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Abstract

Fifth-generation (5G) communication systems in Frequency Range 2, operating above 24
GHz and utilizing mmWave signals, showcase distinct properties that open up new pos-
sibilities in positioning, mapping, and simultaneous localization and mapping (SLAM).
The combination of large bandwidth, extensive antenna arrays, and high carrier fre-
quency results in geometric-based signals, and unprecedented delay and angle resolution.
These enable the system to resolve multipath components, providing high-accuracy ge-
ometric information among the user equipment (UE), the base station (BS), and the
environment. These high-accuracy geometric information allows for highly accurate UE
positioning, environment mapping, and SLAM, all achievable using a single BS.

While numerous studies have delved into the single BS positioning and mapping prob-
lem using snapshot measurements, a significant portion of them remains confined to
theoretical analyses with many simplified assumptions. Real-world experimental vali-
dation is scarce, particularly in scenarios involving a commercial 5G BS. Additionally,
while diffuse multipath contains valuable geometric information, it is often treated as a
perturbation or fails to acknowledge that diffuse multipath signals may originate from
the same source landmark, leading to information loss. When extending positioning
and mapping to a SLAM problem by tracking the UE over time, a radio SLAM problem
emerges, posing the primary challenge of effectively addressing the data association (DA)
problem. It is these research gaps and challenges that drive the motivation behind this
thesis.

Within this thesis, [Paper A] and [Paper B] address the radio SLAM problem, with [Pa-
per A] additionally exploring the utilization of diffuse multipath. In [Paper A], we adopt
an end-to-end approach to address the radio SLAM problem, presenting a comprehensive
framework for SLAM. This includes the introduction of a random finite set (RFS)-based
SLAM filter designed to overcome the DA challenge inherent in radio SLAM, along with a
method to effectively leverage all paths originating from the same landmark. Meanwhile,
an efficient alternative RFS-based SLAM filter, designed for real-time implementation, is
proposed in [Paper B] as a counterpart to the solution presented in [Paper A]. In [Paper
C], we focus on experimental validation of positioning and mapping with a single BS,
showcasing the practical feasibility while uncovering existing gaps between theoretical
expectations and real-world implementation. [Paper D] delves into the fusion problem
involving mapping and SLAM results from various sources, presenting an RFS-based
fusion solution.
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CHAPTER 1

Introduction

1.1 Background

The evolution of wireless communication has witnessed remarkable progress from the
first-generation (1G) mobile networks in the 1980s to the recent deployment of fifth-
generation (5G) cellular networks, where the first commercial 5G cellular networks were
deployed in late 2019, while discussions about the future sixth-generation (6G) net-
works are underway [1–3], as summarized in Fig. 1.1. This continuous advancement has
transformed wireless technologies, offering higher data rates, increased capacity, reduced
latency, and more connectivity for diverse applications, making wireless communications
and their associated applications become integral aspects of our daily lives.

1 G
1980s

2 G
1990s

3 G
2000s

4 G
2010s

5 G
2020s

6 G
2030s

Figure 1.1: Network evolution from 1G to 6G.
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Successive generations of cellular communication systems share a common charac-
teristic: each iteration relies on a larger bandwidth and higher carrier frequency than
its predecessor. This trend is particularly pronounced in 5G, where carriers above 24
GHz and mmWave signals are employed in Frequency Range 2 (FR2), accompanied by
contiguous bandwidths reaching up to 400 MHz and massive multiple-input multiple-
output (MIMO) antenna arrays [2, 4]. The escalation in bandwidth, antenna array size,
and carrier frequencies results in more geometric-based signals and higher resolutions in
both delay and angles [5, 6]. These enhancements extend the potential applications of
5G beyond traditional communication, opening unprecedented avenues for highly accu-
rate positioning, mapping, and simultaneous localization and mapping (SLAM) [7–10].
These capabilities are pivotal in various applications, including autonomous driving [11],
Vehicle-to-Everything (V2X) communication [12, 13], spatial signal design [14, 15], inte-
grated sensing and communication (ISAC) [16–19], and numerous other domains.

Specifically, cellular communication infrastructure can function as a supplementary
sensor for absolute positioning alongside global navigation satellite system (GNSS), which
remains the predominant positioning technology in various applications [20, 21]. While
GNSS offers stable and accurate positioning services [22], it encounters limitations in
specific scenarios, such as indoors and densely urbanized areas [23,24]. Notably, reliable
cellular network coverage is often assured in these indoor and densely urban settings.
Furthermore, sensing and SLAM services leveraging cellular networks can complement
the functionalities of other onboard sensors in unmanned vehicles, such as radar, cam-
eras, lidar, and inertial measurement units (IMUs) [25]. This approach is advantageous,
as it inherently provides a global reference, and the additional set of observations con-
tributes to an overall performance enhancement. Importantly, these positioning, map-
ping, and SLAM services emerge as byproducts of communication, eliminating the need
for significant dedicated deployments and maintenance costs since they rely on existing
communication infrastructure.

Cellular technologies have played a role in positioning for several decades [5,20]. For ex-
ample, second-generation (2G) communication facilitated cell-ID-based positioning, offer-
ing accuracies in the order of a few hundred meters. The incorporation of time-difference-
of-arrival (TDoA) measurements in third-generation (3G) improved accuracy to the order
of tens of meters, and further enhancements were observed in fourth-generation (4G) with
dedicated pilot patterns. However, the positioning performances of these cellular genera-
tions have not met the positioning requirements of many applications, leading to limited
consideration in various applications.

The advent of 5G mmWave wireless communication systems, with their geometric-
based signals and enhanced delay and angle resolutions, has transformed the landscape
of cellular positioning [21, 26]. Consequently, extensive research efforts have delved into
5G positioning, prompting dedicated studies within 3GPP. A notable example is the
report presented in 3GPP [27], wherein findings underscored the feasibility of meeting
commercial positioning performance requirements through the utilization of both delay
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and angle measurements. Furthermore, to actualize 5G positioning, 3GPP has embarked
on standardization initiatives to accommodate diverse commercial use cases with varying
performance prerequisites, as outlined in [28,29].

In contrast to communication, where a link can be established with a single base station
(BS), a notable challenge in 5G mmWave positioning is the substantial infrastructure
demand of multiple BSs [30–32]. To mitigate this reliance on infrastructure, the research
community has diligently explored alternative approaches. One such approach envisions
achieving 3D positioning of a user equipment (UE), potentially including its orientation
and synchronization with the BS, with a single BS, eliminating the need for external
sensors, additional infrastructure, and additional time-frequency resource costs. The
key to its success lies in equipping both UE and BS with uniform rectangular arrays
(URAs), and leveraging at least one resolvable multipath component in the environment
[7, 33–35]. While significant theoretical progress has been made, only a limited subset
of these approaches has demonstrated practical viability [33, 36–38], particularly when
implemented with commercial BSs. In light of this, we present a unique real-world
demonstration of single BS 5G mmWave positioning for a BS using commercial hardware
and an actual vehicle. The results and findings of this demonstration are detailed in
[Paper C].

Beyond mere positioning, the sparsity inherent in the mmWave channel at higher car-
rier frequencies offers a unique advantage—the ability to resolve multipath components,
transforming them from adversaries to allies [33, 39]. Specifically, the geometric charac-
teristics of the mmWave channel establish a connection between multipath parameters
and the physical environment. These parameters, tied to the UE state in relation to the
BS and the propagation environment, can be leveraged in the positioning and mapping
problem. By decoding multipath parameters from received signals, one can extract geo-
metric information that not only pinpoints the UE state but also delineates the locations
of landmarks in the environment [33]. This challenge becomes even more intricate when
integrated with UE tracking, giving rise to the radio SLAM problem [40,41].

Many papers have harnessed signals from a single BS within a single snapshot to
estimate the UE state and conduct mapping in various scenarios, incorporating both line-
of-sight (LoS) and non-line-of-sight (NLoS) paths [42–45]. However, the consideration of
multiple measurements per object, a common thread in the SLAM and extended object
tracking literature, has been relatively overlooked or simplified in existing works. In
[Paper A], we introduce a radio SLAM framework capable of harnessing both specular
and diffuse multipath from the same landmark.

Generally, the single snapshot positioning and mapping problem poses fewer challenges
than the SLAM problem. This distinction arises from the need to address the over-time
data association (DA) problem introduced by tracking in SLAM, while snapshot-based
DA is the primary concern in positioning and mapping problems [46]. Various solutions
to the DA problem exist, ranging from classic linear assignment algorithms seeking the
best association to probabilistic methods based on belief propagation (BP) [47, 48] or
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random finite set (RFS) theory [49–51]. In [Paper A] and [Paper B], we introduce two
versions of RFS-based solutions for radio SLAM based on the Poisson multi-Bernoulli
mixture (PMBM) RFS, and [Paper D] addresses the fusion problem of mapping and
SLAM results from different sources.

1.2 Thesis scope
This thesis pursues a four-fold objective. Firstly, it serves to introduce the positioning,
mapping, and SLAM problems within the realm of mmWave communication, specifically
in the context of a single BS downlink scenario. Secondly, the thesis aims to outline the
requirements and present general solutions for addressing the snapshot positioning and
mapping problem when utilizing a single BS. Thirdly, it endeavors to offer a comprehen-
sive introduction to the fundamentals of RFS theory and delineate how radio SLAM can
be effectively addressed at a high level using the RFS theory. Lastly, the thesis provides
insights into leveraging multipath signals from a single object in addressing mmWave
radio positioning, mapping, and SLAM challenges.

1.3 Thesis outline
This thesis is structured into two parts, each serving a distinct purpose. Part I is ded-
icated to furnishing essential background knowledge for comprehending the appended
papers found in Part II. The papers included in Part II are centered around the design
and evaluation of diverse methods addressing radio positioning, mapping, and SLAM
challenges within the context of a 5G mmWave single BS downlink scenario featuring a
single UE.

The remainder of Part I is structured as follows:

• Chapter 2: Introduces the system models relevant to a typical 5G mmWave single
BS downlink scenario.

• Chapter 3: Explores the intricacies of single snapshot radio positioning and map-
ping, reviews classical positioning methods, and outlines fundamental approaches
to solving the single BS positioning and mapping problem.

• Chapter 4: Introduces the radio SLAM problem, and offers insights into existing
SLAM solutions in the literature.

• Chapter 5: Covers the fundamental concepts and properties of RFS, along with
evaluation metrics.

• Chapter 6: Presents the RFS-SLAM scheme, elucidates the incorporation of ra-
dio measurements, outlines implementations, and discusses the fusion of different
mapping and SLAM results.
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• Chapter 7: Summarizes the contributions made in the appended papers, and dis-
cusses potential directions for future research.

1.4 Notations
Scalars (e.g., x) are denoted in italic, vectors (e.g., x) in bold, matrices (e.g., X) in bold
capital letters, sets (e.g., X ) in calligraphic, and its cardinality is denoted as ∣X ∣. The
transpose is denoted by (⋅)⊺. The L2 norm is denoted by ∣∣ ⋅ ∣∣. The i-th component in
vector x is denoted by [x]i. The emptyset is denoted by ∅. The union of mutually disjoint
sets is denoted by ⊎. A Gaussian density with mean u and covariance C, evaluated in
value x is denoted by N (x;u,C).

7



Part I

8



CHAPTER 2

Models of states and measurements

In this thesis, the primary focus is on a 5G mmWave downlink scenario featuring a single
BS and a single UE. In this setup, the BS transmits downlink signals to the UE at
each time step, as illustrated in Fig. 2.1. This chapter initiates by introducing the state
models for the UE, the BS, and landmarks within the considered scenario. Additionally,
the measurement model for the mmWave downlink scenario is presented.

2.1 State models
The propagation environment in the examined scenario, shown in Fig. 2.1, encompasses
a mobile UE, a fixed BS, and static landmarks. The state models for these entities
are elucidated below. It is important to emphasize that the global reference coordinate
system serves as the reference framework throughout this thesis.

BS
In a standard radio scenario, the BS remains stationary and is equipped with an antenna
array (or a single antenna), having its center located at pBS = [xBS, yBS, zBS]

⊺. If a
URA is employed, the array has an orientation, denoted by ψBS = [αBS, βBS, γBS]

⊺,
representing roll, pitch, and yaw, in the respective order. This orientation signifies the
orientation of the transmitter URA with respect to the the reference coordinate system
[52]. However, when a uniform linear array (ULA) or a single antenna is utilized, ψBS
has fewer components, or there is no need to consider ψBS at all. Consequently, in the
general case, the state of the BS can be expressed as sBS = [p

⊺
BS,ψ

⊺
BS]

⊺, typically known
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BS

UE

Scatter 
point

Surface
Moving 

incidence 
point

Movement

Virtual 
anchor

Figure 2.1: A single BS 5G mmWave downlink scenario with a moving UE, and a few land-
marks, where signals transmitted from the BS can reach the UE through both the
LoS path, depicted by the black line, and NLoS paths, depicted by the red lines.

as a priori.

UE
The UE is capable of dynamic movement and, similarly to the BS, equipped with ei-
ther an antenna array or a single antenna. For the sake of generalization, we consider
a scenario in which the UE is equipped with a URA when describing its state. In addi-
tion to considering the parameters of position and orientation, the clock bias resulting
from imperfect synchronization between the transmitter and the receiver is also typi-
cally taken into account. Consequently, the state of the UE at time step k is denoted
as sUE,k = [p

⊺
UE,k,ψ

⊺
UE,k, bk]

⊺. Here, pUE,k = [xUE,k, yUE,k, zUE,k]
⊺ signifies the position

of the center of the URA at the UE side, ψUE,k = [αUE,k, βUE,k, γUE,k]
⊺ indicates the

orientation of the receiver, and bk represents the clock bias between the transmitter and
receiver.

As the UE undergoes movement over time, it evolves according to state dynamics, and
the transition density is given by

f(sk ∣sk−1,uk) = N (sk;v(sk−1,uk),Qk), (2.1)

where uk denotes the control variable, representing certain known local information at
the UE side, v(⋅) denotes the known transition function derived from local information,
and Qk represents the covariance of the process noise.
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Landmarks
Two distinct types of unknown landmarks are considered: scattering points (SPs) and
surfaces. An SP, representing a small object such as a street lamp or traffic sign, solely
scatters signals. It is parameterized by its location xSP = [xSP,k, ySP,k, zSP,k]

⊺, equivalent
to the incidence point (IP) where the signal encounters the landmark.

On the other hand, a surface, corresponding to a larger object such as a wall or
building facade, reflects (and possibly diffuses, depending on scenario assumptions) sig-
nals. It is parameterized by a fixed virtual anchor (VA) with a location denoted as
xVA = [xVA,k, yVA,k, zVA,k]

⊺. The VA is surface-specific, determined by the reflection of
the BS with respect to the surface, given by [53]

xVA = (I − 2νν⊺)pBS + 2µ⊺νν, (2.2)

where ν signifies the surface normal, and µ represents an arbitrary point on the surface.
Notably, a VA remains stationary even though the IP of the reflection path on the surface
changes with the movement of the UE. Additionally, multiple IPs on the surfaces could
exist from the reflection path and the diffuse multipath at each time step, assuming the
surface can both reflect and diffuse signals.

2.2 Measurement model
During each time step, the BS transmits downlink orthogonal frequency-division multi-
plexing (OFDM) pilot signals to the UE. These signals can traverse the communication
channel through the LoS path, where signals directly reach the UE, or through NLoS
paths, where signals bounce off landmarks in the environment before reaching the UE, or
a combination of both. At time step k, a channel estimator, as exemplified in [54–58], can
be employed on the received pilot signals to obtain estimates of channel parameters, i.e.,
time-of-arrival (ToA), angle-of-arrival (AoA), and angle-of-departure (AoD) as measure-
ments. While the gain may contain geometric information, it is significantly influenced
by other factors such as surface material, weather, and temperature. Consequently, it is
not utilized as part of the measurements in Part I.

Channel estimation is assumed to be outside the scope of this thesis, and the chan-
nel parameters are considered available, serving directly as measurements. In addition,
only LoS and single-bounce paths are considered. At time step k, the channel esti-
mator produces a list of measurements denoted as Zk = {z

1
k, . . . ,z

Ik

k }. It is important
to acknowledge that the number of measurements Ik in general is not the same as the
total number of ground-truth paths, since not all paths can be resolved. Some mea-
surements may be clutter originating from noise peaks during channel estimation or
transient objects, and certain landmarks might be misdetected. Furthermore, the DA
problem remains unsolved, implying that the source of each measurement is unclear.
For any zi

k ∈ Zk originating from a landmark with an IP location xi
IP,k, the likelihood

function is modeled by

11



Part I

BS

UE

SP

Surface
IP , up to propagation 

distance and bias

<latexit sha1_base64="+ysNHwcejqtzkGiQA3oycPcAvao=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgQkoivpYFNy4r2Ac0sUymk3boZBLmIZSQ33DjQhG3/ow7/8Zpm4W2HrhwOOde7r0nTDlT2nW/ndLK6tr6RnmzsrW9s7tX3T9oq8RIQlsk4YnshlhRzgRtaaY57aaS4jjktBOOb6d+54lKxRLxoCcpDWI8FCxiBGsr+b7Gpp+N88eM5f1qza27M6Bl4hWkBgWa/eqXP0iIianQhGOlep6b6iDDUjPCaV7xjaIpJmM8pD1LBY6pCrLZzTk6scoARYm0JTSaqb8nMhwrNYlD2xljPVKL3lT8z+sZHd0EGROp0VSQ+aLIcKQTNA0ADZikRPOJJZhIZm9FZIQlJtrGVLEheIsvL5P2ed27ql/eX9QaZ0UcZTiCYzgFD66hAXfQhBYQSOEZXuHNMc6L8+58zFtLTjFzCH/gfP4ArmSSDQ==</latexit>

⌧ i
k

<latexit sha1_base64="jbW1KOJEXonl1nq85cbgmK4Pr9I="></latexit>

✓i
k = [✓i

az,k, ✓i
el,k]T

<latexit sha1_base64="wNkTIp/9ZejdWU0jLLGvlSND+uI="></latexit>

�i
k = [�i

az,k,�i
el,k]T

Figure 2.2: Illustrative demonstration of the nonlinear measurement function, which translates
geometric information into channel parameters.

f(zi
k ∣x

i
IP,k,sk) = N (z

i
k;h(xi

IP,k,sk),R
i
k), (2.3)

where h(xi
IP,k,sk) = [τ

i
k, (θ

i
k)
⊺, (ϕi

k)
⊺]⊺ serves as the nonlinear measurement function,

converting geometric information into channel parameters, and Ri
k represents the mea-

surement covariance. Fig. 2.2 provides an illustrative representation of the h(xi
IP,k,sk).

Within the measurement function h(xi
IP,k,sk), the ToA τ i

k is determined by the prop-
agation distance and the clock bias bk, expressed as

τ i
k =

⎧⎪⎪
⎨
⎪⎪⎩

∣∣pBS−pUE,k ∣∣
c

+ bk LoS
∣∣xi

IP,k−pUE,k ∣∣+∣∣xi
IP,k−pBS∣∣

c
+ bk NLoS

, (2.4)

with c denoting the speed of light.
The AoA θi

k = [θ
i
az,k, θ

i
el,k]

⊺, consisting of the azimuth and elevation angles, is deter-
mined by the arrival direction of the signal at the receiver qi

AOA,k, and its components
are given by

θi
az,k = arctan2([qi

AOA,k]2, [q
i
AOA,k]1), (2.5)

θi
el,k = arcsin([qi

AOA,k]3, ∣∣q
i
AOA,k ∣∣). (2.6)

The arrival direction of the signal qi
AOA,k is considered in the local coordinate system of
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the receiver, enabling its calculation through

qi
AOA,k =

⎧⎪⎪
⎨
⎪⎪⎩

RUE,k(pBS − pUE,k) LoS
RUE,k(x

i
IP,k − pUE,k) NLoS,

(2.7)

where RUE,k is the rotation matrix from the reference coordinate system to the local
coordinate system of the URA at the UE side and time step k, determined by ψUE,k

as [52]

RUE,k = (2.8)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosγUE,k − sinγUE,k 0
sinγUE,k cosγUE,k 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosβUE,k 0 sinβUE,k

0 1 0
− sinβUE,k 0 cosβUE,k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 cosαUE,k − sinαUE,k

0 sinαUE,k cosαUE,k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and RT
UE,k denotes the rotation matrix from the local coordinate system of the UE to

the reference coordinate system.
Similarly, the AoD ϕi

k = [ϕ
i
az,k, ϕ

i
el,k]

⊺, consisting of the azimuth and elevation angles,
is determined by the departure direction of the signal at the transmitter qi

AOD,k, and its
components are given by

ϕi
az,k = arctan2([qi

AOD,k]2, [q
i
AOD,k]1), (2.9)

ϕi
el,k = arcsin([qi

AOD,k]3, ∣∣q
i
AOD,k ∣∣). (2.10)

The departure direction of the signal qi
AOD,k is considered in the local coordinate system

of the transmitter, given by

qi
AOD,k =

⎧⎪⎪
⎨
⎪⎪⎩

RBS(pUE,k − pBS) LoS
RBS(x

i
IP,k − pBS) NLoS,

(2.11)

where RBS is the rotation matrix from the reference coordinate system to the local
coordinate system of the URA at the BS side. This matrix is determined by ψBS as

RBS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosγBS − sinγBS 0
sinγBS cosγBS 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosβBS 0 sinβBS
0 1 0

− sinβBS 0 cosβBS

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 cosαBS − sinαBS
0 sinαBS cosαBS

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.12)

andRT
BS is the rotation matrix from the local coordinate system of the BS to the reference

coordinate system.
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CHAPTER 3

Single snapshot radio positioning and mapping

The radio positioning and mapping problem can be addressed on a snapshot-by-snapshot
basis, without relying on memory from previous time steps. This chapter starts with in-
troducing the challenge of single snapshot radio positioning and mapping, then examining
classical positioning methods from the literature. Finally, strategies are explored for ef-
fectively addressing the problem, particularly in the context of 5G mmWave scenarios
with a single BS.

3.1 Problem statement
The single snapshot radio positioning and mapping problem refers to an intricate task of
estimating the state of the UE and mapping the surrounding environment from the sig-
nals received at the UE during a singular time step [33], as illustrated in Fig. 3.1. In this
challenging scenario, the primary objective is to unravel the precise UE state while con-
currently generating a comprehensive representation of the landmarks in the surrounding
physical space. It is noteworthy that UE state and landmark states can comprise diverse
components, and the specific composition may vary across different problems [7, 59–61].
The target UE state usually encompasses, at a minimum, the UE position and may ex-
tend to include additional parameters such as UE orientation, clock bias between the
BS and the UE, and other relevant properties. Similarly, the target landmark state
usually comprises, at a minimum, location information and may encompass additional
characteristics like landmark types, size, or other pertinent attributes.

In this context, the term “snapshot” denotes a discrete moment in time when the UE
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UE

SP

Surface
IP Measurements provided 

by the channel estimator
from a single snapshot

BS

All resolved paths

UE state and map

Figure 3.1: Illustrative demonstration of the single snapshot positioning and mapping problem,
where all resolved measurements from a single snapshot are employed to estimate
the UE state and the surrounding environment.

receives radio signals, which are the downlink signals sent from the BS that pass through
the complex environment and then reach the UE. These received signals offer a brief
glimpse into the spatial and signal characteristics at that specific instant. We assume
that the channel estimator is already implemented on the single snapshot received signals,
which directly provides the channel parameter estimates, i.e., gains, delays, and angles,
termed as the measurements in this thesis. Instead of working with the raw received
signals, we directly employ these measurements in the subsequent discussions. Then, the
challenge lies in how to utilize these measurements extrapolated from single snapshot
received signals to determine the UE state and construct a map of the surrounding
environment.

This problem domain is particularly relevant in applications such as dense urban sce-
narios and indoor localization, where GNSS may be unreliable [21]. The ability to ro-
bustly estimate the state of the UE and map the environment based on a solitary snap-
shot holds significance in diverse fields, including Internet of Things (IoT) devices [39],
personal radar [62], smart homes [63], and location-based services [64,65].

3.2 Classical positioning methods
Radio positioning is a well-established field that has garnered attention over many years.
The fundamental concept revolves around extracting geometric information from radio
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Figure 3.2: An example of ToA-based positioning method in a 2D scenario involving three
BSs.

signals to enable positioning. This section provides an overview of classical positioning
methods in the literature.

3.2.1 Time-based positioning
Some studies leverage ToA measurements from multiple LoS paths between various BSs
and the UE for positioning purposes [5,66]. ToA represents the measured time at which
a signal arrives at a receiver. The relationship between the distance di from the i-th BS
to the UE and the ToA τ i of the corresponding LoS path is defined in (2.4), yielding

di
= (τ i

− bi
)c, (3.1)

where bi denotes the clock bias of the UE with respect to the i-th BS. Once distances from
the UE to multiple BSs are obtained from LoS paths, the UE position can be estimated
by satisfying geometric constraints, i.e., the distances to the BSs. Taking a 2D scenario
as an example, illustrated in Fig. 3.2, we can draw a circle centered at each BS with
a radius equal to the known distance between the UE and that specific BS. With the
distances from the UE to three different BSs, three circles can be drawn. The intersection
point of these circles corresponds to the UE position [20].

However, this method presents certain challenges. First of all, all BS positions should
be known to the UE, and the LoS paths should be guaranteed. Notably, the accuracy
of distance estimation is significantly influenced by clock bias, enlarged by the speed
of light c in (3.1). To mitigate this, synchronization between each BS and the UE
becomes imperative. Alternatively, identifying and compensating for clock biases at the
UE side is necessary. Another approach involves employing a round-trip-time (RTT)
protocol, utilizing round-trip (or two-way) ToA measurements [67–69]. An additional
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strategy to address clock bias issues is the use of TDoA measurements, which is the
difference between two ToA measurements [70,71]. It is essential to note that for TDoA
measurements, synchronization among all BSs is essential.

Furthermore, the accuracy of ToA estimates is influenced by factors such as available
bandwidth and noise, impacting overall positioning performance [72]. Moreover, this
methodology encounters significant challenges posed by multipath effects [73,74]. Multi-
path introduces complications such as inter-path interference and may lead to the failure
of the channel estimator in identifying the LoS path. Consequently, this can result in
substantial errors in ToA estimates associated with the LoS path.

3.2.2 Angle-based positioning
Angular measurements, specifically AoA and AoD, which respectively denote the direc-
tion of signal arrival at the UE and departure from the BS, offer valuable insights for
UE positioning [5,66]. Unlike methods reliant on distance to a specific BS, angular mea-
surements provide directional information toward the BS. By determining the AoA or
the AoD of the LoS path from the i-th BS, and knowing the BS position, a line can be
defined in the corresponding direction

pi
= pi

BS +mq
i, (3.2)

where pi describes any point on the line, pi
BS denotes a specific point on the line which

is the position of the i-th BS, qi denotes the direction of the line determined by the AoA
or the AoD, and m is a parameter varying across real numbers. This line inherently
contains the UE position. By finding the intersection point of multiple observed lines
(corresponding to different BSs), the UE position can be accurately determined [20].
Fig. 3.3 provides an illustrative example of an AoD-based positioning method in a 2D
scenario with three BSs. In this scenario, the UE estimates the AoDs of three LoS paths
from different BSs, allowing the determination of lines that intersect at the UE position.

However, achieving angular resolution in this method necessitates the use of multiple
antennas. The accuracy of angle estimates is intricately tied to both the angular resolu-
tion and the presence of noise, introducing consequential impacts on overall positioning
performance [75]. Similar to time-based positioning techniques, this approach encounters
substantial challenges posed by multipath effects [5]. The prevalence of inter-path in-
terference, coupled with potential ambiguities in distinguishing the LoS path from other
NLoS paths, results in notable errors in angle estimates. These errors significantly un-
dermine the effectiveness of the positioning system. Additionally, accurate knowledge of
UE or BS orientations is crucial when employing AoA or AoD measurements. The AoA
and AoD values are inherently dependent on the orientations of the UE and BS, respec-
tively, as articulated in (2.7) and (2.11). It is worth noting that this method exhibits
diminished performance over large distances, as even a small angular error can propagate
into a substantial mismatch in such scenarios.
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Figure 3.3: An example of AoD-based positioning method in a 2D scenario involving three
BSs.

3.3 Single BS positioning and mapping

The classical positioning methods discussed in Section (3.2) rely on the availability of
multiple BSs, and their performances are subject to limitations in geometric measurement
resolution imposed by bandwidth and antenna size constraints. These methods are also
susceptible to severe multipath effects. Moreover, these approaches exclusively focus on
estimating UE position, leaving aspects such as UE orientation and clock bias estimation,
as well as the mapping problem, unresolved due to insufficient information from the
measurements.

The advent of 5G (and potentially the future 6G) systems presents new opportunities
and possibilities for positioning [21]. In 5G, higher carrier frequencies, such as above 24
GHz, are achievable [2]. At these frequencies, limited scattering leads to sparse communi-
cation channels. The increased carrier frequency allows for a larger bandwidth, resulting
in improved time-delay resolution and enhanced distance estimation accuracy [5]. Addi-
tionally, larger antenna arrays with more elements at both UE and BS sides enable higher
resolution in AoA and AoD [4]. With these advantages, paths become more resolvable,
providing a greater number of measurements and additional dimensions with significantly
enhanced accuracy for each resolved path [6]. For instance, accurate estimates for 5D
measurements (ToA, AoA in both azimuth and elevation, AoD in both azimuth and el-
evation) become feasible, as opposed to rough estimates for ToA alone. Furthermore,
the improved resolution allows for the resolution of multipath, traditionally regarded
as a disturbance, offering valuable information about both the map and the UE state.
This abundance of information makes both positioning (including position, orientation
and clock bias), and mapping viable, even with a single BS, as there is now sufficient
information to address both problems [33].

While multiple BSs can provide additional measurements, resulting in improved posi-
tioning and mapping performance, this section specifically focuses on single BS position-
ing and mapping due to its inherent significance and feasibility.
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3.3.1 Requirements

To address the single BS positioning and mapping problem, certain prerequisites must
be fulfilled. The subsequent discussion outlines the essential requirements for solving the
single BS positioning and mapping problem.

BS state
For the successful realization of single BS positioning and mapping, precise knowledge
of the BS position and orientation is essential to establish an accurate global reference
coordinate. It is not strictly required in theory to have explicit knowledge of the BS
for problem resolution, as long as a global reference is provided, such as by a known
reflector in the environment. Knowing the BS is generally the most reasonable and
practical requirement. Typically, BS position and orientation are available with high
accuracy, given the fixed nature of BS installations, allowing for precise measurements
using external equipment. Despite the theoretical potential to survey BS state with
arbitrary accuracy, practical limitations introduce inevitable errors.

Additionally, considering that BSs are primarily designed for communication rather
than accurate positioning, only coarse BS state information may be available [38]. This
could involve manual measurement errors or slight changes in the deployed position and
orientation over extended periods. As measurements depend on the BS position and
orientation, errors in these parameters can lead to significant inaccuracies in positioning
and mapping, especially over long distances. Therefore, in cases where explicit site
surveying has not been conducted, an additional calibration process for BS position and
orientation becomes necessary.

Enough useful geometric parameters
The positioning and mapping problem involves estimating the UE state and the map of
the surrounding environment based on all resolved measurements, including ToAs, AoAs,
and AoDs [33]. For each LoS path, we can obtain up to 5 useful geometric parameters
when the UE orientation is unknown and up to 3 when the UE orientation is known.
This is due to the fact that AoA and AoD contain the same information when both the
BS orientation and the UE orientation are known. For each NLoS path, we can extract
up to 5 useful geometric parameters when the IP is unknown and up to 3 when the IP is
known. This is attributed to the fact that AoD can be determined once both the BS and
the corresponding IP are known, rendering it uninformative for positioning and mapping.

A summary of the number of useful geometric parameters for a 5D measurement in
different cases within a MIMO scenario with planar antenna arrays at both BS and
UE sides is provided in Table 3.1. In a 3D scenario, the unknown parameters typically
include a 3D UE position, a 3D UE orientation, a 1D clock bias, and a 3D position for
the IP of each NLoS path. A summary of the number of unknowns for different types of
problems in a 3D scenario is presented in Table 3.2. Assuming there are Nx unknowns
and Ny useful geometric parameters in total, the necessary condition for addressing the
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Number of useful geometric parameters
LoS, unknown UE orientation 5
LoS, known UE orientation 3

NLoS, unknown IP 5
NLoS, known IP 3

Table 3.1: Summary of number of useful geometric parameters for a 5D measurement in dif-
ferent cases within a MIMO scenario with planar antenna arrays at both BS and
UE sides.

Number of unknowns Nx

UE position 3
UE position + clock bias 4

UE position + UE orientation 6
UE position + UE orientation + clock bias 7

UE position + UE orientation + clock bias + mapping 7 + 3L

Table 3.2: Summary of number of unknowns for different types of problems in a 3D scenario,
where L denotes the number of unknown IPs.

positioning and mapping problem is

Nx ≤ Ny. (3.3)

3.3.2 LoS-only positioning
If only the LoS between the BS and the UE is available, it is possible to estimate the UE
position. However, synchronizing the UE with the BS or estimating the UE orientation
is not feasible without additional information. The LoS path can provide at most 5
useful geometric parameters when the UE orientation is unknown, which is insufficient
to estimate both the UE position and orientation, involving 6 unknowns. If the AoA
is not utilized, the LoS path provides 3 useful geometric parameters, allowing for the
estimation of 3 unknown variables, and thus, the UE position can be estimated. When
the clock bias between the BS and the UE is known or eliminated by the RTT protocol,
the UE position pUE has a closed-form solution [26,76]

pUE = pBS + dLoSuLoS, (3.4)

where dLoS = (τLoS − b)c denotes the propagation distance of the LoS path, and uLoS
represents the unit vector describing the direction from the BS to the UE, determined
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pUE = pBS + dLoSuLoS

Figure 3.4: Illustrative demonstration of LoS-only positioning, where the UE is positioned at
a distance dLoS from the BS along the direction of uLoS. NLoS path are omitted
to emphasize the LoS path, though they do exist.

by the AoD as

uLoS =R
T
BS

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos (ϕaz,LoS) cos (ϕel,LoS)

sin (ϕaz,LoS) cos (ϕel,LoS)

sin (ϕel,LoS)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.5)

The fundamental concept behind (3.4) is that the UE is positioned at a distance dLoS
from the BS along the direction of uLoS, as illustrated in Fig. 3.4. Additionally, if the
UE orientation is known, uLoS can be also determined by AoA, expressed as

uLoS = −R
T
UE

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos (θaz,LoS) cos (θel,LoS)

sin (θaz,LoS) cos (θel,LoS)

sin (θel,LoS)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.6)

However, this method is not commonly employed because the UE orientation is usually
unknown. In an ideal scenario where both the clock bias and UE orientation are provided,
all 5 geometric parameters can be utilized to estimate the UE position. Taking both AoA
and AoD into consideration to determine uLoS, the estimated UE position pUE,k can be
obtained through a maximum likelihood (ML) estimator

p̂UE = arg min
pUE

((h(pUE) − zLoS)
⊺
(RLoS)

−1
(h(pUE) − zLoS)) , (3.7)
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Minimum number of NLoS paths
Map-assisted, LOS+NLOS 1

Map-assisted, NLOS 3
No map, LOS+NLOS 1

No map, NLOS 4

Table 3.3: Summary of the minimum number of NLoS paths needed for full UE positioning in
different scenarios.

where h(pUE) is the measurement function using the UE position to generate the 5D
measurement of the LoS path. Please note (3.4) is a special case of (3.7), where only ToA,
and AoD are used. This method works well in an ideal case, however, it is sensitive to the
measurement quality, as only one group of measurements is used. The real measurement
contains errors, which results in large positioning errors, especially in a long distance.
In addition, the clock bias needs to be known or eliminated for this method, which is
usually not easy to achieve.

3.3.3 Multipath-assisted positioning
If multipath is considered as a disturbance and only the LoS path is utilized, limited
position information can be obtained, restricting the capability to solve the positioning
problem. However, the resolved multipath components also contain geometric informa-
tion about the UE state, which can be beneficial for the positioning problem [33]. In
the context of the complete positioning problem, which involves estimating the UE po-
sition and UE orientation while synchronizing it with the BS, the LoS path provides 5
useful geometric parameters. Additionally, each NLoS path can offer 3 useful geometric
parameters if the corresponding IP is known and 5 useful geometric parameters if the IP
is unknown. However, the latter introduces three unknowns to the problem.

For the map-assisted positioning problem, where the IP of each NLoS is known, the full
positioning problem is solvable if both the LoS path and another additional NLoS path
are available. In this case, there are 8 useful geometric parameters versus 7 unknowns.
The problem remains solvable even if the LoS path is obstructed by obstacles. At least
three resolved NLoS paths are required for the problem to be solvable, resulting in 9
useful geometric parameters versus 7 unknowns.

The problem can also be solved without relying on map assistance. If the LoS path
is available, at least one more NLoS path should be resolved, resulting in 10 useful
geometric parameters versus 10 unknowns. In scenarios where the LoS path is blocked,
a minimum of 4 NLoS paths is needed, leading to 20 useful geometric parameters versus
19 unknowns. The minimum numbers of NLoS paths needed for full UE positioning in
different cases are summarized in Table 3.3. Once the requirements are fulfilled, the
full positioning problem can be approached using a ML estimator, aiming to identify

23



Part I

UE

Known SP

Surface
Known IP Likelihood of all 

measurements

BS

All resolved paths

UE state

ML estimator

Figure 3.5: Illustrative demonstration of map-assisted positioning, where the IPs of each paths
are known, and all resolved paths from a single snapshot are employed to estimate
the UE state using a ML estimator.

the UE state that maximizes the likelihood of all received measurements, as exemplified
in [61]. The performance of this method enhances with an increased number of resolved
paths, as it provides more information for accurate estimation. Fig. 3.5 presents an
illustrative showcase of map-assisted positioning. The crucial distinction between map-
assisted positioning and positioning without map assistance lies in the availability of IP
for each path.

3.3.4 From positioning to mapping
As discussed in Section 3.3.3, multipath encompasses crucial geometric information about
both the UE state and the surrounding map, facilitating both UE positioning and envi-
ronmental mapping [33]. Referring to Table 3.3, the positioning and mapping problem
can be resolved with a minimum of one additional NLoS path if the LoS path is available,
and at least 4 NLoS paths if the LoS path is unavailable. Similar to the approach for
solving the positioning problem using multipath, this combined positioning and mapping
problem can also be formulated as a ML problem. In this scenario, the objective is to
identify the UE state and all IP positions that maximize the likelihood of all received
measurements, as exemplified in [60].

After obtaining all the IPs positions, post-processing steps can be applied based on
specific requirements. One possible post-processing task involves estimating surfaces
from these IPs. The underlying concept is that each IP represents the point where the
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BS

UE

SP

IP of the reflection path 
Surface

VA

IPs of diffuse multipath

Figure 3.6: Illustrative presentation of an example featuring a reflection path and 4 diffuse
multipath originating from a surface. The reflection path is depicted by a red solid
line, while the diffuse multipath are represented by red dashed lines. The IP of
the reflection path is determined by the VA, the UE and the surface, whereas the
IPs of all diffuse multipath are randomly distributed on the surface. Notably, all
IPs are confined to the surface. Paths from other sources are excluded to highlight
the paths originating from the surface, even though additional paths exist.

signal interacts with a surface, and IPs of paths reflected or diffused from the same source
should lie on the same surface, as illustrated in Fig. 3.6. Thus, the goal is to identify
surfaces that best fit all estimated IPs associated with paths originating from the same
surface.

However, at this stage, the source of each path is still unknown, except for the LoS
path, which is usually assumed to be the strongest and shortest path. Therefore, direct
estimation of surfaces from IPs is not feasible. To address this, it is necessary to cluster
IPs of paths from the same source, leveraging the geometric proximity of IPs within
the same cluster. An effective approach for this clustering task is the use of algorithms
like density-based spatial clustering of applications with noise (DBSCAN) [77]. The
DBSCAN algorithm categorizes points into clusters and identifies potential outlier points
based on density-reachability. Each point cluster corresponds to a surface, and the surface
associated with each cluster is determined by finding the best fit for all points within the
cluster, minimizing the overall distances to the surface.
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3.3.5 Discussions
The solution to the single BS positioning and mapping problems lies in addressing the
ML problems discussed in Section 3.3.2, Section 3.3.3 and Section 3.3.4. Various stud-
ies employ different optimization methods, simplifications, assumptions, and utilized
measurements. While considerable theoretical work has been undertaken, only a lim-
ited number of studies have conducted real-world experiments and tests, particularly
involving a commercial BS. [Paper C] fills this gap by presenting a distinctive real-world
demonstration of single BS 5G mmWave positioning and mapping. Moreover, it is com-
mon for a large surface to both reflect and diffuse signals. However, the consideration
of multipath measurements from the same source has been relatively overlooked or sim-
plified in existing works. In [Paper A], we introduce a method to utilize all multipath
measurements originating from the same landmark.
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Single BS radio simultaneous localization and mapping

The positioning and mapping problem, discussed in Section 3.3, can be addressed through
singular snapshot measurements employing only a single BS. Over time, this single BS
positioning and mapping problem can be extended to incorporate UE tracking, trans-
forming it into a SLAM problem known as radio SLAM. This chapter outlines the prob-
lem statement of radio SLAM and provides an overview of various SLAM frameworks
applicable to the radio SLAM problem.

4.1 Problem statement
The SLAM problem generally involves estimating the sensor state over time, constructing
a map of the surrounding environment, and assessing associated uncertainties [40,41]. In
this context, the term “over time” refers to a continuous time span rather than a discrete
moment, emphasizing the need to consider connections between different snapshots. The
primary objective of the probabilistic SLAM problem is typically to determine or ap-
proximate the joint posterior density of the sensor trajectory and the map, denoted as
f(s1∶k,X ∣Z1∶k,u1∶k,s0), given the initial sensor state s0, measurements Z1∶k and controls
u1∶k up to and including time step k.

The radio SLAM problem, specifically utilizing radio signals [9, 10], involves the UE
serves as the sensor, possessing an unknown time-varying state, while the static objects
in the environment act as landmarks with unknown states and cardinality, collectively
forming the map. Similar to the single snapshot positioning and mapping problem dis-
cussed in Chapter 3, the UE state encompasses not only the UE position but potentially

27



Part I

BS
UE trajectory

SP

Surface
The moving IP

Movement

VA

All resolved paths at 
current time step

All resolved paths at 
previous time step

Measurements provided 
by the channel estimator

over time

UE trajectory and map

Figure 4.1: Illustrative demonstration of the radio SLAM problem, where resolved measure-
ments over time are leveraged to estimate both the UE trajectory and the sur-
rounding environment. Paths successfully resolved in the previous time step are
depicted by dashed lines, while newly resolved paths in the current time step are
represented by solid lines. The IP of the reflection path on the surface moves with
the movement of the UE, whereas the VA of the surface remains static.

its orientation, clock bias with the BS, or other states varying across different scenarios.
The landmark state usually includes only the position, but it may also encompass the
landmark type, size, or other characteristics, depending on the specific problem. As in
Chapter 3, we directly utilize the channel parameter estimates as measurements, assum-
ing that the channel estimator has been implemented on the received signals. Fig. 4.1
provides an illustrative representation of the radio SLAM problem.

The radio SLAM problem is inherently challenging due to several factors [78]:

• Unknown number of landmarks: The map being unknown implies that the number
of landmarks in the field-of-view (FoV) is primarily unknown to the UE.

• Clutter measurements: Channel estimation errors or noise peaks can result in nu-
merous clutter measurements, potentially leading to false alarms.

• Imperfect detection: Landmarks in the FoV might go undetected due to imperfect
detection performance at the UE side.

• Unknown DA: The UE lacks knowledge about the source of each measurement,
introducing an inherent DA problem. This challenge involves associating measure-
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ments with their sources, which could be previously detected landmarks, undetected
landmarks, or measurements classified as clutter.

Desirable solutions for radio SLAM should address all these challenges effectively while
maintaining reasonable signal processing complexity.

4.2 Methods for radio SLAM
This section provides an overview of various SLAM frameworks applicable to solving the
radio SLAM problem. These encompass conventional SLAM solutions, GraphSLAM,
BP-SLAM, and RFS-SLAM.

4.2.1 Conventional solutions
One of the pivotal characteristics of the SLAM problem is the conditional independence
among landmarks when the map is conditioned on the UE trajectory. Exploiting this fea-
ture, it is natural to employ solutions such as Rao-Blackwellized particle filter (RBPF),
exemplified by the well-known FastSLAM algorithm [79]. In FastSLAM, the SLAM pos-
terior is factorized into a product of conditional landmark posterior on the UE trajectory
and a UE trajectory posterior. FastSLAM involves utilizing a list of weighted particles to
represent the UE trajectory posterior, with each particle having a conditioned map. The
SLAM posterior is then propagated through these particles and conditional maps. How-
ever, the computational complexity of this method is high, requiring a substantial number
of particles to achieve satisfactory performance. An alternative, low-complexity approach
to SLAM involves approximating the joint posterior density as a Gaussian distribution.
Techniques such as the extended Kalman filter (EKF) [80, Ch. 7.2] are then employed
for posterior estimation, leading to the well-established extended Kalman (EK)-SLAM
algorithm [81]. In EK-SLAM, the SLAM posterior is approximated through linearization,
achieved using the first-order Taylor series. While this approach generally exhibits low
complexity and performs well in practice, its efficacy diminishes when dealing with highly
nonlinear measurement models. Importantly, classical SLAM methods, including Fast-
SLAM and EK-SLAM, necessitate solving the DA problem in advance. The algorithm
approximates the posterior by conditioning it on the provided DA without accounting for
any DA uncertainty. Consequently, these methods are sensitive to DA uncertainty [82].

4.2.2 GraphSLAM
In the realm of GraphSLAM, the DA problem is commonly tackled through the SLAM
front-end approach [82]. Once the DA is resolved, GraphSLAM algorithms proceed to
compute the joint posterior density of the UE trajectory and landmarks by transforming
this density into a graphical network [83]. In this graphical network, nodes represent UE
states at different times or landmarks, while edges denote the constraints between two
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UE states or between a landmark state and a UE state. These constraints encompass
probability distributions over relative transformations, derived from either the motion
model of the UE or the measurement model of the UE and landmarks [84]. Once the
graph is established, the SLAM problem transforms into determining the most proba-
ble configuration of these nodes to maximize the posterior, where standard optimization
techniques [85, 86] can be employed. It is noteworthy that GraphSLAM operates differ-
ently from certain other SLAM methods like EK-SLAM and FastSLAM, which operate
online. GraphSLAM opts for batch estimation, where measurements are processed in
batches. This approach, considering all measurements and applying optimization tech-
niques across the entire graph, yields more robust and accurate estimates, if conditioned
on a reliable DA. However, it is crucial to emphasize that achieving a good DA is essential
for the effectiveness of GraphSLAM.

4.2.3 BP-SLAM
Efficient resolution of the SLAM problem can be achieved by computing the marginal
posterior densities of the landmarks and the UE state. An effective approach to ap-
proximating these marginal posterior densities in SLAM is through BP, specifically uti-
lizing the sum-product algorithm [87]. This method is commonly referred to as BP-
SLAM [9, 88–90]. BP-SLAM algorithms offer a unified framework for solving SLAM
problems without the necessity of resolving the DA beforehand. In these algorithms,
auxiliary variables are introduced to represent DAs, and BP is employed on the factor
graph representation of the joint distribution of UE states, landmarks, and DA variables.
BP-SLAM is a powerful approach due to its generality in handling complex scenarios.
However, it has limitations. Notably, the correlation between the UE state and the map
cannot be explicitly tracked in BP-SLAM due to the application of marginalization dur-
ing the BP process. Additionally, ad-hoc modifications are often required to address
challenges related to appearing and disappearing landmarks.

4.2.4 RFS-SLAM
The SLAM problem can be effectively addressed using the RFS theory. An RFS is a ran-
dom variable whose potential outcomes are sets with a finite number of unique elements.
Unlike random vectors, where both the number and order of elements are predetermined,
RFSs have a random number of elements, and are agnostic to the order of elements, al-
lowing for easy addition or removal of elements [49,91]. These characteristics make RFSs
particularly appealing for modeling unknown landmarks and received measurements in
the SLAM problem. The inherent ability of RFSs to capture uncertainty in both the
number of landmarks and their states, as well as the DA uncertainty, renders them
suitable for SLAM applications. Various RFS-SLAM methods employ different types
of RFSs to model landmarks, such as the labeled multi-Bernoulli (LMB) RFS [92, 93],
the δ-generalized labeled multi-Bernoulli (δ-GLMB) RFS [94,95], the Poisson point pro-
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cess (PPP) RFS [78,91,96], and the PMBM RFS [97–101]. Each choice results in a joint
posterior with distinct RFS characteristics. Similar to the aforementioned SLAM algo-
rithms, RFS-SLAM algorithms aim to obtain the joint posterior of the UE trajectory and
the map over time. The key difference lies in modeling the map and measurements as
RFSs and leveraging RFS-based statistics. Details on the RFS theory and the application
of RFS-SLAM in a radio scenario will be elaborated upon in subsequent chapters.
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Random finite sets – a brief introduction

RFSs refer to random sets with a finite number of elements, commonly employed in
multi-object tracking (MOT) and SLAM problems. This chapter delves into the funda-
mental concepts of RFSs, their statistical properties, key RFSs, and prevalent metrics
for assessing the disparity between two RFSs. For more in-depth exploration, readers
are encouraged to consult [49,102].

5.1 Definition
An RFS is a random variable whose possible outcomes are sets with a finite number of
unique elements. To be exact, in an RFS, X = {x1,x2, . . . ,xn}, both the number of
elements and the elements themselves are random [49, Section 2.3]. The elements within
an RFS belong to the same space D, which is typically an Euclidean space with a specific
dimension. It is important to note that the space D may vary for different RFSs. RFSs
adhere to the properties of sets:

• Two sets are considered equal if they contain exactly the same elements.

• Sets are order-invariant, e.g., {1,2} = {2,1}.

• Sets do not include repeated elements, e.g., {1,1,2} is not a valid set.

• An empty set is denoted as ∅ and contains no elements.

• Two sets are disjoint if their intersection is empty, i.e., X ∩Y = ∅.
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5.2 Statistics
This section delves into fundamental concepts and statistical principles integral to the
theory of RFSs.

Multi-object density
The distribution of an RFS X is characterized by its multi-object probability density
function (PDF), denoted as f(X ), also referred to as the multi-object density. This non-
negative function sums to one and encapsulates the distribution over the cardinality as
well as the distribution over elements of the set (given the cardinality) [49, Section 3.2.4,
4.2.2].

Set integral
The set integral of a multi-object density is defined as [49, Section 3.3]

∫ f(X )δX =
∞
∑
i=0

1
i! ∫

f({x1,x2, . . . ,xi
})dx1 . . .dxi. (5.1)

The set integral encompasses summation across all potential cardinalities and integration
over all possible values of elements in the set for each cardinality.

Convolution formula
If X 1, . . . ,Xn are independent RFSs, with f1(X 1), . . . , fn(Xn) as their multi-object den-
sities, then the union of all these sets, denoted as X = X 1 ⊎ ⋅ ⋅ ⋅ ⊎Xn, has the multi-object
density [49, Section 4.2.3]

f(X ) = ∑
X 1⊎⋅⋅⋅⊎Xn=X

n

∏
i=1
f i
(X

i
), (5.2)

where the summation is taken over all mutually disjoint (and possibly empty) sets
X 1, . . . ,Xn, whose union is X . This essentially means that we obtain one term for
every possible way that X can be generated.

Cardinality distribution
The cardinality distribution of an RFS with multi-object density f(X ) is given by [49,
Section 4.2.6]

p(n) =
1
n! ∫

f({x1,x2, . . . ,xn
})dx1 . . .dxn, (5.3)

where p(n) represents the probability of ∣X ∣ = n. This function serves as a probability
mass function capturing the distribution of the cardinality.
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5.3 Important RFSs
In this section, various standard types of RFSs are introduced.

5.3.1 Poisson point process
In a PPP, all elements are independently and identically distributed according to a spatial
density p(x), and the cardinality of the set follows a Poisson distribution with a mean
µ ≥ 0. The multi-object density for a PPP X = {x1, . . . ,xn} is expressed as [49, Section
4.3.1]

fPPP(X ) = e
− ∫ λ(x)dx

n

∏
i=1
λ(xi

), (5.4)

where λ(x) = µp(x) denotes the intensity function, and n signifies the cardinality of X .
From (5.4), we can observe that a PPP can be characterized by its intensity function
λ(x).

5.3.2 Bernoulli process
In a Bernoulli process, the cardinality of the set follows a Bernoulli distribution with a
mean r ∈ [0,1]. This implies that a Bernoulli process can have at most one element,
and the potential element follows a spatial density p(x). Consequently, the multi-object
density for a Bernoulli process X is expressed as [49, Section 4.3.3]

fB(X ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 − r X = ∅

rp(x) X = {x}

0 otherwise,
(5.5)

where r is the mean of the Bernoulli distribution, which also refers to the existence
probability of the Bernoulli process. A higher r suggests a higher likelihood of having
an element, while a lower r implies a lower likelihood. From (5.5), we can observe that
a Bernoulli process can be parameterized by r and p(x).

5.3.3 Multi-Bernoulli
An multi-Bernoulli (MB) RFS X corresponds to the union of a finite number n of in-
dependent Bernoulli processes, expressed as X = X 1 ⊎ ⋅ ⋅ ⋅ ⊎ Xn, where X i, i ∈ {1, . . . , n}
signifies a Bernoulli process. Utilizing the convolution formula, the multi-object density
for an MB RFS X is provided by [49, Section 4.3.4]

fMB(X ) = ∑
X 1⊎⋅⋅⋅⊎Xn=X

n

∏
i=1
f i

B(X
i
), (5.6)
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where f i
B(X

i) denotes the multi-object density for the i-th Bernoulli process X i, pa-
rameterized by ri and pi(x). Therefore, an MB RFS can be parameterized by a set of
parameters {(r1, p1(x)), . . . , (rn, pn(x))}.

5.3.4 Multi-Bernoulli mixture
An multi-Bernoulli mixture (MBM) RFS is characterized as a weighted sum of a finite
number J of MB RFSs. The multi-object density for an MBM RFS X is defined by [103]

fMBM(X ) =
J

∑
j=1

ωj
∑

X 1⊎⋅⋅⋅⊎Xn=X

n

∏
i=1
f j,i

B (X
i
), (5.7)

where ωj represents the weight for the j-th MB with ωj ≥ 0 and ∑J
j=1 ω

j = 1, and
f j,i

B (X
i) denotes the multi-object density for the i-th Bernoulli process of the j-th MB

with i ∈ {1, . . . , n} and j ∈ {1, . . . , J}, parameterized by rj,i and pj,i(x). Thus, an MBM
RFS can be parameterized by a set of parameters {ωj ,{(rj,i, pj,i(x))}i∈{1,...,n}}j∈{1,...,J}.
It is important to note that the weights ωj typically correspond to the probabilities of
different DA sequences [51,103].

5.3.5 Poisson multi-Bernoulli mixture
A PMBM RFS X is constructed as to the union of two disjoint RFS, denoted as XU and
XD, such that X = XU ⊎XD. The RFSs XU and XD are modeled as a PPP RFS and an
MBM RFS, respectively. Utilizing the convolution formula, the multi-object density for
the PMBM RFS X is expressed as [51,103,104]

f(X ) = ∑
XU⊎XD=X

fP(XU)fMBM(XD)

= e− ∫ λ(x)dx
∑

XU⊎XD=X

∣XU∣
∏
i′=1

λ(xi′
)

J

∑
j=1

ωj
∑

X 1⊎⋅⋅⋅⊎Xn=XD

n

∏
i=1
f j,i

B (X
i
), (5.8)

which can be parameterized by λ(x) and {ωj ,{(rj,i, pj,i(x))}i∈{1,...,n}}j∈{1,...,J}. If only
one mixture term is present, the PMBM reduces to a Poisson multi-Bernoulli (PMB). In
Fig. 5.1, an illustrative depiction of a PMBM RFS with two MBs is presented.

5.4 Evaluation matrices
It is essential to assess the dissimilarity between two sets. For instance, when evaluating
the mapping performance of a SLAM algorithm, one may seek to quantify the variance
between the estimated map and the ground-truth map. This section introduces two
common matrices for assessing disparities between two sets.
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Spatial density with a low existence probability 
(low likelihood of having an element)

Spatial density with a high existence probability 
(high likelihood of having an element)

Figure 5.1: Illustrative presentation of a PMBM RFS with two MBs. The intensity of the
PPP is denoted by λ(x). The first MB carries a weight of ω1, and comprises
two Bernoulli processes with existence probabilities and spatial densities denoted
as (r1,1, p1,1

(x)) and (r1,2, p1,2
(x)), respectively. The second MB has a weight of

1−ω1, and encompasses three Bernoulli processes with their existence probabilities
and spatial densities denoted as (r2,1, p2,1

(x)), (r2,2, p2,2
(x)) and (r2,3, p2,3

(x)),
respectively. A Bernoulli process with a high existence probability is portrayed
with intense color saturation, signifying a high likelihood of containing an element.
Conversely, a Bernoulli process with a low existence probability is depicted with
lower color saturation, indicating a lower likelihood of containing an element.

OSPA
The optimal subpattern assignment (OSPA) metric between X and Y is defined as [105,
106]

dOSPA(X ,Y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( 1
∣Y ∣ (minπ∈Π∣Y ∣ ∑

∣X ∣
i=1 d

(qc)(xi,yπ(i))
qp + q

qp
c (∣Y ∣ − ∣X ∣)))

1
qp

∣X ∣ ≤ ∣Y ∣

( 1
∣X ∣ (minπ∈Π∣X ∣ ∑

∣Y ∣
i=1 d

(qc)(xi,yπ(i))
qp + q

qp
c (∣X ∣ − ∣Y ∣)))

1
qp
∣X ∣ > ∣Y ∣

0 X = Y = ∅

, (5.9)

where qc > 0 denotes the cut-off metric, signifying the maximum distance allowable for
matching two elements from different sets, 1 ≤ qp < ∞ denotes the exponent factor,
with a higher qp implying a greater penalty for outliers, Π⋆ indicates the set of all
permutations of the integers {1, . . . , ∣⋆∣}, and any element π ∈ Π⋆ is a sequence represented
as (π(1), . . . , π(∣ ⋆ ∣)), and d(qc)(xi,yπ(i)) refers to the metric between xi and yπ(i) cut
off at qc, defined as

d(qc)(xi,yπ(i)) =min(d(xi,yπ(i)), qc). (5.10)
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with d(xi,yπ(i)) denoting the Lqp distance between xi and yπ(i). The OSPA metric
contains two parts (considering the case ∣X ∣ ≤ ∣Y ∣ as an example):

• Normalized state errors: 1
∣Y ∣ minπ∈Π∣Y ∣ ∑

∣X ∣
i=1 d

(qc)(xi,yπ(i))
qp . It considers the state

errors for elements in the smallest set within the optimal subpattern assignment.

• Normalized cardinality error: 1
∣Y ∣q

qp
c (∣Y ∣− ∣X ∣). It accounts for the cardinality mis-

match of the two target sets, penalized at the maximal distance.

GOSPA
The generalized optimal subpattern assignment (GOSPA) metric between X and Y is
defined as [107]

dGOSPA(X ,Y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(minπ∈Π∣Y ∣ ∑
∣X ∣
i=1 d

(qc)(xi,yπ(i))
qp +

q
qp
c

qa
(∣Y ∣ − ∣X ∣))

1
qp
∣X ∣ ≤ ∣Y ∣

(minπ∈Π∣X ∣ ∑
∣Y ∣
i=1 d

(qc)(xi,yπ(i))
qp +

q
qp
c

qa
(∣Y ∣ − ∣X ∣))

1
qp
∣X ∣ > ∣Y ∣

0 X = Y = ∅

. (5.11)

In contrast to the OSPA in (5.10), the notable distinctions include the absence of the
normalized factor max(∣X ∣, ∣Y ∣), and the introduction of the cardinality penalty factor
2 ≥ qa > 0, which governs the penalty for cardinality mismatch. The key characteristic of
the GOSPA metric is that, for qa = 2, the metric can be expressed as

dGOSPA(X ,Y) =
⎛

⎝
min
γ∈Γ

∑
(i,j)∈γ

d(qc)(xi,yj)
qp +

q
qp
c

2
(∣X ∣ − ∣γ∣ + ∣Y ∣ − ∣γ∣)

⎞

⎠

1
qp

, (5.12)

where γ represents an assignment set between X and Y, and Γ is the set of all potential
assignment sets. Assuming Y is the estimation of X , we can break down (5.12) into the
following components:

• The sum of state errors for detected elements: minγ∈Γ∑(i,j)∈γ d
(qc)(xi,yj)

qp . It
considers all state errors between each pair of assigned states within the optimal
subpattern assignment.

• Misdetection error: q
qp
c

2 (∣X ∣ − ∣γ∣). It represents the penalty for true elements in X
having no corresponding estimates in Y.

• False alarm error: q
qp
c

2 (∣Y ∣− ∣γ∣). It indicates the penalty for estimates in Y having
no corresponding true elements in X .
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These three error types are crucial and more straightforward in the MOT problem com-
pared to the errors involving elements in the smallest set and cardinality mismatch. In
this context, elements can be left unassigned, and only nearby elements are assigned to
each other. Therefore, the GOSPA metric encourages systems to minimize false alarms
and misdetections. For instance, adding false alarms does not necessarily increase the
OSPA metric, but it consistently increases the GOSPA metric. Moreover, as shown
in [108], the negative effects observed in the optimal estimation of multiple objects with
the OSPA metric do not apply to the GOSPA metric.
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SLAM with random finite sets

As outlined in Section 4.2.4, the solution to the SLAM problem can be approached
through RFS theory, giving rise to RFS-SLAM. This chapter presents the RFS-SLAM
framework, delves into multi-object measurement models, and introduces two implemen-
tations of RFS-SLAM.

6.1 RFS-SLAM
The distinctive feature of RFS-SLAM, setting it apart from other SLAM approaches,
lies in the modeling of both landmarks in the environment and received measurements
as RFSs. To obtain the joint posterior density of the UE trajectory and the map
f(s1∶k,X ∣Z1∶k,u1∶k,s0), given the initial UE state s0, measurements Z1∶k and controls
u1∶k up to the current time instant k, we can follow the prediction and update steps of
the Bayesian filtering recursion applied with RFSs, as described in [91]

f(s1∶k,X ∣Z1∶k−1,u1∶k,s0) = f(sk ∣sk−1,uk)f(s1∶k−1,X ∣Z1∶k−1,u1∶k−1,s0), (6.1)

f(s1∶k,X ∣Z1∶k,u1∶k,s0) =
g(Zk ∣sk,X )f(s1∶k,X ∣Z1∶k−1,u1∶k,s0)

p(Z1∶k ∣Z1∶k−1,s0)
, (6.2)

respectively, where g(Zk ∣sk,X ) denotes the RFS likelihood function, which will be intro-
duced in the next section, and p(Z1∶k ∣Z1∶k−1,s0) serves as a normalization constant and
is given by

p(Z1∶k ∣Z1∶k−1,s0) = ∫ ∫ g(Zk ∣sk,X )f(s1∶k,X ∣Z1∶k−1,u1∶k,s0)ds1∶kδX . (6.3)
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It is worth noting that, mathematically, there is also a map prediction in the prediction
step. However, as all landmarks remain static, we omit the map prediction in (6.1).

6.2 Multi-object measurement models
In contrast to the conventional SLAM frameworks, where measurements are represented
as vectors, the RFS-SLAM framework represents measurements as RFSs. In this frame-
work, each measurement can be a genuine observation originating from a landmark or
a clutter measurement without a corresponding source landmark. Landmarks, in turn,
can either be correctly detected with at least one measurement or go undetected with
no associated measurement. The measurement model needs to account for both types of
measurements and the status of landmarks. Thus, the RFS likelihood function, denoted
as g(Zk ∣sk,X ), is expressed as [51]

g(Zk ∣sk,X ) = e
− ∫ c(z)dz

∑

Zc
k
⊎Z1

k
...⊎Z ∣X ∣

k
=Zk

∏
z∈Zc

c(z)
∣X ∣
∏
i=1
ℓ(Zi

k ∣sk,x
i
). (6.4)

The interpretation of (6.4) involves partitioning the measurement set Zk into a col-
lection of disjoint subsets based on their sources, represented as Zk = Z

c
k ⊎Z

1
k . . . ⊎Z

∣X ∣
k .

Here, Zc
k denotes the set of all clutter measurements, and Zi

k is the set of all measure-
ments originating from the i-th landmark xi, which could be empty if the i-th landmark
is undetected. Clutter measurements are modeled as a PPP RFS with clutter intensity
c(z), and ℓ(Zi

k ∣sk,x
i) is the likelihood of the set of all measurements from xi.

6.2.1 Point object model
In the point object model, we make the assumption that each landmark can produce at
most one measurement per time step, and there are no instances of two measurements
originating from the same landmark within a given time step. In other words, a landmark
can be either misdetected or detected with only one measurement. Consequently, the
likelihood function for a point object xi is generally given by [49, Section 5.7]

ℓ(Zi
k ∣sk,x

i
) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 − pD(x
i,sk) Zi

k = ∅,

pD(x
i,sk)f(z∣x

i,sk) Z
i
k = {z},

0 otherwise,
(6.5)

where pD(x
i,sk) ∈ [0,1] denotes the detection probability, and f(z∣xi,sk) is the likeli-

hood, for example, can be given by (2.3). The first entry in (6.5) signifies the misdetection
of xi, while the second entry corresponds to the successful detection of xi. It is evident
that (6.5) describes a Bernoulli process. By substituting (6.5) into (6.4), we obtain a
PMB RFS.
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6.2.2 Extended object model
In the extended object model, a single landmark can generate multiple measurements
per time step. For instance, a wall may reflect and diffuse downlink signals from the BS,
resulting in more than one path. Similar to (6.5), the likelihood function for an extended
object xi is typically expressed as [49, Section 21.2]

ℓ(Zi
k ∣sk,x

i
) =

⎧⎪⎪
⎨
⎪⎪⎩

1 − pD(x
i,sk) + pD(x

i,sk)f(Z
i
k ∣x

i,sk) Z
i
k = ∅,

pD(x
i,sk)f(Z

i
k ∣x

i,sk) Zi
k ≠ ∅,

(6.6)

where f(Zi
k ∣x

i,sk) denotes the model for measurements generated by the landmark given
xi and sk. The specific form of this model, such as being modeled as a PPP [104, 109],
needs to be determined based on the particular problem. The first entry in (6.6) consists
of two terms: 1−pD(x

i,sk) representing the case where the landmark is not detected, and
pD(x

i,sk)f(Z
i
k = ∅∣x

i,sk) representing the case where the landmark does not generate
any measurement.

6.3 Implementations of RFS-SLAM
This section presents two implementations of RFS-SLAM.

6.3.1 Rao-Blackwellized particle-based RFS
One of the key features of the SLAM problem is that landmarks exhibit conditional inde-
pendence when the map is conditioned on the UE trajectory. This characteristic makes
it natural to employ RBPF solutions. Consequently, RFS-SLAM can be accomplished
through Rao-Blackwellized particle (RBP) implementation. In the RBP implementation,
the joint posterior density f(s1∶k,X ∣Z1∶k,u1∶k,s0) is factorized into [91]

f(s1∶k,X ∣Z1∶k,u1∶k,s0) = f(s1∶k ∣Z1∶k,u1∶k,s0)f(X ∣Z1∶k,s0∶k). (6.7)

Then, the recursion for the joint posterior density f(s1∶k,X ∣Z1∶k,u1∶k,s0) is equivalent
to jointly propagating the posterior density of the UE trajectory, f(s1∶k ∣Z1∶k,u1∶k,s0),
and the posterior density of the map conditioned on the UE trajectory, f(X ∣Z1∶k,s0∶k).

In accordance with (6.1)–(6.2), the posterior density of the UE trajectory undergoes
an update given by

f(s1∶k ∣Z1∶k,u1∶k,s0) =
f(s1∶k ∣Z1∶k−1,u1∶k,s0)p(Zk ∣Z1∶k−1,s0∶k)

p(Zk ∣Z1∶k−1,s0)
, (6.8)

where f(s1∶k ∣Z1∶k−1,u1∶k,s0) represents the predicted UE trajectory density and is given
by

f(s1∶k ∣Z1∶k−1,u1∶k,s0) = f(s1∶k−1∣Z1∶k−1,u1∶k−1,s0)f(sk ∣uk,sk−1), (6.9)
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while the posterior density of the map f(X ∣Z1∶k,s0∶k) is updated according to

f(X ∣Z1∶k,s0∶k) =
f(X ∣Z1∶k−1,s0∶k)g(Zk ∣sk,X )

p(Zk ∣Z1∶k−1,s0∶k)
, (6.10)

where f(X ∣Z1∶k−1,s0∶k) = f(X ∣Z1∶k−1,s0∶k−1), as the landmarks remain static. The nor-
malization constant for the map p(Zk ∣Z1∶k−1,s0∶k) is given by

p(Zk ∣Z1∶k−1,s0∶k) = ∫ f(X ∣Z1∶k−1,s0∶k)g(Zk ∣sk,X )δX . (6.11)

By adopting the RBP approach [110, Chapter 7.1], the posterior density of the UE
trajectory can be approximated using a weighted set of N particles

f(s1∶k ∣Z1∶k,u1∶k,s0) ≈
N

∑
n=1

w
(n)
k δ (s1∶k − s

(n)
1∶k ) , (6.12)

where δ(⋅) represents the Dirac delta distribution, s(n)1∶k denotes the n-th particle, N is
the total number of particles, and w

(n)
k is the associated weight to the n-th particle. It

is crucial to note that a sufficiently large number of particles are required to adequately
cover the properties of the sampled states. Hence, N is typically a large number, increas-
ing exponentially with the dimension of the sampled state. For each particle, there is a
map conditioned on it, modeled as an RFS with the multi-object density f(X ∣Z1∶k,s

(n)
0∶k ).

Therefore, in RFS-SLAM, the posterior RFS-SLAM density is represented by a weighted
set of N particles {w(n)k ,s

(n)
0∶k , f(X ∣Z1∶k,s

(n)
0∶k )}

N
n=1. It is essential to emphasize that each

particle encapsulates a single hypothesis of the UE trajectory and the associated map.
Moreover, a higher particle weight signifies a higher likelihood for the corresponding
hypothesis. The subsequent discussion elucidates how these particle components are
computed at time step k.

Draw particles
Ideally, particles should be drawn from the posterior f(s1∶k ∣Z1∶k,u1∶k,s0). However,
due to the complex functional form of the posterior, directly obtaining particles from it
is usually impractical. Instead, an approximate distribution known as the importance
density is used, denoted as q(sk ∣s

n
0∶k−1,Z1∶k,u1∶k), from which particles can be easily

drawn [111, Section 2.5]. For each particle, we perform

s
(n)
k ∼ q(sk ∣s

(n)
0∶k−1,Z1∶k,u1∶k). (6.13)

A common choice for the importance density is the transition density f(sk ∣uk,sk−1),
although there are various other methods for selecting the importance density.

Map update for each particle
In RBP-based RFS-SLAM, each particle encompasses a UE trajectory s(n)0∶k and a map
conditioned on the trajectory f(X ∣Z1∶k,s

(n)
0∶k ), where the map is represented as an RFS.
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The specific form of the map representation may vary; for instance, the map can be
modeled as a PPP, yielding a probability hypothesis density (PHD) filter for the map
[112], or as a PMBM, resulting in a PMBM filter for the map [51]. Regardless of the
chosen RFS to model the map, the update for each map can be expressed as

f(X ∣Z1∶k,s
(n)
0∶k ) =

f(X ∣Z1∶k−1,s
(n)
0∶k )g(Zk ∣s

(n)
k ,X )

p(Zk ∣Z1∶k−1,s
(n)
0∶k )

. (6.14)

However, the utilization of different RFSs leads to distinct update details, DA solutions,
and, naturally, varying outcomes.

Weight update
The update of each particle weight is carried out according to [80, Section 11.3]

w
(n)
k ∝ w

(n)
k−1

p(Zk ∣Z1∶k−1,s
(n)
0∶k )f(s

(n)
k ∣s

(n)
k−1,uk)

q(s
(n)
k ∣s

(n)
0∶k−1,Z1∶k,u1∶k)

. (6.15)

The computation of the normalization constant p(Zk ∣Z1∶k−1,s
(n)
0∶k ) differs based on the

chosen RFS. When the transition density is utilized as the importance density q(⋅), the
updated weight is simplified to

w
(n)
k ∝ w

(n)
k−1p(Zk ∣Z1∶k−1,s

(n)
0∶k ). (6.16)

After updating the weight for each particle, the weights are normalized

w
(n)
k =

w
(n)
k

∑
N
n=1w

(n)
k

. (6.17)

Resampling is performed at each time step if the effective sample size is below a prede-
termined threshold, denoted as the index indicating the “effective” number of particles
and used for monitoring the need for resampling. It can be estimated from the variance
of the particle weights [113, Section 8.6]

nESS =
1

∑
N
n=1(w

(n)
k )

2
. (6.18)

A typical resampling process involves drawing N samples from the discrete distribution
defined by the weights {w(n)k }

N
n=1 and replacing the old sample set with this new one,

setting all weights to 1/N [80, Section 11.4].
RBP-based solutions often exhibit robust performance by keeping cross-correlation

between the UE trajectory and the map through particles. However, the effectiveness
of these solutions comes at the cost of requiring numerous particles to accurately prop-
agate the posterior over time. The requirement for the number of particles increases
exponentially with the UE state dimension. Moreover, for each particle, an RFS fil-
ter is employed to estimate the map. Consequently, RBP-based approaches often face
considerable complexity, rendering them impractical for real-time applications.
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6.3.2 Marginalization
As discussed in Section 6.3.1, RBP-based RFS-SLAM approaches face challenges in terms
of high complexity, primarily stemming from the necessity of a large number of particles.
To mitigate this complexity, marginal posterior densities f(sk ∣Z1∶k,u1∶k) and f(X ∣Z1∶k)

are monitored at each time step, rather than maintaining the entire SLAM posterior
through particles [100]. This pragmatic approach involves a trade-off, as it results in the
loss of correlations between the UE trajectory and the map, but it allows for a significant
reduction in computational complexity. In the following, the computation of these two
marginal posteriors at time step k is discussed.

Joint UE and map prediction and update
The crux of marginalization-based approaches lies in efficiently approximating the joint
posterior f(sk,X ∣Z1∶k,u1∶k) through two marginal posterior densities. Achieving this
entails the joint update of the UE and map by leveraging g(Zk ∣sk,X ). However, this
presents a challenge due to the disparate nature of X as an RFS and sk as a random
vector. Additionally, the DA between the measurement Zk and landmarks X remains
unknown. To address this, one can attempt to vectorize the problem during the update,
employ low-complexity methods (e.g., based on linearization) to solve the vectorized
problem, and subsequently reconstruct the appropriate multi-object density from the
results.

Marginalization
Then, the two marginal posteriors can be derived by marginalizing out the rest state
from the full SLAM posterior, given by

f(sk ∣Z1∶k,u1∶k) = ∫ f(sk,X ∣Z1∶k,u1∶k)δX , (6.19)

f(X ∣Z1∶k) = ∫ f(sk,X ∣Z1∶k,u1∶k)dsk. (6.20)

It is important to note that marginalizing out the UE state introduces correlations among
landmarks. To maintain the RFS format, we drop these correlations by assuming that
all landmarks are independent, although this introduces a loss of information.

Marginalization-based approaches exhibit relatively low complexity and have demon-
strated satisfactory performance in certain scenarios, as exemplified in [Paper B]. How-
ever, by discarding the cross-correlation between the UE and the map, as well as among
all landmarks, these approaches come at the cost of sacrificing SLAM performance and ro-
bustness. Additionally, the measurement function in the joint update often involves high
non-linearity, necessitating careful consideration when employing linearization methods.

6.3.3 Discussions
It is noteworthy that, despite the similarities in appearance between the equations pre-
sented in Section 6.3.1 and Section 6.3.2 to vector-based equations commonly used in the
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SLAM literature, they are inherently different. This distinction arises from the utiliza-
tion of RFSs in this thesis, which possess entirely different statistical properties compared
to random vectors. Consequently, the derivation of the posterior involves fundamental
differences. Therefore, it is crucial to recognize that the prediction and update details of
traditional vector-based methods cannot be directly applied to compute the RFS-based
posterior. For a comprehensive understanding of these distinctions, we provide the pre-
diction and update details of our proposed RFS-SLAM solutions in [Paper A] and [Paper
B], where readers can observe the unique characteristics of RFS-SLAM.

6.4 Fusion
Now, the SLAM problem has been effectively addressed at the UE side through the uti-
lization of RFS-SLAM, providing the UE with accurate estimations of its trajectory and
a comprehensive map of the environment. However, in practice, the fusion of mapping
and SLAM results from diverse sources is a common consideration. For instance, in a
scenario with multiple UEs, each UE may run an individual SLAM algorithm to per-
ceive its specific surroundings and trajectory. Additionally, different SLAM results may
emerge at the same UE side, leveraging different sensors. By amalgamating information
from all sensors and UEs, one anticipates achieving a more sophisticated map and more
precise trajectory estimates.

Within the framework of RFS-SLAM, this fusion involves both UE state fusion and
map fusion. UE state fusion is straightforward, aiming to fuse matched vectors. However,
map fusion entails the fusion of RFSs, which is not a conventional approach. Nevertheless,
the fused map multi-object density can be obtained by minimizing the weighted Kullback-
Leibler average of multi-object densities to be fused. The resulting density is given
by [114]

f̄k(X ) =
∏

M
i=1 f

i
k(X )

wi

∫ ∏
M
i=1 f

i
k(X

′)wiδX ′
, (6.21)

where f̄k(X ) denotes the fused multi-object density, f i
k(X ) denotes the multi-object

density from i-th source with wi representing its weight, and weights sum up to one
(∑M

i=1w
i = 1). After fusion, each UE needs to update its individual maps with the fused

map. It is noteworthy that the involvement of RFSs in (6.21) fundamentally distinguishes
its computation from the vector-based version of (6.21). For an illustrative application
example, please refer to [Paper D].
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Contributions and future work

This chapter provides an overview of the contributions made in each attached publication
and delineates potential directions for future research, drawing upon the themes explored
in this thesis.

7.1 Paper A
Y. Ge, F. Wen, H. Kim, M. Zhu, F. Jiang, S. Kim, L. Svensson, and H. Wymeer-
sch, “5G SLAM using the clustering and assignment approach with diffuse multipath,”
in Sensors (Basel, Switzerland), vol. 20, no. 16, August 2020. [Online]. Available:
https://doi.org/10.3390/s20164656

In this paper, we delve into the radio SLAM problem within a 5G mmWave single BS
downlink scenario, and explore the utilization of diffuse multipath in the SLAM prob-
lem. We introduce an end-to-end framework for the 5G SLAM problem, encompassing
downlink data transmission, channel estimation, clustering, and the SLAM filter. A novel
approach, utilizing the DBSCAN algorithm, is proposed to cluster channel measurements
originating from the same source. Furthermore, we present a multi-model RBP-based
PMBM-SLAM filter, aligned with the framework detailed in Section 6.3.1. The pre-
diction and update details on the proposed SLAM filter are thoroughly provided. An
innovative extended object model capable of accommodating both specular and diffuse
paths is introduced, incorporating the utilization of channel gains. To assess the resulting
performance of the framework, we conduct a simulation study. The results underscore
the framework’s efficacy in handling the radio SLAM problem, affirm the advantages of
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incorporating diffuse multipath using the proposed multi-object model in SLAM, and
emphasize the informative nature of channel gains for synchronizing the UE to the BS.

7.2 Paper B
Yu Ge, O. Kaltiokallio, H. Kim, F. Jiang, J. Talvitie, M. Valkama, L. Svensson, S. Kim,
and H. Wymeersch, “A computationally efficient EK-PMBM filter for bistatic mmWave
radio SLAM,” in IEEE Journal on Selected Areas in Communications, vol. 40, no. 7,
pp. 2179-2192, July 2022, doi: 10.1109/JSAC.2022.3155504.

In this paper, our primary focus is on mitigating the high computational cost associ-
ated with the RBP-based PMBM-SLAM filter introduced in [Paper A]. We propose low-
complexity SLAM filters designed for real-time operation. Departing from the framework
outlined in 6.3.1, we adopt the marginalization framework presented in 6.3.2 to address
the SLAM problem. This paper introduces a novel EK-PMBM SLAM filter, employing
a theoretically sound approach for the joint update of UE and landmark states through
linearization using the first-order Taylor series. Additionally, we derive an algorithm to
approximate the resulting PMBM to a PMB. This algorithm, based on the track-oriented
marginal multi-Bernoulli/Poisson (TOMB/P) algorithm with a limited number of DAs,
transforms the EK-PMBM SLAM filter into the EK-PMB SLAM filter, thus further re-
ducing complexity. Furthermore, we extend both the EK-PMBM and EK-PMB SLAM
filters to accommodate multiple landmark types, resulting in a multi-model implemen-
tation with hybrid discrete and continuous landmark states. Through simulation results
utilizing realistic mmWave signal parameters, we demonstrate that the proposed filters
achieve commendable mapping and positioning performance with very low complexity.
Our findings also illustrate that these SLAM filters can simultaneously handle mapping
and UE state estimation while accurately distinguishing the type of landmarks. The
performance is comparable to that of the RBP-based PMBM-SLAM filter.

7.3 Paper C
Y. Ge, H. Khosravi, F. Jiang, H. Chen, S. Lindberg, P. Hammarberg, H. Kim, O.
Brunnegård, O. Eriksson, B. Olsson, F. Tufvesson, L. Svensson, and H. Wymeersch,
“Experimental validation of single BS 5G mmWave positioning and mapping for intelli-
gent transport,” submitted to IEEE Transactions on Vehicular Technology, 2023.

In this paper, we assess the feasibility of single BS positioning and mapping, as outlined
in Section 3.3, through a real-world demonstration conforming to the current release of
the 3GPP standard. The hardware specifications for the 5G single BS positioning system
are introduced, encompassing the commercial BS, UE, ground-truth system, and outdoor
operating environment. Special attention is given to UE and BS array configurations,
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and the employed beam patterns. Technical algorithms for processing 5G mmWave mea-
surements for positioning purposes are provided. This includes a low-complexity channel
parameter estimation method for processing received measurements, a BS calibration
approach, and algorithms for positioning and mapping. Specifically, we present low-
complexity algorithms for single-BS LoS-only positioning using RTT and AoD, as well as
mixed LoS and NLoS positioning with multipath exploitation. Additionally, a straight-
forward environment mapping algorithm is outlined. Positioning and mapping results
are demonstrated using real 5G measurements, and performance analysis is conducted
through different combinations of real and simulated measurements. Our real-life data
showcases the feasibility of UE positioning with a single BS. However, the results reveal a
notable performance gap between theory and practice, emphasizing the need for further
improvements for enhanced performance.

7.4 Paper D
Y. Ge, H. Kim, L. Svensson, H. Wymeersch, and S. Sun, “Integrated monostatic and
bistatic mmWave sensing,” in IEEE Global Communications Conference, Kuala Lumpur,
Malaysia, December 2023.

In this paper, our primary focus is on addressing the fusion problem outlined in Section
6.4 to enhance overall positioning and mapping performance. The study is conducted in
a scenario where monostatic sensing is executed by the BS to map landmarks and moving
objects in the environment. Concurrently, bistatic sensing is performed at the UE for
SLAM. Both mapping and SLAM problems are tackled using EK-PMB (SLAM) filters
from [Paper B]. To integrate UE states and maps from both monostatic and bistatic
sensing, we introduce an RFS-based integration algorithm, and also provide the exe-
cutable details on the proposed method. We extend the EK-PMB SLAM filter by peri-
odically substituting the corresponding updated maps and UE states with the fused ones.
Through simulations in the mmWave radio network context, we validate the advantages
of integrating the two sensing modalities. The results indicate improved mapping and
SLAM performances in both monostatic and bistatic sensing through periodic fusion.

7.5 Future work
This section introduces potential directions for future work based on the content of the
included papers and outlines some general directions for future research.

Paper A
The current paper focuses solely on the landmark location and type; however, incor-
porating additional features, such as the size of the landmark, holds potential interest.
Furthermore, investigating more efficient sampling methods to reduce the required num-
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ber of particles is a viable consideration. Specific examples of such extensions are detailed
in our papers [115,116], where different importance densities are proposed. While [Paper
B] introduces a more efficient SLAM filter, the computational bottleneck persists in the
estimation of parameters by rotational invariant techniques (ESPRIT) channel estima-
tor. Designing a low-complexity ESPRIT algorithm would be an intriguing pursuit, and
an example of its application in a SLAM framework can be found in our paper [117].

Paper B
This paper currently employs a point object model, but there is potential to broaden the
scope by extending it into an extended object model. Additionally, applying the filter
to real-world data would yield valuable insights. One direction for extension involves
exploring alternative linearization methods, deviating from the current filter linearizing
at the prior mean. A specific instance of this extension is presented in one of our papers
[118], where the iterative posterior linearization filter is employed in lieu of the EKF.

Paper C
This study identifies several limitations that need addressing to enhance positioning and
mapping performance. These include challenges such as BS calibration, synchronization
errors, limited angular resolution in elevation, and a lack of comprehensive knowledge
about the utilized beam patterns. Upon resolving these issues, a new phase of experi-
mentation can be pursued. This next phase may also involve implementing optimized
signal design, incorporating precoding and combining, to elevate positioning accuracy.
Additionally, the extension of the scope to a SLAM problem where the UE motion model
is considered, is expected to further improve the positioning accuracy.

Paper D
Currently, this paper exclusively relies on pilot signals for both monostatic and bistatic
sensing. Investigating the incorporation of data in monostatic sensing would introduce
a compelling dimension to the analysis. Additionally, exploring the optimal selection of
fusion weights adds another intriguing avenue for further investigation.

In general, numerous promising future directions warrant exploration within the realm
of mmWave radio positioning, mapping, and SLAM. One direction involves harnessing the
Doppler component for enhanced analyses in positioning, mapping and SLAM, as touched
upon in our paper [45, 119], with ample room for further investigations. Extending
the scope of radio SLAM to address the simultaneous localization and tracking (SLAT)
problem, as demonstrated in [120], where the tracking of moving objects is incorporated,
constitutes another intriguing direction. Furthermore, the integration of reconfigurable
intelligent surfaces (RISs) into the scenario, as exemplified in [121, 122], introduces an
additional dimension for exploration.

Additionally, the exploration of multi-bounce paths offers a rich area for future work.
Our existing works predominantly considers LoS paths and single-bounce paths, dismiss-
ing multi-bounce paths as disturbances to be suppressed [123]. Analyzing or harnessing
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multi-bounce paths could unlock geometric information beneficial to positioning, map-
ping, or SLAM. Near-field scenarios offer a unique set of challenges and opportunities
for investigation. The integration of deep learning techniques presents another direction
to be explored. In essence, the field of mmWave radio positioning, mapping, and SLAM
remains abundant with intriguing research questions and possibilities awaiting further
exploration.
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