
Thesis for The Degree of Doctor of Philosophy

Adaptive Task Scheduling and Resource Management
Techniques for Improving Energy Efficiency on

Multi-core Systems

Jing Chen

Division of Computer and Network Systems
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2023

Adaptive Task Scheduling and Resource Management Techniques
for Improving Energy Efficiency on Multi-core Systems

Jing Chen

Thesis supervisor:
Prof. Miquel Pericàs, Chalmers University of Technology, Sweden

Thesis co-supervisors:
Dr. Madhavan Manivannan, Chalmers University of Technology, Sweden

Dr. Bhavishya Goel, Chalmers University of Technology, Sweden

Examiner & Chairman:
Prof. Per Stenström, Chalmers University of Technology, Sweden

Opponent:
Prof. Dimitrios Nikolopoulous, Virginia Tech, United States

Grading Committee:
Prof. Martin Schulz, Technical University of Munich, Germany
Prof. Osman Unsal, Barcelona Supercomputing Center, Spain

Prof. Michael O’Boyle, University of Edinburgh, United Kingdom

Deputy Committee:
Prof. Philippas Tsigas, Chalmers University of Technology, Sweden

Copyright ©2023 Jing Chen
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-967-5
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5433.
ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2023.

ii

Abstract

The growing impact of energy on operational cost and system robustness becomes a
strong motivation for improving energy efficiency in parallel computing systems, in
addition to performance. Hardware features such as core asymmetry and Dynamic
Voltage and Frequency Scaling (DVFS) aim to provide opportunities for energy-
efficient computing. However, it also complicates parallel application development.
Task-based parallel programming models have been shown to be a powerful approach
for developing parallel applications, allowing developers to express parallelism in
the form of tasks. To achieve the goal of energy-efficient execution of a task-based
application on multi-core platforms, it is essential to understand application char-
acteristics, underlying platform capabilities and their complex interplay in order to
determine appropriate task schedule and resource allocation. Consequently, this thesis
introduces four task schedulers - ERASE, STEER, JOSS and SWEEP - tailored for
diverse platform capabilities and energy efficiency metrics.

ERASE targets reducing CPU energy consumption in non-user-controllable DVFS
environments. The scheduler includes four modules: online performance modeling and
power profiling modules provide runtime with execution time and power predictions;
core activity tracing offers the instantaneous task parallelism and the task scheduler
combines these information to enable CPU energy consumption predictions and
dynamically determine the best resource allocation for each task. Moreover, ERASE
is designed for quick adaptation to external DVFS changes.

STEER investigates the potential CPU energy savings by leveraging core asymme-
try, CPU DVFS, and task characteristics. STEER comprises two predictive models
for performance and power predictions, and a task scheduler that utilizes models
for energy predictions and then identifies the best resource allocation and frequency
settings for tasks. Additionally, STEER employs adaptive scheduling algorithms
based on task granularity to handle DVFS overheads and coordinates cluster frequency
tuning to mitigate interference from concurrent tasks on cluster-based platforms.

JOSS demonstrates that taking memory energy into account is crucial for reducing
total energy consumption, even in the absence of a memory DVFS knob. The
scheduler leverages knobs of core asymmetry, CPU DVFS, memory DVFS and task
characteristics. JOSS builds a set of models using multivariate polynomial regression,
providing predictions for the execution time, average CPU power and memory power
of each task, when tuning the aforementioned knobs individually and simultaneously,
to facilitate the scheduling decision in task scheduler. Furthermore, JOSS supports
exploring energy reduction with and without performance constraints.

SWEEP leverages application attributes, especially inter-task parallelism, together
with hardware knobs to predict the impact of task distributions and local task
scheduling decisions on the global execution time and energy consumption. SWEEP
is designed for exploring various energy performance trade-offs. It first categorizes
application execution into high parallelism and low parallelism phases, determined by
instantaneous inter-task parallelism. It applies different task scheduling algorithms
for high and low parallelism phases respectively, predicting trade-offs associated
with different configurations and determining the best task distribution, local task
schedules and DVFS settings accordingly.

The four schedulers address the challenges of achieving energy efficiency in diverse
computing environments and targeting various energy efficiency metrics for task-based
parallel applications. They present a comprehensive approach of integrating predictive
models and adaptive scheduling algorithms to fully exploit the capability of multi-core
platforms for both energy savings and energy performance trade-offs.

Keywords: Energy Efficiency, Task Scheduling, Performance Modeling, Power
Modeling, Dynamic Voltage and Frequency Scaling (DVFS), Runtime System

Acknowledgment

I would like to express my sincere gratitude to my main supervisor, Prof. Miquel
Pericàs, for his significant and persistent support during my Ph.D. journey.
I am grateful for the knowledge gained under his guidance and appreciate
his mentorship. I would also like to thank my co-supervisors, Dr. Madhavan
Manivannan and Dr. Bhavishya Goel, for their support and valuable feedback
throughout my research.

I am thankful to Prof. Per Stenström, who served as my examiner, and
Dr. Mustafa Abduljabbar for his help during my Ph.D. I am also grateful
to the outstanding professors and colleagues with whom I had the privilege
to work alongside, including Pedro, Ioannis, Lars, Risat, Pirah, Sonia, Hari,
Minyu, Nikela, Mehrzad, Qi, Neethu, Magnus, Nadja, Waqar, Fareed, Mateo,
Stavroula, Piyumal, Siavash, Konstantinos, Panagiotis, Monica, Arne, and
many more.

I would like to express my deepest gratitude to my supportive family,
especially my parents, my grandmother and my sister, who have been with me
every step of the way. Finally, I would like to extend a special thanks to my
partner Franz. Your love, encouragement and unwavering support have been
instrumental throughout the journey.

This research has been funded by the European Union Horizon 2020 research
and innovation program under grant agreement No.780681 (https://legato-
project.eu/). This research has also received funding from the European
High-Performance Computing Joint Undertaking (JU) under grant agreement
No.956702 (https://eprocessor.eu). The JU receives support from the European
Union’s Horizon 2020 research and innovation program and Spain, Sweden,
Greece, Italy, France, and Germany. The computations were enabled by
resources provided by the Swedish National Infrastructure for Computing
(SNIC), partially funded by the Swedish Research Council through grant
agreement No.2018-05973 (https://www.vr.se/).

v

List of Publications

Appended publications

This thesis is based on the following publications:

[I] Jing Chen, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel
Pericàs
“ERASE: Energy Efficient Task Mapping and Resource Management for
Work Stealing Runtimes”
Published in ACM Transactions on Architecture and Code Optimization
(TACO) 2022.

[II] Jing Chen, Madhavan Manivannan, Bhavishya Goel, Mustafa Abdul-
jabbar, and Miquel Pericàs
“STEER: Asymmetry-aware Energy Efficient Task Scheduler for Cluster-
based Multicore Architectures”
Published in the 34th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD) 2022.

[III] Jing Chen, Madhavan Manivannan, Bhavishya Goel, and Miquel Pericàs
“JOSS: Joint Exploration of CPU-Memory DVFS and Task Scheduling
for Energy Efficiency”
Published in the 52nd International Conference on Parallel Processing
(ICPP) 2023.

[IV] Jing Chen, Madhavan Manivannan, Bhavishya Goel, and Miquel Pericàs
“SWEEP: Adaptive Task Scheduling for Exploring Energy Performance
Trade-offs”
Accepted in the 38th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) 2024.

Other publications

The following publications are not included in the thesis.

[a] Jing Chen, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel
Pericàs
“Towards an Energy Aware Task Scheduler for Asymmetric Architectures”

vii

viii

Published in the 12th Nordic Workshop on Multi-Core Computing (MCC),
2019

[b] Jing Chen, Pirah Noor Soomro, Mustafa Abduljabbar, Madhavan Mani-
vannan, and Miquel Pericàs
“Scheduling Task-parallel Applications in Dynamically Asymmetric Envi-
ronments”
Published in the 49th International Conference on Parallel Processing -
ICPP Workshops SRMPDS, 2020

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 3
1.3 Problem Statement . 4
1.4 Contributions . 5
1.5 Organization . 7

2 Summary of papers 9
2.1 Paper-I . 9

2.1.1 Background . 9
2.1.2 Proposed Approach . 10
2.1.3 Evaluation . 11
2.1.4 Conclusion . 12

2.2 Paper-II . 13
2.2.1 Background . 13
2.2.2 Proposed Approach . 14
2.2.3 Evaluation . 16
2.2.4 Conclusion . 16

2.3 Paper-III . 17
2.3.1 Background . 17
2.3.2 Proposed Approach . 17
2.3.3 Evaluation . 20
2.3.4 Conclusion . 20

2.4 Paper-IV . 21
2.4.1 Background . 21
2.4.2 Proposed Approach . 21
2.4.3 Evaluation . 23
2.4.4 Conclusion . 24

3 Concluding Remarks and Future Work 25

Bibliography 29

ix

x CONTENTS

Paper I 34

Paper II 65

Paper III 77

Paper IV 91

Chapter 1

Introduction

1.1 Background

Parallel computing systems have predominantly prioritized performance over
energy efficiency, leading to exorbitant power and thermal demands that
negatively affect system robustness and operating costs. For instance, enhancing
energy efficiency is now critical in high performance computing (HPC) not
only for cost savings but also for advancing into the exascale supercomputing
era. In mobile devices, improving energy efficiency directly correlates with
extending battery life and enhancing user experience.

Multi-core processors, which are the workhorses in such systems, conse-
quently accommodate several hardware features that target energy-efficient
execution of applications. Dynamic voltage and frequency scaling (DVFS) is
a widely adopted hardware feature that introduces the dynamic asymmetry
for improving energy efficiency [1]. It provides opportunities to reduce power
consumption by throttling the voltage and frequency of system components,
e.g. CPU cores and memory subsystem, potentially with little to no perfor-
mance degradation. Core asymmetry is another popular hardware feature
incorporated in several architecture designs comprising multiple core types
(single-ISA) with different micro-architectures onto a single die. This is referred
to as static asymmetry, due to its fixed feature that cannot change at runtime.
In addition, designs with asymmetric core-clusters reduce the cost and com-
plexity of implementing DVFS by grouping cores of the same type into clusters,
wherein cores in the same cluster can only operate at a common voltage and
frequency setting. Such architectures have been adopted in systems ranging
from mobile devices to HPC machines [2–9].

These features available in hardware provide an opportunity to execute
applications in a wide range of settings with varying power consumption
and performance and enable the exploration of different trade-offs between
performance and power/energy consumption. The metric used for assessing the
trade-offs can target a single objective, such as reducing energy consumption, or
it can target combined objectives that prioritize energy savings and performance
differently.

A common parallelization scheme to exploit such parallel computing systems
is task-parallelism, which has been implemented in several production runtime

1

2 CHAPTER 1. INTRODUCTION

systems, e.g. Cilk [10], TBB [11], StarPU [12], and OpenMP’s explicit tasks [13].
It involves expressing parallelism in an application in the form of tasks and their
dependencies that are generated and resolved dynamically during execution.
Different tasks exhibit diverse characteristics, such as computational intensity
and memory access patterns. An application comprising tasks can be modeled
as a directed acyclic graph (DAG), wherein independent tasks that do not have
any outstanding dependency can be executed in parallel and is referred to as
inter-task parallelism. In particular, exposing fine-grained inter-task parallelism
allows programmers to efficiently scale applications to larger platforms. In
addition, exploiting potential intra-task parallelism by partitioning a single
task into smaller tasks and running on multiple cores helps make use of idle
resources and reduce system idle energy [14,15]. This is also referred to as task
moldability in the thesis.

Work stealing is a well-known approach for scheduling task-parallel ap-
plications and is implemented in several production runtimes [10, 11, 13]. It
has been shown to be effective with sufficient inter-task parallelism available
and can scale to large core counts, while still ensuring load balancing even
on asymmetric architectures [16, 17]. In work stealing schedulers, there is a
local task queue associated with each core, which serves to hold the ready
tasks (i.e. tasks whose dependencies are satisfied). When a core is idle, it first
looks for ready tasks in its own task queue. If it does not find any, it attempts
to steal tasks from the task queues of other cores. However, work stealing
applied in its original form does not produce energy-efficient schedules. The
two principles on which work stealing is based, namely the work-first principle
and random victim selection, are neither aware of task characteristics nor of the
cores’ performance and energy profiles. As a result, such scheduling techniques
can detrimentally impact energy consumption and performance of parallel
applications.

Achieving energy-efficient execution of a task-based application on multi-
core platforms entails understanding application characteristics, underlying
platform capabilities and their complex interplay in order for a scheduler to
determine appropriate task schedule and resource allocation. On one hand,
the available hardware knobs (core asymmetry, CPU DVFS and memory
DVFS) and diverse application attributes (inter-task parallelism, intra-task
parallelism and task characteristics) present great opportunities for trade-offs
between performance and power consumption. On the other hand, these
knobs introduce additional dimensions to the task scheduling problem that is
already computationally hard. Effectively navigating this complexity requires
traversing a large search space to figure out the best task schedule and resource
management decisions. Furthermore, the proposed scheduling techniques should
offer adaptivity to cater to various energy efficiency optimization targets and
diverse platform environment settings.

The goal of the thesis is to propose adaptive task scheduling and resource
management techniques to tackle the challenges of achieving energy-efficient
task scheduling for task-based applications on multi-core architectures.

1.2. RELATED WORK 3

1.2 Related Work

There is growing interest in improving energy efficiency for parallel applications
running on multi-core architectures, which can be broadly grouped into three
categories.

The first category includes a group of proposals that demonstrate the
potential of using per-core DVFS to improve energy efficiency. HERMES [18]
is a work-stealing runtime that coordinates DVFS frequencies associated with
each core. The proposed approach introduces a workpath-sensitive algorithm,
which slows down the frequency of thief cores (those stealing tasks from other
cores’ task queues), and a workload-sensitive algorithm that samples the queue
workload size and selects appropriate DVFS frequency based on it. CATA [19]
tunes the per-core DVFS based on task criticality, accelerating the cores that
execute critical tasks and setting the cores that execute non-critical tasks to low-
frequency power-efficient states. CATA also implements a hardware component
to mitigate the performance overhead of DVFS reconfiguration. Acun et
al. [20] use per-core DVFS and adopt an online history-based approach for
performance and power predictions by sampling with every possible frequency.
AAWS [21] targets asymmetric platforms and proposes several techniques
(work-pacing, work-sprinting, and work-mugging strategies along with per-core
DVFS) depending on each core’s state (stealing vs executing). However, the
aforementioned schedulers make restrictive assumptions about the capabilities
of the underlying hardware platform and consequently have limited effectiveness
on platforms featuring cluster-based DVFS.

The second category consists of several studies that propose diverse schedul-
ing techniques to enhance the energy efficiency of multi-core platforms in-
corporating cluster-based DVFS. AEQUITAS [22] proposes a round-robin
time-slicing algorithm on top of HERMES, where each active core within a core
cluster controls DVFS for a short interval in a round-robin manner. Costero et
al. [23] present a group of frequency scaling policies based on task criticality
and workloads, as well as task scheduling policies for idling or switching off
clusters of an asymmetric cluster-based platform based on the workload. How-
ever, they evaluate these policies individually. Shafik et al. [24] search for the
best concurrency and frequency in a time-interval manner on a cluster-based
symmetric platform, without considering the impact of core asymmetry and
task characteristics. CHRT [25] is a phase-based scheduler that predicts task
placement, cluster frequency, and number of cores for each execution phase
based on only task criticality. CHRT has limited applicability for dynamic
unfolding DAGs where criticality cannot be easily determined without explicit
programmer support. Furthermore, the performance and power models in
CHRT treat all tasks equally regardless of diverse task characteristics. Notably,
none of these prior works leverage intra-task parallelism to enhance energy
efficiency. These schedulers also do not fully exploit available hardware knobs,
especially memory DVFS. Most importantly, they lack support for exploring
various energy performance trade-off metrics.

Another line of related work targets energy and/or performance for single-
threaded applications or multi-programmed applications instead of task-based
applications. MemScale [26] targets energy consumption in the memory sub-
system. They leverage dynamic profiling, performance and power modeling to

4 CHAPTER 1. INTRODUCTION

guide DVFS of memory controller and frequency scaling of memory channels
and DRAM. David et al. [27] propose an intuitive algorithm that detects mem-
ory bandwidth utilization for tuning DVFS of memory subsystem. Sundriyal
et al [28] aim to minimize system power consumption given the performance
loss tolerance, with a proposed performance and a power model based on
performance monitoring counters (PMC) to determine the best joint frequency
setting for the entire application in a time window-based manner. CoScale [29]
is an epoch-based framework for multi-programmed workloads, by collecting
PMCs for model prediction and searching for the best frequency pair using a
gradient-descent method.

1.3 Problem Statement

Fine-grained tasking and externally controlled DVFS: Applications
often expose fine-grained task parallelism for achieving better scalability and
load balancing in multi-core and many-core architectures [30,31]. With fine-
grained tasking, the execution time of tasks are in the order of microseconds,
which makes the DVFS reconfiguration overheads non-negligible. Therefore,
leveraging per-task DVFS is impractical in this case. Moreover, it is common
that in a multi-user OS DVFS control is commonly not under control of the
application but restricted to the kernel [32], the system administrator [33],
or power management frameworks such as GEOPM [34]. Consequently, it is
crucial to design an adaptive energy-efficient task scheduling technique that
applies to fine-grained tasking with low overheads and can be reactive to
externally controlled DVFS. Paper I aims to address the following question:

Question I: How can we reduce the energy consumption of running fine-grained
tasking parallel applications on multi-core platforms with externally controlled
DVFS?

Energy reduction with user-manageable CPU DVFS: Enabling CPU
DVFS from user space, along with core asymmetry and diverse task charac-
teristics, presents a complex, multi-dimensional task scheduling problem for
achieving energy reduction. A large search space needs to be explored to identify
the best task schedule and DVFS setting for each task, i.e. <cluster, number
of cores, cluster frequency>. In addition, DVFS reconfiguration overheads,
particularly significant for fine-grained tasks with execution times in the order
of microseconds, can diminish the benefits of frequency throttling. Therefore,
it is important to devise an adaptive frequency throttling strategy considering
various task granularities. Furthermore, on platforms with cluster-level DVFS,
it is possible that multiple tasks are scheduled to run on the same cluster
and different frequencies are selected to achieve energy savings. Consequently,
coordinating cluster frequency tuning is crucial to avoid destructive DVFS
tuning interference. Paper II aims to address the following question:

Question II: How to reduce energy consumption by leveraging core asymmetry,
CPU DVFS, task characteristics in conjunction when running a task-based
application on multi-core platforms featuring cluster-level DVFS?

Leveraging memory DVFS to improve energy efficiency: In response

1.4. CONTRIBUTIONS 5

to the growing memory demand in emerging multi-core architectures, main
memory bandwidth and capacities have also been steadily increasing, making
memory energy a significant contributor to total energy consumption. Conse-
quently, hardware vendors have started to integrate memory DVFS to further
improve energy efficiency. Several works have highlighted the importance and
the benefit of leveraging memory DVFS, since it opens up many opportunities
for establishing trade-offs between performance and energy consumption [26–29].
Leveraging all the available knobs, i.e. core asymmetry, CPU DVFS, memory
DVFS in conjunction with various task characteristics, leads to increased com-
plexity in task scheduling. In addition, it is crucial that the scheduler aims to
reduce the total energy consumption while still maintaining a good level of
performance. Paper III aims to address the following questions:

Question III: How to investigate the impact of tuning the available knobs,
individually and collectively, on performance, CPU energy and memory en-
ergy consumption of a single task? How to determine the best task schedule
and appropriate frequency pair to explore energy reduction with and without
performance constraints for a task-based application?

Various energy performance trade-offs exploration: The knobs available
in hardware, i.e. core asymmetry, CPU DVFS and memory DVFS, provide
an opportunity to execute applications in a wide range of settings and enable
exploration of different trade-offs between performance and energy consumption.
The trade-off can be assessed using metrics such as Energy Delay Product
(EDP) and EmDnP that prioritize energy savings and performance differently.
Existing prior works are only designed for a specific trade-off metric and
lack the flexibility to explore various metrics. Moreover, understanding the
impact of tuning knobs for a single task and their interplay effects on both the
performance and energy consumption of that specific task, as well as the impact
on the overall performance and energy consumption of the entire application, is
complicated, especially in the context of a dynamically unfolding DAG during
runtime. Furthermore, parallel applications exhibit both high and low task
parallelism, which necessitates the adaptive scheduling algorithm for specified
targets. Paper IV aims to address the following question:

Question IV: How to design a scheduler that leverages the available hardware
knobs and application characteristics to facilitate the exploration of various
energy performance trade-offs when running a task-based application on multi-
core platforms?

1.4 Contributions

This thesis is based on four papers. Paper I addresses the first question, and
the main contributions are:

• Paper I proposes ERASE: an energy-efficient task scheduler that combines
power profiling, performance modeling and core activity tracing for energy-
efficient mapping (i.e. choosing the cluster) and resource management
(i.e. selecting the number of cores per task). The proposal exploits the
insights of task moldability, task-type awareness and instantaneous task

6 CHAPTER 1. INTRODUCTION

parallelism detection for guiding scheduling decisions to reduce the total
energy consumption of parallel applications.

• It describes how to integrate ERASE on top of work stealing runtimes,
using the XiTAO [35] runtime for the prototype implementation.

• It compares ERASE to state-of-the-art scheduling techniques on top of
the runtime and the evaluation shows that ERASE achieves up to 31%
energy savings and outperforms the state-of-the-art by 44% on average.

Paper II addresses the second question, and the main contributions are:

• Paper II shows that considerable energy savings can be achieved by
leveraging static asymmetry, dynamic asymmetry and task heterogeneity
in conjunction. Accordingly, we propose STEER, a task scheduling
framework that exploits these features to predict the best energy-saving
configuration for each task.

• It proposes a performance model and a power model to predict the impact
of varying the core type, the number of cores and the frequency, that are
not limited by the availability of performance counters.

• It develops heuristics to (1) manage DVFS overheads by applying adaptive
scheduling techniques for varying task granularities, and (2) mitigate
DVFS interference from concurrent task execution on cluster-based multi-
core architectures.

Paper III addresses the third question, and the main contributions are:

• Paper III demonstrates that (1) leveraging static asymmetry and dynamic
asymmetry, i.e. core type, number of cores, core frequency and memory
frequency, together with task characteristics, enables significant reduction
in energy consumption; (2) even in the absence of a memory DVFS
knob, taking total energy consumption (including CPU and memory) into
account for configuration selection results in lower energy consumption
compared to only considering CPU energy.

• It proposes the JOSS runtime scheduling framework for task-based parallel
applications on multi-core architectures, which provides the ability to
explore various energy performance trade-offs.

• It builds a set of models using multivariate polynomial regression capable
of accurately predicting the execution time, average CPU power, and
average memory power of each task when tuning the four available knobs,
individually and simultaneously.

Paper IV addresses the fourth question, and the main contributions are:

• Paper IV proposes SWEEP, a scheduler that leverages architectural knobs
(core asymmetry, CPU and memory DVFS) together with application
attributes (inter-task parallelism, intra-task parallelism and task charac-
teristics) to facilitate energy performance trade-off exploration. SWEEP

1.5. ORGANIZATION 7

splits execution into phases, classifies phases as high parallelism and low
parallelism, and determines the best task schedule and DVFS settings for
each phase. SWEEP adapts task schedule and DVFS settings to various
energy performance trade-off metrics.

• SWEEP is extensively evaluated by comparing it with several state-of-
the-art proposals that target energy-efficient execution. Our evaluation
demonstrates the effectiveness of SWEEP to flexibly target different
energy performance trade-off metrics, a feature that is not supported
by other state-of-the-art proposals. More specifically, SWEEP achieves
19.9%, 36.4% and 9.5% reduction on average in terms of EDP, ED2P and
E2DP compared to the best performing state-of-the-art.

1.5 Organization

The rest of this thesis is organized as follows. A summary of each paper is
provided in Chapter 2. Chapter 3 presents the concluding remarks and the
potential future work. Finally, the four papers are appended to the end of this
thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Summary of papers

2.1 Paper-I

2.1.1 Background

Parallel applications often rely on work stealing schedulers in combination with
fine-grained tasking to achieve high performance and scalability. Random work
stealing is a well-known approach for scheduling task-parallel applications [16,
17] that has been implemented in several production runtimes, such as Cilk [10],
TBB [11] and OpenMP’s explicit tasks [13]. However, reducing the total
energy consumption in the context of work stealing runtimes is still challenging,
particularly when using asymmetric architectures with different types of CPU
cores. This is because the two principles on which random work stealing is
based, namely the work-first principle and random victim selection, are neither
aware of task characteristics nor of the cores’ performance and energy profiles.

A common approach employed in earlier works to achieve energy savings
in work-stealing runtimes involves leveraging DVFS, wherein the throttling
is carried out based on factors like task parallelism, stealing relations, task
criticality and workload sizes [18,19,21,22]. However, the reliance on DVFS
limits their applicability due to several reasons. First, studies have shown
that DVFS transition delay is around 100 microseconds, thereby the DVFS
switching overheads are non-negligible for fine-grained tasks that execute in
the order of microseconds [19, 21, 36, 37]. Second, per-core DVFS control
utilized in prior works precludes their techniques applicability on cluster-based
architectures [18,19,21]. With cluster-level DVFS, multiple tasks attempting
frequency changes within the same cluster will result in destructive interference,
since the decision taken to reduce energy consumption of a task mapped to a
specific core can affect concurrently running tasks on the same cluster. More
importantly, it is common that in a multiuser OS, DVFS is most often not
under the control of the application, but is externally controlled by the Linux
kernel [32], the system administrator [33], or power management frameworks
such as GEOPM [34]. Consequently, an energy-efficient runtime designed to
be reactive to both given static frequency settings and externally controlled
DVFS, instead of relying on actively changing DVFS settings, has the potential
to be a more general solution to the problem of energy-aware scheduling.

9

10 CHAPTER 2. SUMMARY OF PAPERS

Figure 2.1: An overview of ERASE comprising four modules. Cx denotes the
core id, Wy denotes the possible resource widths. In status, “1” denotes that
Cx is in active state while “0” denotes the core is in sleep state.

2.1.2 Proposed Approach

In Paper I, we present ERASE - an energy-efficient task scheduler to address
the problem of reducing the total CPU energy consumption when running task-
based applications on multi-core platforms wherein the frequency throttling is
externally controlled.

In a nutshell, ERASE reduces energy consumption of executing a task DAG
by attempting to execute each task with the lowest possible energy consumption.
To reduce the energy consumed by each task, runtime needs to evaluate the
energy consumption of all different resource configurations <cluster, number of
cores> and identify the one that consumes the least energy for the task. Hence,
it is crucial that the runtime can predict the execution time and the power
consumption and thereby the energy consumption to facilitate the configuration
selection.

ERASE leverages the insights of task moldability (i.e. intra-task parallelism)
and task-type awareness to determine the appropriate resource allocation for
each task, including selecting the cluster and determining the number of cores
(resource width). Meanwhile, it adaptively puts idle cores to sleep state by
applying an exponential back-off sleeping strategy to further reduce the energy
waste. Figure 2.1 provides an overview of ERASE, which comprises four
essential modules: online performance modeling, power profiling, core activity
tracing and a task mapping algorithm.

The online performance modeling module enables ERASE to predict the
execution times of a task when mapped on different resource configurations
(i.e. number/type of cores). Online performance modeling adopts a history-
based model, it continuously monitors task execution during runtime and
updates look-up tables. A look-up table is implemented for each kernel. The
size of each look-up table equals the product of the number of clusters and
the number of available resource widths on a platform. The module can
not only provide performance predictions for incoming tasks by referring to
corresponding look-up table entries but also instantly detect the external
controlled frequency changes by comparing the new execution time to previous
table entry records. Once the frequency change is detected, the module will

2.1. PAPER-I 11

reset the look-up table entries to zeros and retrain the model.

The power profiling module provides power estimates with respect to
different resource configurations for given core frequencies. The module groups
tasks into three representative types: compute-bound, memory-bound and
cache-intensive. By profiling a set of microbenchmarks, we compute the
arithmetic intensity (AI) values and employ the k -NN algorithm to cluster
them into the three groups. This is done by computing the euclidean distances
of the AIs and then selecting an AI threshold that lies on the frontier region
between the clusters. The averaged power values from each group are used as
power estimates once a task is classified to a certain task type. During runtime,
we compute the AI value of a task and map the task to one of the groups where
the average power consumption of the group is utilized as the reference.

Core activity tracing continuously tracks the activities (i.e. work stealing at-
tempts) and status (i.e. active or sleep) of each core and infers the instantaneous
task parallelism, which gives the task mapping algorithm a hint for attributing
the idle power consumption to concurrently running tasks accurately. This is
because the idle power obtained with power profiling module is the total idle
power of the entire chip/cluster. It cannot be attributed to the task directly
because this is shared between concurrently running tasks. In other words, each
concurrently running task shares a portion of idle power at any given moment,
and attributing the entire idle power from power profiling to a single task may
lead to inaccurate energy estimation. Finally, the task mapping algorithm
integrates the aforementioned information from the three modules and guides
the scheduling decision for each task based on the energy estimates of running
the task on different resource configurations.

In work stealing runtimes, idle cores that continuously attempt stealing
without success lead to energy waste. The problem of reducing energy con-
sumption during idle periods requires the runtime to be able to detect the cores’
instantaneous utilization and dynamically put idle cores to sleep. The challenge
is to determine the sleep duration such that energy consumption during the
period is minimized with minimal performance impact. To minimize energy
waste from continuous work stealing attempts by idle cores, ERASE adopts
an exponential back-off sleep strategy [38]. The core activity tracing module
keeps track of the number of unsuccessful steal attempts per core. When the
number of attempts exceeds a preset threshold, a core is put into sleep. The
core will sleep for an exponentially increasing time (ranging from 1ms to 64ms)
if it cannot find any ready task upon wake up.

2.1.3 Evaluation

We evaluate the effectiveness of ERASE by comparing against several state-
of-the-art scheduling techniques on an asymmetric platform - NVIDIA Jetson
TX2 and a symmetric platform - a dual-socket 16-core per socket Intel Xeon
Gold 6130 node.

The results obtained from Jetson TX2 indicate that ERASE achieves 10.1%
energy reduction and 43.6% performance improvement on average, compared
to the resource-agnostic and non-moldable state-of-the-art across different
benchmarks and different degrees of parallelism (dop). In addition, we observe
that the energy reduction is significant when the performance gap of two

12 CHAPTER 2. SUMMARY OF PAPERS

clusters is large.
The results obtained from the symmetric platform show that ERASE

consumes 15% less energy and achieves 18% performance improvement on
average when compared to state-of-the-art schedulers across various benchmarks
and different dop. We also show that the energy reduction is significant
especially when dop is low.

The results of analyzing the adaptability of ERASE show that ERASE
models can detect dynamical frequency changes and automatically adapt to
the new frequency instantly, which achieves 30% energy savings and 23%
performance improvement compared to the scenario in which the models are
unaware of the frequency change and keep using the same model settings
detected at the beginning of execution.

2.1.4 Conclusion

We propose ERASE - an energy-efficient task scheduler for reducing the total
CPU energy consumption of executing fine-grained task-based parallel ap-
plications on multi-core platforms. The scheduler works by estimating the
energy consumption of different resource configurations at a per-task level and
performs task mapping decisions so as to minimize the energy consumption of
each task. It also adaptively puts cores that repeatedly execute work stealing
loop without success to sleep state by applying an exponential back-off sleeping
strategy. Furthermore, ERASE is capable of adapting to both given static
frequency settings and externally controlled DVFS.

2.2. PAPER-II 13

2.2 Paper-II

2.2.1 Background

In order to improve energy efficiency, hardware vendors have integrated DVFS
and core asymmetry on multi-core platforms. DVFS is a well-known technique
that represents the dynamic asymmetry feature and offers great promise to
significantly reduce power consumption by adapting both voltage and frequency
of the system with respect to various workloads [1]. Core asymmetry designs
that are being composed of multiple core types with different micro-architectures
onto a single die, provide diverse energy-performance capabilities for different
workloads, which is a demonstration of static asymmetry due to its fixed feature
at design time.

Core-clustering paradigm [39] is adopted for organizing such architectures
to reduce the hardware design complexity [2,3,5,40–43]. In such designs, cores
of the same type are clustered together to share common resources like last
level cache and memory controller. For power management, these cluster-based
platforms often support per-cluster DVFS, where cores in the same cluster
must operate at the same voltage-frequency level.

Besides static and dynamic asymmetry, energy-efficient scheduling can
benefit from considering task characteristics, which motivates us to understand
the contributing factors to energy consumption in order to make energy-efficient
task schedules on such platforms. These factors include task placement (i.e. task
mapping to appropriate resources), and potential intra-task parallelism (task
moldability) exploitation by running a single task on multiple resources to
reduce resource oversubscription and make use of idle resources, and task
granularity (size) in relation to the DVFS timing overheads. Collectively, we
refer to these three aspects, namely task characteristics, task moldability and
task granularity, as task heterogeneity.

Existing studies [18–25, 44] either explore the energy benefits of levering
dynamic asymmetry in isolation or the combination of static asymmetry and
dynamic asymmetry without considering the impact of task heterogeneity.
Moreover, the proposals that use per-core DVFS [18–21] have limited applica-
bility on cluster-based architectures. In Paper II, we show that leveraging task
heterogeneity in conjunction with static asymmetry and dynamic asymmetry
can provide significant opportunities for energy reduction.

There are three major challenges that need to be addressed to enable the
energy-efficient schedules on platforms with cluster-level DVFS. First, predicting
the best execution place and frequency setting for a task involves exploring a
three-dimensional search space, i.e. <cluster, number of cores, frequency>. The
complexity is exacerbated by the need to estimate energy consumption with
low runtime overhead and with reasonable accuracy. Second, it is necessary to
design adaptive scheduling techniques for various task granularity, particularly
for fine-grained tasks to exploit DVFS and reduce DVFS negative impacts
simultaneously. Finally, with concurrent running tasks, it is possible that
different frequencies are selected for energy reduction. This fact makes frequency
coordination crucial for mitigating the detrimental energy impacts on the
concurrent running tasks and reducing the overall energy consumption.

14 CHAPTER 2. SUMMARY OF PAPERS

Figure 2.2: An Overview of STEER framework.

2.2.2 Proposed Approach

In this paper, we propose a task scheduling framework STEER. In a nutshell,
STEER reduces the energy consumption of the entire DAG by running each
task with the lowest energy consumption possible through identifying the best
execution place and frequency setting. Figure 2.2 provides an overview of the
essential components in STEER.

To address the aforementioned challenges, STEER leverages two predictive
models to help the runtime accurately predict the impact of different execution
place and frequency settings on the execution time and power consumption.
Then a task scheduler is developed to leverage the models to predict the energy
consumption, determine the best execution place and frequency setting that
consumes the least modeled energy and schedule tasks for execution.

Performance Model: To predict the execution time and reduce the
modeling overheads, STEER exploits a hybrid approach by first sampling a
limited number of possible settings and utilizing a model to predict performance
for the rest of settings. The performance model utilizes memory-boundness
(MB) as a measure of the fraction of execution time that does not scale with
core frequency [45]. Therefore, the total execution time at a fixed (sampled)
frequency (f0) could be split into a memory bound fraction (MB) and a
computation fraction (1-MB):

Timef0 = Timef0 × (MB + (1−MB)) (2.1)

When changing the core frequency, the computation fraction (1-MB) will scale
proportionally with frequency, while the memory bound fraction (MB) will
remain independent of the frequency. Consequently, the equation for predicting
execution time based on MB at a different frequency (f) can be expressed as
below:

Timef = Timef0 × (MB + (1−MB)× f0
f
) (2.2)

The performance model relies on knowing Timef0 and MB at frequency f0
to predict the execution time for the task when running at other frequencies.
Timef0 can be obtained by timing the task execution during the runtime. We
obtain a second sample at a different frequency (f0) and derive MB as follows:

MB =

Timef
Timef0

− f0
f

1− f0
f

(2.3)

Once MB is estimated by sampling at two different frequencies, the execution
time predictions for all other frequencies are obtained using equation 2.2.

2.2. PAPER-II 15

Figure 2.3: The work flow of STEER scheduler.

Power Model: The power model adopts an offline characterization ap-
proach, where look-up tables are constructed for power references during
runtime. We profile a set of training benchmarks (NAS parallel benchmark
suite in this work) to record the power consumption and execution time on
different execution place and frequency settings. We then calculate the MB
values and cluster these benchmarks into groups according to their MB values.
Estimating the power consumption for a task at runtime involves mapping the
task into one of the groups given its MB value and accessing the corresponding
table entry. The offline power modeling is independent on applications and just
needs to be done once for a specific platform (e.g. at install-time or boot-time),
and has no impact on execution time.

Task Scheduler: The task scheduler in STEER essentially comprises
two phases as shown in Figure 2.3. In sampling and prediction phase, the
scheduler performs execution time sampling of tasks to compute MB values
and enable performance and power prediction at different execution place and
frequency settings. In scheduling phase, the scheduler utilizes the performance
and power consumption prediction information to enable energy-efficient task
scheduling. For coarse-grained tasks, the scheduler iterates all possible settings
and identifies the one that consumes the least modeled energy and then performs
the task mapping and frequency throttling accordingly. In the case of fine-
grained tasks, DVFS throttling overheads are large enough to offset any benefit.

16 CHAPTER 2. SUMMARY OF PAPERS

Therefore, STEER adaptively adjusts scheduling policy once fine-grained tasks
are detected. Specifically, fine-grained tasks are composed together with other
tasks that are instances of the same kernel and can be viewed as a single
coarse-grain task, such that DVFS throttling can be performed for this entire
group of tasks for further energy savings. To address the challenge of frequency
coordination in cluster-based platforms, STEER develops a heuristic to mitigate
the problem by tuning the frequency of the cluster to the arithmetic average
predicted frequency of each of the individual tasks running on the cluster.

2.2.3 Evaluation

We evaluate the effectiveness of STEER by comparing it to multiple state-of-
the-art schedulers on an asymmetric cluster-based platform NVIDIA Jetson
TX2. The evaluation across a range of benchmarks shows that STEER achieves
53% energy reduction on average compared to the baseline scheduler greedy
random work stealing (GRWS), and 38% energy reduction on average compared
to both the state-of-the-art approach AEQUITAS [22] and our previous work
ERASE. Our analysis indicates that STEER can identify the best task schedule
and core frequency settings for different task types, therefore leading to the
lowest energy consumption.

We also evaluate the prediction accuracy of the proposed performance and
power models in STEER and use MAPE (Mean Absolute Percentage Error)
as a measure of accuracy. The results show that the proposed performance
model and power model achieve 95% (92% in the worst case) and 90% (86%
in the worst case) prediction accuracy on average, respectively. Furthermore,
our evaluation demonstrates that the fraction of the overall time spent on the
sampling and prediction phase is 0.73% on average. The overheads of running
the workflow of STEER task scheduler to figure out the best configurations
are 0.1% on average on all six cores across all evaluated benchmarks.

2.2.4 Conclusion

We propose STEER to address the problem of reducing the CPU energy
consumption of task-based parallel applications on cluster-based multi-core
platforms. STEER leverages static asymmetry, dynamic asymmetry and task
heterogeneity in conjunction to run each task with the least possible energy.
STEER incorporates a performance model and a power model to predict
the impact of running tasks with different execution places and frequency
settings. It also utilizes heuristics to manage varying task granularity and
reduce frequency-tuning conflicts among concurrent running tasks.

2.3. PAPER-III 17

2.3 Paper-III

2.3.1 Background

Energy efficiency has emerged as a crucial design constraint in various parallel
computing systems ranging from battery-powered mobile devices to high per-
formance computers. There has been extensive research on leveraging static
and/or dynamic asymmetry as knobs to reduce CPU energy consumption since
it is typically the largest contributor to the total energy consumption of a
system [19, 21, 22, 24, 25, 46–48]. In order to meet the memory demand for
emerging many-core architectures, main memory bandwidth and capacities
have also been steadily increasing, which lead to the memory system also
becoming a major contributor to total energy consumption [49]. Accordingly,
several emergent architecture designs provide DVFS in memory subsystem for
different performance and efficiency requirements.

energy-efficient execution of a task DAG relies on runtime schedulers to
map each task in the DAG to hardware resources (i.e. choosing the appropriate
core type and number of cores for the task) and throttle the available DVFS
knobs simultaneously. Unfortunately, existing works do not leverage static
and dynamic asymmetry, especially memory DVFS, in conjunction with task
characteristics for scheduling. Moreover, they are designed for a specific target
and mostly use a set of heuristics without having the ability to explore trade-offs
between performance and energy consumption.

In order to develop a runtime scheduling framework that leverages the afore-
mentioned knobs and provides the ability to target various trade-offs between
performance and energy consumption, several challenges need to be addressed.
First, the effects of tuning available knobs, individually and in conjunction,
on performance and energy consumption need to be understood. Second, the
interplay between task scheduling decisions and the exploration of various
trade-offs between energy and performance needs to be investigated. Finally,
there is a need to accommodate applications/tasks with diverse characteristics
while also ensuring low runtime overhead.

2.3.2 Proposed Approach

In Paper III, we propose JOSS, a runtime scheduling framework that can
target various energy performance trade-offs through leveraging all the knobs
(i.e. core type (TC), number of cores (NC), core frequency (fC) and memory
frequency (fM)). Figure 2.4 provides a high-level overview of the JOSS runtime
framework.

JOSS specifically comprises a performance model, a CPU power model
and a memory power model to provide the scheduler with the prediction
of task execution time and power consumed in CPU and memory domains
when executing tasks with different configurations. Energy and performance
estimates are used by the task scheduler to guide configuration selection and
achieve the desired trade-off goals. The scheduler maps tasks to selected CPU
cores and sends the frequency throttling requests to the CPU DVFS controller
and the memory DVFS controller. JOSS supports performance constraints
specified as speedups relative to the execution time for energy minimization.

18 CHAPTER 2. SUMMARY OF PAPERS

Figure 2.4: High-level overview of JOSS.

Otherwise, JOSS targets total energy reduction if a performance constraint is
not specified.

To enable performance and power predictions, we first characterize a plat-
form by running a set of synthetic benchmarks. The basic structure of the
synthetic benchmark includes a computation loop and a memory access loop.
Through controlling the number of iterations in each loop, we can generate
different ratios of computations and memory access. We profile the platform via
executing these synthetic benchmarks at all possible configurations for the four
knobs and measure the execution time, CPU and memory power consumption.

Performance Model: The performance model aims to predict the exe-
cution time of a task under joint CPU and memory frequency scaling. The
total execution time is estimated as the sum of computation time and stall
time due to memory latency: Time = Timecomp + Timestall. JOSS uses
memory-boundness (MB) as a metric for task characteristic to quantify the
fraction of execution time that does not scale with core frequency, similar
to prior work [45]. When throttling the core frequency from fC to f ′

C , the
computation time will scale proportionally with frequency:

Time′comp = Time× (1−MB)× fC
f ′
C

(2.4)

Time′stall is dependent on core and memory frequency scaling in addition
to task characteristics (MB). We utilize the statistics from running synthetic
benchmarks to build the performance model using multivariate polynomial
regression as shown below:

Time′stall = Time× (

2∑
i=0

βixi +

2∑
i=0

βiix
2
i +

1∑
i=0

2∑
k=i+1

βikxixk + ε) (2.5)

where xi = {MB, fC
f ′
C
, fM
f ′
M
}, 0≤i≤2. Here, βi, βii, βik are the coefficients of the

linear component, the quadratic component and the interaction component,
respectively, and ε is the intercept. The execution time at < f ′

C , f
′
M > is

Time′ = Time′comp + Time′stall.

JOSS relies on sampling task execution times at two different core frequencies

2.3. PAPER-III 19

Figure 2.5: JOSS task scheduler timeline.

under the highest memory frequency setting to calculate MB as follows:

MB =

Timef′
C

TimefC
− fC

f ′
C

1− fC
f ′
C

(2.6)

CPU Power Model: The results from running synthetic benchmarks
indicate that CPU power consumption is mainly dependent on core frequency
and task characteristics (MB). Consequently, we build the CPU power model
using multivariate polynomial regression as shown below:

PowerC =

1∑
0

βixi +

1∑
0

βiix
2
i + β01x0x1 + ε (2.7)

where xi = {MB, fC}, 0≤i≤1.

Memory Power Model: Memory power is dependent on all three influ-
ential factors, i.e. core frequency scaling, memory frequency scaling and task
characteristics (MB). Consequently, we build the memory power model using
multivariate polynomial regression as shown below:

PowerM =

2∑
0

βixi +

2∑
0

βiix
2
i +

1∑
i=0

2∑
k=i+1

βikxixk + ε (2.8)

where xi = {MB, fC , fM}, 0≤i≤2.

Figure 2.5 provides an overview of the JOSS task scheduler’s timeline.
JOSS first samples task execution times, for different kernels, when running
with different <TC , NC> configurations at both fC and f ′

C and then uses the
MB values for predicting performance and power at different <fC , fM>. In
configuration selection, JOSS targets reducing the total energy consumption by
running each task with the lowest energy possible. JOSS utilizes predictions
to determine the configuration that satisfies the desired energy performance
trade-off for each kernel. To prune the large search space formed by the four
knobs, we also introduce a heuristic search algorithm based on the steepest
descent method. In the task scheduling and frequency coordination phase, we
schedule tasks according to the scheduling decision and partition the workload,
and average the pre-determined frequency setting for the task with the current
frequency setting of the shared resources.

20 CHAPTER 2. SUMMARY OF PAPERS

2.3.3 Evaluation

We evaluate the effectiveness of JOSS by comparing it to several state-of-the-art
schedulers under two scenarios: (1) reducing the total energy consumption;
(2) reducing the total energy consumption with user specified performance
constraints with respect to (1).

In scenario 1, the results show that JOSS achieves 40.7% energy reduction on
average compared to the baseline GRWS, and achieves 21.2% energy reduction
compared to STEER (the best among the state-of-the-art). Even in the
absence of memory DVFS knob, JOSS NoMemDVFS (without leveraging
the memory DVFS knob and the memory frequency is fixed at max. value)
achieves a 24.8% reduction in energy consumption compared to GRWS, which
is still an improvement over the state-of-the-art (e.g. 5.2% additional savings
than STEER). This emphasizes the importance of taking the total energy
consumption into account even when the memory DVFS knob is unavailable.

In scenario 2, the performance and energy results of three performance
speedups with respect to JOSS targeting energy reduction solely demonstrate
that JOSS can achieve the desired trade-off targets in most of cases. In a few
cases, the ability to achieve the desired trade-off targets is impacted by the
accuracy of the prediction models, or limited by the processor capabilities, such
as peak FLOPS and memory bandwidth.

2.3.4 Conclusion

We propose JOSS, a runtime scheduling framework that leverages both CPU
DVFS and memory DVFS in conjunction with core asymmetry and task
characteristics to enable energy-efficient execution of task-based applications.
JOSS also enables the exploration of energy and performance trade-offs by
supporting user-defined performance constraints. It uses a set of models to
predict task execution time, CPU and memory power consumption, and then
selects the configuration for the tunable knobs to achieve the desired trade-off.

2.4. PAPER-IV 21

2.4 Paper-IV

2.4.1 Background

Multi-core processors accommodate several hardware features, such as core
asymmetry, CPU DVFS and memory DVFS, to improve the energy efficiency
of parallel computing systems. The knobs available in hardware provide an
opportunity to execute applications in a wide range of settings and enables
exploration of different trade-offs between performance and power/energy
consumption. The metric used for assessing the trade-offs can be a combined
objective, such as Energy Delay Product (EDP) that weighs energy savings
and performance equally. Alternatively, its variations EmDnP could be used to
prioritize either energy savings or performance. In this paper, we target task-
based parallel applications, which are modeled as task DAGs. In a task DAG,
tasks exhibit different characteristics. Independent tasks can be executed in
parallel (inter-task parallelism), and a single task can further support moldable
task execution (intra-task parallelism).

Work stealing is a popular task scheduling technique employed in many task-
based runtimes. It is effective with sufficient inter-task parallelism available
and can scale to large core counts while still ensuring load balancing even
on asymmetric architectures. Work stealing is, however, not a good fit for
energy performance trade-off (EPTO) exploration since it does not use any
DVFS knobs, is unaware of the task characteristics and more importantly, it
does not perform well with a low degree of inter-task parallelism. Prior works
that focus on energy-efficient runtime scheduling techniques on top of work
stealing propose heuristic-based and model-based technique to improve the
energy efficiency. Unfortunately, these proposals use a subset of knobs and/or
target a specific EPTO metric and lack the flexibility to explore various EPTO
metrics.

The goal of the paper is to design a task scheduler that leverages architec-
tural knobs (core asymmetry, CPU DVFS and memory DVFS) and application
attributes (inter-task parallelism, intra-task parallelism and task characteris-
tics), to facilitate various EPTO explorations on multi-core architectures. To
achieve this goal, several challenges need to be addressed. First, numerous
factors influence EPTO, e.g. the choice of core type, the number of cores used
to run a task, the amount of tasks to run concurrently and the choice of DVFS
settings. Understanding the implications of tuning each knob individually and
their interplay is complex. Second, assuming that the impact of the afore-
mentioned knobs can be estimated, the challenge of determining an optimal
schedule for a dynamically unfolding DAG on asymmetric architecture still
needs to be addressed. Finally, the scheduler should offer flexibility to target
different EPTO metrics based on specific requirements.

2.4.2 Proposed Approach

We propose SWEEP that leverages aforementioned knobs and enable the
various EPTO explorations for efficient execution of task-based parallel ap-
plications. Figure 2.6 provides a high-level overview of SWEEP. The inputs
are the task-based parallel application, the supported settings for the different
architectural knobs (number of clusters, number of cores in each cluster and

22 CHAPTER 2. SUMMARY OF PAPERS

Figure 2.6: A high-level overview of SWEEP.

available frequency settings), and a specific EPTO target metric. SWEEP then
determines the task schedule for each cluster and the appropriate CPU and
memory DVFS settings.

In a nutshell, SWEEP is a heuristic scheduler that combines model-based
prediction with adaptive task distribution algorithms. It works by splitting
application execution into phases, classifying each phase into two types - high
parallelism (HP) and low parallelism (LP), based on the instantaneous inter-
task parallelism and applying different task distribution algorithms for each
type of phase. The rationale behind using separate algorithms is that LP
phase has less inter-task parallelism, and inadvertently allowing task stealing
in LP phase can result in substantial load imbalance that drastically impacts
performance.

The task distribution algorithms work by comparing different possible
schedules to determine the best schedule, based on the target metric. Due to
the computational complexity of comparing all possible schedules, SWEEP
uses step-wise heuristic algorithms to narrow the search space and determine
the best schedule with low overhead.

High Parallelism: SWEEP implements a four-step algorithm to determine
the task schedule and the DVFS settings for HP phases. In the first step,
SWEEP determines the number of cores to be used in each cluster for executing
an individual task. It chooses to exploit intra-task parallelism only if executing
with multiple cores provides superlinear speedup. The second step decides the
number of cores to be used in each cluster for concurrent task execution. This
is done by looping through the combinations of using different number of cores
to determine the best schedule that leads to the lowest predicted trade-off. The
third step identifies the best frequency settings for each cluster and memory
for executing tasks. SWEEP utilizes another heuristic frequency selection
algorithm to prune the large search space. It work by comparing the trade-off
value of a data point against all its immediate neighbors (frequency settings)
and repeating this search process iteratively until it converges at a point with
the lowest predicted trade-off. The final step determines the task distribution

2.4. PAPER-IV 23

Figure 2.7: SWEEP execution timeline. Note that the timeline is not to scale.

across clusters that achieves load balancing under the settings determined in
previous steps.

Low Parallelism: In contrast to an HP phase, it is difficult to achieve
load balancing and keep all cores utilized in an LP phase, due to the limited
number of ready tasks. SWEEP implements a two-step algorithm to determine
the task schedule and DVFS settings in an LP phase. The first step determines
the number of cores per task, the number of cores per cluster and the task
distribution by looping throught the possible combinations and jointly eval-
uating their impact on the trade-off target to enable detailed exploration of
their interplay. The second step identifies the best frequency setting for CPU
and memory that further reduces the trade-off of the phase using the same
frequency identification algorithm discussed in HP algorithm.

In addition, SWEEP utilizes an interval-based update approach to further
reduce computational overhead. SWEEP runs the algorithms and computes
the configurations once per time interval. During subsequent phase invocations
within the same time interval, the configurations determined earlier for the HP
and LP phases are reused. SWEEP updates the configurations for HP and LP
by running the algorithms again in the next time interval. Figure 2.7 provides
an example of the SWEEP execution timeline on a four-core system comprising
two big and two little cores.

To facilitate task schedule determination and DVFS tuning, the algorithm
requires knowledge of per-task execution time and power consumption under
different settings. SWEEP employs a set of predictive models, constructed
with polynomial regression technique, similar to those proposed in JOSS, to
predict performance and CPU and memory power consumption when tuning
the hardware knobs for individual tasks (sampling in Figure 2.7).

2.4.3 Evaluation

We evaluate SWEEP by comparing it with several state-of-the-art schedulers
under three different EPTO metrics: EDP that weighs energy consumption and
performance equally and other two EPTO metrics that prioritizes performance
(ED2P) and prioritizes energy savings (E2DP) respectively. This allows us to
explore the flexibility and effectiveness of different schedulers when targeting
different EPTO metrics. In addition, we evaluate two variants of SWEEP to
study its adaptability in the absence of DVFS knob (SWEEP N.F) and in the
presence of just the CPU DVFS knob (SWEEP C.F).

24 CHAPTER 2. SUMMARY OF PAPERS

When targeting EDP, SWEEP achieves 19.9% EDP reduction on average
compared to the best performing state-of-the-art scheduler and 28.3% reduction
than the baseline greedy random work stealing scheduler (GRWS) across all
evaluated benchmarks. SWEEP N.F achieves 15.5% and 23.7% EDP reduction
compared to GRWS and ERASE respectively, which do not employ any DVFS
knobs. Similarly, SWEEP C.F outperforms AEQUITAS [22] and STEER by
110% and 108% respectively, which only use CPU DVFS knob.

SWEEP outperforms the best performing state-of-the-art JOSS∗ (the best
performing JOSS scheduler with different performance constraints) by 36.4%
and is 40.8% better than the second best GRWS on average in terms of
ED2P. For E2DP, SWEEP outperforms the best scheduler JOSS∗ by 9.5%
and outperforms the second best ERASE by 38.5%, on average.

2.4.4 Conclusion

We propose SWEEP, a task scheduler that leverages architectural knobs (core
asymmetry, CPU DVFS and memory DVFS) and application attributes (inter-
task parallelism, intra-task parallelism and task characteristics) to facilitate
EPTO exploration. SWEEP uses a combination of models and heuristics and
works by splitting application execution into HP and LP phases. It uses an
adaptive task distribution algorithm, specific to the phase type, that leverages
model-based predictions to determine the best task schedule and the DVFS
settings for that phase. Moreover, SWEEP is able to flexibly target various
EPTO metrics, a feature that is not supported by other proposals.

Chapter 3

Concluding Remarks and
Future Work

The growing impact of energy on operational cost and system robustness be-
comes a strong motivation for improving energy efficiency in parallel computing
systems, in addition to performance. Multi-core platforms are equipped with
features to enable energy-efficient computing, such as core asymmetry and
DVFS in CPU and memory subsystems. Task-based parallel programming
models have been shown to be a powerful approach for developing parallel
applications, allowing developers to express parallelism in the form of tasks
and their dependencies.

To achieve energy-efficient execution of a task-based application, the run-
time scheduler plays a crucial role. It necessitates harnessing both architectural
knobs and application characteristics, ensuring each task is mapped to suitable
hardware resources while simultaneously managing the available DVFS knobs.
Moreover, the scheduler should offer adaptivity to target different energy per-
formance trade-off metrics based on specific requirements. Furthermore, certain
knobs may be beyond user control or unavailable, emphasizing the importance
of designing a scheduler that adapts to diverse platform capabilities. This
leads to the investigation of adaptive task scheduling and resource management
techniques for improving energy efficiency of executing task-based applications
on multi-core architectures. This thesis proposes four schedulers - ERASE,
STEER, JOSS and SWEEP - to address the problem in different optimization
targets and contexts.

ERASE targets CPU energy reduction when running fine-grained tasking
applications on multi-core platforms wherein the DVFS is externally controlled.
The scheduler leverages the insights of task moldability and task-type awareness
and utilizes online performance modeling and power profiling to estimate the
CPU energy consumption and figure out the appropriate resource allocation
for each task. Moreover, it can quickly detect external frequency changes and
adaptively schedule tasks with low overheads.

STEER utilizes an integrated scheduling strategy that can effectively man-
age multiple forms of asymmetry (incl. core asymmetry, CPU DVFS and task
heterogeneity) for CPU energy reduction while targeting cluster-based multi-
core architectures. STEER leverages two predictive models for predicting the

25

26 CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK

execution time and CPU power consumption and a task scheduler for determin-
ing the execution place and frequency settings that consume the least energy
and schedule tasks for execution. Furthermore, it applies adaptive scheduling
techniques on various task granularity to manage the DVFS overheads’ impact
on energy, and coordinates the frequency settings to reduce frequency throttling
interference within clusters.

JOSS is a task scheduler that leverages an additional memory DVFS knob,
in conjunction with core asymmetry, CPU DVFS and task characteristics to
further improve energy efficiency. JOSS introduces a set of models built by
multivariate polynomial regression to investigate the impact of tuning all these
knobs on both performance and power consumption and facilitate the energy
consumption prediction and select the best task schedule and DVFS settings.
Moreover, the scheduler supports specified performance constraints with respect
to the case that targets energy minimization thereby enabling exploration of
energy performance trade-offs.

SWEEP task scheduler is designed to adapt to various energy performance
trade-off metrics flexibly. It leverages the architectural knobs (core asymmetry,
CPU DVFS and memory DVFS) and the application attributes (inter-task
parallelism, intra-task parallelism and task characteristics) to facilitate trade-off
exploration. The scheduler first splits application execution into high paral-
lelism and low parallelism phases and then applies different task distribution
algorithms for each type of phase to decide the best task schedule and DVFS
settings, respectively.

There are several interesting research directions for future research. Firstly,
a typical heterogeneous HPC system contains various hardware components,
including CPUs and accelerator resources such as GPUs. To improve the
energy efficiency of such heterogeneous systems, it is important to propose more
advanced scheduling approaches and manage the task allocation to efficiently
utilize the available hardware resources. This involves investigating the impact
of additional knobs provided by platforms on both performance and energy
consumption and building corresponding models. Moreover, it is necessary
to enhance the scheduling algorithm to effectively explore configurations in a
much larger search space. Furthermore, the scheduler needs to handle multiple
versions of kernels targeting CPU and accelerators.

Secondly, a modern system-on-chip typically operates in a thermal-constrained
environment, limited by thermal design power. Thus, another interesting
direction would be to investigate power budget management techniques to
dynamically distribute power budget to different components and adjust the
available hardware knobs together with the task characteristics for different
energy performance trade-off metrics.

Finally, investigating the benefits of hardware-accelerated task schedul-
ing techniques can be another interesting research direction. For instance,
hardware-supported task migration among cores could enhance load balanc-
ing, albeit potentially introducing context migration overheads, especially in
large-scale machines with numerous number of nodes. In addition, we note
that data locality exhibits limited impact on our experimental platform owing
to substantial memory bandwidth availability. However, data locality may play
a significant role on large-scale systems due to the excessive network traffic
and data transmission latency. Therefore, the current work could be improved

27

with a more data-sensitive allocation strategy supported in hardware, such that
tasks sharing substantial amounts of data are scheduled to the same cluster to
maximize temporal locality.

28 CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK

Bibliography

[1] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli,
“Dynamic voltage scaling and power management for portable systems,” in
Proceedings of the 38th annual Design Automation Conference, 2001, pp.
524–529.

[2] E. Rotem, Y. Mandelblat, V. Basin, E. Weissmann, A. Gihon, R. Chabuk-
swar, R. Fenger, and M. Gupta, “Alder lake architecture,” in 2021 IEEE
Hot Chips 33 Symposium (HCS), 2021.

[3] “Nvidia jetson,” https://developer.nvidia.com/buy-jetson.

[4] Wikichip, “Nvidia Tegra Xavier,” https://en.wikichip.org/wiki/nvidia/
tegra/xavier, 2018.

[5] “ODROID XU3,” https://developer.arm.com/solutions/
graphics-and-gaming/development-platforms/odroid-xu3.

[6] “ODROID XU4,” https://magazine.odroid.com/wp-content/uploads/
odroid-xu4-user-manual.pdf, 2015.

[7] “Apple A17 Pro Chipset,” https://www.gsmarena.com/
apple a17 pro chipset appears on geekbench performance cores clocked
at 378ghz-news-59897.php, 2023.

[8] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport,
E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation intel core: New
microarchitecture code-named skylake,” IEEE Micro, vol. 37, no. 2, pp.
52–62, 2017.

[9] T. Singh, S. Rangarajan, D. John, C. Henrion, S. Southard, H. McIntyre,
A. Novak, S. Kosonocky, R. Jotwani, A. Schaefer, E. Chang, J. Bell, and
M. Co, “3.2 zen: A next-generation high-performance ×86 core,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp.
52–53.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of
the Cilk-5 Multithreaded Language,” in Proceedings of SIGPLAN 1998,
Jun. 1998.

[11] G. Contreras and M. Martonosi, “Characterizing and improving the per-
formance of intel threading building blocks,” in 2008 IEEE International
Symposium on Workload Characterization. IEEE, 2008, pp. 57–66.

29

https://developer.nvidia.com/buy-jetson
https://en.wikichip.org/wiki/nvidia/tegra/xavier
https://en.wikichip.org/wiki/nvidia/tegra/xavier
https://developer.arm.com/solutions/graphics-and-gaming/development-platforms/odroid-xu3
https://developer.arm.com/solutions/graphics-and-gaming/development-platforms/odroid-xu3
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://www.gsmarena.com/apple_a17_pro_chipset_appears_on_geekbench_performance_cores_clocked_at_378ghz-news-59897.php
https://www.gsmarena.com/apple_a17_pro_chipset_appears_on_geekbench_performance_cores_clocked_at_378ghz-news-59897.php
https://www.gsmarena.com/apple_a17_pro_chipset_appears_on_geekbench_performance_cores_clocked_at_378ghz-news-59897.php

30 BIBLIOGRAPHY

[12] “Documentation of starpu,” https://files.inria.fr/starpu/doc/starpu.pdf,
2014.

[13] OpenMP Architecture Review Board, OpenMP Application Program In-
terface. Version 5.0, OpenMP Architecture Review Board Std., Nov 2018.

[14] P.-É. Polet, R. Fantar, and T. Gautier, “Introducing moldable tasks
in openmp,” in OpenMP: Advanced Task-Based, Device and Compiler
Programming, S. McIntosh-Smith, M. Klemm, B. R. de Supinski, T. Deakin,
and J. Klinkenberg, Eds. Cham: Springer Nature Switzerland, 2023, pp.
51–65.

[15] M. Pericàs, “Elastic places: An adaptive resource manager for scalable
and portable performance,” ACM Trans. Archit. Code Optim., vol. 15,
no. 2, May 2018. [Online]. Available: https://doi.org/10.1145/3185458

[16] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computa-
tions by work stealing,” Journal of the ACM, vol. 46, no. 5, pp. 720–748,
Sep. 1999.

[17] Q. Chen, Y. Chen, Z. Huang, and M. Guo, “Wats: Workload-aware task
scheduling in asymmetric multi-core architectures,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012, pp.
249–260.

[18] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language runtimes,”
in Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS
’14, 2014.

[19] E. Castillo, M. Moreto, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,
R. Badia, J. L. Bosque, R. Beivide, E. Ayguade, J. Labarta, and M. Valero,
“Cata: Criticality aware task acceleration for multicore processors,” in
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[20] B. Acun, K. Chandrasekar, and L. V. Kale, “Fine-grained energy efficiency
using per-core dvfs with an adaptive runtime system,” in 2019 Tenth
International Green and Sustainable Computing Conference (IGSC), 2019.

[21] C. Torng, M. Wang, and C. Batten, “Asymmetry-aware work-stealing
runtimes,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 40–52.

[22] H. Ribic and Y. Liu, “Aequitas: Coordinated energy management across
parallel applications,” in 2016 ACM International Conference on Super-
computing, 06 2016, pp. 1–12.

[23] L. Costero, F. D. Igual, K. Olcoz, and F. Tirado, “Energy efficiency
optimization of task-parallel codes on asymmetric architectures,” in 2017
International Conference on High Performance Computing Simulation
(HPCS), July 2017, pp. 402–409.

https://files.inria.fr/starpu/doc/starpu.pdf
https://doi.org/10.1145/3185458

BIBLIOGRAPHY 31

[24] R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi, “Adap-
tive energy minimization of openmp parallel applications on many-core
systems,” in Proceedings of the 6th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-Core Architectures, ser.
PARMA-DITAM ’15, 2015.

[25] M. Han, J. Park, and W. Baek, “Design and implementation of a criticality-
and heterogeneity-aware runtime system for task-parallel applications,”
IEEE TPDS, 2021.

[26] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Mem-
scale: Active low-power modes for main memory,” in Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[27] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory
power management via dynamic voltage/frequency scaling,” in Proceedings
of the 8th ACM International Conference on Autonomic Computing, ser.
ICAC ’11, 2011, p. 31–40.

[28] V. Sundriyal and M. Sosonkina, “Joint frequency scaling of processor and
dram,” J. Supercomput., vol. 72, no. 4, p. 1549–1569, apr 2016.

[29] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “Coscale: Coordinating cpu and memory system dvfs in server
systems,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012.

[30] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api for
programming with millions of lightweight threads,” in 2008 IEEE In-
ternational Symposium on Parallel and Distributed Processing, 2008, pp.
1–8.

[31] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in Proceedings of the
34th Annual International Symposium on Computer Architecture, ser. ISCA
’07. New York, NY, USA: Association for Computing Machinery, 2007, p.
162–173. [Online]. Available: https://doi.org/10.1145/1250662.1250683

[32] T. kernel development community, “Energy aware scheduling.”
[Online]. Available: https://www.kernel.org/doc/html/latest/scheduler/
sched-energy.html

[33] D. Brodowski, “Cpu frequency and voltage scaling code in the linux(tm)
kernel.” [Online]. Available: https://www.kernel.org/doc/Documentation/
cpu-freq/governors.txt

[34] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: A vehicle for hpc community collaboration on co-
designed energy management solutions,” in High Performance Computing,
2017.

https://doi.org/10.1145/1250662.1250683
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

32 BIBLIOGRAPHY

[35] “XiTAO runtime,” https://github.com/CHART-Team/xitao.git, 2018.

[36] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang,
“Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 5,
pp. 695–708, 2013.

[37] R. Schöne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and
D. Hackenberg, “Energy efficiency aspects of the AMD zen 2
architecture,” CoRR, vol. abs/2108.00808, 2021. [Online]. Available:
https://arxiv.org/abs/2108.00808

[38] Byung-Jae Kwak, Nah-Oak Song, and L. E. Miller, “Performance analysis
of exponential backoff,” IEEE/ACM Transactions on Networking, vol. 13,
no. 2, pp. 343–355, April 2005.

[39] T. Odajima, Y. Kodama, M. Tsuji, M. Matsuda, Y. Maruyama, and
M. Sato, “Preliminary performance evaluation of the fujitsu a64fx using
hpc applications,” in 2020 IEEE International Conference on Cluster
Computing (CLUSTER), 2020, pp. 523–530.

[40] B. Jeff, “Advances in big.little technology for power and energy savings
improving energy efficiency in high-performance mobile platforms,” 2012.

[41] “Mediatek x20 development board,” https://www.96boards.org/product/
mediatek-x20/.

[42] S. Shankland, “iphone xs a12 bionic chip is
industry-first 7nm cpu,” https://www.cnet.com/news/
iphone-xs-a12-bionic-chip-is-industry-first-7nm-cpu/, September
2018.

[43] R. Ritchie, “Apple a14 bionic explained — from ipad air to iphone 12,”
https://www.imore.com/apple-a14-bionic-explained-ipad-air-iphone-12,
September 2020.

[44] Q. Chen, Y. Chen, Z. Huang, and M. Guo, “Wats: Workload-aware task
scheduling in asymmetric multi-core architectures,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012, pp.
249–260.

[45] B. Goel, Measurement, Modeling, and Characterization for Energy-efficient
Computing. Chalmers University of Technology, 2016.

[46] M. Endrei, C. Jin, M. N. Dinh, D. Abramson, H. Poxon, L. DeRose, and
B. R. de Supinski, “Energy efficiency modeling of parallel applications,”
in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018.

[47] A. Navarro Muñoz, A. F. Lorenzon, E. Ayguadé Parra, and V. Bel-
tran Querol, “Combining dynamic concurrency throttling with voltage
and frequency scaling on task-based programming models,” in 50th Inter-
national Conference on Parallel Processing, ser. ICPP 2021, 2021.

https://github.com/CHART-Team/xitao.git
https://arxiv.org/abs/2108.00808
https://www.96boards.org/product/mediatek-x20/
https://www.96boards.org/product/mediatek-x20/
https://www.cnet.com/news/iphone-xs-a12-bionic-chip-is-industry-first-7nm-cpu/
https://www.cnet.com/news/iphone-xs-a12-bionic-chip-is-industry-first-7nm-cpu/
https://www.imore.com/apple-a14-bionic-explained-ipad-air-iphone-12

BIBLIOGRAPHY 33

[48] A. Coutinho Demetrios, D. De Sensi, A. F. Lorenzon, K. Georgiou,
J. Nunez-Yanez, K. Eder, and S. Xavier-de Souza, “Performance and en-
ergy trade-offs for parallel applications on heterogeneous multi-processing
systems,” Energies, vol. 13, no. 9, p. 2409, 2020.

[49] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” in Emerging Computing: From Devices
to Systems. Springer, 2023, pp. 171–243.

