) finer-grained debugging and exploration by
expanding Ananke’s live provenance to include intermediate tuples produced
by query operators, also indicating whether such tuples could contribute to
future results, and (2) exploring how Ananke’s theoretical foundations about
alive/expired tuples can be used in fault-tolerant stream processing.

142 C - FORWARD PROVENANCE IN STREAM PROCESSING

Chapter D

Data Selection via Dynamic Forward

Provenance

Bastian Havers, Marina Papatriantafilou, Vincenzo Gulisano

The following is an adapted version of the work under submission as “Nona: A
Framework for Elastic Stream Provenance”. Any changes serve only to retain
the consistency of this thesis.

Abstract

Forward Provenance for streaming queries run by distributed and parallel
Stream Processing Engines gives fine-grained insights on input-output data
dependencies enabling, e.g., precise debugging and smart data selection. State-
of-the-art provenance frameworks, though, build on an assumption that is
unrealistic for distributed systems like Vehicular Networks and Smart Grids,
namely, that the whole set of queries in need of provenance is known in advance
and static. In real-world use cases, queries are continuously added, removed,
and modified over time by both data analysts and SPE systems themselves.

Motivated by the lack of solutions for the forward provenance of dynamic
sets of queries, we introduce a novel framework, named Nona, for parallel and
distributed streaming queries. We formalize the notion of forward provenance
for evolving query sets and prove it is possible to extend the same guarantees the
state-of-the-art offers for static query sets. Our evaluation shows that Nona can
cope with adaptations to changes in query sets with sub-second responsiveness;
moreover, it incurs negligible overheads compared to the state-of-the-art, during
the periods in which a query set does not undergo changes.

146 D - DYNAMIC FORWARD PROVENANCE

D1 Introduction

Systems such as Vehicular Networks and Smart Grids [91] leverage the stream
processing paradigm [3], [180] and Stream Processing Engines (SPEs) [8],
[10], [29] for continuous, low-latency analysis of high-volume and fast-paced
streaming data.

In data streaming applications (or streaming queries), forward prove-
nance [153] seamlessly connects analysis results to the input data causing
them. The resulting input-output dependencies then help debug applications,
understand how results came to be, and enable efficient selection of relevant
input data for, e.g., further processing, transmission, or storage.

State-of-the-art forward provenance frameworks [153] ensure three key prop-
erties while delivering input-output dependency graphs. In particular, they
deliver each input, output, and connecting edge (i) logically ordered by cause-
and-effect and (ii) exactly once, without duplicates, no matter the number
of queries processing data in a distributed and/or parallel fashion. By dedu-
plicating data, they can reduce the volume of data forwarded or stored in
distributed systems for which communication and storage are limited or costly
(e.g., Vehicular Networks and Smart Grids). Also, they (iii) continuously
distinguish, over time, which inputs could still contribute to new outputs (i.e.,
which vertexes could have more edges connected to them) from those that are
final. This distinction helps differentiate which parts of the graph are ready for
further processing, since processing parts that are still evolving may produce
incomplete results or require later corrections.

Motivating Challenge

State-of-the-art forward provenance frameworks build on an assumption that,
practically, makes them unusable in distributed systems like Vehicular Networks

p1
 p2 p3 p4 p5

: alert "a", bicycle crossing, WS=20s
: alert "b", red light, WS=20s
: alert "c", child crossing, WS=30s

a1 b1 b2

p2 p3 p4 p5

c1

? blur
frames

" "provenance
stream/
time

front camera
feed
0s 10s 20s 30s 40s

: frame final
+ : add new query

Q1
Q2
Q3

Q1

Q2

Q3

+Q1
+Q2 +Q3

Figure D1: Running example: Dynamic in-vehicle query deployment with prove-
nance (WS = window size).

D1. INTRODUCTION 147

and Smart Grids. Namely, that the whole set of queries for which provenance
is to be provided is known in advance and static. This is not realistic: queries
are added, removed, and modified over time by both data analysts and SPE
systems themselves (e.g., when moving a query to rebalance the workload
distribution of a set of nodes). As the next example shows, dynamic query
behavior brings key novel challenges.

Running Example (Figure D1) - Scenario

Queries Q1, Q2 start processing a vehicle’s camera frames p1, p2,... (framerate
0.1Hz) from a buffer. Q1 produces alert a on crossing bicycles within a
window of 20s; Q2 produces alert b on red lights visible for 20s. The forward
provenance for Q1 and Q2 is generated as a stream post-processed by an
external component that blurs peoples’ faces in frames of the input buffer
that contributed to an alert and are marked as final, to preserve people’s
privacy when such data is later processed by other systems. If Q1 and Q2

are the only queries ever running, the blurring does not risk falsifying results
from other queries. Suppose, though, that after images p2, p3 were blurred a
new query Q3, producing alerts c on children crossing within 30s, is added.
When Q3 now ingests frames from the input buffer, will it be able to detect
a child from a blurred face in p3-p5? Additionally, can Q3 be affected by
concurrency issues if it processes a frame while such a frame gets blurred?

In real-world applications, ad-hoc solutions to dynamic modifications of
the running queries with no formal specification of which properties a forward
provenance framework enforces are not usable in practice. One could, e.g.,
hinder Q3 from processing tuples that are final in the graph - but where will
a cutoff be set in such a dynamic system if Q3 is to access as much data as
possible? And, should Q2 be removed, how can an analyst know whether Q2’s
latest inputs that led to an alert will be delivered in the dependency graph?
In the state-of-the-art, no known streaming provenance framework exists that
provides properties (i)-(iii) while accommodating a dynamic (evolving) set of
queries.

Contribution

We pose the following question:

“How can forward provenance be provided for the dynamic case, i.e., for sets
of queries not known a priori and evolving over time?”

Referring to the type of forward provenance in question as Dynamic Query
Set Forward Provenance (DQ-FP), and to that of a static set as Static Query
Set Forward Provenance (SQ-FP), we make the following contributions:

• we formalize the problem of DQ-FP;

• we analyze and evaluate the trade-offs in different ways fulfilling DQ-FP’s
requirements;

148 D - DYNAMIC FORWARD PROVENANCE

• we design and implement the first framework for DQ-FP, Nona, that allows
to add or remove queries at runtime while supporting distributed and parallel
execution;

• lastly, we conduct a thorough evaluation of Nona using Apache Flink [29]
and Kafka [9], with real-world data and benchmarks, showing performance
equal to SQ-FP state-of-the-art on static and fast adaptation to changing
query sets.

All required code is open-sourced at [89] for reproducibility. To the best of
our knowledge, our work is the first to formalize and present an algorithmic
implementation for DQ-FP.

Organization

Section D2 presents preliminary data streaming and provenance concepts;
Section D3 details the problem definition and the goals of the work; Section D4
discusses in-depth theoretical challenges; Section D5 presents an algorithmic
solution to the work’s goals, which is evaluated in Section D6. Section D7
discusses related work, and Section D8 summarizes and concludes.

D2 Preliminaries

D2.1 Elementary Stream Processing Notions

We follow the DataFlow model [3]: A data stream is a series of tuples t = ⟨τ, ϕ⟩
carrying metadata (a timestamp t.τ and possibly further attributes) and a
multi-attribute payload t.ϕ. A streaming query consists of sources, operators,
and sinks composing a directed acyclic graph (DAG). Sources forward streams
of source tuples, e.g., from an external source (e.g., a physical sensor) to
operators that process tuples. Any stream can be multiplexed to an arbitrary
number of downstream operators or sinks. Once a sink has finished processing
a sink tuple t (e.g., forwarding t to an external application or writing it to a
file), we say the sink has observed t. Sources and operators can create tuples.
τ is set by the source to the time a corresponding event occurred, the event
time. Whenever an operator O produces a tuple t, t.τ is set according to O’s
semantics, and t.ϕ according to user-defined functions.

Filter Map Aggregate Join Source Sink

F M A J S K

Common operators supported by SPEs [7], [8], [10], [29] are Filter, Map,
Aggregate, and Join. Map and Filter are stateless, and process tuples 1-by-1.
Filters discard input tuples or forward them as-is depending on whether a
condition C holds. Maps use a user-defined function FM to create an arbitrary
number of tuples tO per input tuple tI , with tO.τ = tI .τ .

D2. PRELIMINARIES 149

Stateful operators ingest delimited groups of tuples called windows. We
focus on time windows that retain tuples as defined by an operator’s window
size WS and window advance WA. A window with, e.g., WS, WA set to 10
and 5 minutes will thus cover intervals [0:00,0:10), [0:05,0:15), etc., where every
interval denotes a window instance (we distinguish between window and its
instances only where ambiguities could arise). If WS>WA, consecutive window
instances can overlap and tuples can fall into several window instances.

The Aggregate stateful operator is defined by: (1) WS, WA: the window
size and advance, (2) KB: an optional key-by function to maintain separate (yet
aligned) window instances for different key-by values, and (3) FA: a function to
aggregate the tuples in one window instance into the ϕ attribute of an output
tuple. When an output tuple is created for a window (and a key-by value, if
KB is defined), its timestamp is set to such window’s right boundary [7], [10],
[29]. A Join matches tuples from two input streams, r and s. It keeps separate
windows for r and s tuples, which share WS and WA. Each pair of r and s
tuples (optionally sharing a common key KB) are matched for every pair of
windows covering the same event-time period they fall in. The Join operator is
defined by: (1) WS, WA, (2) KB, (3) P (tr, ts): a predicate for pairs of tuples
from r and s, and (4) FJ : a function to create the ϕ attribute of the output
tuple, for each pair of tuples for which P (tr, ts) holds (and which optionally
share the same KB key). The timestamp τ of such output tuple is set to the
shared right boundary of the aligned windows of r and s.

Running Example (Figure D1) - Query DAG

M F1 A F2

Computer vision:
Classify objects

in frame

object=red light?

S KQ2

WS:20s,
WA:10s
count()

count==2? : one tuple
per object

The above figure shows query Q2 from the running example (Figure D1) that
detects red lights in time windows of twenty seconds.

D2.2 Watermarks and Time Progression

Parallel operator instances or multiple asynchronous operators can result in
tuples being fed to a downstream operator out of timestamp order. Hence,
for stateful operators, receiving a tuple with a timestamp greater than some
window’s right boundary does not imply later tuples will no longer fall into
said window. To prevent this disorder from resulting in incorrect results, a
partial order on streams [99] is provided by watermarks in both early and
state-of-the-art SPEs [29], [99]:

Definition D1. The value of the watermark Wω
O of some operator O denotes

that after the point ω in wall-clock time (or simply: time), O will only receive
tuples t with t.τ ≥Wω

O .

Note that we include the superscript ω only where it cannot be induced from

150 D - DYNAMIC FORWARD PROVENANCE

context. Sources periodically emit watermarks as special tuples downstream(D1).
Receiving a watermark, an operator O updates and forwards a local watermark-
variable WO to minI∈I

(
max(WI)

)
downstream, where I is the set of O’s input

streams and max(WI) is the largest watermark received from input stream I.
For an Aggregate or Join Ω, whenever the watermark advances from Wω

Ω to

Wω′

Ω > Wω
Ω , an output tuple is created for each window instance maintained by

Ω that has a right boundary less than or equal to Wω′

Ω , said window instance

is discarded, and Wω′

Ω is forwarded.

D2.3 Static Query Set Forward Provenance: SQ-FP

Following the definitions from [153], SQ-FP allows for each source tuple tS of a
static set of queries to retrieve the sink tuples tK to which tS contributes (and,
vice versa, to retrieve tS from tK), where the contributes relation is defined as:

Definition D2. Let t, t∗ be tuples in a query execution; we say that t contributes
directly to t∗ if some operator emits t∗ as a consequence of processing t, also
written as t→ t∗. If t→ t′ → t′′ → . . .→ t∗, then we say that t contributes to
t∗: t⇝ t∗ (thus, if t → t∗, then t⇝ t∗).

SQ-FP delivers these relations as a stream of graph elements representing
the forward provenance graph or simply provenance graph. Vertexes (i.e., sink
and source tuples) are (i) ordered by cause and effect, and delivered before
any edge (contributes-to relation) connecting them, (ii) deduplicated, i.e., each
source tuple appears exactly once, no matter the number of sink tuples it
contributes to, and (iii) labeled to indicate, for each point in time ω, which
tuples are expired :

Definition D3. Let t, t∗ be tuples in a query execution. At time ω, t is active
if it can still contribute directly to some tuple produced by some operator. At
time ω, t is alive if it is active or if there is at least one active tuple t∗ such
that t⇝ t∗. Otherwise, t is expired.

In a provenance graph, since no further edges will connect to a vertex v
expired at ω (i.e., v’s neighborhood is static after ω), we say v is final. A tuple
expiration threshold Tω

Q for any ω (s.t. after time ω, any tuple with t.τ < Tω
Q

is expired) can be calculated for a static set of queries Q as follows [153], where
for simplicity we assume one sink per query:

Tω
Q = min

Q∈Q

(
Wω

Q − UQ

)
, (4.1)

where Wω
Q is the watermark of the sink of query Q at time ω, and the maximum

aliveness constant UQ is defined as follows:

UQ = max
p∈PQ

∑
j∈p

WSj , (4.2)

(D1)These are also called in-band watermarks; for a discussion of alternative watermarking
schemes see for example [99], [125].

D3. PROBLEM FORMALIZATION 151

where PQ is the set of all paths p from any source in Q to Q’s sink, and j
indexes all operators along path p. UQ is the maximum timespan a tuple may
remain alive in query Q [153].

D2.4 Backward Provenance

As shown in [153], SQ-FP or forward provenance can be obtained from a stream
of backward provenance [76]: Backward provenance connects each sink tuple
tK to its contributing source tuples tS (see Definition D2). Differently from
forward provenance, though, a backward provenance stream is not deduplicated
and does not distinguish expired tuples. The backward provenance stream
allows to access source tuples contributing to a sink tuple by metadata such as
pointers [150] or IDs identifying source tuples in a dedicated buffer [77].

D3 Problem Formalization

D3.1 System Model

...

...

... forward

provenance

: control /message: data stream

user

input
data
stream ...

: source tuple
: sink tuple

RH

: backward
 provenance

Q1

Q2

Qn

FPG

Figure D2: System model: n queries feeding backward provenance to the Forward
Provenance Generator operator (FPG). Users interact with the system via the Request
Handler (RH).

We consider systems in which queries are running in parallel and inde-
pendently. For ease of exposition, we assume the queries are being fed one
external input stream. Shown in Figure D2, every query Q in the query set
has a sink generating backward provenance for every sink tuple tK , retrievable
by the procedure getBProvenance(tK). All sinks forward the backward
provenance as well as watermarks to a streaming operator FPG (Forward
Provenance Generator) generating the forward provenance. The additional
Request Handler (RH) is interfaced by a user to request to add an additional
query to the n already running queries, or to remove one of them.

D3.2 Definitions

To formulate our aims in detail, we introduce in this section some fundamental
definitions related to DQ-FP.

152 D - DYNAMIC FORWARD PROVENANCE

Definition D1 (Dynamic Query Set). The dynamic query set at wall time
ω, Q(ω), is an evolving set of queries that are fed tuples from one or more
external sources, and that can produce results. Q(ω) undergoes transitions in
which a single query is added or removed.

In the following, ω will be omitted if its value is not clear from context.
Specifically, a query is fed source tuples and can produce results and watermarks
if and only if it is part of Q. Thus, once a query is removed from Q, no more
tuples are fed to it and it can no longer produce results or watermarks.

For clarity of presentation details, we consider the initial query set to be
empty; the problem formulation and methodology are applicable also when
this condition does not hold.

Transitions occur upon requests Ri issued by users:

Definition D2 (Requests and Transitions). Requests Ri trigger one of the
following:

• Ri = +Qi: addition transition

• Ri = −Qj (j<i): removal transition

We denote by si the time point at which Ri is issued, and by fi the time point
when the transition is finished and Qi/j starts/stops being a member of Q.

Note that we regard every added query as unique, even though their DAG
may be identical. For removals, condition (j < i) applies, as only queries added
earlier can be removed.

As an example, if the dynamic set is comprised of the queries X and then a
request Rk = +Qk is issued, we write

Q(sk) = X Rk=+Qk−−−−−−→ Q(fk) = X ∪ {Qk}

and analogously for a removal request. For ω in the transition period [s, f], the
queries inQ(ω) are continuously fed source tuples and produce sink tuples. Note
that Definition D2 effectively allows the arbitrary modification of a running
query Ql by either adding a modified version Qm,m > l to Q first and then
removing Ql, or by the reverse procedure(D2).

Now, we formally define the Forward Provenance Graph:

Definition D3. Denoting by v(t) a vertex corresponding to a tuple t, the
Forward Provenance Graph P(ω) of a dynamic query set Q(ω) at time ω in
an execution is a graph containing

• a sink vertex v(tK) per sink tuple tK that has been observed by any sink KQ

at or before ω, where Q was or is in Q;

• a source vertex v(tS) per source tuple tS for any sink vertex v(tK) where
tS ⇝ tK (see Definition D2);

(D2)In the first procedure a tuple may be processed by both queries if they are part of Q for
some time simultaneously, while in the second a tuple may be processed by neither if it falls
into a gap between removal and addition.

D3. PROBLEM FORMALIZATION 153

• an edge e=(v(tS), v(tK)) per pair (tS , tK) where tS⇝ tK ;

• a label per node v(t) where t is expired (see Definition D3).

Note that it is insufficient if a sink tuple was only delivered to a sink, but
the sink must have observed said tuple, where the definition of observe (see
Section D2.1) in the first bullet-point depends on the specific implementation
of the streaming sink(D3).

D3.3 Main Goal and Requirements

Goal of Nona

To produce, for the execution of the dynamic query set Q, the forward
provenance stream SP carrying

• one vertex tuple tVS/K = ⟨τV ,
[
IDS/K , tS/K

]
⟩ per source or per sink vertex

in P,

• one edge tuple tE = ⟨τE , [IDS , IDK]⟩ per edge (v(tS), v(tK)) in P s.t.
τE > τV for V = S,K,

• one label tuple tL = ⟨τL,
[
IDS/K

]
⟩ per expired source/ sink vertex tS/K

in P s.t. τL > τE for any edge adjacent to tS/K .

Requirements for Nona

R1 Completeness: Containing in SP all vertices and edges from P

R2 Expiration Promise: marking expired tuples and never reprocessing
them

R3 Ordering and Uniqueness: ensuring the ordering and uniqueness
constraints formulated in the main goal

R4 Responsiveness: enabling high responsiveness to user requests

Nona’s goal extends that of SQ-FP defined in [153], by incorporating the
dynamic nature of Q that leads to an evolving forward provenance graph P.
The following example shows how the forward provenance stream SP presents
the forward provenance graph P:

(D3)E.g., a sink may have observed a tuple once it has been written to disk, or once an
external database has acknowledged receiving the sink tuple.

154 D - DYNAMIC FORWARD PROVENANCE

Running Example (Figure D1) - P and SP

a1 b1 b2

p2 p3
#2 #3

#4 #5 #6

up
to
35s:

a1 b1

p2 p3
#2 #3

#4 #5

input
processed

up
to
21s:

forward
provenance

stream

sink

edge

label

: source
: sink
: vertex ID#

The provenance graph of Figure D1 at two time points: sink vertices a, b are
linked to the contributing source vertices p. Each vertex appears at most once,
and vertices of expired tuples are marked as final (see checkmarks). Between
21s and 35s, new components are delivered in the forward provenance stream
SP , adding sink vertex b2, its edge to vertex p3, and marking p3 as final. b2
is not final yet, as source vertex p4 (contributing to b2) and the connecting
edge were not yet delivered on SP .

The goal is broken down into four requirements: (R1) The dynamicity of the
query set complicates to generate the complete edge and vertex set contained in
P , in the face of query removals that may lead to missing elements in SP (e.g.,
for some sink vertex not all contributing source vertex tuples are produced if
the query is removed prematurely) and query additions (that abruptly generate
a new source of provenance graph elements). (R2) While the asynchronous
nature of queries, operators and data forwarding in stream processing boosts
performance, it also requires careful synchronization to guarantee that tuples
marked as expired are and remain expired in the face of a dynamic query
set, while simultaneously desiring a non-blocking implementation. It must be
ensured that no query may ever process an expired tuple, nor must tuples
be labeled as expired with unnecessary latency (the expiration threshold in
Equation 4.1 provides only an upper bound on tuple expiration, incurring a
base latency depending on the window alignment in the queries. Late updates
of the expiration threshold incur additional latency overheads). (R3) The
ordering and uniqueness constraints from Definition D3 must be met to provide
a forward provenance stream identical to that of SQ-FP (see [153]). (R4) The
system must provide a high level of responsiveness to user requests for changes
in the query set, without halting query execution for addition or removal.

On top of these requirements, to be a streaming-based framework that
receives and processes watermarks from the individual queries for which forward
provenance is provided. As earlier work for SQ-FP has shown, approaches
using databases incur higher latencies and overheads [153].

In the following, we show how to fulfill these requirements and how our
implementation of Nona achieves them.

D4. GUARANTEEING COMPLETENESS AND THE EXPIRATION PROMISE 155

D4 Guaranteeing Completeness and the Expi-
ration Promise

Here, we investigate the challenges from providing DQ-FP for the dynamic
query set Q, and present solutions to meet the conceptual requirements R1-R2
from Section D3 (keeping discussions of the algorithmic implementation and
system requirements R3 and R4 to Section D5). We assume that there is a single
input stream forwarded to all queries in Q (as sketched in Figure D2), both
for ease of exposition and as sharing input tuples between queries exacerbates
the need for careful analysis (cf. Figure D1).

While an added query becomes part of Q at fi, additional deployment
time may be spent by the SPE before the query can begin processing tuples.
Thus, for discussions we include an additional time point per transition, gi
with gi > fi > si:

request si fi gi

Ri=+Qi Ri issued Q← Q ∪ {Qi} Qi ingests tuples
Ri=−Qj Ri issued Q← Q \ {Qj} -

D4.1 R1: Completeness

To provide completeness, any edge and vertex of the provenance graph P must
occur in SP . Following Definition D3, once a sink tuple tK has been observed by
a sink, tK itself, any source tuple tS contributing to tK , and edges connecting
tS , tK are part of P and thus must occur as elements of SP .

D4.1.1 Additions: Ri=+Qi

Qi will begin processing input tuples at gi. Once a result from Qi at some
point at or after gi has reached the sink KQi

and has been forwarded to the
FPG (see Figure D2), it has been observed in accordance with Definition D3,
Then, its forward provenance is part of P and must be contained in the graph
stream SP to achieve completeness. As KQi provides backward provenance
(see Section D3.1), and thus access to all sink tuples contributing to a source
tuple, the FPG has access to all sink and source tuples in P and can thus
provide completeness.

D4.1.2 Removals: Ri=−Qj

Removing query Qj means there will be a final sink tuple from it that can be
considered as observed, tf . To ensure completeness, thus all sink tuples and
their Backward Provenance from Qj have to be processed by the FPG up to
and including tf . Once this is done, Qj can safely be considered as removed.
As there are no guarantees on how long it takes before a tuple emitted by a
sink is processed by the FPG, the FPG can not determine by the passage of
clock time which sink tuple is the last from Qj . Thus, the final tuple is marked
with the marker tuple:

156 D - DYNAMIC FORWARD PROVENANCE

Definition D1. The marker tuple is a watermark with value infinity and is
the last watermark emitted by a query’s sink before it is considered removed.

Thus, once the FPG receives the marker tuple from Qj , tf and its Backward
Provenance have been processed, and the query can be considered removed.
Consequently, all sink tuples and their contributors from Qj have been pro-
cessed.

D4.2 R2: Expiration Promise

To keep the expiration promise, a tuple may only be marked as expired once it
is not being processed anymore nor potentially processed again by any query.
While arbitrarily late labelling of tuples as expired may facilitate keeping the
promise, it introduces latencies for downstream processing; thus, the labelling
should happen as close in time as possible while fulfilling the expiration promise.

D4.2.1 Additions: Ri=+Qi

For SQ-FP, Equation 4.1 yields an upper bound on the expiration threshold
for any tuple as a function of the watermarks of the sinks at time ω and of
the individual aliveness constants UQ (see Equation 4.2) of each query. We
formulate here an extension:

T (ω) = min
Q∈Q(ω)

(
Wω

Q − UQ

)
. (4.3)

Note that, keeping track of every individual sink watermark, this is a tighter
version of the bound used in [153]. Observe that, in contrast to SQ-FP, this
formula now incorporates the dynamic set Q, whose constitution is dependent
on time ω. At time fi, Qi becomes part of Q, and at the next time instance
(for infinitesimal ϵ > 0)

T (fi + ϵ) = min
Q∈Q(fi)∪{Qi}

(
W fi+ϵ

Q − UQ

)
=min

[
min

Q∈Q(fi)

(
W fi+ϵ

Q −UQ

)
,W 0

i −UQi

]
, (4.4)

where W 0
i is the first watermark of Qi’s sink. The immediate adoption of tuple

lifetime and watermark of Qi into the threshold ensures that no tuple expiring
in Qi can be reprocessed by another query, and the correct marking of tuples
as expired before gi (when Qi actually starts processing tuples).

To ensure that Qi itself does not reprocess tuples expired elsewhere, we
introduce the trimmed source:

Definition D2. A trimmed source (trSource) is a source of a query Qi that only
forwards tuples t with timestamp greater than a lower bound Li to downstream
operators, t.ts > Li.

Thus, for all tuples t produced by a trSource, it is true that t.ts > Li. We
also introduce the expected watermark :

D4. GUARANTEEING COMPLETENESS AND THE EXPIRATION PROMISE 157

Definition D3. The first or expected (sink) watermark W f+ϵ
i of query Qi

with a trSource after fi has value W 0
i = Li.

Note the first watermark of Qi can not be known before time gi > fi, where
Qi begins processing tuples. Li is a valid watermark as Qi will not output sink
tuples with smaller timestamps due to its trSource. We can thus replace W 0

i

in Equation 4.4 with Li. Which Li should be chosen for a new query?
(i) E-safe : Choosing Li ≥ T (fi) for the trSource of Qi will prevent Qi from
processing tuples expired in the queries in Q before fi, per the construction of
T in Equation 4.3. Any choice of Li ≥ T (fi) is E(xpiration)-safe.
(ii) W-slack : However, some values of L ≥ T (fi) can result in inconsistencies
with watermarks. The minimum watermark among all queries, at and after fi,
is

W fi
min = min

Q∈Q(fi)
W fi

Q

→W fi+ϵ
min =min

[
min

Q∈Q(fi)
W fi+ϵ

Q , Li

]
. (4.5)

Thus, to enforce W fi
min ≤ W fi+ϵ

min , Li must be larger than W fi
min - or else

the minimum watermark could decrease, conflicting the Dataflow model that
assumes non-decreasing watermarks and interfering with modern SPEs’s wa-
termark implementations. We say any choice of the lower bound such that
T (fi) ≤ Li < W fi

min is W-slack.
(iii) T-slack: If we calculate the expiration threshold directly after fi, the
expiration threshold may decrease:

T (fi + ϵ) ≥T (fi)
4.4−−→min

[
min

Q∈Q(fi)
(W fi+ϵ

Q −UQ), Li−UQi

]
≥T (fi). (4.6)

Since the first term in the minimum on the LHS is greater or equal than the
RHS (as watermarks never decrease), we must choose Li ≥ T (fi) + UQi to
enforce the threshold to not decrease. If Li is chosen otherwise, we say it is
T-slack.

Figure D3 (a) shows the various types of slack and their effect on the amount
of input data that can potentially be ingested by a newly added query: The
smaller the value of Li, the more data query Qi can access through its trSource
Si. This can make it desirable to choose Li as low as possible while still being
E-safe; however, this may introduce the various types of slack. Choosing Li

greater than or equal to

L̄i := max (T (fi) + UQi
,W fi

min) (4.7)

thus is neither W - or T -slack.

D4.2.2 Consecutive Additions: Ri=+Qi, Ri+1=+Qi+1

For not only one but consecutive query additions, further difficulties with a
T -slack choice of Li arise. For successive additions Ri and Ri+1, where both

158 D - DYNAMIC FORWARD PROVENANCE

expired

d
at

a
am

ou
nt

re

ad
ab

le
 b

y

-slack

-slack

-safe

(b)

th
re

sh
ol

d

absorption
period

time

(a)

's
watermarks

time value

Figure D3: (a) Effects of the lower bound Li of the trSource Si of query Qi. (b)
Evolution of the threshold with non-decreasing enforced (light blue upper curve) for
T -slack additions.

times the lower bound is chosen to equal the respective expiration threshold,
the query added upon Ri+1 may reprocess expired tuples which is not E-
safe: For some positive time interval (fi, hi) after the first transition has
finished, the threshold value T (ω) may be smaller than T (fi) (T-slack). Then,
if the second query’s addition is timed such that fi+1 ∈ (fi, hi), the choice
Li+1 = T (fi+1) < T (fi) for the second addition will result in the query added
in this transition having access to source tuples with timestamps smaller than
T (fi) - and those tuples have already been marked as expired. This situation is
sketched in Figure D3 (b) (dark grey curve). Thus, in this case T -slack is not
E-safe. Then, one of two precautions is required: (i) introducing an absorption
period after each addition, during which no further transition may begin, and
which ends once the threshold has increased over its previous maximum value;
or (ii) enforcing a non-decreasing threshold value as

T̃ (ω) = max

(
T (ω),max

ω′<ω
T̃ (ω′)

)
, (4.8)

s.t. T̃ is always the larger of the value calculated from (4.1) and the earlier
maximum of T̃ . Note that, for (ii), the threshold will effectively keep memory
of the tuples expired in the past. Figure D3 (b) shows both the non-decreasing
choice for the threshold (light blue) as well as the absorption period.

To sum up, Qi will not reprocess expired tuples for any Li within the E-safe
region combined with precaution (i) or (ii).

D4.2.3 Removals: Ri=−Qj

When a query is removed, it can no longer ingest source tuples nor forward
sink tuples. Thus, it must be excluded from considerations about the tuple

D5. ALGORITHMIC IMPLEMENTATION 159

expiration threshold, which is achieved by calculating the threshold without
the watermark from Qj and the tuple lifetime UQj . This may at most increase
the threshold value and the minimum watermark, thus not incurring any slack.
However, in the case of Qj being the last query to be removed, such that

Q
Ri=−Qj−−−−−−→ ∅, the threshold behavior is undefined as the minimum of an empty

set. Should a query then be added, it must also be hindered from ingesting
tuples expired before its addition. Thus, to be E-safe even in this scenario, the
last defined value of the threshold has to be remembered. To do this, one has to
choose the threshold as Equation 4.8, such that the last value is automatically
remembered(D4).

R1 and R2: Summary

Additions and removals are E-safe and complete for the following choices:

• a marker tuple as final watermark per query sink (cf. Definition D1)

• a lower bound Li := L̄i (cf. Equation 4.7) on input tuples per query
source

• a non-decreasing threshold (cd. Equation 4.8)

D5 Algorithmic Implementation

Algorithm D1 RequestHelper (RH)

state Q, i set of added queries & counter to assign ID to them
1: procedure add(U,DAG) ▷ U : max aliveness constant, DAG:

query operator topology
2: sendRequest(i, U) ▷ send query ID and U to FPG
3: L← waitReply() ▷ wait for reply carrying L
4: deploy(i, Q, L) ▷ deploy query to SPE
5: Q← Q ∪ {i}, i++

6: procedure remove(j)
7: if j ∈ Q then
8: insertMarker(j) ▷ insert marker to query with ID j
9: asyncCancel(j) ▷ cancel query execution asynchronously

10: Q← Q \ {j}, i++
11: waitReply() ▷ wait until FPG has received marker

Nona’s implementation consists of two components (see Figure D2): the
ForwardProvenanceGenerator (FPG), a streaming-based operator receiving a
stream of backward provenance and watermarks from the sinks of the added
queries, and the RequestHelper (RH). A user submitting requests interacts
with the RH via the procedures add() and remove(), which are detailed

(D4)When opting for an absorption period instead of a non-decreasing threshold, one would
need to memorize the final valid threshold value by hand.

160 D - DYNAMIC FORWARD PROVENANCE

in Algorithm D1. The RH then interacts with the FPG via message queues:
The RH uses method sendRequest() to relay a message to the FPG, and
the blocking waitReply() to wait for a response message from the FPG;
the FPG sends such a response message using sendReply(). Meanwhile,
the FPG switches in a loop between the following: (1) it uses procedure
onRequest() to check for a new message (and returns if there is none), and
(2) it invokes onSinkTuple(), onWatermark(), or onMarker() (a special
type of watermark, explained below) depending on the next element in its
input stream (see Algorithm D2), and returns if there is no next element. The
implementation provided here is for the case of additions that are neither
T - nor W -slack (see Section D4.2) and uses a non-decreasing threshold (see
Equation 4.8).

The following argumentations accompany the algorithmic implementations
explained in pseudocode in Alg. D1,D2.

Claim D1. DQ-FP implemented using the components from Algorithm D1
and Algorithm D2 fulfill requirements R1-R4.

Proof. The proof is broken down into four subsections corresponding to the
individual requirements.

D5. ALGORITHMIC IMPLEMENTATION 161

Algorithm D2 ForwardProvenanceGenerator (FPG)

state W,U maps from query ID to watermark / U
Wmin ← −∞ minimum watermark in W
T ← −∞ threshold

1: procedure onRequest(i, U) ▷ i: query ID, U : max aliveness constant
2: U.put(i, U)
3: L← getLowerBound(W,U) ▷ according to Equation 4.7
4: W.put(i, L) ▷ store L as first watermark from i
5: sendReply(L) ▷ send L to RH

6: procedure onMarker(j)
7: U.remove(j) ▷ remove query with ID j
8: W.remove(j)
9: T ← updateThreshold(W,U) ▷ according to Equation 4.8

10: Wmin ← minValue(W)
11: sendReply(j) ▷ send ack to RH that j was removed

12: procedure onSinkTuple(tK)
13: if getQueryID#(tK) not in W then
14: output

15: IDK = getID(tK)
16: emit(⟨Wmin, [IDK , tK]⟩) ▷ emit sink vertex
17: sourceTuples ← getBProvenance(tK)
18: for tS : sourceTuples do
19: IDS = getID(tS)
20: if (tS .τ, IDS) /∈ P then
21: emit(⟨Wmin, [IDS , tS]⟩) ▷ emit source vertex
22: P← P ∪ {(tS .τ, IDS)}
23: emit(⟨Wmin, [IDS , IDK]⟩) ▷ emit edge

24: emit(⟨Wmin, [IDK]⟩) ▷ emit sink vertex label

25: procedure onWatermark(W,k) ▷ k: query ID
26: if k not in W then ▷ skip watermarks of removed queries
27: output

28: W.put(k,W)
29: Wmin ← minValue(W)
30: T ← updateThreshold(W,U) ▷ according to Equation 4.8
31: for (τ, IDS) ∈ P do
32: if τ > T then
33: output

34: emit(⟨Wmin, [IDS]⟩) ▷ emit source vertex label
35: P← P \ {(τ, IDS)}

162 D - DYNAMIC FORWARD PROVENANCE

R1 - Completeness To achieve completeness, every sink tuple observed by
a source as well as the contributing source tuples, the connecting edges, and
respective label tuples must be part of the graph stream. As the definition
of observed in this context requires tK to be received by Nona, the latter
must produce these elements correctly for every tK it receives. In AD2:12
(Algorithm D2, line 12), upon receiving a tK , procedure onSinkTuple(tK)
is invoked, which retrieves the source tuples tS contributing to tK using
getBProvenance(tK) (AD2:17). In the loop following this, the source
vertices for the tS and an edge per relation tS⇝tK are produced, and finally
the sink vertex and its label. Procedure onWatermark updates the internally
stored list of watermarks and Us to calculate the current threshold (AD2:30)
and emits labels for sink tuples once these are expired according to the threshold.
For the removal of query Qj , all observed tuples must be processed before the
query is removed from FPG’s internal state. This happens through the use of
the marker tuple (AD1:8) during removals: the marker travels in the FPG’s
input stream like a watermark (cf. Definition D1) and signals that no other
tuples from Qj will be observed.

R2 - Expiration promise (i) For additions, to keep the expiration promise,
the lower bound Li of the added query must be set such that the new query
Qi cannot process expired tuples. Additions begin by invoking add() (AD1:1),
passing the DAG of the new query and the maximum aliveness constant
U . The RH transmits this request to the FPG along with the U value and
blocks; the FPG then uses U to calculate the current safe Li (AD2:3) and
update its watermark map afterwards with the expected watermark (AD2:4,
see Section D4.2). Li is sent back to the RH, which deploys the DAG with
the value of Li for its trSource (AD1:4). As from now on Qi’s watermark is
considered by the FPG and Qi itself can only process non-expired tuples, the
expiration promise is kept.

(ii) For removals (see Section D4.2.3), the threshold is updated in a non-
decreasing way in AD2:9 upon reception of the marker by the FPG. When
considering a removed query for the threshold and watermark calculation, the
latency in marking tuples as expired would grow indefinitely (as eventually
watermark and aliveness constant of the removed query dominate the threshold
value). To prevent this, onMarker() purges the removed query from its
internal state before updating the threshold in a non-decreasing way.

R3 - Ordering and uniqueness The graph elements are produced by
procedures onSinkTuple() and onWatermark() of the FPG depending on
the next element in the latter’s input stream. In line with the proof of the
algorithmic implementation from [153], these procedures fulfill the requirements
of Forward Provenance towards deduplication and ordering of graph elements
in absence of transitions, hinging on using the current internal watermark of
the FPG as the timestamp of produced graph elements and using the threshold
value for deduplication and production of source vertices. As a modification
to this for DQ-FP, onSinkTuple() uses the current minimum watermark
value which is calculated by onWatermark() every time a new watermark is

D6. EVALUATION 163

received from one of the added queries. As shown in Section D3, the watermark
is non-decreasing and thus viable to use as a reference point for ordering tuples
in the presence of transitions. Also, onWatermark() updates the threshold
value on each received watermark (AD2:30) and thus always uses a threshold
value that is E-safe. As the threshold never decreases, this ensures that a unique
source vertex will be produced once no further sink tuple may be produced to
which the source vertex contributes. This guarantees deduplication.

R4 - Responsiveness Calling add() and remove() does not result in any
operation halting the execution of running queries. In fact, while using the
expected watermark in AD2:4 may stall progression of the minimum watermark
of the FPG (and thus the emission of graph elements), all added queries continue
processing tuples and producing results. The minimum watermark of the FPG
continues growing once the newly added query has begun producing tuples.
Removals have even less effect on added queries as they at most increase
the values of the threshold and the watermark (see Section D4.2.3). By
stopping query execution in the SPE asynchronously (AD1:9) and immediately
proceeding, removal time is minimized. Thus, responsiveness is guaranteed
during transitions.

D6 Evaluation

We evaluate the performance of Nona in two scenarios: (i) static (without
transitions) - we benchmark Nona with Ananke [153], the state-of-the-art in
SQ-FP, to evaluate implicit architectural overheads of Nona in Section D6.3 and
the latter’s impact on the performance of queries in Section D6.4. (ii) dynamic -
we evaluate Nona’s transition behavior on centralized and distributed hardware
in Section D6.5, and stress-test it under high load. All experiments can be
reproduced using the code at [89].

D6.1 Metrics

• Rate: rate (in tuples/second) at a query’s source(D5).

• Latency : delay (in seconds) between a query’s reception of the last source
tuple contributing to a sink tuple and the observation of the latter at the
query’s sink.

• Memory : RAM (in MB) used by SPE and helper programs.

• CPU utilization: percentage of total CPU time utilized over all available
processors.

• Transition duration: for additions, time differences fi − si and gi − fi / for
removals, fi − si (all in ms).

(D5)As described in Section D6.2, we use Apache Flink as our SPE. As Flink has flow control,
the rate at the source is correlated to the throughput of the query.

164 D - DYNAMIC FORWARD PROVENANCE

(b)

(a)

: ANK-1
uses only this
single source
(connecting
the DAGs), for
other variants
it is absent

F1 A1 F2 A2

car AND
speed==0?

WS:120s,
WA:30s
KB:carID
count()

count>4?

S1

S2

K1

S0

ACC

STO

WS:30s,
WA:30s
KB:position()
count()

F3

count>1?

F4 A3 F5

car AND
speed==0?

WS:120, WA:30
KB:carID, count()

count>4?

K2

M1 F1 A F2

M2 F3 J

pedestrian?

LiDAR objects
 : one tuple
per object

Left/Right camera
objects
 : one tuple per object

bike AND
dist(x,y)<5m?

WS:2s, WA:1s
P: left.ID == right.ID
 AND left != right

WS:6s, WA:3s
count()

count>11?

S1

S2

K1

K2

CYC

PED

S0

(c)

A1

A2

A3

WS:5s, WA:5s
KB:activity
average(ecg1)

WS:5s, WA:5s
KB:activity
average(ecg1)

WS:1s, WA:1s
KB:activity
linReg(movX,movY,movZ)

A2

J1

J2

F1

F2

avgEcg1>2

avgEcg2>2

WS:5s, WA:5s
KB:activity
P: true

K

WS:5s, WA:5s
KB:activity
P: true

S

S0

STA

Figure D4: Queries used in the evaluation: (a) Vulnerable Road Users, (b) Linear
Road, (c) Statistical Summarization.

D6.2 Setup

Hardware and Software We implement Nona using the SPE Apache
Flink [29], with every query and the FPG operator running in a separate task
slot. Apache Kafka [9] implements the common data source, the tuple queue
between query sinks and FPG operator, and passes messages between FPG and
RH (see Section D3.1). RH is implemented as a bash script. Our evaluation
covers both low- and high-powered systems: (i) Odroid-XU4 [88], with Exynos
5422 Cortex-A15 (2Ghz) and Cortex-A7 octacore CPUs, 2GB RAM, Ubuntu
18.04.6, OpenJDK 1.8.0 252; (2) single-socket Intel Xeon-Phi server with 72
1.5GHz cores (4-way hyper-threading), 32KB L1 and 1MB L2 caches, 102GB
RAM, CentOS 7.9.2009, OpenJDK 1.8.0 161. Both use Apache Kafka 3.2.1.
and Flink 1.10.0 (running on the Cortex-A15s on the Odroids) We stress the
execution environment in each experiment.

Queries We use five queries from three use cases:

• Vulnerable Road Users [153]: an object annotation use case for in-
vehicle computer vision systems using data from the Argoverse Tracking

D6. EVALUATION 165

dataset [35]. Queries (Figure D4 (a)): PED, detects crossing pedestrians;
CYC, detects cyclists.

• Linear Road Benchmark [12]: a performance evaluation framework to
benchmark SPEs in real-time traffic analysis applications. Queries (Fig-
ure D4 (b)): STO, identifies stopped vehicles by analyzing consecutive
reports of zero speed and a consistent position; ACC, detects accidents
by examining groups of cars that have stopped at the exact same position.

• Statistical Summarization: an adapted version of a query from the RIoT
benchmark [176], using fitness tracker data from the mHealth project [19].
Query (Figure D4 (c)): STA, calculates two heart rate averages and
the 3D linear regression parameters for motion forecasting and combines
them into a summary.

Procedure The input data stream to the queries (see Figure D2) is provided
by a Kafka instance running on an external machine. To model an external
data source, its resource usage is omitted. All experiments are repeated at
least 10 times; error bars designate the 95% confidence interval(D6).

D6.3 Implicit Overheads

To quantify implicit overheads from Nona’s architectural choices, we use as
baseline the rate, latency, memory and CPU consumption of Ananke (ANK-1).
Note that, since the deployed queries are known a-priori in static cases, ANK-
1 applies optimizations like merging queries into a single DAG, chaining of
operations (reducing tuples (de-)serialization), and reusing operators. We first
compare ANK-1 with a variant ANK-mD (multiple separate DAGs), which
omits static-only optimizations and uses an architecture identical to Nona (see
Figure D2), supporting the theoretical deployment of new queries at runtime
(while otherwise re-using the ANK-1 operator as FPG for forward provenance
and giving no guarantees for DQ-FP). We compare 10 minute runs for query
set {Q1} (single) vs. {Q1, Q2} (dual) between ANK-1 and ANK-mD.

Figure D5 (a) shows the results for Q1,2 = ACC on the Odroid. For a single
query, ANK-mD has 10% lower rate and 20% higher latency. Differences in
memory and CPU usage stem from the additional use of Kafka in ANK-mD.
For dual queries, the performance of both ANK-1 and ANK-md is comparable
to the single-query case, but ANK-mD’s CPU usage spikes to more than double
that of ANK-1. This is because ANK-mD defines two independent sources
(one per query DAG, with ACC’s one performing most of the work, as most
tuples get filtered by F1, cf. Figure D4 (b)), while ANK-1’s merged DAG
defines only one. Figure D5 (b) shows the results for Q1,2 = CYC on the server.
CYC is computationally heavier than ACC, and produces significantly more
provenance. For a single query, ANK-1’s static optimizations lead to better
performance at lower resource utilization. For dual queries, though, ANK-1
achieves a lower rate at double the latency, as its single DAG structure lets

(D6)For stacked bar plots, the error bars are respective to the sum of the bars.

166 D - DYNAMIC FORWARD PROVENANCE

(a)
0

20000

40000

-1
0.

5%

-1
5.

8%

AN
K-

1

AN
K-

m
D

Rate (t/s)

0.0

0.5

1.0

1.5

+
21

.4
%

+
21

.3
%

Latency (s)

single dual
0

500

1000
+

72
.7

%

+
74

.4
%

Memory (MB)

single dual
0

10

20

30

+
14

.5
%

+
11

2.
5%

CPU (%)
SPE
Kafka

(b)
0

500

1000

1500

-5
.4

%

+
35

.9
%

AN
K-

1

AN
K-

m
D

Rate (t/s)

0.0

0.1

0.2

0.3

+
25

.5
%

-4
7.

2%

Latency (s)

single dual
0

10000

20000

+
5.

7%

+
41

.7
%

Memory (MB)

single dual
0

1

2

+
11

4.
6%

+
10

1.
3%

CPU (%)
SPE
Kafka

Figure D5: Implicit overheads evaluation: (a) {ACC} vs. {ACC,ACC}, (b) {CYC}
vs. {CYC,CYC}.

backpressure (resulting from high provenance rates) propagate from the tail
of the DAG (generating SQ-FP) to the sources. As ANK-mD has Kafka as a
queue between FPG and queries, it can process at rates higher than the intake
rate of the FPG.

D6.4 Performance of Nona under Static Query Sets

Having quantified architectural overheads, we now benchmark Nona (NONA)
in the static case with ANK-mD. To analyze NONA in a static scenario, we add
queries in the first minute of each experiment, to then remove this warm-up
phase of query deployment from the evaluation. The experiments consist of
executions of at least 10 minutes, for three different query sets: {ACC,STO},
{CYC,PED} and {STA}.

Figure D6 shows the results for query sets {ACC,STO} (a) and the compu-

D6. EVALUATION 167

(a)

ANK-mD
NONA

0

20000 -0
.2

%

Rate (t/s)

ANK-mD
NONA

0

1

2

-0
.5

%

Latency (s)

ANK-mD
NONA

0

500

1000

-0
.4

%

Memory (MB)

ANK-mD
NONA

0

20 +
0.

5%

CPU (%)

SPE
Kafka

(b)

ANK-mD
NONA

0

5000 -0
.4

%
Rate (t/s)

ANK-mD
NONA

0.00

0.25

0.50

-1
.5

%

Latency (s)

ANK-mD
NONA

0

1000

+
0.

5%

Memory (MB)

ANK-mD
NONA

0

20

40

+
0.

5%

CPU (%)

SPE
Kafka

(c)

ANK-mD
NONA

0

500

1000

-2
.2

%

Rate (t/s)

ANK-mD
NONA

0.0

0.1

0.2

-0
.3

%

Latency (s)

ANK-mD
NONA

0

10000 +
3.

4%

Memory (MB)

ANK-mD
NONA

0

1

2

-1
.7

%

CPU (%)

SPE
Kafka

Figure D6: Static evaluation: (a) {ACC,STO}, (b) {STA}, (c) {CYC,PED}.

tationally heavy {STA} (b) on the Odroid, and {CYC,PED} (c) on the server.
Evidently, the performances of ANK-mD and NONA are indistinguishable. The
large error bars for the rate in (c) are because PED’s source runs significantly
faster than that of CYC, leading to large confidence intervals in the statistical
summary over individual sources. The results indicate that any additional
overheads from NONA over ANK-mD related to the former supporting DQ-FP
vanish in the static case. Thus, even in dynamic scenarios, NONA’s perfor-
mance is almost indistinguishable from the state-of-the-art (ANK-mD, given
equal architecture) during static periods.

D6.5 Performance of Nona under Dynamic Query Sets

To investigate the performance of Nona in the dynamic setting, we design an
experiment procedure as follows:

∅ R1=+Q1−−−−−−→ {Q1}
R2=+Q2−−−−−−→ {Q1, Q2} . . .

...−→ {. . . , QN},

waiting 60 seconds between requests, followed by

{. . . , QN}
RN+1=−QN−−−−−−−−→ {. . . , QN−1} . . .

R2N=−Q1−−−−−−−→ ∅.

168 D - DYNAMIC FORWARD PROVENANCE

(a) +Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9 +Q10
0

5000

25
4m

s/
2%

17
8m

s/
1%

17
4m

s/
1%

17
4m

s/
1%

17
1m

s/
1%

17
0m

s/
1%

16
7m

s/
1%

17
1m

s/
1%

16
6m

s/
1%

18
2m

s/
2%

Ad
di

tio
ns

-Q1 -Q2 -Q3 -Q4 -Q5 -Q6 -Q7 -Q8 -Q9 -Q10
0

50

100

Re
m

ov
al

s

NONA SPE

(b) +Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9 +Q10
0

5000

10000

31
4m

s/
3%

17
7m

s/
1%

17
5m

s/
1%

17
8m

s/
1%

18
4m

s/
1%

17
8m

s/
1%

17
0m

s/
1%

16
9m

s/
1%

17
2m

s/
1%

23
7m

s/
2%

Ad
di

tio
ns

-Q1 -Q2 -Q3 -Q4 -Q5 -Q6 -Q7 -Q8 -Q9 -Q10
0

100

Re
m

ov
al

s

NONA SPE

Figure D7: DQ-FP (server): Transition times [ms]. (a) ACC, (b) STA (note: share
of Nona in Additions highlighted with arrow).

We can thus measure how additions and removals scale with an increasing
number of already running queries. To remove effects from varying DAG
topologies, we use Qk = Qj , k, j = 1 . . . , N . The total experiment duration is
25 minutes per run.

D6.5.1 Real Queries - Server

ForQk = ACC, Figure D7 (a) shows the average addition and removal durations
on the server. Red bars represent the time spent solely by Nona’s FPG and
RH (fi − si, see Section D4), while blue bars the time spent by the SPE
until the query starts processing tuples (gi − si). As additions first require a
reconfiguration of Nona and then query deployment by the SPE, the duration
is dominated by the latter (which (de-)serializes the query’s DAG, instantiates
operators, and connects source and sink to Kafka). Regarding only Nona,
all except the first transition (+Q1) take on average 170ms (or 1% of the
transition time including the SPE, see text on bars). This indicates a near-
constant transition time irrespective of the number of currently running queries.
For removals, no time is spent by the SPE, as removals start and end with the

D6. EVALUATION 169

+Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9
0

5000

10000

25
1m

s/
2%

21
3m

s/
2%

21
1m

s/
2%

21
3m

s/
2%

21
6m

s/
2%

22
9m

s/
2%

22
3m

s/
1%

22
0m

s/
1%

22
8m

s/
1%

Ad
di

tio
ns

-Q1 -Q2 -Q3 -Q4 -Q5 -Q6 -Q7 -Q8 -Q9
0

50

100

150

Re
m

ov
al

s

NONA SPE

Figure D8: DQ-FP (Odroid cluster, ACC): Transition times [ms] (note: share of
Nona in Additions highlighted with arrow).

insertion and reception of the marker tuple (see Section D5), while the query
itself is stopped in the SPE asynchronously. Removals take ∼100ms. Although
the marker has to propagate along the input stream to the FPG, requiring the
FPG to process all preceding tuples first, removals are significantly faster than
additions (ignoring even time spent by the SPE) in this experiment. Figure D7
(b) shows the transition times for Qk = STA. Additions require on average
∼180ms (1-2% of the total addition time), almost identical to the addition
times for ACC; just as removals, which take ∼110ms.

D6.5.2 Real Queries - Odroid Cluster

A single Odroid is not able to sustain the execution of many simultaneous
queries due to its limited performance and number of cores. However, Nona’s
architecture (cf. Figure D2) allows a distributed deployment over various nodes,
with one node running the FPG and RH operators, and other nodes executing
one or several queries. To evaluate Nona in the dynamic scenario on Odroids,
we thus deploy a cluster of four Odroids connected by 100MB/s ethernet. The
main node is running the FPG and RH operators, and the others up to three
queries each for a maximum of nine parallel queries. Figure D8 shows the
results for this setup for the choice Qk = ACC. On the cluster, additions take
on average ∼225ms, while removals occur in ∼110ms. This is only 55ms (10ms)
slower than on the vastly more powerful server. For the choice of Qk = STA,
additions similarly take ∼225ms and removals ∼110ms(D7)

D6.5.3 Synthetic Query

A long input queue of the FPG can lead to a higher latency in receiving the
marker tuple. This is not visible in Section D6.5.1, where the sinks of ACC

(D7)The corresponding plot is omitted for brevity.

170 D - DYNAMIC FORWARD PROVENANCE

5000

10000

-Q1 -Q2 -Q3 -Q4 -Q5 -Q6 -Q7 -Q8 -Q9 -Q10
0

500

1000

15t/s 150t/s 750t/s

Figure D9: Dynamic evaluation (server): Removal times [ms]. 10 synthetic queries,
3 sink tuple rates (note: gapped y-axis).

(STA) forward on average 0.33 (40) sink tuples per second. To stress-test the
removal mechanism for high sink rates on the server, we use a synthetic query
SYN, Qk = SYN, k = 1 . . . , 10, whose sinks emit a pre-populated backward
provenance graph with two source tuples per sink tuple. SYN is set to constant
rates of 15t/s, 150t/s and 750t/s. Figure D9 shows the removal transition
times on the server (with a gapped y-axis to accommodate all values). For
15t/s and 150t/s, there is no discernible effect, with removal times averaging
circa 100ms (as in Figure D7). At 150t/s, the 10 queries have a combined
output rate of 1500t/s, which is already a large number of tuples to inspect
using provenance. Effects become starkly visible at 750t/s: Removal times of
the first 6 queries are markedly longer, building up to 10s for Q4’s removal
before decreasing again. After removing Q6, the FPG has caught up with the
incoming rate again.

Evaluation Summary

Nona is evaluated on various datasets (benchmark and real-world) and devices
(server, single Odroid and Odroid cluster). As shown, its architecture may
impose overheads over the state-of-the-art for light queries, while being ben-
eficial for heavier ones. On static query sets, Nona has no further overheads
(amortizing architectural differences); on dynamic ones, Nona on the server
tolerates at least a combined 1500t/s before query removal times increase.
Additions take constant time dominated by SPE’s query deployment (> 99.5%).
Lastly, even a single Odroid executing the main components of Nona (FPG
and RH) achieves, for additions and removals, a performance very similar to
the powerful server.

D7. RELATED WORK 171

D7 Related Work

Forward provenance extends backward provenance, a well-established concept
in databases [38]. In stream processing, early implementations delivered only
coarse-grained data relations [191], while later works provided fine-grained
provenance, first via variable-size annotations [77] and eventually with constant
per-tuple overhead [150]. [77] also presented a first investigation into tuple
lifetimes. Static forward provenance (SQ-FP) was then presented in [153],
introducing both the concept as well as an implementation that requires low
overheads.

To the best of our knowledge, ours is the first work extending static to
dynamic forward provenance in stream processing. The notion of dynamic
query sets resembles that of ad-hoc queries [110]. While highlighting the need
for correctness and consistency, though, [110] does not focus on provenance
but on resource sharing [54] and query optimization [109] between active
queries. Further similarities to elasticity in data streaming exist [30], [169],
where the query execution is dynamically optimized by, e.g., deploying new
computation nodes to reduce load. Like for our work, elasticity requires
low-latency reconfigurations [83] that do not halt query execution, providing
continuous service without dropping tuples.

D8 Conclusions

We formalized the problem of DQ-FP and proved it is possible to provide a
forward provenance graph for dynamic and evolving sets of queries with the
same guarantees offered for static sets of queries. We also presented an efficient
implementation using Apache Flink and Apache Kafka and showed that its
architecture incurs negligible overheads when compared to the state-of-the-art
for static sets of queries. Upon changes in dynamic query sets, transitions only
incur temporary sub-second latency overheads, independently of the number of
running queries, up to substantially high loads.

Motivated by Figure D1’s example, Nona’s DQ-FP can be used to efficiently
and safely select data for further processing, while adapting data selection
queries as knowledge is gathered or the underlying data changes. Our work
can enable novel research in, e.g., provenance guarantees when live updates
are applied to a query while it is processing data, as well as parallelization
techniques for efficient provenance maintenance.

172 D - DYNAMIC FORWARD PROVENANCE

Chapter E

Evaluating Distributed Analysis

Algorithms in VCPSs

Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, Vincenzo
Gulisano

The following is an adapted version of the work published in Proceedings
of the 23rd International Middleware Conference Industrial Track, Part of
Middleware 2022, p. 22-28, as “Ananke: A Streaming Framework for Live
Forward Provenance”. Any changes serve only to retain the consistency of this
thesis.

Abstract

Highly-connected Vehicular Cyber-Physical Systems (VCPSs) offer manifold
opportunities for distributing learning across the contained vehicles, road-side
units and servers. However, simulating and evaluating particular distributed
learning schemes poses a difficult problem in requiring realistic modeling of
the vehicular fleet, communication, and the learning itself. In this work,
we postulate a set of requirements for a framework simulating a complete
learning workflow in a VCPS, and propose a modular architecture for it.
Using a prototype implementation, we show with an example experiment
the capabilities the proposed framework delivers for evaluating novel learning
schemes in custom scenarios.

176 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

E1 Introduction

Using Machine Learning (ML) in Vehicular Cyber-Physical Systems (VCPSs)
of smart and connected vehicles has shown manifold valuable applications like
object recognition from visual data [4], vehicle maneuver planning [96], [149], or
driver intention recognition [23], [166]. Applications like these for smart driver
assistance functionality are projected to deliver fully autonomous driving in
the near future. As the data fed to the underlying ML models is usually sensed
by vehicles while the training of such models is performed centrally, vehicle
manufacturers and fleet operators need to retrieve raw data from the vehicles.
This can happen either via sporadic physical access to vehicles or frequent
wireless transmission. While the latter is preferable to access fresh data, it
nonetheless incurs variable costs for cellular broadband usage(E1) (this effect
can be alleviated through smart preprocessing/compression on the edge [91],
[153], but the issue of scaling remains). Notice that both approaches share
the risk of potential exposure of sensitive user data at the central data center,
which should be minimized according to privacy regulations such as GDPR.
Central data gathering can thus hinder scalability of the training of models
going forward due to rising transmission costs and legal requirements. Such
shortcomings can be alleviated by alternatives utilizing the computational
power on the system’s edge, i.e., the vehicles’ onboard devices.

The spectrum of those alternatives spans from Federated Learning (FL) [53],
[57], [63], [132], where a central server aggregates only model parameters
(instead of raw data) from the edge, to Gossip Learning (GL) [122], [158],
[174], in which devices communicate their models directly with each other
without central coordination. Comparing which of these approaches best suits
the needs of a VCPS in question can be difficult due to the variable system
dimensions. Leaving out the option of data collection via physical access due
to its impracticality (e.g., stale data, hard to scale to large fleets), some of such
dimensions include vehicular on-board capabilities, available communication
channels (e.g., can vehicles employ vehicle-to-vehicle communication or only
vehicle-to-cloud?), individual vehicle usage patterns dictating when vehicles are
turned on and how they are moving about (influencing for example network
coverage at a vehicle’s location or proximity to other vehicles), the data
distribution in the fleet [60] and fleet size. Taken together, these forbid a
one-size-fits-all solution to decentralized learning in a VCPS.

It is costly, potentially slow, risky, and impractical to evaluate decentralized
learning approaches directly in the actual fleet due to, among others, the
complexity and safety requirements surrounding on-board software. Thus,
a framework able to accurately simulate learning processes inside a VCPS,
allowing the extraction of custom metrics that make various learning approaches
comparable and parameterizable at lower costs and higher speeds, is needed

(E1)While cellular broadband costs have fallen sharply over the past years [199], the data
amounts required to train well-performing modern ML models such as Deep Neural Networks
(DNNs) over multi-dimensional data (e.g., images) are growing approximately in proportion
to increasing model complexity [79], potentially offsetting decreased transmission costs per
byte sent.

E2. RELATED WORK 177

before turning to real-world test runs.

In this paper, we collate the requirements such a framework needs to fulfill
in order to help OEMs and fleet operators in testing and evaluating practical
alternatives to centralized ML, propose a general modular architecture for such
a framework to guide its design, and show example results obtained with a
prototype implementation that we have developed.

E2 Related Work

To the best of our knowledge, no single framework exists that answers all
challenges mentioned in Section E1. Nonetheless, many complementary tools
have been developed. Since we aim at discussing the challenges and needs of a
comprehensive framework rather than specific implementations of it, we list
and discuss some relevant related examples here.

There exist several established tools to simulate vehicular traffic, for example
SUMO [131] and VISSIM [67]. Coupled with network simulators such as
OMNet++ [189] or NS3 [31], these can yield combined tools to simulate and
evaluate Vehicular Ad-Hoc Networks (VANETs). An overview of such combined
tools can be found in [198], for example VEINS [178] or ezCar2x [171]. These
tools both enable the testing of applications relying on vehicle-to-vehicle and
vehicle-to-cloud communication and could serve as a basis for the framework
proposed in this work. However, their starting point is the simulation of
vehicles’ trajectories, while fleet operators and vehicle manufacturers typically
have access to unbiased real-world vehicle trajectories and may thus not require
full-blown traffic simulations, which may add extra overhead. It should be
noted that SUMO allows to generate routes from existing GPS data and can
thus allow experimentation exclusively with real data.

Several frameworks focus solely on the aspect of learning in a distributed
system, omitting any connection to VCPSs. Besides the lacking ability to
implement vehicular dynamics directly, they offer no direct or only limited
support for more advanced or hybrid learning strategies. Flower [24] is an
open-source framework that allows to implement and experiment with various
flavors of FL on actual edge devices and single-machine setups and is flexible in
its support for various ML frameworks. However, its focus lies on supporting
FL only; thus, support for other types of distributed learning such as GL
is lacking. More straightforward tools such as FLSim [194] offer, after some
customization, a stripped-down but also less feature-rich experimentation with
FL strategies. The framework TensorFlow Federated [185] offers ”Federated
Analytics” functionality for more varied federated computations. However, for
implementing strategies such as GL [93], no singular framework (comparable
for example to Flower) could be found by the authors of this paper.

In [55], the authors explore and evaluate one approach to GL in a VCPS by
combining the SUMO traffic and OMNet++ communication simulators with
the Keras ML framework [41]. However, as that work aims at evaluating only
GL, it remains open if their experimentation framework would suit the needs
of a more flexible tool that allows even for hybrid solutions and simulated

178 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

V2X

V2C

V2X

RSU

cloud server

P

V2C + V2X

travel path

Figure E1: Sketch of a VCPS. Via V2C (vehicle-to-cloud), any car can communicate
with the cloud server, while V2X (vehicle-to-anything) is local-only: between cars,
and cars and road-side units (RSUs). Each car (see inset) collects data to train an
ML model (generally, also cloud server and RSU are capable of training). Vehicular
dynamics are dictated by their travel paths. Cars that are turned off (see: parked
grey car) temporarily do not partake in the VCPS.

on-board deployment.

In summary, while all elementary parts of the sought-after framework exist,
no single tool covers all required dimensions in the appropriate depth, and the
complete design of such a unifying framework remains open.

E3 Problem Statement and Requirements

Offering a framework to aid in developing, evaluating, and optimizing strategies
for learning from data gathered on the edge of a VCPS poses several challenges.
Such a framework must be able to take the specifics of a highly evolving,
connected vehicular fleet into account both on the level of the individual vehicle
and the whole fleet. Furthermore, sufficiently realistic modeling of various
forms of communication between various actors in the system is required, as
well as modeling of the learning aspect itself. Eventually, all these aspects have
to be simulated by taking into account the real-time behavior of the various
components.

The learning VCPS and the contained simulated agents are sketched in
Figure E1: Vehicles, equipped with an on-board unit to transform data into
an ML model (see inset), a cloud server, connected to the vehicles via a
V2C (vehicle-to-cloud) connection, and RSUs (Road-Side Units) that can
communicate with the vehicles via short-range V2X (vehicle-to-anything) and
the cloud server via a wired connection.

E3. PROBLEM STATEMENT AND REQUIREMENTS 179

Preliminaries To define the requirements of the framework in detail, we in-
troduce a few key concepts: A learning problem defines a real-world problem an
analyst wants to solve, e.g., the predictive maintenance of a certain component
of the vehicle. Solving this learning problem requires the collection of relevant
data by the vehicle to learn from, with the distribution of data potentially
varying strongly between vehicles. This data is then processed using Machine
Learning, which creates and iteratively updates an ML model of the data, using
techniques that span from supervised ones (where ground truths for each data
instance are accessible, e.g., generated by humans or sensors) to semi-supervised
or unsupervised ones (where no ground truth exists, for example when trying
to identify anomalies or when clustering data). The learning problem is solved
once one can make predictions with the ML model satisfying some requirements
for the prediction’s accuracy (for supervised learning, this can be measured
through testing by for example the ratio of correct vs. wrong predictions or a
prediction’s closeness to a ground truth; for unsupervised learning, this could
be a measure for the performance of the clustering).

How the learning problem is solved is defined through the learning strategy,
describing how data and models are exchanged between vehicles and other actors
in the system, and how and where models are trained and potentially tested.
Two example learning strategies for supervised learning are the following(E2):

F
ed
er
a
te
d
L
ea
rn

in
g The strategy proceeds in rounds. In each round, the cloud server selects a

subset of vehicles and transmits to them a so-called global model. Each
receiving vehicle vi uses its local data to fine-tune (retrain) the global
model locally, then sends the retrained model wi back to the cloud server.
The latter aggregates the received models into a new global model w, using
for example Federated Averaging: w =

∑
i wi · di/(

∑
j dj), where dk is the

data amount on vehicle k (as presented in [139]).

O
p
po
rt
u
n
is
ti
c
∼ Each vehicle vi begins by training its own local model. Upon getting close

in space to another vehicle vj , both vehicles exchange their models wi, wj ,
retrain the received model, and send it back to the sender, who aggregates
the received model with its original model. Thus, each vehicle plays the
role of a cloud server in FL for all vehicles in its vicinity (as presented in
[55]).

A major aspect of a VCPS affecting the feasibility of various learning strate-
gies is the different modes of communication between actors. We differentiate
two main types:

a) Long-range cellular Vehicle-to-Cloud (V2C): Vehicles can employ metered
cellular connections to connect with cellphone towers, using e.g., 4G/LTE or
5G [135] communication technology. As cellphone towers are connected to
the Internet, V2C allows vehicles to communicate with servers located at the
vehicle manufacturers. Communication speeds achievable via V2C are the
same as those achievable by mobile phones using the same cellular technology
and can range from 1000 to more than 10000KB/s in ideal conditions. As

(E2)Note that, implicitly, it is assumed that in these approaches the ground truth of the
learning problem can be generated on the vehicles themselves

180 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

sketched in Figure E1, the cloud server can, barring coverage issues stemming
from e.g., tunnels, connect to any vehicle that is turned on.

b) Short-range Vehicle-to-X (V2X): This second family of connections is
more short-ranged. It encompasses various standards such as IEEE 802.11p
(relying on WiFi) or the more recent Cellular-V2X (relying on 4G/5G) to
enable vehicle-to-vehicle communication (V2V) or the communication via
and with road-side units (RSUs). Line-of-sight range of these connections
can exceed 1000m, although this range is reduced in the presence of obstacles
[163].

The viability of V2X communication is strongly dependent on the vehicles’
spatial dynamics, i.e., how and when they move along a given network of roads
to come into proximity of other vehicles and RSUs. As an example, Figure E1
shows each vehicle’s travel path, dictating encounters in the VCPS.

Requirements list Using the above concepts and definitions, the framework
should eventually allow the user to evaluate, for a given learning problem,
spatial dynamics and modes of communication, a specific learning strategy
using metrics relevant to the user.

Based on our own experiments with evaluating and refining learning strate-
gies in a VCPS (for example as part of the Edge Lab initiative [1]), as well
as reports and research from various OEMs [57], [80], we have postulated the
following key requirements for the sought-after framework:

1. Realistic fleet model. The framework needs to be able to model the dynamics
of each vehicle in a fleet, consisting of the vehicle’s spatial trajectory as
defined by real mobility data and its current state, which is depending on
the state of the other system actors as well as external factors (e.g., a vehicle
could be turned off during the system’s evolution by the driver, making it
unavailable).

2. Realistic ML support. To solve the learning problem, the actors in the system
need to be able to perform the training, exchange, and testing of ML models,
and do this in accordance with real-world hardware capabilities of modern
vehicles. Support for various types of ML models is required to be able
to tackle the manifold learning problems arising in VCPSs, and to handle
various data distributions and preprocessing steps that the learning problem
dictates.

3. Realistic communication model. Taking into account the two forms of
communication laid out previously, the framework has to realistically model
how vehicles communicate with each other, with RSUs, and with the central
server (the specifics of this are defined by the VCPS at hand and by the
intended learning strategy). Depending on the state and the location of
actors, communication may or may not be possible at a given point in time,
and may fail at any time.

E4. ARCHITECTURE PROPOSAL 181

HUs

Core
Simulator

metrics

if_____:

else___:
 ______Learning

Strategy Logic

Communication

Data
Preprocessing

distribute
train,
test,
aggregatevehicle data

+ models

v[1]

v[2]

v[n]

vehicle spatial
dynamics
v[1],v[2],...,v[n]

, ,
ML

Figure E2: Proposal of the framework’s modular architecture, consisting of various
modules (colored boxes, see Section E4) centered around a Core Simulator (HU:
Hardware Unit; v[i]: i-th agent).

4. Fine-grained metrics. The set of supported metrics should encompass the
accuracy of the ML models in the system at various points in time and
the volume of communication transmitted via the various communication
channels, to enable a thorough evaluation of various learning strategies.
The implementation of more custom metrics should be possible, such as
computational workloads of individual vehicles or the provenance of data.

5. Flexible learning strategy support. The framework should allow the flexible
implementation and parametrization of learning strategies to allow for easy
experimentation and iteration. This means supporting centralized ML, FL,
GL, as well as hybrid approaches.

6. Quick execution. The framework should realize a significant speed-up over
an experiment in a real VCPS and reduce unnecessary overheads to allow
quick experiment repetition when varying learning strategies.

With these requirements defined, we will in the following section present a
proposal for a framework architecture to tackle the ensuing challenges.

E4 Architecture Proposal

The architecture proposed here is built around a Core Simulator, providing the
elementary functionality of creating virtual agents and then proceeding in dis-
crete steps through the simulation time, separated from the modules relevant to
the learning problem to increase flexibility and usability. Furthermore, modules
relevant to the learning problem may be designed as targeting the hardware
platform of real connected vehicles, while the Core Simulator can be executed
on off-the-shelf hardware. Figure E2 details the architecture proposal: At the
center sits the aforementioned Core Simulator that orchestrates the remaining

182 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

modules, starting with the Data Preprocessing module. It provides the data
residing on each of the n simulated agents, here designated v[1], v[2], . . . , v[n]
(these agents are vehicles, road-side units, or the cloud server, see Figure E1).
As an example, for the problem of recognizing road signs from traffic scenes, this
module could crop and resize a given input data set of images of traffic scenes
(e.g., recorded by actual vehicles), split the dataset into n subsets according to
a predefined distribution, and assign each subset to a simulated vehicle as well
as a test set to the simulated cloud server, all according to the specification of
the learning problem at hand.

The ML module, likewise, keeps tabs on the current model(s) of each
agent in the system (not all actors may have their own model), and provides
functionality to train and test any model with any data and to aggregate
models into new ones and assign these to certain agents. For example, in the
aggregation step of Federated Learning, the ML module may read the models
of a subset of vehicles, perform a weighted average of these (e.g., by the data
amount on each vehicle in the subset [139]), and assign the result as the new
model of the cloud server. The ML module deploys these operations to one or
more HU (Hardware Unit), instances of the actual hardware existing within
vehicles that allows achieving realistic performance and training times (while
an agent is busy training, it may not be available for other operations). When
not impacting performance, the HUs can run multiple operations in parallel to
speed up the simulation, e.g., simultaneously training multiple agents’ models.
Note that the HU corresponds to the training-capable simulated agent, e.g.,
a vehicular on-board unit (OBU) or server hardware. Additionally, the ML
module exposes metrics about the accuracy of various models in the simulated
system.

Communication between agents is handled in the core simulator by a
Communication module, which for example could be a communication simulator
in itself (as in [178]). This module models the transmission of various types
of data in the system per the communication type’s properties, impacting
the bandwidth and range of communication (for V2X, the range can be quite
limited and highly dependent on the involved vehicle’s position, requiring the
core simulator to pass trajectory data to the Communication module). The
Communication module also keeps track of the data volumes transmitted and
exposes this metric to the Core Simulator. In the aforementioned FL aggregation
step, the Communication module would simulate cellular transmission of the
models between involved vehicles and the cloud server, covering both the
transmission duration and its potential (partial) failure for vehicles that are
unreachable or turning off.

Vehicle spatial dynamics enter the Core Simulator statically, e.g., as a file
of GPS traces of all moving agents in the system. This supports the use of
historic GPS data, but also of simulated data (pre-calculated with e.g., SUMO).
As the act of learning in the VCPS is assumed to not influence individual
vehicles’ trajectories, it is sufficient that the spatial dynamics data of the VCPS
is replayed by the core simulator.

The interaction of all modules of the system is parameterized by a set of
rules given in the Learning Strategy Logic module, defining how the agents react

E5. A PROTOTYPE IMPLEMENTATION: ROADRUNNER 183

in which situation and thus encoding the learning strategy that is to be tested
in a certain experiment run. A comprehensive example of a learning strategy,
together with an evaluating experiment, can be found in section Section E5.2.

Eventually, the Core Simulator outputs an experiment run’s metrics times-
tamped in simulated time to enable analysis of the system’s evolution under a
learning strategy.

E5 A Prototype Implementation: Roadrunner

E5.1 Implementation Details

Having presented a proposal for the architecture of the desired framework
in Section E4, we will in this section present a prototype implementation,
Roadrunner, that we have used for initial experiments with various learning
strategies.

Roadrunner’s Core Simulator is written in Java and based on a messaging
scheme between simulated agents. The Core Simulator uses user-defined
network speeds for the two communication types, V2C and V2X. Message
transmission fails if agents are not in the appropriate state (e.g., V2X messages
can only be exchanged if the participants are within range of each other, and
a vehicle shutting off will result in any incoming or outgoing message failing).
Vehicles’ spatial trajectories are read from an input file, and at each point
in simulated time, the Core Simulator will change the state of participating
agents according to their current position and state (i.e., once they have been
turned on or off).

The Data Preprocessing and ML modules are written in Python, based
on the ML framework PyTorch [157]. The latter modules were inspired by
the work of [194], and further modularized, extended, and converted into
individual scripts that operate on vehicle data and models stored as files on
disk. To interface with the Data Preprocessing and ML modules, the Java Core
Simulator calls appropriate scripts. These perform, for example, the initial
distribution of data onto the agents by splitting an original dataset into subsets
and storing each subset, assigned to a particular agent, on disk, or the training
of some agent’s model by reading its data and model file and performing the
training operation. The scripts time the duration of their execution and pass
this value to the Core Simulator to appropriately model the time spent by
agents in various states. The ML computations themselves are executed on a
GPU as an OBU stand-in (as GPUs are expected standard hardware on smart
vehicles) using build-in functionality of PyTorch(E3).

Using the logging tool Log4j, metrics are continuously extracted from the
simulation to represent the state of every actor, the accuracy of the ML models
in the simulation, and data transmission volumes at every point in simulated
time.

(E3)See https://pytorch.org/docs/stable/cuda.html

https://pytorch.org/docs/stable/cuda.html

184 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

E5.2 Sample Experiment: Testing an Opportunistic Learn-
ing Strategy

To exemplify the understanding our framework can enable, we show an exper-
iment from a real-world example. As shown in early works on FL [139] (see
Section E3 for a primer on the FL learning strategy), increasing the number of
participants in an FL round can be one way to increase the accuracy of the final
model. However, when deploying FL in a VCPS, and connecting cloud server
and vehicles with a V2C connection, contacting additional vehicles per round
results in increased cellular costs. Inspired by Opportunistic Learning (see
Section E3), we explore the addition of V2X to increase the number of vehicles
reached in each round. FL uses Federated Averaging (FA, see Section E3),
which is mathematically associative, to aggregate a new model through in-
termediate aggregation (see Figure E3). Around this idea, we designed the
learning strategy OPP (opportunistic):

Server: Send latest global model w to R random vehicles (”reporters”) via
V2C, start round timer. At end of round, request new models from reporters.
Aggregate received models into new global model via FA, then start next
round.
Reporters: Upon receiving w from server, retrain w. Upon opportunistically
meeting a non-reporter vehicle, send to it w via V2X. Wait to receive back
retrained model and aggregate it with own model via FA, to replace the own
model. At end of round, send own model back to the server.
Non-reporters: Upon receiving w via V2X from nearby reporter, retrain
w. Send it back to reporter after retraining, if reporter is still in range. Else,
discard w.

Thus, when during some round each of the R reporters aggregates the
models from on average NR non-reporters, this learning strategy results in
N = R · (NR+ 1) model contributions in that round, but requires only R ≤ N
connections via V2C(E4).

Figure E3 presents a sketch of a single round of OPP for two reporters:
The circled numbers in the figure indicate the order of events (0-7) and black
right-arrows indicate retraining. di are the data amounts used for retraining
on each vehicle. In detail: (1) the model w is sent out to the reporters v1, v3,
which retrain the model using their local data (2). (3) meeting non-reporter
v2, v1 forwards the model w there (via V2X), where it is retrained to w2 (4)
and sent back together (via V2X) with the training data amount d2 (5). Then
(6), v1 transmits the intermediate aggregate of its own and the model from v2
to the server, and v3 does the same. Finally (7), this intermediate aggregation
yields a new model w′ that is identical to the case in which all three involved
vehicles are reporters. Intuitively, this approach should improve performance,
given that the reporters get close to other vehicles during their trajectory for

(E4)In the worst case, no reporter will meet another vehicle for long enough to facilitate a
successful exchange of weights, thus NR = 0 and R = N . Note that we disregard the case of
reporters turning off during a round in this inequality, as that would also impact standard
FL.

E5. A PROTOTYPE IMPLEMENTATION: ROADRUNNER 185

1 2

2

3

4

5

6

6

7

1

to
o

far

server
choose
reporters:0

reporters

retraining

data amount on current (next) global model
vehicle

model on

V2C

V2
X

Figure E3: A single round of OPP with two reporters (v1, v3) and one non-reporter
(v3). Encircled numbers indicate the order of events. v4 is too far from the reporters
to participate.

times long enough to facilitate the exchange (e.g., in the sketch, v4 is too
far away from any reporter), making this approach highly dependent on the
density of vehicles. Furthermore, it is intuitive that a longer round duration
will give more opportunities for local aggregation of weights. Simultaneously, it
will also increase the duration of the whole learning process, and increase the
probability that a reporter vehicle is turned off by the driver before a round
ends, effectively discarding the models collected by this reporter.

Experiment Setup To test whether these intuitions are correct, we use
Roadrunner. In the following experiment, we assume a fixed V2C communi-
cation budget dictating the number of learning rounds we can perform. As a
baseline case BASE, we perform FL in the VCPS, contacting 5 vehicles each
round over 75 rounds of 30 seconds duration. In OPP, we also designate 5
reporters per round for 75 rounds (thus using the same V2C communication
budget); however, we let reporters try to exchange their weights with encoun-
tered vehicles, and set the round duration to 200 seconds. Vehicle spatial
dynamics are dictated by a proprietary real-world GPS dataset of the city of
Gothenburg, Sweden. As a supervised learning problem, we choose the widely
used training of a Convolutional Neural Network (CNN) for image recognition
over the CIFAR-10 dataset [114] as a representative of an automotive image
recognition problem. This dataset contains 60000 32x32 pixel color images
in 10 classes, of which 50000 are used for training and 10000 for testing the
learning algorithm. The CNN has two convolutional layers with max pooling

186 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

0

5

10

15

#
V

2
X

-e
x
ch

a
n
g
es

average # exchanges

0 2500 5000 7500 10000 12500 15000
time [s]

0.0

0.1

0.2

0.3

0.4

M
L

a
cc

u
ra

cy

en
d
O
P
P

en
d
B
A
S
E

accuracy BASE accuracy OPP V2X exchanges

Figure E4: Evaluation experiment of learning strategy OPP using Roadrunner: The
blue and red solid curves show the accuracy of the global model of BASE and OPP,
respectively, and the bar plot shows the number of V2X exchanges that occur during
a given round of OPP. Additionally indicated in the figure are the average number
of V2X exchanges and the points in time at which 75 rounds of BASE and OPP have
been completed (and the respective run ends).

followed by three fully connected layers; during training, vehicles perform two
epochs of stochastic gradient descent with momentum. For the distribution
of data over the vehicles, we choose a highly skewed distribution of classes
in which every vehicle holds 80 samples to emulate the real-world scenario of
highly personalized data. V2X range is set to 200m as an average for urban
driving.

The evaluation took place on server hardware with an Intel Xeon E5-2620
v3 2.40GHz processor running the Core Simulator and an Nvidia GeForce GTX
1080 Ti graphics card as a vehicular on-board unit stand-in(E5).

Evaluation In Figure E4, we visualize the results from one experiment
run: BASE (solid blue curve) finishes 75 rounds of training after 3592 seconds,
while OPP requires 16342 seconds. The large speedup of the baseline is here
explained by the much shorter round duration: as vehicles are not instructed
to communicate with other vehicles in BASE, the round time can be set to a
value that only covers the time period for transmitting and locally re-training
the model. The bar plot indicates how many model exchanges via V2X occur
in OPP, ranging from zero to 20. Thus, unlike in vanilla FL, the number of
contributions to the model is not static, but varies over rounds, depending on
the spatial dynamics of the vehicle (the dynamics allow or disallow encounters

(E5)While more modern GPUs, especially for the vehicular domain, outperform the GPU
used in this experiment, it can be assumed that the available headroom for ML training in a
vehicular setting is limited as on older GPUs.

E6. CONCLUSIONS 187

close enough and long enough to exchange models via V2X). On average, just
below 10 additional model contributions are thus collected per round (indicated
by the dash-dotted horizontal line in Figure E4). Finally, this results in a
50% increase in final accuracy of OPP over BASE, while incurring a 4.5 times
longer total real-world run time, while employing the same V2C communication
budget and thus equal costs (assuming on-board training and V2X usage costs
are negligible).

The ability exemplified here, of quantifying trade-offs between metrics such
as data volumes, accuracy and duration, is crucial for an analyst to make
informed decisions about a learning strategy and is the core contribution of
any framework abiding by the requirements from Section E3.

E6 Conclusions

In this paper, we have motivated the need for a tool to evaluate various learning
strategies in a Vehicular Cyber-Physical System, to help fleet operators and
OEMs learn from data generated on the vehicles themselves in a fashion
that is optimal for their particular fleet and use case. Furthermore, we have
collated a list of specific requirements for such a tool from an (industrial) user’s
perspective. As we show in the Related Work, existing works partially deliver
the required functionality, but no single tool fulfills the complete requirements
list. Therefore, we propose an architecture for a complete tool that can evaluate
various learning strategies, and we present our prototype implementation of
the tool along with preliminary results to demonstrate the tool’s validity. As
exemplified in Section E5.2, the framework enables further understanding
of the tradeoffs between dimensions such as time, cost, and accuracy when
developing efficient learning strategies in a specific VCPS. In future work, we
want to open-source the prototype implementation presented in Section E5
to open it for contributions from the community, with the goal of increasing
its resilience and enabling thorough testing of the framework. Possible next
steps are implementing additional functionality in the prototype framework,
where for example the simulation of various forms of communication could be
enriched by integrating existing third-party network simulators, and increasing
the parallelism of the simulation to speed up learning strategy development
iterations.

188 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

Bibliography

[1] AISweden, Edge Learning Lab, https : / / www . ai . se / en / data -

factory/edge-lab, 2022 (cit. on p. 180).

[2] T. Akidau, A. Balikov, K. Bekiroğlu, et al., “MillWheel: Fault-tolerant
stream processing at internet scale,” Proceedings of the VLDB Endow-
ment, vol. 6, no. 11, pp. 1033–1044, 2013 (cit. on p. 114).

[3] T. Akidau, R. Bradshaw, C. Chambers, et al., “The Dataflow Model: A
practical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing,” VLDB, vol. 8, no. 12,
pp. 1792–1803, 2015, issn: 21508097 (cit. on pp. 20, 114, 116, 146, 148).

[4] F. Alam, R. Mehmood, and I. Katib, “D2TFRS: An object recognition
method for autonomous vehicles based on rgb and spatial values of
pixels,” in International Conference on Smart Cities, Infrastructure,
Technologies and Applications, Springer, 2017, pp. 155–168 (cit. on
p. 176).

[5] G. M. N. Ali, E. Chan, and W. Li, “Supporting real-time multiple
data items query in multi-RSU vehicular ad hoc networks (VANETs),”
Journal of Systems and Software, vol. 86, no. 8, pp. 2127–2142, 2013
(cit. on pp. 24, 107).

[6] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Why
let resources idle? Aggressive cloning of jobs with Dolly,” in USENIX
HotCloud, 2012 (cit. on p. 108).

[7] Apache, Beam, 2020. [Online]. Available: https://beam.apache.org/
(cit. on pp. 116, 117, 148, 149).

[8] Apache, Heron, 2020. [Online]. Available: https://heron.incubator.
apache.org/ (cit. on pp. 114, 116, 146, 148).

[9] Apache, Kafka, 2023. [Online]. Available: http://kafka.apache.org/
(cit. on pp. 148, 164).

[10] Apache, Storm, 2020. [Online]. Available: http://storm.apache.org/
(cit. on pp. 12, 13, 114, 116, 117, 146, 148, 149).

189

https://www.ai.se/en/data-factory/edge-lab
https://www.ai.se/en/data-factory/edge-lab
https://beam.apache.org/
https://heron.incubator.apache.org/
https://heron.incubator.apache.org/
http://kafka.apache.org/
http://storm.apache.org/

190 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[11] U. S. C. of Appeals, Intelligent transportation society of america and
american association of state highway and transportation officials v.
federal communications commission and united states of america, 2022.
[Online]. Available: https://www.acea.auto/files/Platooning_
roadmap.pdf (cit. on p. 8).

[12] A. Arasu, M. Cherniack, E. Galvez, et al., “Linear Road: A stream data
management benchmark,” in Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, ser. VLDB ’04,
Toronto, Canada: VLDB Endowment, 2004, pp. 480–491 (cit. on pp. 42,
132, 165).

[13] E. A. M. Association,What is truck platooning? 2017. [Online]. Available:
https://www.acea.auto/files/Platooning_roadmap.pdf (cit. on
p. 7).

[14] G. V. Attigeri, M. P. MM, R. M. Pai, and A. Nayak, “Stock market
prediction: A big data approach,” in TENCON 2015-2015 IEEE Region
10 Conference, IEEE, 2015, pp. 1–5 (cit. on p. 3).

[15] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy
efficient IoT data compression approach for edge machine learning,”
Future Generation Computer Systems, vol. 96, pp. 168–175, 2019 (cit. on
p. 13).

[16] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in Proceedings. 20th International Conference
on Data Engineering, IEEE, 2004, pp. 350–361 (cit. on p. 42).

[17] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Opera-
tor scheduling for memory minimization in data stream systems,” in
Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’03, New York, NY, USA: ACM,
2003, pp. 253–264 (cit. on p. 42).

[18] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-
tolerance in the Borealis distributed stream processing system,” in
Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’05, New York, NY, USA: ACM,
2005, pp. 13–24 (cit. on p. 42).

[19] O. Banos, R. Garcia, and A. Saez, MHEALTH Dataset, UCI Machine
Learning Repository, DOI: https://doi.org/10.24432/C5TW22, 2014
(cit. on p. 165).

[20] L. Battle, D. Fisher, R. DeLine, M. Barnett, B. Chandramouli, and
J. Goldstein, “Making sense of temporal queries with interactive visual-
ization,” in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems - CHI ’16, Santa Clara, California, USA: ACM
Press, 2016, pp. 5433–5443 (cit. on pp. 114, 115, 140).

https://www.acea.auto/files/Platooning_roadmap.pdf
https://www.acea.auto/files/Platooning_roadmap.pdf
https://www.acea.auto/files/Platooning_roadmap.pdf

BIBLIOGRAPHY 191

[21] P. Bedi and V. Jindal, “Use of Big Data technology in Vehicular Ad-hoc
Networks,” in Proceedings of the International Conference on Advances
in Computing, Communications and Informatics, IEEE, 2014, pp. 1677–
1683 (cit. on p. 6).

[22] E. Berlin and K. Van Laerhoven, “An on-line piecewise linear approxi-
mation technique for wireless sensor networks,” in IEEE Local Computer
Network Conference, 2010, pp. 905–912 (cit. on pp. 42, 48, 70).

[23] H. Berndt, J. Emmert, and K. Dietmayer, “Continuous driver intention
recognition with hidden markov models,” in 2008 11th International
IEEE Conference on Intelligent Transportation Systems, IEEE, 2008,
pp. 1189–1194 (cit. on p. 176).

[24] D. J. Beutel, T. Topal, A. Mathur, et al., “Flower: A friendly federated
learning research framework,” arXiv preprint arXiv:2007.14390, 2020
(cit. on p. 177).

[25] K. Bonawitz, V. Ivanov, B. Kreuter, et al., “Practical secure aggregation
for federated learning on user-held data,” arXiv preprint arXiv:1611.04482,
2016 (cit. on p. 19).

[26] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020 (cit. on p. 3).

[27] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh,
“Beyond one billion time series: Indexing and mining very large time
series collections with iSAX2+,” Knowledge and information systems,
vol. 39, no. 1, pp. 123–151, 2014 (cit. on p. 70).

[28] L. Carafoli, F. Mandreoli, R. Martoglia, and W. Penzo, “Evaluation
of Data Reduction Techniques for Vehicle to Infrastructure Communi-
cation Saving Purposes,” in Proceedings of the International Database
Engineering & Applications Symposium, ACM, 2012, 61–70 (cit. on
p. 9).

[29] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink: Stream and batch processing in a single engine,”
Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, vol. 36, no. 4, 2015 (cit. on pp. 12, 13, 21, 28, 42, 114,
116–118, 130, 146, 148, 149, 164).

[30] V. Cardellini, F. Lo Presti, M. Nardelli, and G. R. Russo, “Runtime
adaptation of data stream processing systems: The state of the art,”
ACM Comput. Surv., vol. 54, no. 11s, 2022 (cit. on p. 171).

[31] G. Carneiro, “NS-3: Network simulator 3,” in UTM Lab Meeting April,
vol. 20, 2010, pp. 4–5 (cit. on pp. 26, 177).

[32] V. Cars, Connected safety, 2019. [Online]. Available: https://www.
media . volvocars . com / global / en - gb / media / pressreleases /

251381/volvo-models-across-europe-to-warn-each-other-of-

slippery-roads-and-hazards (cit. on p. 7).

https://www.media.volvocars.com/global/en-gb/media/pressreleases/251381/volvo-models-across-europe-to-warn-each-other-of-slippery-roads-and-hazards
https://www.media.volvocars.com/global/en-gb/media/pressreleases/251381/volvo-models-across-europe-to-warn-each-other-of-slippery-roads-and-hazards
https://www.media.volvocars.com/global/en-gb/media/pressreleases/251381/volvo-models-across-europe-to-warn-each-other-of-slippery-roads-and-hazards
https://www.media.volvocars.com/global/en-gb/media/pressreleases/251381/volvo-models-across-europe-to-warn-each-other-of-slippery-roads-and-hazards

192 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[33] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,”
in Proceedings of the IEEE International Conference on Data Engineer-
ing, IEEE, 1999, pp. 126–133 (cit. on p. 14).

[34] B. Chandramouli, J. Goldstein, M. Barnett, et al., “Trill : A high-
performance incremental query processor for diverse analytics,” VLDB -
Very Large Data Bases, vol. 8, no. 4, pp. 401–412, 2015 (cit. on p. 140).

[35] M.-F. Chang, J. Lambert, P. Sangkloy, et al., “Argoverse: 3D tracking
and forecasting with rich maps,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8740–8749
(cit. on pp. 134, 165).

[36] Y. Chen, “Near-optimal adaptive information acquisition: Theory and
applications,” Ph.D. dissertation, ETH Zurich, 2017 (cit. on p. 107).

[37] Y. Chen, J.-M. Renders, M. H. Chehreghani, and A. Krause, “Efficient
online learning for optimizing value of information: Theory and applica-
tion to interactive troubleshooting,” arXiv preprint arXiv:1703.05452,
2017 (cit. on p. 107).

[38] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in databases:
Why, how, and where,” Foundations and Trends in Databases, vol. 1,
no. 4, pp. 379–474, 2007 (cit. on pp. 114, 115, 140, 171).

[39] C.-M. Cheng and S.-L. Tsao, “Adaptive lookup protocol for two-tier
VANET/P2P information retrieval services,” IEEE Trans. on Vehicular
Technology, vol. 64, no. 3, pp. 1051–1064, 2015 (cit. on p. 107).

[40] N. Cheng, F. Lyu, J. Chen, et al., “Big Data Driven Vehicular Networks,”
IEEE Network, vol. 32, no. 6, pp. 160–167, 2018 (cit. on p. 9).

[41] F. Chollet, “Deep learning with Python and Keras: The practical guide
from the developer of the Keras library,” MITP-Verlags GmbH & Co.
KG, Bonn, 2018 (cit. on p. 177).

[42] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A survey on
privacy in mobile participatory sensing applications,” Journal of systems
and software, vol. 84, no. 11, pp. 1928–1946, 2011 (cit. on p. 108).

[43] Commsignia, Whitepaper: How is V2X viewed by consumers? 2023.
[Online]. Available: https://www.commsignia.com/whitepaper/how-
is-v2x-viewed-by-consumers/#form-info (cit. on p. 8).

[44] R. Coppola and M. Morisio, “Connected car: Technologies, issues, future
trends,” ACM Computing Surveys (CSUR), vol. 49, no. 3, p. 46, 2016
(cit. on pp. 6, 7, 40, 76).

[45] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends in Databases, vol. 4, no. 1–3, pp. 1–294, 2012 (cit. on p. 25).

[46] S. Costache, V. Gulisano, and M. Papatriantafilou, “Understanding
the data-processing challenges in intelligent vehicular systems,” in 2016
IEEE Intelligent Vehicles Symp., IEEE, 2016, pp. 611–618 (cit. on pp. 13,
42, 76).

https://www.commsignia.com/whitepaper/how-is-v2x-viewed-by-consumers/#form-info
https://www.commsignia.com/whitepaper/how-is-v2x-viewed-by-consumers/#form-info

BIBLIOGRAPHY 193

[47] D. Crawl, J. Wang, and I. Altintas, “Provenance for MapReduce-based
data-intensive workflows,” in Proceedings of the 6th Workshop on Work-
flows in Support of Large-Scale Science, ser. WORKS ’11, New York,
NY, USA: Association for Computing Machinery, 2011, 21–30, isbn:
9781450311007 (cit. on pp. 114, 115).

[48] Y. Cui, J. Widom, and J. L. Wiener, “Tracing the lineage of view data
in a warehousing environment,” en, ACM Transactions on Database
Systems, vol. 25, no. 2, pp. 179–227, Jun. 2000 (cit. on p. 140).

[49] M. Datar and R. Motwani, “The sliding-window computation model and
results,” in Data Streams, Springer, 2007, pp. 149–167 (cit. on p. 42).

[50] W. De Pauw, M. Leţia, B. Gedik, et al., “Visual debugging for stream
processing applications,” en, in Runtime Verification, H. Barringer,
Y. Falcone, B. Finkbeiner, et al., Eds., vol. 6418, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 18–35 (cit. on pp. 114, 140).

[51] T. Delot, N. Mitton, S. Ilarri, and T. Hien, “Decentralized pull-based
information gathering in vehicular networks using GeoVanet,” in 12th
IEEE Int’l Conf. on Mobile Data Management, IEEE, vol. 1, 2011,
pp. 174–183 (cit. on pp. 24, 107).

[52] L. P. Deutsch, DEFLATE Compressed Data Format Specification version
1.3, RFC 1951, May 1996. doi: 10.17487/RFC1951. [Online]. Available:
https://www.rfc-editor.org/info/rfc1951 (cit. on p. 14).

[53] D. Deveaux, T. Higuchi, S. Uçar, C.-H. Wang, J. Härri, and O. Altintas,
“On the orchestration of federated learning through vehicular knowledge
networking,” in 2020 IEEE Vehicular Networking Conference (VNC),
IEEE, 2020, pp. 1–8 (cit. on pp. 23, 24, 76, 107, 176).

[54] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, “Path
sharing and predicate evaluation for high-performance XML filtering,”
ACM Trans. Database Syst., vol. 28, no. 4, 467–516, 2003, issn: 0362-
5915 (cit. on p. 171).

[55] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Gossip learning of personalized models for vehicle trajectory prediction,”
in 2021 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), IEEE, 2021, pp. 1–7 (cit. on pp. 177, 179).

[56] K. N. Dominiak and A. R. Kristensen, “Prioritizing alarms from sensor-
based detection models in livestock production - a review on model
performance and alarm reducing methods,” Computers and Electronics
in Agriculture, vol. 133, pp. 46 –67, 2017 (cit. on p. 114).

[57] S. Doomra, N. Kohli, and S. Athavale, “Turn signal prediction: A
federated learning case study,” arXiv preprint arXiv:2012.12401, 2020
(cit. on pp. 176, 180).

https://doi.org/10.17487/RFC1951
https://www.rfc-editor.org/info/rfc1951

194 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[58] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, “Streaming
piecewise linear approximation for efficient data management in edge
computing,” in 34th ACM/SIGAPP Symposium On Applied Computing
SAC’19, (Limassol, Cyprus), 2019, pp. 593–596 (cit. on pp. 14, 43, 48,
66, 76, 107, 114).

[59] R. Duvignau, B. Havers, V. Gulisano, and M. Papatriantafilou, “Query-
ing large vehicular networks: How to balance on-board workload and
queries response time?” In 2019 IEEE Intelligent Transportation Sys-
tems Conference (ITSC), IEEE, 2019, pp. 2604–2611 (cit. on pp. 40,
109).

[60] R. Duvignau, B. Havers, V. Gulisano, and M. Papatriantafilou, “Time-
and computation-efficient data localization at vehicular networks’ edge,”
IEEE Access, vol. 9, pp. 137 714–137 732, 2021 (cit. on p. 176).

[61] F. Eichinger, P. Efros, S. Karnouskos, and K. Böhm, “A time-series
compression technique and its application to the smart grid,” The VLDB
Journal, vol. 24, no. 2, pp. 193–218, 2015 (cit. on p. 14).

[62] B. Eisenberg, “On the expectation of the maximum of IID geometric
random variables,” Statistics & Probability Letters, vol. 78, no. 2, pp. 135–
143, 2008 (cit. on p. 85).

[63] A. M. Elbir, B. Soner, and S. Coleri, “Federated learning in vehicular
networks,” arXiv preprint arXiv:2006.01412, 2020 (cit. on pp. 76, 176).

[64] H. Elmeleegy, A. K. Elmagarmid, E. Cecchet, W. G. Aref, and W.
Zwaenepoel, “Online piece-wise linear approximation of numerical streams
with precision guarantees,” Proceedings of the VLDB Endowment, vol. 2,
no. 1, pp. 145–156, 2009 (cit. on pp. 42, 48, 70).

[65] M. A. Eriksen, “Trickle: A userland bandwidth shaper for UNIX-like
systems.,” in USENIX Annual Technical Conference, FREENIX Track,
2005, pp. 61–70 (cit. on p. 54).

[66] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in Kdd, 1996, pp. 226–231 (cit. on pp. 50, 69).

[67] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator VIS-
SIM,” in Fundamentals of traffic simulation, Springer, 2010, pp. 63–93
(cit. on pp. 26, 177).

[68] D. Feng, C. Haase-Schütz, L. Rosenbaum, et al., “Deep multi-modal
object detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 3, pp. 1341–1360, 2020 (cit. on p. 3).

[69] W. J. Fleming, “New Automotive Sensors — a review,” IEEE Sensors
Journal, vol. 8, no. 11, pp. 1900–1921, 2008 (cit. on p. 6).

[70] W. J. Fleming, “Overview of automotive sensors,” IEEE Sensors Journal,
vol. 1, no. 4, pp. 296–308, 2001 (cit. on p. 6).

BIBLIOGRAPHY 195

[71] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington,
and H. C. Kim, “Life cycle assessment of connected and automated
vehicles: sensing and computing subsystem and vehicle level effects,”
Environmental Science & Technology, vol. 52, no. 5, pp. 3249–3256, 2018
(cit. on p. 8).

[72] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE: The
system S declarative stream processing engine,” in Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’08, New York, NY, USA: Association for Computing
Machinery, Jun. 2008, pp. 1123–1134 (cit. on p. 140).

[73] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the
mobile internet,” Computer Networks, vol. 55, no. 2, pp. 457–469, 2011
(cit. on pp. 7, 76).

[74] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “Scal-
able group communication supporting configurable levels of consistency,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 5,
pp. 649–671, 2013 (cit. on p. 109).

[75] GitHub, Ananke implementation, 2020. [Online]. Available: https://
github.com/dmpalyvos/ananke (cit. on pp. 116, 141).

[76] B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul, “Efficient
stream provenance via operator instrumentation,” ACM Trans. Internet
Technol., vol. 14, no. 1, Aug. 2014 (cit. on pp. 114, 115, 119, 141, 151).

[77] B. Glavic, K. Sheykh Esmaili, P. M. Fischer, and N. Tatbul, “Ariadne:
Managing fine-grained provenance on data streams,” in Proceedings
of the 7th ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’13, New York, NY, USA: Association for Computing
Machinery, 2013, 39–50 (cit. on pp. 16, 119, 151, 171).

[78] B. Glavic et al., “Data provenance,” Foundations and Trends® in
Databases, vol. 9, no. 3-4, pp. 209–441, 2021 (cit. on p. 16).

[79] Google, The size and quality of a data set, https://developers.
google.com/machine-learning/data-prep/construct/collect/

data-size-quality, 2022 (cit. on p. 176).

[80] T. Grosse-Puppendahl, Leveraging AI technologies for Porsche’s future,
https://www.linkedin.com/pulse/leveraging-ai-technologies-

porsches-future-tobias-grosse-puppendahl, 2018 (cit. on p. 180).

[81] F. Grützmacher, B. Beichler, A. Hein, T. Kirste, and C. Haubelt, “Time
and memory efficient online piecewise linear approximation of sensor
signals,” Sensors, vol. 18, no. 6, p. 1672, 2018 (cit. on pp. 15, 22, 43, 48,
70).

[82] V. Gulisano, M. Almgren, and M. Papatriantafilou, “Metis: A two-tier
intrusion detection system for advanced metering infrastructures,” in
International Conference on Security and Privacy in Communication
Systems, Springer, 2014, pp. 51–68 (cit. on p. 40).

https://github.com/dmpalyvos/ananke
https://github.com/dmpalyvos/ananke
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://www.linkedin.com/pulse/leveraging-ai-technologies-porsches-future-tobias-grosse-puppendahl
https://www.linkedin.com/pulse/leveraging-ai-technologies-porsches-future-tobias-grosse-puppendahl

196 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[83] V. Gulisano, H. Najdataei, Y. Nikolakopoulos, A. V. Papadopoulos, M.
Papatriantafilou, and P. Tsigas, “STRETCH: Virtual shared-nothing
parallelism for scalable and elastic stream processing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4221–4238,
2022 (cit. on p. 171).

[84] V. Gulisano, Y. Nikolakopoulos, D. Cederman, M. Papatriantafilou,
and P. Tsigas, “Efficient data streaming multiway aggregation through
concurrent algorithmic designs and new abstract data types,” ACM
Transactions on Parallel Computing (TOPC), vol. 4, no. 2, 11:1–11:28,
2017, issn: 2329-4949 (cit. on pp. 42, 44, 56).

[85] V. Gulisano, D. Palyvos-Giannas, B. Havers, and M. Papatriantafilou,
“The role of event-time order in data streaming analysis,” in Proceed-
ings of the ACM International Conference on Distributed and Event-
based Systems, Montreal, Quebec, Canada: ACM, 2020, 214–217, isbn:
9781450380287 (cit. on p. 12).

[86] V. Gulisano, V. Tudor, M. Almgren, and M. Papatriantafilou, “Bes:
Differentially private and distributed event aggregation in advanced
metering infrastructures,” in Proceedings of the 2nd ACM International
Workshop on Cyber-Physical System Security, ACM, 2016, pp. 59–69
(cit. on p. 40).

[87] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011 (cit. on p. 43).

[88] HardKernel, Odroid-XU4, 2020. [Online]. Available: http : / / www .

hardkernel.com (cit. on pp. 130, 164).

[89] B. Havers, Nona - public repository, 2023. [Online]. Available: https:
//github.com/anonymous6e6f6e61/nona/ (cit. on pp. 148, 163).

[90] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty,
and M. Papatriantafilou, “DRIVEN: A framework for efficient data
retrieval and clustering in vehicular networks,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), IEEE, 2019,
pp. 1850–1861 (cit. on pp. 50, 70, 78, 92, 95, 107, 108).

[91] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, M. Papatriantafilou,
and A. C. Koppisetty, “DRIVEN: A framework for efficient data retrieval
and clustering in vehicular networks,” Future Generation Computer
Systems, vol. 107, pp. 1–17, 2020 (cit. on pp. 13, 14, 76, 78, 92, 95, 107,
108, 114, 146, 176).

[92] J. He, S. Ji, Y. Pan, and Y. Li, “Constructing load-balanced data aggrega-
tion trees in probabilistic wireless sensor networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 7, pp. 1681–1690, 2013
(cit. on p. 107).

[93] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentral-
ized alternative to federated learning,” in IFIP International Conference
on Distributed Applications and Interoperable Systems, Springer, 2019,
pp. 74–90 (cit. on p. 177).

http://www.hardkernel.com
http://www.hardkernel.com
https://github.com/anonymous6e6f6e61/nona/
https://github.com/anonymous6e6f6e61/nona/

BIBLIOGRAPHY 197

[94] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? what form? what from?” VLDB Journal, vol. 26,
no. 6, pp. 881–906, 2017 (cit. on p. 140).

[95] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed reputation
management for secure and efficient vehicular edge computing and
networks,” IEEE Access, vol. 5, pp. 25 408–25 420, 2017 (cit. on p. 108).

[96] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Auto-
mated driving in uncertain environments: Planning with interaction
and uncertain maneuver prediction,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 1, pp. 5–17, 2018 (cit. on p. 176).

[97] B. Hull, V. Bychkovsky, Y. Zhang, et al., “CarTel: A distributed mobile
sensor computing system,” in 4th Int’l Conf. on Embedded networked
sensor systems, ACM, 2006, pp. 125–138 (cit. on p. 107).

[98] M. Huq, A. Wombacher, and P. Apers, “Adaptive inference of fine-
grained data provenance to achieve high accuracy at lower storage costs,”
in 7th IEEE International Conference on E-Science, e-Science 2011.
USA: IEEE Computer Society, Dec. 2011, pp. 202–209, eemcs-eprint-
21400 (cit. on p. 140).

[99] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and reliable stream
processing over wide area networks,” in 2007 IEEE 23rd International
Conference on Data Engineering Workshop, Apr. 2007, pp. 604–613
(cit. on pp. 13, 118, 119, 149, 150).

[100] IEEE. “IEEE 802.11p-2010 - IEEE Standard for Information technology
- Wireless access in vehicular environments.” accessed 2020-10-02. (2010),
[Online]. Available: https://standards.ieee.org/standard/802_
11p-2010.html (cit. on p. 8).

[101] S. Ilarri, T. Delot, and R. Trillo-Lado, “A data management perspective
on vehicular networks,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2420–2460, 2015 (cit. on p. 95).

[102] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010 (cit. on p. 69).

[103] K. M. Jensen, I. F. Santos, and H. J. Corstens, “Estimation of brake pad
wear and remaining useful life from fused sensor system, statistical data
processing, and passenger car longitudinal dynamics,” Wear, p. 205 220,
2023 (cit. on p. 3).

[104] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fet-
zer, “Quality-driven continuous query execution over out-of-order data
streams,” in Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD ’15, New York, NY,
USA: ACM, 2015, pp. 889–894 (cit. on p. 42).

[105] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6g: A comprehensive survey,” IEEE Open Journal of the Communica-
tions Society, vol. 2, pp. 334–366, 2021 (cit. on p. 3).

https://standards.ieee.org/standard/802_11p-2010.html
https://standards.ieee.org/standard/802_11p-2010.html

198 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[106] M. Johanson, S. Belenki, J. Jalminger, M. Fant, and M. Gjertz, “Big
Automotive Data: Leveraging large volumes of data for knowledge-
driven product development,” in Proceedings of the IEEE International
Conference on Big Data, 2014, pp. 736–741 (cit. on pp. 6, 9).

[107] M. Kakkasageri and S. Manvi, “Information management in vehicular ad
hoc networks: A review,” Journal of network and computer Applications,
vol. 39, pp. 334–350, 2014 (cit. on p. 76).

[108] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “THEMIS:
Fairness in federated stream processing under overload,” in Proceed-
ings of the 2016 International Conference on Management of Data,
ser. SIGMOD ’16, New York, NY, USA: ACM, 2016, pp. 541–553 (cit.
on p. 42).

[109] J. Karimov, T. Rabl, and V. Markl, “AJoin: Ad-hoc stream joins at
scale,” Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 435–448,
2019 (cit. on p. 171).

[110] J. Karimov, T. Rabl, and V. Markl, “AStream: Ad-hoc shared stream
processing,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 607–622 (cit. on p. 171).

[111] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for
segmenting time series,” in Proceedings of 2001 IEEE International
Conference on Data Mining, IEEE, 2001, pp. 289–296 (cit. on pp. 42,
48, 70).

[112] A. Keramatian, V. Gulisano, M. Papatriantafilou, P. Tsigas, and Y.
Nikolakopoulos, “MAD-C: Multi-stage approximate distributed cluster-
combining for obstacle detection and localization,” in European Con-
ference on Parallel Processing, Springer, 2018, pp. 312–324 (cit. on
p. 40).

[113] L Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggre-
gation in wireless sensor networks,” in Proceedings 22nd international
conference on distributed computing systems workshops, IEEE, 2002,
pp. 575–578 (cit. on p. 107).

[114] A. Krizhevsky, V. Nair, and G. Hinton, The CIFAR-10 dataset, http:
//www.cs.toronto.edu/kriz/cifar.html, 2014 (cit. on p. 185).

[115] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012 (cit. on p. 3).

[116] N. Kumar and J.-H. Lee, “Peer-to-peer cooperative caching for data dis-
semination in urban vehicular communications,” IEEE Systems Journal,
vol. 8, no. 4, pp. 1136–1144, 2014 (cit. on p. 107).

[117] R. Kumar and M. Dave, “A framework for handling local broadcast
storm using probabilistic data aggregation in vanet,” Wireless personal
communications, vol. 72, no. 1, pp. 315–341, 2013 (cit. on p. 107).

http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html

BIBLIOGRAPHY 199

[118] Y. Lai, Y. Xu, F. Yang, W. Lu, and Q. Yu, “Privacy-aware query
processing in vehicular ad-hoc networks,” Ad Hoc Networks, vol. 91,
p. 101 876, 2019 (cit. on pp. 107, 108).

[119] Y. Lai, F. Yang, J. Su, et al., “Fog-based two-phase event monitoring
and data gathering in vehicular sensor networks,” Sensors, vol. 18, no. 1,
p. 82, 2018 (cit. on pp. 76, 108).

[120] Y. Lai, L. Zhang, F. Yang, L. Zheng, T. Wang, and K.-C. Li, “CASQ:
Adaptive and cloud-assisted query processing in vehicular sensor net-
works,” Future Generation Computer Systems, vol. 94, pp. 237–249,
2019 (cit. on p. 107).

[121] Y. Lai, L. Zheng, T. Wang, F. Yang, and Q. Zhou, “Cloud-assisted
data storage and query processing at vehicular ad-hoc sensor networks,”
in Int’l Conf. on Security, Privacy and Anonymity in Computation,
Communication and Storage, Springer, 2017, pp. 692–702 (cit. on p. 107).

[122] S. Lee, X. Zheng, J. Hua, H. Vikalo, and C. Julien, “Opportunistic
federated learning: An exploration of egocentric collaboration for perva-
sive computing applications,” in 2021 IEEE International Conference
on Pervasive Computing and Communications (PerCom), IEEE, 2021,
pp. 1–8 (cit. on p. 176).

[123] U. Lee, J. Lee, J.-S. Park, and M. Gerla, “FleaNet: A virtual market
place on vehicular networks,” IEEE Trans. on Vehicular Technology,
vol. 59, no. 1, pp. 344–355, 2010 (cit. on p. 107).

[124] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, “Dissem-
ination and harvesting of urban data using vehicular sensing platforms,”
IEEE transactions on vehicular technology, vol. 58, no. 2, pp. 882–901,
2008 (cit. on p. 107).

[125] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,
“Out-of-order processing: A new architecture for high-performance stream
systems,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 274–
288, 2008 (cit. on pp. 119, 150).

[126] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings
of the 8th ACM SIGMOD workshop on Research Issues in Data Mining
and Knowledge Discovery, ACM, 2003, pp. 2–11 (cit. on p. 15).

[127] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel
symbolic representation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107–144, 2007 (cit. on p. 14).

[128] J. Lin, M. Vlachos, E. Keogh, et al., “A MPAA-based iterative clustering
algorithm augmented by nearest neighbors search for time-series data
streams,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer, 2005, pp. 333–342 (cit. on p. 70).

[129] C.-L. Liu, C.-Y. Wang, and H.-Y. Wei, “Cross-layer mobile chord P2P
protocol design for VANET,” Int’l Journal of Ad Hoc and Ubiquitous
Computing, vol. 6, no. 3, pp. 150–163, 2010 (cit. on pp. 24, 107).

200 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[130] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” Mobile Networks and Applica-
tions, pp. 1–24, 2020 (cit. on pp. 9, 76).

[131] P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic
simulation using SUMO,” in The 21st IEEE International Conference
on Intelligent Transportation Systems, IEEE, 2018 (cit. on pp. 26, 177).

[132] S. Lu, Y. Yao, and W. Shi, “Collaborative learning on the edges: A
case study on connected vehicles,” in 2nd {USENIX} Workshop on Hot
Topics in Edge Computing (HotEdge 19), 2019 (cit. on pp. 76, 176).

[133] Luminar, Technology, 2023. [Online]. Available: https://www.luminartech.
com/technology (cit. on p. 6).

[134] G. Luo, K. Yi, S.-W. Cheng, et al., “Piecewise linear approximation of
streaming time series data with max-error guarantees,” in 2015 IEEE
31st International Conference on Data Engineering, IEEE, 2015, pp. 173–
184 (cit. on pp. 43, 70).

[135] I. Markit, These OEMs are launching 5G-enabled cars years before the
tech goes mainstream, 2021. [Online]. Available: https://ihsmarkit.
com/research-analysis/these-oems-are-launching-5genabled-

cars-years-before-the-tech-.html (cit. on p. 179).

[136] Max Peterson et. al. “BADA – on-board off-board distributed data
analytics.” accessed 2020-10-03. (2020), [Online]. Available: https :
//www.vinnova.se/globalassets/mikrosajter/ffi/dokument/

slutrapporter- ffi/effektiva- och- uppkopplade- transporter-

rapporter/2016-04260eng.pdf (cit. on p. 9).

[137] J. C. McCallum, Our World in Data - historical cost of computer memory
and storage, 2022. [Online]. Available: https://ourworldindata.org/
grapher/historical-cost-of-computer-memory-and-storage (cit.
on p. 4).

[138] McKinsey. “Car data: Paving the way to value-creating mobility.” ac-
cessed 2020-08-29. (2016), [Online]. Available: https://www.mckinsey.
com/~/media/McKinsey/Industries/Automotive\%20and\%20Assembly/

Our\%20Insights/Creating\%20value\%20from\%20car\%20data/

Creating\%20value\%20from\%20car\%20data.pdf (cit. on p. 7).

[139] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, PMLR, 2017, pp. 1273–
1282 (cit. on pp. 18, 76, 179, 182, 184).

[140] D. Milojicic, “The Edge-to-Cloud Continuum,” Computer, vol. 53, no. 11,
pp. 16–25, 2020, issn: 1558-0814 (cit. on p. 3).

[141] MongoDB, MongoDB, 2020. [Online]. Available: https://www.mongodb.
com (cit. on p. 138).

https://www.luminartech.com/technology
https://www.luminartech.com/technology
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive\%20and\%20Assembly/Our\%20Insights/Creating\%20value\%20from\%20car\%20data/Creating\%20value\%20from\%20car\%20data.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive\%20and\%20Assembly/Our\%20Insights/Creating\%20value\%20from\%20car\%20data/Creating\%20value\%20from\%20car\%20data.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive\%20and\%20Assembly/Our\%20Insights/Creating\%20value\%20from\%20car\%20data/Creating\%20value\%20from\%20car\%20data.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive\%20and\%20Assembly/Our\%20Insights/Creating\%20value\%20from\%20car\%20data/Creating\%20value\%20from\%20car\%20data.pdf
https://www.mongodb.com
https://www.mongodb.com

BIBLIOGRAPHY 201

[142] H. Najdataei, Y. Nikolakopoulos, V. Gulisano, and M. Papatriantafilou,
“Continuous and parallel LiDAR point-cloud clustering,” in 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS),
IEEE, 2018, pp. 671–684 (cit. on pp. 27, 41, 43, 46, 50, 52, 53, 114).

[143] Neo4j, Neo4j, 2020. [Online]. Available: https://neo4j.com/ (cit. on
p. 138).

[144] A. Nshimiyimana, D. Agrawal, and W. Arif, “Comprehensive survey
of V2V communication for 4G mobile and wireless technology,” in
2016 International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), 2016, pp. 1722–1726 (cit. on
p. 8).

[145] NVIDIA. “NVIDIA Drive AGX Orin.” (2023), [Online]. Available:
https : / / nvidianews . nvidia . com / news / nvidia - introduces -

drive- agx- orin- advanced- software- defined- platform- for-

autonomous-machines (cit. on pp. 6, 8).

[146] Ofcom, Measuring mobile broadband performance in the UK - 4G and
3G network performance, http://static.ofcom.org.uk/static/
research/mbb.pdf, 2014 (cit. on p. 95).

[147] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “MCEP: A mobility-aware complex event processing
system,” ACM Transactions on Internet Technology (TOIT), vol. 14,
no. 1, p. 6, 2014 (cit. on p. 42).

[148] S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor
networks: A comprehensive overview,” Computer Networks, vol. 53,
no. 12, pp. 2022–2037, 2009 (cit. on p. 107).

[149] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016
(cit. on p. 176).

[150] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, “GeneaLog:
Fine-grained data streaming provenance at the edge,” in Proceedings of
the 19th International Middleware Conference, ACM, 2018, pp. 227–238
(cit. on pp. 16, 40, 76, 151, 171).

[151] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, “GeneaLog:
Fine-grained data streaming provenance in cyber-physical systems,”
Parallel Computing, vol. 89, p. 102 552, 2019 (cit. on pp. 24, 25, 114,
115, 119, 130–132, 140).

[152] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, “Haren:
A framework for ad-hoc thread scheduling policies for data streaming
applications,” in 13th ACM Int’l Conf. on Distributed Event-Based
Systems (DEBS), ACM, Jun. 2019, pp. 19–30 (cit. on pp. 76, 114).

https://neo4j.com/
https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-advanced-software-defined-platform-for-autonomous-machines
https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-advanced-software-defined-platform-for-autonomous-machines
https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-advanced-software-defined-platform-for-autonomous-machines
http://static.ofcom.org.uk/static/research/mbb.pdf
http://static.ofcom.org.uk/static/research/mbb.pdf

202 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[153] D. Palyvos-Giannas, B. Havers, M. Papatriantafilou, and V. Gulisano,
“Ananke: A streaming framework for live forward provenance,” Proceed-
ings of the VLDB Endowment, vol. 14, no. 3, pp. 391–403, 2020 (cit. on
pp. 76, 146, 150, 151, 153, 154, 156, 162–164, 171, 176).

[154] D. Palyvos-Giannas, K. Tzompanaki, M. Papatriantafilou, and V. Gulisano,
“Erebus: Explaining the outputs of data streaming queries,” in Very Large
Data Base, vol. 16, 2023, pp. 230–242 (cit. on p. 16).

[155] G. Pandey, J. R. McBride, and R. M. Eustice, “Ford campus vision and
lidar data set,” The International Journal of Robotics Research, vol. 30,
no. 13, pp. 1543–1552, 2011 (cit. on pp. 12, 46, 53).

[156] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identi-
fication in cyber-physical systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 11, pp. 2715–2729, 2013 (cit. on p. 114).

[157] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in
PyTorch,” in NIPS-W, 2017 (cit. on p. 183).

[158] J. Posner, L. Tseng, M. Aloqaily, and Y. Jararweh, “Federated learning
in vehicular networks: Opportunities and solutions,” IEEE Network,
vol. 35, no. 2, pp. 152–159, 2021 (cit. on p. 176).

[159] PostgreSQL, PostgreSQL, 2020. [Online]. Available: https://www.
postgresql.org (cit. on p. 137).

[160] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, and S. Byttner, “Predicting
the need for vehicle compressor repairs using maintenance records and
logged vehicle data,” Engineering applications of artificial intelligence,
vol. 41, pp. 139–150, 2015 (cit. on p. 7).

[161] I. Psaras, O. Ascigil, S. Rene, G. Pavlou, A. Afanasyev, and L. Zhang,
“Mobile data repositories at the edge,” in Workshop on Hot Topics in
Edge Computing (HotEdge 18), 2018 (cit. on p. 13).

[162] PWC. “The 2017 Strategy& Digital Auto Report.” accessed 2020-08-
29. (2017), [Online]. Available: https://www.strategyand.pwc.com/
gx/en/insights/2017/fast- and- furious/2017- strategyand-

digital-auto-report.pdf (cit. on pp. 7, 8).

[163] Qualcomm, Cellular-V2X technology overview, 2019. [Online]. Available:
https : / / www . qualcomm . com / media / documents / files / c - v2x -

technology-overview.pdf (cit. on p. 180).

[164] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in
sensor networks: A survey,” IEEE Communications Surveys & Tutorials,
vol. 8, no. 4, pp. 48–63, 2006 (cit. on p. 107).

[165] C. A. Ralanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos,
and G. Das, “Mining time series data,” in Data mining and knowledge
discovery handbook, Springer, 2005, pp. 1069–1103 (cit. on p. 70).

[166] A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Understanding pedestrian
behavior in complex traffic scenes,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 1, pp. 61–70, 2018 (cit. on p. 176).

https://www.postgresql.org
https://www.postgresql.org
https://www.strategyand.pwc.com/gx/en/insights/2017/fast-and-furious/2017-strategyand-digital-auto-report.pdf
https://www.strategyand.pwc.com/gx/en/insights/2017/fast-and-furious/2017-strategyand-digital-auto-report.pdf
https://www.strategyand.pwc.com/gx/en/insights/2017/fast-and-furious/2017-strategyand-digital-auto-report.pdf
https://www.qualcomm.com/media/documents/files/c-v2x-technology-overview.pdf
https://www.qualcomm.com/media/documents/files/c-v2x-technology-overview.pdf

BIBLIOGRAPHY 203

[167] D. Reinsel, J. Gantz, and Rydning. “The digitization of the world - from
edge to core.” accessed 2020-09-01. (2018), [Online]. Available: https:
/ / www . seagate . com / files / www - content / our - story / trends /

files/idc-seagate-dataage-whitepaper.pdf (cit. on p. 3).

[168] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014 (cit. on p. 69).

[169] H. Röger and R. Mayer, “A comprehensive survey on parallelization
and elasticity in stream processing,” ACM Comput. Surv., vol. 52, no. 2,
2019 (cit. on p. 171).

[170] J. van Rooij, V. Gulisano, and M. Papatriantafilou, “LoCoVolt: Dis-
tributed detection of broken meters in smart grids through stream
processing,” in Proceedings of the 12th ACM International Conference
on Distributed and Event-based Systems, ACM, 2018, pp. 171–182 (cit.
on pp. 40, 114).

[171] K. Roscher, S. Bittl, A. Gonzalez, M Myrtus, and J. Jiru, “ezCar2X:
Rapid-prototyping of communication technologies and cooperative ITS
applications on real targets and inside simulation environments,” in 11th
Conference Wireless Communication and Information, 2014, pp. 51–62
(cit. on pp. 26, 177).

[172] R. B. Rusu, “Semantic 3D object maps for everyday manipulation in
human living environments,” KI-Künstliche Intelligenz, vol. 24, no. 4,
pp. 345–348, 2010 (cit. on p. 43).

[173] S. Salah, G. Maciá-Fernández, and J. E. Dı́az-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289 –1317, 2013 (cit. on p. 114).

[174] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive iot networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020 (cit. on
p. 176).

[175] E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, “Communication
patterns in VANETs,” IEEE Communications, vol. 46, no. 11, pp. 119–
125, 2008 (cit. on pp. 7, 76).

[176] A. Shukla, S. Chaturvedi, and Y. Simmhan, “RIoTbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, e4257, 2017 (cit.
on p. 165).

[177] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, p. 13, 2013 (cit. on p. 69).

[178] C. Sommer, D. Eckhoff, A. Brummer, et al., “Veins: The open source
vehicular network simulation framework,” in Recent advances in network
simulation, Springer, 2019, pp. 215–252 (cit. on pp. 26, 177, 182).

[179] SQLite, SQLite, 2020. [Online]. Available: https://www.sqlite.org/
(cit. on p. 137).

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.sqlite.org/

204 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[180] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements
of real-time stream processing,” ACM Sigmod Record, vol. 34, no. 4,
pp. 42–47, 2005 (cit. on pp. 12, 41, 42, 114, 146).

[181] T. Suel, “Delta compression techniques,” in Encyclopedia of Big Data
Technologies, S. Sakr and A. Zomaya, Eds. Springer International Pub-
lishing, 2018, pp. 1–8, isbn: 978-3-319-63962-8 (cit. on p. 14).

[182] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in Proceedings of the 29th
international Conference on Very Large Data Bases-Volume 29, VLDB
Endowment, 2003, pp. 309–320 (cit. on p. 42).

[183] P. Taylor, Statista - cellular network average speed in US 2016-2023,
2023. [Online]. Available: https://www.statista.com/statistics/
995096/average- cellular- network- speed- in- the- us/ (cit. on
p. 3).

[184] P. Taylor, Statista - data growth worldwide, 2023. [Online]. Available:
https://www.statista.com/statistics/871513/worldwide-data-

created/ (cit. on pp. 3, 4).

[185] TensorFlow, TensorFlow Federated, https://www.tensorflow.org/
federated, 2022 (cit. on p. 177).

[186] S.-L. Tsao and C.-M. Cheng, “Design and evaluation of a two-tier peer-
to-peer traffic information system,” IEEE Communications, vol. 49,
no. 5, pp. 165–172, 2011 (cit. on p. 107).

[187] L. Ulanova, N. Begum, M. Shokoohi-Yekta, and E. Keogh, “Clustering
in the face of fast changing streams,” in Proceedings of 2016 SIAM
International Conference on Data Mining, SIAM, 2016, pp. 1–9 (cit. on
p. 69).

[188] G. Ulm, E. Gustavsson, and M. Jirstrand, “OODIDA: On-board/off-
board distributed data analytics for connected vehicles,” arXiv preprint
arXiv:1902.00319, 2019 (cit. on p. 76).

[189] A. Varga, “OMNeT++,” in Modeling and tools for network simulation,
Springer, 2010, pp. 35–59 (cit. on pp. 26, 177).

[190] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: A data
provenance perspective,” in Proceedings of the 48th Annual Southeast
Regional Conference, ser. ACM SE ’10, New York, NY, USA: Association
for Computing Machinery, 2010 (cit. on p. 138).

[191] N. N. Vijayakumar and B. Plale, “Towards low overhead provenance
tracking in near real-time stream filtering,” in Provenance and Anno-
tation of Data: International Provenance and Annotation Workshop,
IPAW 2006, Chicago, IL, USA, May 3-5, 2006, Revised Selected Papers,
Springer, 2006, pp. 46–54 (cit. on pp. 140, 171).

[192] S. Wagner and D. Wagner, Comparing clusterings: an overview. Uni-
versität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007 (cit. on
p. 54).

https://www.statista.com/statistics/995096/average-cellular-network-speed-in-the-us/
https://www.statista.com/statistics/995096/average-cellular-network-speed-in-the-us/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

BIBLIOGRAPHY 205

[193] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in O(N log N),” in 2006 IEEE Symposium on Interactive
Ray Tracing, IEEE, 2006, pp. 61–69 (cit. on p. 50).

[194] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, IEEE, 2020, pp. 1698–
1707 (cit. on pp. 177, 183).

[195] M. Wang, M. Blount, J. Davis, A. Misra, and D. Sow, “A time-and-value
centric provenance model and architecture for medical event streams,”
in Proceedings of the 1st ACM SIGMOBILE International Workshop
on Systems and Networking Support for Healthcare and Assisted Living
Environments, ser. HealthNet ’07, New York, NY, USA: ACM, 2007,
pp. 95–100 (cit. on p. 140).

[196] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” Ieee Access, vol. 5, pp. 6757–6779, 2017 (cit. on
p. 76).

[197] T. Wang, L. Song, and Z. Han, “Collaborative data dissemination in
cognitive vanets with sensing-throughput tradeoff,” in 1st IEEE Int’l
Conf. on Communications in China (ICCC), IEEE, 2012, pp. 41–45
(cit. on pp. 24, 107).

[198] J. S. Weber, M. Neves, and T. Ferreto, “VANET simulators: An updated
review,” Journal of the Brazilian Computer Society, vol. 27, no. 1, pp. 1–
31, 2021 (cit. on p. 177).

[199] B. Wire, Strategy analytics: Mobile data revenue falls below US$1 per
gigabyte as 5G uplift proves elusive, https://www.businesswire.com/
news/home/20210413005861/en/Strategy-Anal, 2021 (cit. on p. 176).

[200] World Economic Forum. “Big data, big impact: New possibilities for
international development.” accessed 2020-09-01. (2012), [Online]. Avail-
able: http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_
Briefing_2012.pdf (cit. on p. 3).

[201] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng, “Maximum error-
bounded piecewise linear representation for online stream approxima-
tion,” The VLDB Journal, vol. 23, no. 6, pp. 915–937, 2014 (cit. on
pp. 43, 48, 70).

[202] J. Xu, Z. Jin, M. Xu, and N. Zheng, “Mobile-aware anonymous peer
selecting algorithm for enhancing privacy and connectivity in location-
based service,” in 7th Int’l Conf. on E-Business Engineering, IEEE,
2010, pp. 172–177 (cit. on p. 108).

[203] W. Xu, H. Zhou, N. Cheng, et al., “Internet of vehicles in Big Data era,”
IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 19–35, 2018
(cit. on p. 6).

https://www.businesswire.com/news/home/20210413005861/en/Strategy-Anal
https://www.businesswire.com/news/home/20210413005861/en/Strategy-Anal
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf

206 E - EVALUATING DISTRIBUTED ANALYSIS ALGORITHMS

[204] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” ACM Sigmod record, vol. 31, no. 3,
pp. 9–18, 2002 (cit. on p. 107).

[205] S. Yousefi, M. S. Mousavi, and M. Fathy, “Vehicular ad hoc networks
(VANETs): Challenges and perspectives,” in Proceedings of 2006 6th In-
ternational Conference on ITS Telecommunications, IEEE, 2006, pp. 761–
766 (cit. on p. 40).

[206] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020 (cit. on p. 3).

[207] N. Zacheilas, V. Kalogeraki, Y. Nikolakopoulos, V. Gulisano, M. Papatri-
antafilou, and P. Tsigas, “Maximizing determinism in stream processing
under latency constraints,” in Proceedings of the 11th ACM Interna-
tional Conference on Distributed and Event-based Systems, ACM, 2017,
pp. 112–123 (cit. on p. 42).

[208] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments.,”
in Osdi, vol. 8, 2008, p. 7 (cit. on p. 108).

[209] K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained
offloading for Mobile Edge Computing in cloud-enabled vehicular net-
works,” in Proceedings of the International Workshop on Resilient Net-
works Design and Modeling, IEEE, 2016, pp. 288–294 (cit. on p. 9).

[210] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden, “ICEDB: Intermittently-
connected continuous query processing,” in 23rd IEEE Int’l Conf. on
Data Engineering (ICDE 2007), IEEE, 2007, pp. 166–175 (cit. on p. 107).

[211] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity aware content
sharing scheme in vanets,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 13, no. 4, pp. 1–14, 2010 (cit. on p. 107).

[212] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018
(cit. on p. 76).

[213] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on GPS data,” in Proceedings of the 10th International
Conference on Ubiquitous Computing, ACM, 2008, pp. 312–321 (cit. on
p. 53).

[214] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social net-
working service among user, location and trajectory.,” IEEE Data Eng.
Bull., vol. 33, no. 2, pp. 32–39, 2010 (cit. on pp. 53, 92, 134).

[215] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from GPS trajectories,” in 18th Int’l Conf. on
World wide web, ACM, 2009, pp. 791–800 (cit. on p. 53).

BIBLIOGRAPHY 207

[216] J. Zhou, R. Q. Hu, and Y. Qian, “Scalable distributed communication
architectures to support advanced metering infrastructure in smart grid,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9,
pp. 1632–1642, 2012 (cit. on p. 40).

	Abstract
	Acknowledgements
	Research Papers and Contributions
	I Thesis Overview
	Introduction
	Vehicular Cyber-Physical Systems (VCPSs)
	Background
	Research Methodology
	State-Of-The-Art and Research Questions
	Thesis Contributions
	Conclusions

	II Main Chapters
	A - Investigating Tradeoffs from Lossy Time Series Compression at the Edge
	Introduction
	Preliminaries
	System Model and Problem Statement
	Overview of the DRIVEN framework
	Evaluation
	Related Work
	Conclusions

	B - Time- and Computation-Efficient Data Localization at the Edge
	Introduction
	System Model and Problem Statement
	Data Localization Algorithms
	Evaluation
	Related Work
	Conclusions

	C - Forward Provenance for Data Selection in Stream Processing
	Introduction
	Preliminaries
	Definitions and Problem Statement
	Discerning Alive and Expired Tuples
	Algorithmic Implementation
	Evaluation
	Related Work
	Conclusions

	D - Data Selection via Dynamic Forward Provenance
	Introduction
	Preliminaries
	Problem Formalization
	Guaranteeing Completeness and the Expiration Promise
	Algorithmic Implementation
	Evaluation
	Related Work
	Conclusions

	E - Evaluating Distributed Analysis Algorithms in VCPSs
	Introduction
	Related Work
	Problem Statement and Requirements
	Architecture Proposal
	A Prototype Implementation: Roadrunner
	Conclusions

	Bibliography

