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1 Introduction

Recently there has appeared a number of papers discussing various non-supersymmetric
AdS flux-solutions in ten- and eleven-dimensional supergravity aiming at determining their
stability properties, perturbatively as well as non-perturbatively. The interest in this issue is a
direct result of the so called swampland program [3, 4] and in particular the “AdS swampland
conjecture” [5, 6] claiming that any AdS flux-compactification without supersymmetry must
be unstable, either perturbatively or, if the solution passes this test, non-perturbatively. In
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the former case, the Breitenlohner-Freedman (BF) stability criterion [7, 8] is easily checked
once the complete linearised spectrum, or at least some crucial parts of it, is known. In
the context of AdS/CFT , this stability corresponds, in the infinite N limit of the dual
field theory, to unitary conformal dimensions of single trace operators, and the vanishing of
the corresponding β functions. In non-supersymmetric scenarios, there have been concerns
raised in the literature (see, e.g., [9–14]) regarding the β functions of marginal multi-trace
operators that might be nonvanishing even if all single-trace β functions vanish.1 If one could
find an example where this does not happen at leading order in 1/N , there could still be
subleading 1/N effects that destroy the conformal fixed point [15] (see also, e.g., [16] and
references therein). In the bulk, this corresponds to an instability caused by a tadpole of
a composite field that destroys the BF-stable non-supersymmetric vacuum. We emphasise
that the purpose of this paper is not to add to this discussion. Instead, one of the main
results of our work is the possibility to choose boundary conditions (in compactifications
on the squashed seven-sphere) in such a way that all marginal operators on the boundary
are eliminated. This possibility was first noted in the singlet sector in [17] and will be
explained in full detail later in this paper.

The above perturbative aspects of the stability question mean that one essentially needs
to have full control of the whole spectrum. At an even deeper level, one must discuss the
possibility of instabilities due to, e.g., bubbles of nothing [18] (see also the generalisation
discussed in [19]) and other non-perturbative issues. Note that even if it is possible to establish
stability under all known decay modes in a non-supersymmetric context, it might be very
difficult, if not impossible, to produce a strict proof of stability against all decay modes, known
or not. An interesting attempt in this direction has, however, been made recently in [20].

In this line of investigation there have also been efforts to find the complete spectrum
of certain compactifications that can be viewed as up-lifted stable extrema of maximal
supergravity theories in lower dimensions. With the improved knowledge of these spectra it
was possible, in some cases, to pinpoint certain massive modes in the Kaluza-Klein spectrum
that give rise to so called brane-jet instabilities [21].

In the same vein, there are also some special non-supersymmetric BF-stable solutions that
have been discussed recently. These include the interesting case of the non-supersymmetric
G2 solution first found in massive type II supergravity, see, e.g., [22, 23].2 This case seemed
for a long time to clash with the AdS swampland conjecture [26, 27] but was recently [28, 29]
shown to be afflicted by the non-perturbative phenomenon of nucleation of a bubble of
nothing first described by Witten [18]. Another attempt to find a solution of type IIB
supergravity in D = 10 that violates the AdS swampland conjecture is analysed in [30] based
on a non-geometric S-fold construction. This case is further discussed in the review [31],
where its chances of surviving all known decay modes is commented upon. It is probably
fair to say that its full stability is far from being demonstrated although it does possess
some novel and quite interesting features.

At the point in time when this is written all known non-supersymmetric AdS flux-
compactifications have been shown to be unstable (with a slight caveat for the last case
mentioned above) except for the skew-whiffed squashed seven-sphere solution discussed in [32].

1We are grateful to the referee for emphasising this issue and to Igor Klebanov for helpful discussions.
2For some more recent extensive searches for vacuum solutions, see, e.g., [24, 25].
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The reason this solution of eleven-dimensional supergravity has not been fully analysed until
now is that the results in [1, 2] were still lacking the spin-3/2 eigenvalues on the squashed
seven-sphere and that the methods used in [33, 34] have not been applicable to vacua that
are not lifts from N = 8 supergravity in four dimensions. However, with the present work
and the recent results of [35], the shortcomings in both these cases have been overcome. For
further comments on the relation between our work and [35], see the end of this introduction.

In this paper we finish the work started in [1, 2] by completing the determination of the
spectrum in the sense that we have finally solved also the spin-3/2 equation and thus we have
now determined the spectra of all relevant eigenvalue equations on the squashed seven-sphere.
This result has already been reported on in the MSc thesis [36] by one of the present authors.
Applying this to the left-squashed case, we then provide a unique assignment of masses and
energies to the N = 1 supermultiplets, up to some ambiguities related to boundary conditions.
As we will see below, this process produces certain degeneracies in the spectrum. We will,
towards the end of the paper, discuss this further without providing a clear answer as to why
this happens. This spectrum degeneracy is apparent both from the supermultiplet analysis
and the explicit construction of the two-form mode functions on the squashed seven-sphere.

The stability issue of the non-supersymmetric right-squashed seven-sphere can now be
addressed beyond its BF stability [37, 38]. Here, we analyse in detail which marginal operators
can appear that might lead to the kind of perturbative instability mentioned above. These
latter results generalise those for the singlet sector obtained recently in [17].

This paper is organised as follows. In section 2, we give some background to the whole
problem of finding the spectrum of eleven-dimensional supergravity compactified on the
squashed seven-sphere, following [32], and present new universal versions (derived in the MSc
thesis [36]) of some of the key coset space formulas used in [32] and particularly in the G2
approach of [2]. This involves obtaining a more powerful group theoretic expression for the
action of the Weyl tensor on the various isotropy irreps appearing in the spectrum analysis.

In section 3, we rederive the operator spectra previously derived in [32] and [2] and
complete this by obtaining also the so far missing spectrum, namely the spin-3/2 one,
following [36]. Then, in section 4, all two-form modes are constructed explicitly and their
eigenvalues derived with some intriguing implications. In section 5, we use the now complete
information on the operator eigenvalues on the squashed seven-sphere to give masses and E0
values to all the supermultiplets. We find here that supersymmetry does not prevent a certain
amount of ambiguities related to the possibility to choose different boundary conditions in
AdS4. These features are also analysed for the skew-whiffed theory without supersymmetry
which has a rather large number of fields with undetermined boundary conditions. This
section ends with a discussion on marginal operators and the implications for the issue of
stability. The eigenvalue degeneracy problem that arose in previous sections is addressed.
Finally, the situation is summarised and commented upon in the concluding section 6.

Some of the results in this paper, in particular the improved methods for computing
the eigenvalues of differential operators on coset spaces reported on in section 2 and the
eigenvalues of the spin-3/2 operator on the Einstein-squashed seven-sphere derived in section 3,
have already appeared in the MSc thesis [36]. A preliminary study of how the possible values
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of E0 fit into supermultiplets was also conducted in [36]. Here, we complete this analysis by
also studying the special cases that arise for non-generic isometry irreps.

During the final stages of this project, there appeared another paper [35], obtaining
results on the spectrum of E0 for low-lying levels in the bosonic sector of the squashed S7

theory discussed here. These results, derived in [35] by entirely different methods from the
ones presented here, coincide with ours where they can be compared. [35] provides one piece
of information not yet obtained by the methods in this paper, namely the connection between
E0 values and irreps of the Wess-Zumino multiplets which contain scalar fields related to the
Lichnerowicz operator on the squashed S7. This helps us resolve a final ambiguity in our
work related to the assignment of multiplicities for these particular Wess-Zumino multiplets,
as explained in section 5 (see e.g. figure 5). This information could have been obtained by
repeating the two-form eigenmode construction in section 4 for the metric modes on the
squashed S7, which has not yet been done. In contrast to [35], our methods automatically
provide the entire infinite towers in the spectra and we verify the presence of supersymmetry
for all supermultiplets with maximum spin 2, 3/2 and 1 by deriving the fermionic spectra
independently. Furthermore, we explicitly construct the complete infinite towers of two-form
Laplacian eigenmodes on the squashed S7 for the first time. We also analyse the role of
boundary conditions and find that there are multiple choices that respect supersymmetry
in the left-squashed vacuum (see table 5). A limitation of our methods is that they rely
on a coset description of the internal manifold which does not seem to be the case for the
methods used in [35].

2 The squashed S7 eigenvalue problem

To make this paper relatively self-contained we will in the first subsection reproduce a few
tables from previous works, the review [32] and the more recent [1] and [2]. These tables
contain information of general validity and provide useful information for the discussions in
this paper, for instance how many supermultiplets of each kind that appear in the N = 1
supersymmetric AdS4 vacuum of eleven-dimensional supergravity on the left-squashed seven-
sphere [1]. One reason for studying the supersymmetric left-squashed case first is to be able
to establish the correct operator eigenvalue spectra which would be a much more intricate
task without the possibility to check the results using supersymmetry. Having done this, we
can then perform a skew-whiffing (i.e., an orientation flip) on the squashed seven-sphere to
get the complete field spectrum in the non-supersymmetric right-squashed case for which
the AdS4 stability issue will be analysed in later sections.

In the second subsection we then briefly describe our method, as used in the literature so
far, to derive the eigenvalue spectra of the operators on the squashed seven-sphere appearing
in the compactification [2, 32]. The main purpose here is to present an improved formalism
by deriving new more general and powerful versions of some of the coset space formulas, the
implications of which are presented in the next section, largely following [36].
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Type A: Wess-Zumino multiplets for E0 > 1/2
D(E0, 0)⊕D(E0 + 1/2, 1/2)⊕D(E0 + 1, 0)

Type B: Massive higher-spin multiplets for E0 > s+ 1, s ≥ 1/2
D(E0, s)⊕D(E0 + 1/2, s+ 1/2)⊕D(E0 + 1/2, s− 1/2)⊕D(E0 + 1, s)

Type C: Massless higher-spin multiplets for s ≥ 1/2
D(s+ 1, s)⊕D(s+ 3/2, s+ 1/2)

Type D: Dirac singleton
D(1/2, 0)⊕D(1, 1/2)

Table 1. N = 1 supermultiplets according to Heidenreich [39].

2.1 Review

The structure of N = 1 supermultiplets in AdS4 is presented in table 1.
The spectrum of the AdS4 gravity theory based on the left-squashed seven-sphere

contains supermultiplets of all kinds appearing in table 1 except for the singleton one.
However, singletons do appear for the right-squashed seven-sphere without supersymmetry
due to a possible Higgs/de-Higgs relation of both squashed spectra to the round one as was
discussed in [1, 17]. The former of these also argues that the compactification on the round
S7 must incorporate the N = 8 singleton to be consistent. As also established in [1] the
supermultiplet content in the left-squashed case is3

1×
(
D(E0, 2+)⊕D(E0 − 1

2 ,
3
2) ⊕D(E0 + 1

2 ,
3
2) ⊕D(E0, 1+)

)
, (2.1)

6×
(
D(E0,

3
2) ⊕D(E0 − 1

2 , 1
±)⊕D(E0 + 1

2 , 1
∓)⊕D(E0,

1
2)
)
, (2.2)

6×
(
D(E0, 1−)⊕D(E0 − 1

2 ,
1
2) ⊕D(E0 + 1

2 ,
1
2) ⊕D(E0, 0−)

)
, (2.3)

8×
(
D(E0, 1+)⊕D(E0 − 1

2 ,
1
2) ⊕D(E0 + 1

2 ,
1
2) ⊕D(E0, 0+)

)
, (2.4)

14×
(
D(E0,

1
2) ⊕D(E0 − 1

2 , 0
±)⊕D(E0 + 1

2 , 0
∓)

)
, (2.5)

where the multiplicity (number in front) refers to the number of towers that appear for the
given supermultiplet. The reader is advised to consult the appendix in [1] where a tower is
given by a cross diagram where each cross is representing an isometry group irrep with the
Sp2 × Sp1 Dynkin labels (p, q; r) (see also section 4 of this paper). We emphasise that every
isometry irrep in all towers is accounted for by the list of supermultiplets above.

In order to connect the dimensionless energy values E0 for each spin to the operator
eigenvalue spectra (see the next subsection or the next section) we need two sets of data: the
relation between the Spin(2, 3) irrep data D(E0, s) and the AdS4 mass parameter M2 (or
M for spinor fields) given in table 2 and, secondly, the relations between the mass M2 or
M and the operators on the internal manifold as given in table 3, valid for Freund-Rubin
compactifications.4 Here, m is the inverse of the curvature radius of the internal space (i.e.,

3Note that the Spin(2, 3)-irreps D(E0, s) are reordered with the highest spin first compared to table 1.
4Note the change of notation compared to the review [32]: 0+(1) → 0+

(−) and 0+(3) → 0+
(+) where the new

notation used in this paper shows explicitly which branch of M2(0+) is used. Note that M2(0+
(±)) is here

sometimes written as M2
(±)(0+).
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s = 2 E0 = 3
2 + 1

2

√
(M/m)2 + 9 ≥ 3

s = 3
2 E0 = 3

2 + 1
2 |M/m− 2| ≥ 5

2

s = 1 E0 = 3
2 + 1

2

√
(M/m)2 + 1 ≥ 2

s = 1
2 E0 = 3

2 ± 1
2 |M/m| ≥ 1

s = 0 E0 = 3
2 ± 1

2

√
(M/m)2 + 1 ≥ 1

2

Table 2. E0 for AdS4 fields of given mass M and spin s (in Spin(2, 3)-irreps D(E0, s)) and the
corresponding unitarity bounds.

spinparity Mass operator (giving M or its square)

2+ ∆0
3
2 (±)

−i /D1/2 + 7m
2

1−(±) ∆1 + 12m2 ± 6m
√
∆1 + 4m2 = (

√
∆1 + 4m2 ± 3m)2 −m2

1+ ∆2
1
2 (±)

−i /D1/2 − 9m
2

1
2 (±)

i /D3/2 + 3m
2

0+
(±) ∆0 + 44m2 ± 12m

√
∆0 + 9m2 = (

√
∆0 + 9m2 ± 6m)2 −m2

0+ ∆L − 4m2 = (∆L − 3m2)−m2

0−(±) Q2 + 6mQ+ 8m2 = (Q+ 3m)2 −m2

Table 3. Mass operators in Freund-Rubin compactifications, see for instance [32]. For spins with two
tower assignments, the subscripts (±), the plus and minus signs refer to branches of the M2 formulas
or to the positive and negative parts of the spectrum for linear operators. Note the change of notation
relative [32] where superscripts (1), (2) etc. were used instead of the (±) notation of this paper.

R(7) = 42m2), Fµνρσ = 3mϵµνρσ is the flux of the Freund-Rubin solution and the inverse of
the curvature radius of AdS4 is 2m (i.e., R(4) = −12(2m)2). We define the orientation of
AdS4 such that m > 0 and use conventions in which the bosonic Lagrangian reads [32]

2κL = R− 1
12FMNP QF

MNP Q + 8
124 ϵM1...M11A

M1M2M3FM4...M7FM8...M11 . (2.6)

With the information in tables 2 and 3 at hand, we can start discussing how to obtain
the various spectra of the operators on the squashed seven-sphere. The spectrum of ∆0 and
the Dirac operator were derived for general squashing in [40]. While that derivation is a bit
different from the one we present in section 3, it essentially coincides with the one given in
section 4. The result for the square of the Dirac operator obtained in section 3 was derived
in [2] but then only for the squashed Einstein case, in contrast to [40].
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Turning to the Hodge-de Rham and Lichnerowicz operators, we note that the former
ones are positive definite and defined by

∆p = δd+ dδ, (2.7)

whereas the latter, which is not manifestly positive definite, acts on transverse and traceless
metric modes and is defined by

∆Lhab = −□hab − 2Ra
c
b
dhcd + 2R(a

chb)c = −□hab − 2Wa
c
b
dhcd + 14m2hab. (2.8)

In the last expression, the presence of the Weyl tensor Wabcd gives rise to complications when
solving the eigenvalue equations. This problem was addressed in [2] case by case and will
in this paper be discussed again in the next subsection where we derive a universal group
theoretic formula for the Weyl tensor eigenvalues reducing the work needed and providing
a much better understanding of the whole issue.

2.2 Improved methodology

We now turn to the improved formalism that will facilitate the eigenvalue analysis. This
subsection follows [36], where some additional details can be found.

Since we are interested in eigenvalue equations involving the Laplacian we start from
its standard expression ∆ = dδ + δd and rewrite it as

∆ ≡ −□− [Da, Db]Σab = −□−RabcdΣabΣcd, (2.9)

which we will refer to as “the universal Laplacian” since it cannot only act on p-forms but
any tensor field. Here and below, Σab are the Spin(7) generators. To see how the right-hand
side arises just consider the following p-form identities

∆pαa1...ap = (dδ + δd)αa1...ap = −□αa1...ap − p[D[a1 , D|b|]αb
a2...ap]

= −□αa1...ap − [Dc1 , Dc2 ]pδ
c1c2
[a1|b|α

b
a2...ap] = −□αa1...ap − [Dc1 , Dc2 ]Σc1c2αa1...ap . (2.10)

This operator is the relevant one for transverse p-forms and becomes the Lichnerowicz
operator when acting on traceless and transverse second rank symmetric tensors. It also
appears when squaring the Dirac operator acting on spinors as well as on transverse and
gamma-traceless vector-spinors. In fact,

(i /D)2ψ = ∆ψ + 21
4 m

2ψ, (i /D)2ψa = ∆ψa − 3
4m

2ψa, (2.11)

for Einstein spaces with Rab = 6m2δab.
The next ingredient we need is the coset structure G/H of the internal manifold on

which we perform the compactification. As usual we will use a reductive coset which means
that the structure constants satisfy (see, e.g., [32])

[H,H] = H, [H,T ] = T, [T, T ] = H ⊕ T. (2.12)

We use the index split A = (a, i) where A and i are adjoint indices of G and H, respectively,
while a is a vector index in the tangent space of the coset (a = 1, 2, . . . , dim(G)− dim(H)).
Hence, the independent non-zero structure constants are

fAB
C = (fij

k, fia
b, fab

i, fab
c). (2.13)
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It is then straightforward to show that the Riemann tensor of the coset manifold G/H can
be expressed in terms of the structure constants in the following way [41]:

Rcda
b = fcd

ifia
b + 1

2fcd
efea

b + 1
2f[c|a|

efd]e
b. (2.14)

Usually, one lowers and raises indices on the structure constants using the Killing form and its
inverse. In this paper, we do not do this. Instead, we assume (already in eq. (2.14)) that the
coset is normal homogeneous, i.e., that there exists a G-invariant gAB which is block-diagonal
over H⊕T with blocks δab and gij and use these and their inverses to raise and lower indices.5

The key equation needed to compute spectra of operators on the coset is the so called
coset master equation which expresses the H-covariant derivative algebraically in terms of
the G generators in the tangent space directions Ta [32, 42]:

DaY + 1
2fabcΣbcY = −TaY. (2.15)

This is a schematic equation, see eq. (2.18) for a more precise version. The reason why this is
not precise is that the left-hand side is well-defined only for a Spin(7) tensor field Y while
the right-hand side requires a field Y transforming in a representation of G. The equation is,
however, still very useful since both Spin(7) and G representations can be decomposed into
H-irreps. Hence, it can be used literally with tensor fields if it is first manipulated in a way
such that the operators become block-diagonal over H-irreps, as we will see below.

To get a clear picture of the above relation between a differential operator and algebraic
quantities like group generators we consider a G group element representing a point on the
coset manifold with coordinates ya

Ly = ey·T , (2.16)

where y · T is just a sum over products of coordinates ya and tangent space generators Ta.
Then clearly the one-form L−1

y dLy can be expanded as follows:

L−1
y dLy = eaTa +ΩiTi, (2.17)

where d = dym∂m, ea are one-form vielbeins on the coset space and Ωi are H one-form
gauge fields. By harmonic analysis on the coset, fields transforming in an irrep of H can
be expanded using ρ(L−1

y ), where ρ runs over all irreps of G containing the H-irrep [42].
The equation eq. (2.17) can then be expressed as

Ďaρ(L−1
y )P

(Q) ≡ (∂a +Ωi
aTi)ρ(L−1

y )P
(Q) = −(Ta)P

Rρ(L−1
y )R

(Q), (2.18)

where Ďa is a H-covariant derivative. Note that we have here been careful and indicated
with parentheses that the upper index (Q) is not affected either by the generators Ta or
the H-covariant derivative Ďa. We emphasise also here that the upper G-irrep index in
parentheses is the isometry index while the lower G-irrep index without parentheses should

5This assumption is not strictly necessary here, see [36], but will be crucial later. The squashed seven-sphere
is normal homogeneous.

– 8 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

be split into H-irreps so that the H-covariant derivative can act according to each of the
H-irreps in the split.

However, in the present application to the squashed seven-sphere, constructed as the
coset Sp2 × SpC

1 /(SpA
1 × SpB+C

1 ), the tangent space group Spin(7) is not the same as the
isotropy group H = SpA

1 × SpB+C
1 . This means that in order to apply the fundamental coset

equation in this case, with all eigenvalue equations expressed in terms of Spin(7)-covariant
derivatives on the tangent space, one has to split each Spin(7)-irrep of the fields on the
coset into H-irreps, apply the fundamental coset equation and reconstruct the tangent space
irreps of the fields. This is done as follows (see [32]). Acting with an exterior derivative on
eq. (2.17) we get a Maurer-Cartan type equation which can be divided into two equations
along the different generator directions. We find

dea = −1
2e

b ∧ ecfbc
a − eb ∧ Ωi fbi

a, dΩi = −1
2e

a ∧ ebfab
i − 1

2Ω
j ∧ Ωkfjk

i. (2.19)

Comparing the first of these equations to the definition of ωa
b, the torsion-free spin connection,

0 = dea + ωa
b ∧ eb, we find

ω[bc]
a = −1

2fbc
a − Ωi

[bf|i|c]
a, (2.20)

which implies

ωabc = −1
2fabc − Ωi

afibc. (2.21)

Inserting this result into the definition of the H-covariant derivative, Ďa = ∂a +Ωi
aTi, we

see that it can be written in terms of the ordinary tangent space covariant derivative as follows

Ďa = Da + 1
2fabcΣbc, (2.22)

when acting on an so(7) representation. Note that, using the H-covariant derivative, the
coset master equation reads simply

ĎaY = −TaY. (2.23)

We now address the point raised above, namely that we must first get an equation where
the operators split over H-irreps before we can apply it to tensor fields. The left-hand side
has already been addressed by writing the equation using Ď instead of D but Ta cannot be
restricted to an irrep of H. Hence, we must return to the ρ irreps of G since any action of
a Ta will mix all H-irreps in the G-irrep. We then see that

TaTbρ(L−1
y ) = −Ta(∂b +Ωi

bTi)ρ(L−1
y ) = −(∂b +Ωi

bTi)Taρ(L−1
y )− Ωi[Ta, Ti]ρ(L−1

y ). (2.24)

Using [Ta, Ti] = −fia
bTb and eq. (2.18) we find that the operations are being reversed, i.e.,

TaTbρ(L−1
y ) = ĎbĎaρ(L−1

y ). (2.25)

Note that the commutator term above is needed to get the derivative Ďb to also act on the
index a on the second derivative. Here, we see that if we contract with δab, the operator on

– 9 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

the left-hand side becomes the difference between two Casimirs and hence split over H-irreps.
Thus, since every tensor field Y can be split into H-irreducible parts and the above equation
applies to each H-irrep separately, we get

−□̌Y = −TaT
aY = (Cg − Ch)Y, (2.26)

where Cg = −gABTATB and Ch = −gijTiTj are Casimir operators of the two groups in
the coset G/H.

The operator equations we aim to solve below contain the universal Laplacian ∆, which
in turn can be written using □ = DaDa. Hence, we need the explicit relation between □
and □̌. It can be obtained as follows: consider first

□̌ = Ďa
(
Da + 1

2fabcΣbc
)
= ĎaDa + 1

2f
adeΣdeĎa, (2.27)

where we used the fact that δab, fabc and Σab (in any irrep) are all H-invariant objects
and hence commute with the H-covariant derivative Ďa. Expanding also the remaining Ďa

operator this expression can be written

□̌ = □+ fabcΣbcĎa − 1
4fabcf

adeΣbcΣde. (2.28)

Note that in the last term on the right-hand side the two so(7) generators act successively on
any object to the right of them. However, the order of them is not important since the action
of the first one on the second one vanishes as is easy to check (in any irrep).

Finally, in order to obtain a useful expression for the universal Laplacian ∆, whose
eigenvalues we are interested in, we combine the last equation above with eq. (2.9) and
eq. (2.26). The result is the following key formula

∆ = Cg + fabcΣabĎc − 1
4(3fabcf

a
de − 2fabdf

a
ce)ΣbcΣde. (2.29)

The next step is to introduce some explicit expressions obtained from the analysis of the
squashed seven-sphere as the coset G/H with G = Sp2 ×SpC

1 and H = SpA
1 ×Sp(B+C)

1 where
the group Sp2 has been split into SpA

1 ×SpB
1 making it possible to form the diagonal subgroup

SpB+C
1 appearing in H, see, e.g., [41]. There is a one-parameter family of squashed seven-

spheres with this isometry group but, except for the round sphere, only one is Einstein. This is
the squashed sphere we are concerned with here and it has a special role in the one-parameter
family; it is not only normal homogeneous but standard homogeneous (gAB = −κAB/6) [36].

The metric on the squashed seven-sphere can be written as [32]

ds2 = dµ2 + 1
4 sin2µ (σ − σ̃)2 + λ2

4
(
(σ + σ̃) + cosµ (σ − σ̃)

)2
, (2.30)

where 0 ≤ µ ≤ π, λ is the squashing parameter and σi and σ̃i are left-invariant one-forms on
two copies of SU(2) ≃ S3, satisfying dσi = −1

2ϵ
ijkσjσk. The round seven-sphere has λ = 1

while the Einstein-squashed one, which we focus on in what follows, has λ = 1/
√
5. Note

that the above metric is dimensionless. To make R(7) = 42m2 with the Einstein-squashed
metric, one has to use units m = 3/(2

√
5). This is implicit in what follows.
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From the metric, we see that an orthonormal frame is given by

eî = λ

2
(
(σi + σ̃i) + cosµ (σi − σ̃i)

)
, e0 = dµ, ei = 1

2 sinµ (σi − σ̃i). (2.31)

The orientation defined by this frame and the index split a = (̂i, 0, i) is that of the left-squashed
seven-sphere. The right-squashed seven-sphere is obtained by flipping the orientation. For
equations that depend on the orientation, we focus on the left-squashed sphere if nothing
else is specified.

One key feature of the Einstein-squashed seven-sphere is that the holonomy of the
derivative entering in the Killing spinor equation is G2 [32, 43] and that the structure
constants become related to the octonions [41] via

fab
c = − 1√

5
aab

c, (2.32)

where aabc are given by the octonionic multiplication table (see appendix A). Now we can
also see one reason why the covariant derivative Ďa is of interest to us:6

Ďaabcd = 0. (2.33)

Below we will take full advantage of this fact when expressing the eigenvalue equations we
want to solve entirely in terms of G2 quantities making the equations and the analysis of
them fully G2-covariant. The first steps in this direction were developed in [2]. The usefulness
of this formulation is related to the following fact: when splitting the indices of tangent space
irreps on the tensor fields into H-irreps it goes via G2 (as realised already in [32])

Spin(7) −→ G2 −→ H = SpA
1 × SpB+C

1 . (2.34)

As mentioned above the appearance of G2 has many implications and can be incorporated
into the formalism in a significant way as we will now show. First, consider the Weyl tensor
which will appear in the eigenvalue analysis later. It can be expressed as follows:

Wab
cd = Rab

cd − 9
10δ

cd
ab = (T i)ab(Ti)cd + 1

10aab
eae

cd + 1
10a[a

ceab]e
d − 9

10δ
cd
ab. (2.35)

Using the identity

a[a
ceab]e

d = −δcd
ab + cab

cd, (2.36)

we find that this can be written in terms of the G2 21 → 14 projector (P14)ab
cd as

Wab
cd = (T i)ab(Ti)cd − 6

5(P14)ab
cd. (2.37)

Since the Weyl tensor is the source of the G2 holonomy it vanishes when contracted by aabc

over the first or last pair of indices. Naively, one might have expected it to be proportional to
6The squashed seven-sphere has an H-structure, i.e., a reduction of the structure group Spin(7) to H, due

to it being a coset G/H. Since H ⊂ G2, it follows that the H-covariant derivative Ďa of the G2-invariant aabc

vanishes. The H-structure has torsion, see eq. (2.22), eq. (2.32), which is related to the fact that the squashed
seven-sphere is only a weak G2 manifold [44].
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the projector P14 onto the adjoint of G2 but, as we see here, there is an extra term. Since H is
a subgroup of G2, this extra term is not in contradiction with the G2 holonomy. Furthermore,
since the projector (P14)ab

cd actually defines G2 inside SO(7) we find that

WabcdΣabΣcd = 6
5Cg2 − Ch, (2.38)

where
Cg2 = −(P14)abcdΣabΣcd, Ch = −TiT

i = 2CspA
1
+ 6

5CspB+C
1

. (2.39)

This expression for the Weyl tensor is one of the key results of [36] since it eliminates in
one stroke the rather cumbersome analysis to obtain the Weyl tensor eigenvalues for the
various tensors on the squashed seven-sphere performed in [2].

In the application of the master coset formula to the computation of operator eigenvalues
the first step is, as done above, to square it to produce ∆. However, as we saw in eq. (2.29)
to actually find the eigenvalues the appearance of the operator aabcΣabĎc seems to require a
second squaring procedure. Inserting the octonionic information from the coset construction
above into eq. (2.29) we get

− 1√
5
aabcΣabĎc = ∆− Cg −

6
5Cso(7) +

3
2Cg2 , (2.40)

where the g = sp2 ⊕ spC
1 Casimir is (see appendix B.2 for Casimir conventions)

Cg(p, q; r) = −TAT
A = 2Csp2(p, q) + 3CspC

1
(r). (2.41)

This group theoretic expression for aabcΣabĎc is in the spirit of the Weyl tensor result above
and constitutes the second key formula appearing in the improved formalism applied to
the squashed seven-sphere.

In addition to these two key equations there is another very useful one, namely the
Ricci identity for G2 derivatives

[Ďa, Ďb] = (T i)abTi −
1√
5
aab

cĎc =
(
Wab

cd + 6
5(P14)ab

cd
)
Σcd −

1√
5
aab

cĎc. (2.42)

An especially useful form of this Ricci identity is

aa
bcĎbĎc = − 3√

5
Ďa. (2.43)

In the next section we will derive the eigenvalue spectra of all the operators relevant for
the squashed seven-sphere compactification of eleven-dimensional supergravity. The cases of
∆p for p = 0, 1, 2, 3, ∆L and /D1/2 have been obtained before in [2] (for ∆p with p = 1 already
in [45], /D1/2 in [40] and for ∆L in [32]) but the derivations will here be streamlined quite a
bit using the novel group theoretic formulas, eq. (2.38) and eq. (2.40). In addition, with these
new forms of the key equations, we can rather easily add the so far missing one (presented
also in [36]), namely i /D3/2, to the list, thereby making it complete. It is then possible to
conduct a search for the full set of supersymmetry irreps as indicated in the previous papers
on this subject [1] and [2]. This will be the goal of section 5.
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It might be of interest to the reader to know already here that the supersymmetry
analysis will come short of providing a full understanding of the supersymmetry multiplets:
there will remain both ambiguities and a degeneracy of eigenvalues which will require further
studies. An initial result in this context will be presented in section 4 where we give a novel
construction of all modes of the Yab as well as their eigenvalues.

3 Derivation of all operator eigenvalues

In this section we start, in section 3.1, by briefly showing how to derive previously known
results using the more powerful methods presented in section 2. Then, in section 3.2 we apply
these methods to the novel case of spin 3/2. This case was left undone in [2] but the analysis
of the spin-3/2 equation on the squashed seven-sphere, including finding its eigenvalues, have
already been reported on in [36]. If the reader find the following account too brief more
details can be found in [36]. The master formula used repeatedly below is eq. (2.40).

3.1 All operator equations except spin 3/2

Zero-forms. The equation to be solved in this case is

∆0Y = κ2
0Y. (3.1)

The master formula eq. (2.40) for ∆ immediately gives (using Cg2 = Cso(7) = 0)

∆(1)
0 = Cg, (3.2)

when applied to scalar modes.7 Note that aabcΣabĎcY = 0 in eq. (2.40) since Y is a scalar
and the action of Σab on the c-index on Ďc also vanishes due to the contraction with aabc.

One-forms. The equation for transverse one-forms (DaYa = 0 or, equivalently, ĎaYa =
0) reads

∆1Ya = κ2
1Ya. (3.3)

Again using eq. (2.40) we get, now with Cso(7)(7) = 3 and Cg2(7) = 2,

Ď1Ya ≡ aa
bcĎcYb =

√
5
(
Cg − κ2

1 +
3
5

)
Ya. (3.4)

The standard procedure at this point is to square the operator, i.e., act with Ď1 again,
which gives

(Ď1)2Ya = −□̌Ya + ĎbĎaYb + ca
bcdĎbĎcYd =

(
Cg − Ch + 24

5 − 1√
5
Ď1

)
Ya, (3.5)

where we have used that Ya is transverse. We have also used the Ricci identity on one-forms

[Ďa, Ďb]Yc =
(
Wabc

d + 6
5(P14)abc

d
)
Yd −

1√
5
aabdĎ

dYc, (3.6)

7We will in the following denote the eigenvalues by a superscript on the operator, as in eq. (3.2).
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and the following two direct implications of it:

[Ďb, Ďa]Yb =
12
5 Ya + 1√

5
Ď1Ya, (3.7)

and
ca

bcdĎbĎcYd = 12
5 Ya − 2√

5
Ď1Ya. (3.8)

It is interesting to note that Ch reappeared in the above calculation of (Ď1)2Ya but that the
formula for the Weyl tensor eq. (2.38) applied to one-forms gives rise to a contracted Weyl
tensor which vanishes and hence gives (also obtained in [32])(12

5 − Ch

)
Ya = 0. (3.9)

Hence, the eigenvalue equation eq. (3.5) becomes

Cg +
12
5 −

(
Cg − κ2

1 +
3
5

)
= 5

(
Cg − κ2

1 +
3
5

)2
, (3.10)

which is solved by κ2
1 = ∆(1)±

1 , where

∆(1)±
1 = Cg +

7
10 ± 1√

5

√
Cg +

49
20 . (3.11)

Two-forms. We now turn to two-forms and the eigenvalue equation

∆2Yab = κ2
2Yab. (3.12)

In the previous literature the additional technical issues that start to appear here were
handled on a case-by-case basis, leading to poor understanding and long calculations. In [1],
for instance, equations like eq. (2.40) were derived for the different types of fields separately.
Moreover, they still contained Ch and the Weyl tensor, presenting further technical difficulties,
since the latter appears when acting with ∆p on a p-form, cf. eq. (2.9), and its expression in
terms of Casimirs, eq. (2.38), was not known. Using the novel version of the key equations
eq. (2.38) and eq. (2.40) this computation will be much easier as we now show.

In the improved formalism of this paper eq. (2.40) takes the following form when applied
to transverse two-forms8

Ď[2]Yab ≡ a[a
cdĎ|dYc|b] =

√
5
2 (Cg − κ2

2 + 3P7)Yab. (3.13)

Here we have used Cso(7)(21) = 5, Cg2(7) = 2 and Cg2(14) = 4. Note that the reason P7
appears in the last expression is that the two-form splits under Spin(7) → G2 into 14 and
7 which have different Cg2-eigenvalues. Note also that the transversality constraint reads,
with G2-covariant derivatives,

ĎbYba = 1
2
√
5
aabcY

bc. (3.14)

8The reason for the square bracket on the index 2, here and below, is that the free indices are antisymmetrised.
The same differential operator but without antisymmetrisation or with symmetrised indices will be used below.

– 14 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

In order to proceed it is very convenient to define a second linear operator

D̃[2]Yab ≡ a[a
cdĎb]Ycd ≡ −Ď[aYb], (3.15)

where we in the last equality have defined the vector Ya associated to the two-form by

Ya ≡ aa
bcYbc. (3.16)

Note that this vector field is not transverse a priori (as it is in the one-form case above),
a fact that will become important below.

One can quite easily derive a relation between the two linear derivative operators defined
above. It reads

cab
cdĎ[2]Ycd = 3√

5
P7Yab + 2Ď[2]Yab − 2D̃[2]Yab. (3.17)

By writing cab
cd in terms of δcd

ab and (P7)ab
cd, this can be rewritten as

D̃[2]Yab = (2− 3P7)Ď[2]Yab +
3

2
√
5
P7Yab. (3.18)

This equation implies that, if Yab has no 7-part, it will satisfy Ď[2]Yab = 0 since, in that case,
D̃[2]Yab = 0 = P7Yab and 2 − 3P7 is invertible when acting on two-forms.

Combining eqs. (3.13) and (3.18) leads to the following much simpler equation for the
eigenvalues

Ď[aYb] = −
√
5
2

(
2
(
Cg − κ2

2
)
− 3

(
Cg − κ2

2 +
4
5

)
P7

)
Yab. (3.19)

The reason this is simpler than the original eigenvalue equation is that it becomes an eigenvalue
equation for one-forms when the G2 part 7 of the Spin(7)-irrep 21 is extracted by contracting
with aabc. Doing this we find (for Ď1 see the one-form analysis above)

Ď1Ya = −
√
5
2

(
Cg − κ2

2 +
12
5

)
Ya. (3.20)

To deal with the lack of transversality of the one-form Ya we contract the last equation
above by Ďa and find that either ĎaYa = 0 or (again denoting the eigenvalues by indexed
operators)

∆(1)
2 = Cg +

18
5 . (3.21)

In the former case, ĎaYa = 0, we repeat the one-form analysis starting from eq. (3.20)
and find that either Ya = 0 or

∆(2)±
2 = Cg +

11
5 ± 2√

5

√
Cg +

49
20 . (3.22)

When Ya = 0 then also Ď[2]Yab = 0, as remarked above, and we see from eq. (3.13) that
the last set of eigenvalues are given by

∆(3)
2 = Cg. (3.23)
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Lichnerowicz. We now turn to the case of symmetric transverse and traceless rank-2
tensors which we will denote as Xab. Thus Xab satisfies

∆Xab = κ2
LXab, Xa

a = 0, DaXab = 0 ⇐⇒ ĎaXab = 0. (3.24)

Using Cso(7)(27) = 7 and Cg2(27) = 14
3 , the master formula becomes

Ď(2)Xab ≡ a(a
cdĎ|dXc|b) =

√
5
2

(
Cg − κ2

L + 7
5

)
Xab, (3.25)

where we have introduced the differential operator Ď(2), which clearly is the object we need
to study and if possible relate its action on Xab to κ2

L and Xab itself.
It turns out, however, that it is much more convenient to start by considering the operator

(Ď2X)ab ≡ aa
cdĎdXcb, (3.26)

without any kind of symmetrisation. The reason for this is that one can rather easily derive
a nice equation for its square (Ď2

2X)ab.
To proceed we note that (Ď2X)ab is traceless and has vanishing 7-part and hence contains

only the irreducible parts 14 and 27. The latter, (Ď(2)X)ab, was defined above while the
former will from now on be denoted

Yab ≡ (Ď[2]X)ab = (Ď2X)ab − kXab, (3.27)

where k is the coefficient on the right-hand side of the master equation, eq. (3.25). It is easy
to show that Ďa(Ď2X)ab = 0, which by the above equation implies that Yab is transverse
(DaYab = 0) since Xab is transverse and Yab has no 7-part.

It is now fairly easy to compute (Ď2
2X)ab. In fact, from eq. (2.38) we find

2Wa
c
b
dXcd =

(28
5 − Ch

)
Xab (3.28)

(found earlier in [2]) which together with the Ricci identity for Ďa makes it possible to
show that Ch cancels and that

(Ď2
2X)ab = −□̌Xab + ĎcĎaXcb + ca

cdeĎcĎdXeb = CgXab −
1√
5
(Ď2X)ab. (3.29)

Finally, by combining this equation with the one defining Yab above we find(
k2 + k√

5
− Cg

)
Xab = −

(
Ď2 + k + 1√

5

)
Yab. (3.30)

To solve this equation we consider first its antisymmetric part which reads

Ď[2]Yab = −
(
k + 1√

5

)
Yab = −

√
5
2

(
Cg − κ2

L + 9
5

)
Yab. (3.31)

However, Ď[2]Yab = 0 since Yab has only a 14-part, as already noted above when solving for
the two-form eigenvalues. Thus either Yab = 0 or κ2

L = ∆(1)
L = Cg + 9

5 .
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When Yab = 0, we have, by eq. (3.30),(
k2 + k√

5
− Cg

)
Xab = 0. (3.32)

Inserting the expression for k above and solving this equation give the remaining two sets
of eigenvalues, ∆(2)±

L .
To summarise, we have found that the eigenvalues of the Lichnerowicz operator are just

the following three sets (reported without derivation already in [32])

∆(1)
L = Cg +

9
5 , (3.33)

∆(2)±
L = Cg +

8
5 ± 2√

5

√
Cg +

1
20 . (3.34)

Three-forms. Following the by now standard procedure, we start by presenting the master
formula applied to three-forms, in the irrep 35 of so(7). Thus, since its G2-content is given
by 35 → 1 ⊕ 7 ⊕ 27 we need Cso(7)(27) = 7, Cg2(7) = 2 and Cg2(27) = 14

3 . Using these
facts and the eigenvalue equation for transverse three-forms

∆Yabc = κ2
3Yabc, DaYabc = 0, (3.35)

the master formula becomes

3a[a
deĎ|eYd|bc] =

√
5
(
Cg − κ2

3 +
36
5 − 3P7 − 7P27

)
Yabc. (3.36)

With some care when imposing transversality we can make use of previous results, in particular
the ones related to Lichnerowicz discussed just above.

To split the three-form into its G2 parts according to 35 → 1 ⊕ 7 ⊕ 27 we use the
projection operators in appendix B. This leads to

Yabc =
1
42aabcY + 1

24cabc
dYd +

3
4a[ab

dXc]d, (3.37)

where
Y ≡ aabcYabc, Ya ≡ −ca

bcdYbcd, Xab ≡ a(a
cdYb)cd −

1
7δabY. (3.38)

The transversality condition DaYabc = 0 in terms of Ďa translates into

ĎcYcab =
1√
5
a[a

cdYb]cd. (3.39)

The key equation eq. (3.36) above splits as the three-form itself into three pieces.
Considering first the parts 1 and 7 we get

3ĎaYa =
√
5
(
Cg − κ2

3 +
36
5

)
Y, (3.40)

4
7ĎaY − 1

6aa
bcĎbYc − 3ĎbXba = −

(
Cg − κ2

3 +
21
5

)
Ya. (3.41)
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To extract the eigenvalues connected to these two equations we note that the term ĎbXba in
the latter one is also occurring in the 7 part of the transversality condition and can thus be
replaced by terms involving only Y and Ya. Doing this, eq. (3.41) gives rise to an equation
which we contract by Ďa and use eq. (3.40) to eliminate ĎaYa. The final result is

9
5CgY =

(
Cg − κ2

3 +
9
5

)(
Cg − κ2

3 +
36
5

)
Y, (3.42)

which, if Y ̸= 0 gives the eigenvalues κ2
3 = ∆(3)±

3 ,

∆(3)±
3 = Cg +

9
2 ± 3√

5

√
Cg +

81
20 . (3.43)

If instead Y = 0 we see from the above equations that ĎaYa = 0, which implies DaYa = 0,
and that Ya satisfies an equation which, apart from having different constants, is identical
to the one-form one above. Repeating the steps taken there we find the following result for
the eigenvalues associated with Ya in the present case:

∆(2)±
3 = Cg +

5
2 ± 1√

5

√
Cg +

49
20 . (3.44)

Finally, if instead of getting the previous set of eigenvalues also Ya = 0 then only Xab

is left in Yabc. Now the transversality condition gives

ĎbXba = 0, P14(Ď[2]X)ab = 0, (3.45)

and the master equation eq. (3.36) reduces to

(Ď2X)ab = −
√
5
(
Cg − κ2

3 +
1
5

)
Xab. (3.46)

The situation has now become similar to the one for the Lichnerowicz operator but with the ad-
ditional information that what we there called Yab = (Ď[2]X)ab vanishes since P14(Ď[2]X)ab = 0
and the 7-part of Yab always vanish for transverse Xab, as noted above. Hence, we only get
the case analogous to eq. (3.32), not eq. (3.31). Changing the constants of the Lichnerowicz
analysis appropriately, this gives the two eigenvalues in eq. (3.47).

Thus we have found the following three branches of eigenvalues for the three-forms:

∆(1)±
3 = Cg +

1
10 ± 1√

5

√
Cg +

1
20 , (3.47)

∆(2)±
3 = Cg +

5
2 ± 1√

5

√
Cg +

49
20 , (3.48)

∆(3)±
3 = Cg +

9
2 ± 3√

5

√
Cg +

81
20 . (3.49)

When we summarise these results at the end of this section we will instead give the eigenvalues
of the linear operator Q related to ∆3 by ∆3 = Q2. This will force us to choose one of
two possible signs which, however, can be done using supersymmetry as will be clear from
the analysis in section 5.
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Spin 1/2. When we now turn to operator equations on the squashed seven-sphere for
modes in spinorial tangent space representations we follow the strategy in [2] of squaring the
corresponding Dirac equation. For the spin-1/2 case we thus consider

∆ψ = κ2
1/2ψ, (3.50)

where the universal Laplacian in eq. (2.9) is related to the square of the Dirac operator by

∆ψ = (i /D)2ψ − 189
80 ψ. (3.51)

As in [2] we will make heavy use of the G2-invariant Killing spinor η which satisfies

Ďaη = 0. (3.52)

Using η, we can define the projection operators needed to split the Spin(7) spinor irrep 8
into G2 parts according to 8 → 1 ⊕ 7:

P1 ≡ ηη̄, P7 ≡ Γaηη̄Γa. (3.53)

These projection operators satisfy P1 + P7 = 1 (which is just a Fierz identity) which leads
to the following splitting of the spinor:

ψ = Y η + iYaΓaη. (3.54)

where we have defined two real tensor fields

Y ≡ η̄ψ, Ya ≡ −iη̄Γaψ. (3.55)

Using the fact that Cso(7)(8) = 21/8 we find that the master formula reads

aabcΓabĎcψ = 4
√
5
(
Cg − κ2

1/2 +
63
20 − 3P7

)
ψ. (3.56)

This equation can be projected onto its scalar and vector parts leading to the following
two equations

3ĎaYa = 2
√
5
(
Cg − κ2

1/2 +
63
20

)
Y, (3.57)

3ĎaY + aa
bcĎcYb = −2

√
5
(
Cg − κ2

1/2 +
3
20

)
Ya. (3.58)

Here, we see immediately that if Y = 0 then Ya is a transverse one-form satisfying an equation
of the form Ď1Ya ∝ Ya. Thus, we first want to use the two equations above to derive the
eigenvalues in the Y ̸= 0 case to then be able to reuse the analysis of the one-forms.

This is done as follows. We contract the latter of the two equations above by Ďa and
use the first equation to eliminate the ĎaYa term. This gives

9
20CgY =

(
Cg − κ2

1/2 +
9
20

)(
Cg + κ2

1/2 +
63
20

)
Y. (3.59)
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Thus either Y = 0 or the eigenvalue κ2
1/2 is given by the solution to this equation, which reads

∆(1)
1/2 = Cg +

9
2 ± 3

2
√
5

√
Cg +

81
20 . (3.60)

On the other hand, when Y = 0 the above equations eqs. (3.57) and (3.58) reduce to the
equations for a transverse one-form analysed previously. Reusing that computation we find

∆(2)
1/2 = Cg +

1
10 ± 1

2
√
5

√
Cg +

49
20 . (3.61)

The final step is to solve for the eigenvalues of the Dirac operator i /D1/2 from eq. (3.51).
The result is given as i /D(1)±

1/2 and i /D
(2)±
1/2 in section 3.3.

3.2 The novel case of spin 3/2

The last operator equation to discuss is the spin-3/2 one. This is also the one that has not
been solved previously in the literature (see however [36]) but which can now be dealt with
using the more efficient methods presented in the previous section. As we will see below
the analysis of the spin-3/2 eigenvalue equation will contain most of the intricate features
encountered, and resolved, in connection with the cases discussed above.

The starting point here is the same as for the other cases above: write out the master
formula, that is eq. (2.40), using Cso(7)(48) = 49

8 , Cg2(7) = 2, Cg2(14) = 4 and Cg2(27) = 14
3 ,

aa
bcĎcψb +

1
4ade

cΓdeĎcψa =
√
5
(
Cg − κ2

3/2 +
147
20 − 3P7 − 6P14 − 7P27

)
ψa, (3.62)

which is satisfied for transverse and gamma-traceless vector-spinors ψa, i.e., Daψa = 0 and
Γaψa = 0. Here κ2

3/2 is the eigenvalue of the universal Laplacian which is related the square
of the spin-3/2 operator i /D3/2, i.e., we have,

∆ψa = κ2
3/2ψa, ∆ψa = (i /D)2ψa + 27

80ψa. (3.63)

When giving the result of this subsection in the summary at the end of this section it is
the eigenvalues of i /D3/2 that are quoted. This step requires taking the square root of the
result for (i /D3/2)2 giving a sign ambiguity that is resolved by requiring that the eigenvalues
must be consistent with supersymmetry in the case of the left-squashed S7 compactification.
This is analysed in detail in section 5.

Irreducible G2-components and transversality. The strategy we will adopt to analyse
the above spin-3/2 equation will rely on the fact that the G2-content in 48 is 7⊕14⊕27 which
corresponds precisely to a traceless two-tensor without symmetrisations: the antisymmetric
part, denoted Yab, corresponds to 7⊕ 14 while the traceless symmetric one, Xab, corresponds
to 27. This makes it possible to translate the present spin-3/2 problem into problems involving
two-tensors and hence to use knowledge obtained from the previous subsection. As in the
spin-1/2 case above, we can use the Killing spinor η (and the Fierz identity Γaηη̄Γa = 1− ηη̄)
to define the split [32, 37, 41]

ψa ≡ Yaη + iΓbZbaη, (3.64)
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where the two (real) tensors are given by

Ya ≡ η̄ψa, Zab ≡ −iη̄Γaψb. (3.65)

Note that the two-tensor appearing here has no specified symmetry on the indices. However,
from the gamma-tracelessness of the spin-3/2 field, Γaψa = 0, we see that Za

a = 0. Thus,
the only remaining issue is whether or not there is an independent 7 piece in Zab. To
clarify this point we compute

aa
bcZbc = η̄Γabcηη̄Γbψc = −η̄Γacψc = Y a, (3.66)

where we have used the above Fierz identity for η together with Γaψa = 0 and the relation
aabc = iη̄Γabcη (see appendix A). Thus it is convenient to define the G2 irreducible parts of
Zab as follows (for the projection operators, see appendix B)

Xab ≡ Z(ab), Yab ≡ Z[ab], Y 7
ab = P7Yab, Y 14

ab = P14Yab, (3.67)

where Y 7
ab = 1

6aab
cYc. Thus we see that the content of independent tensors in the spin-3/2

field ψa is exactly one vector (7), one 14-part of an antisymmetric two-tensor and one
traceless symmetric two-tensor (27).

Before attempting to find the spin-3/2 eigenvalues κ2
3/2 defined in eq. (3.62), we also need

to analyse the transversality condition of ψa. In terms of Ďa, the transversality condition reads

Ďaψa = − 1
8
√
5
aabcΓabψc. (3.68)

By contracting with η̄ and η̄Γa, we can extract its 1 and 7 parts, respectively,

ĎaYa = 0, ĎbZab = ĎbXba − ĎbYba = 1√
5
Ya, (3.69)

where we have used

iη̄ΓaΓcdψb = aa
cdYb + ca

cdeZeb − δc
aZ

d
b + δd

aZ
c
b, (3.70)

which follows from eq. (3.64). These equations will be used below.

Deriving the eigenvalues. To find the eigenvalues associated to the various tensors
obtained in the above decomposition of ψa, we start by converting eq. (3.62) into an equation
for Zab.9 Contracting it with η̄Γa and using eq. (3.70), we find

− 3
2
√
5
ĎaYb +

1√
5
ab

cdĎdZac −
1

2
√
5
aa

cdĎdZcb =
(
Cg − κ2

3/2 +
7
20 + P14 + 4P7

)
Zab. (3.71)

Here we note that the first term contains Ya.
In order to get further equations involving Ya we need to discuss the various divergences

(see, e.g., eq. (3.69)). Note first that

ĎbY 7
ba = 1

6aa
cbĎbYc =

1
6Ď1Ya, (3.72)

9The eigenmodes and eigenvalues are not strictly associated to the G2-irreducible pieces since ∆ is
block-triangular rather than block-diagonal over these, as we will see below.
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and that eq. (3.69) relates the divergences of Xab and Yab to Ya. To get other equations relating
the divergences of the two-index tensors, we can contract eq. (3.71) with Ďa and Ďb. This will
lead to a situation resembling the analysis of one-forms carried out in the previous subsection.
Note that Ya satisfies the transversality condition eq. (3.69) which implies DaYa = 0.

By contracting eq. (3.71) with Ďb we get a second relation between the divergences
of Y 7

ab, Y 14
ab and Xab. Combining this with the transversality condition for ψa, eq. (3.69),

we can solve for two of them as

ĎbY 14
ba = −3ĎbY 7

ba +
√
5
3

(
Cg − κ2

3/2 +
81
20

)
Ya, (3.73)

ĎbXba = −2ĎbY 7
ba +

√
5
3

(
Cg − κ2

3/2 +
93
20

)
Ya. (3.74)

Next, we contract eq. (3.71) with Ďa. The calculation is a bit involved, more details
can be found in [36], but again gives an equation relating the divergences of the two-index
tensors. Using eqs. (3.73) and (3.74) to eliminate ĎbY 14

ba and ĎbX14
ba and eq. (3.72) to convert

ĎbY 7
ba to Ď1Ya, the result can be written as(

Cg − κ2
3/2 +

109
40

)
Ď1Ya =

√
5
2

[(
Cg − κ2

3/2 +
57
20

)2
− 1

4

(
Cg +

12
5

)]
Ya. (3.75)

To find the eigenvalues from this equation we recall the analysis of the one-form above, in
particular eqs. (3.4) and (3.5). It is then easy to see that in the present case it leads to
a fourth-order equation in κ2

3/2 with solutions

∆(3)
3/2 = Cg +

14
5 ± 1

2
√
5

√
Cg +

49
20 , ∆(4)

3/2 = Cg +
31
10 ± 5

2
√
5

√
Cg +

49
20 , (3.76)

if Ya ̸= 0.
If, on the other hand, Ya = 0, then both Xab and Y 14

ab = Yab are transverse by eqs. (3.73)
and (3.74). Now, the situation is a bit similar to part of the three-form analysis, where
we also had 14 and 27 pieces. To proceed, we pick out the symmetric and antisymmetric
pieces of eq. (3.71), giving

Ď(2)Xab − 3(Ď(2)Y )ab = 2
√
5
(
Cg − κ2

3/2 +
7
20

)
Xab, (3.77)

−3(Ď[2]X)ab + Ď[2]Yab = 2
√
5
(
Cg − κ2

3/2 +
27
20

)
Yab. (3.78)

Recall, again, from the two-form analysis the very useful fact that a transverse two-form
without 7-part satisfies Ď[2]Yab = 0. Thus, we can form a linear combination of eqs. (3.77)
and (3.78) only containing the operator D2 as

(Ď2X)ab − 3(Ď2Y )ab = 2
√
5
(
Cg − κ2

3/2 +
7
20

)
Xab −

2
√
5

3

(
Cg − κ2

3/2 +
27
20

)
Yab. (3.79)

To see why this is useful, we recall another piece of analysis from the previous subsection,
namely for the Lichnerowicz operator, and in particular the equation eq. (3.29)

(Ď2
2X)ab = CgXab −

1√
5
(Ď2X)ab, (3.80)
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for transverse traceless symmetric rank-2 tensors Xab. A short calculation shows that the same
relation also holds for transverse two-forms. If we act with Ď2 on eq. (3.79), use this relation
and then pick out the antisymmetric part, we get an equation relating Yab to (Ď[2]X)ab, namely

CgYab = −2
√
5

3

(
Cg − κ2

3/2 +
9
20

)
(Ď[2]X)ab. (3.81)

Importantly, since we used eq. (3.80), this equation is linearly independent from eq. (3.78)
and they can be combined into

CgYab =
20
9

(
Cg − κ2

3/2 +
9
20

)(
Cg − κ2

3/2 +
27
20

)
Yab. (3.82)

Thus, either Yab = 0 or

∆(2)
3/2 = Cg +

9
10 ± 3

2
√
5

√
Cg +

9
20 . (3.83)

In the last case, Yab = 0, when only the 27-part is non-vanishing eqs. (3.77) and (3.78)
gives us the Lichnerowicz situation reviewed above but with the additional information that
(Ď[2]X)ab = 0. As it turns out, this is exactly the situation from the three-form analysis with
only a non-vanishing 27-part, also reviewed in the previous subsection. The implication from
that analysis is then, again, that we only get two eigenvalues, given in eq. (3.87) below.

In summary, we have found that all eigenvalues of ∆3/2 fall into one of the following sets:

∆(3)
3/2 = Cg +

14
5 ± 1

2
√
5

√
Cg +

49
20 , (3.84)

∆(4)
3/2 = Cg +

31
10 ± 5

2
√
5

√
Cg +

49
20 , (3.85)

∆(2)
3/2 = Cg +

9
10 ± 3

2
√
5

√
Cg +

9
20 , (3.86)

∆(1)
3/2 = Cg +

2
5 ± 1

2
√
5

√
Cg +

1
20 . (3.87)

Using eq. (3.63), and supersymmetry to fix the sign ambiguity, it is possible to determine the
eigenvalues of i /D3/2, which are denoted i /D

(i)±
3/2 , i = 3, 4, 2, 1, in the summary below.

3.3 Summary: the entire squashed S7 operator eigenvalue spectrum

In section 5 we will use the results of this section, and the next, to specify the content
of irreps D(E0, s) of all supermultiplets in the left-squashed vacuum. To facilitate that
discussion we here summarise the results on the left-squashed seven-sphere operator spectra
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we have obtained in this section:

∆(1)
0 = m2

9 20Cg, (3.88)

∆(1)±
1 = m2

9
(
20Cg + 14± 2

√
20Cg + 49

)
= m2

9
(√

20Cg + 49± 1
)2

− 4m2, (3.89)

∆(1)
2 = m2

9 (20Cg + 72), (3.90)

∆(2)±
2 = m2

9
(
20Cg + 44± 4

√
20Cg + 49

)
= m2

9
(√

20Cg + 49± 2
)2 −m2, (3.91)

∆(3)
2 = m2

9 20Cg, (3.92)

∆(1)
L = m2

9 (20Cg + 36), (3.93)

∆(2)±
L = m2

9
(
20Cg + 32± 4

√
20Cg + 1

)
= m2

9
(√

20Cg + 1± 2
)2

+ 3m2, (3.94)

Q(1)± = m

3
(
−1±

√
20Cg + 1

)
, (3.95)

Q(2)± = m

3
(
1±

√
20Cg + 49

)
, (3.96)

Q(3)± = m

3
(
3±

√
20Cg + 81

)
, (3.97)

i /D
(1)±
1/2 = m

3

(3
2 ±

√
20Cg + 81

)
, (3.98)

i /D
(2)±
1/2 = m

3

(
−1
2 ±

√
20Cg + 49

)
, (3.99)

i /D
(1)±
3/2 = m

3

(1
2 ±

√
20Cg + 1

)
, (3.100)

i /D
(2)±
3/2 = m

3

(
−3
2 ±

√
20Cg + 9

)
, (3.101)

i /D
(3)±
3/2 = m

3

(1
2 ±

√
20Cg + 49

)
, (3.102)

i /D
(4)±
3/2 = m

3

(5
2 ±

√
20Cg + 49

)
, (3.103)

Note that all linear operators have a sign ambiguity from the calculations above since those
analyses used quadratic operators and gave the squares of the eigenvalues of the linear
operators. However, as we will see in section 5 using supersymmetry, and for spinors already
in section 4, these signs can be determined uniquely and these results has been used when
quoting the eigenvalues above.10

In section 5 we will fit all these eigenvalues into the supermultiplets that were established
to be present in the left-squashed seven-sphere spectrum in [1]. These supermultiplets are

10There is one exception were this sign ambiguity is not resolved uniquely, namely the (p, q; r) = (0, 1; 0)
isometry irrep in which Q(1)− = −10m/3 and −Q(1)+ = −8m/3 give rise to the same M2 using the formula
in table 3. We conjecture that the former is the correct eigenvalue based on the methods of the next section
but either way this has no bearing on the AdS4 analysis of section 5.
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one spin 2+, six spin 3/2, six spin 1+, eight spin 1− and 14 Wess-Zumino supermultiplets.
This procedure shows that there are degenerate E0 values of supermultiplets as well as
operator eigenvalues that are associated with more than one set of modes. This curious fact
requires a deeper analysis of these modes. One such analysis is carried out for two-forms in
the next section proving explicitly that the degeneracy deduced from the supersymmetry
analysis is realised in this case.

4 Associating isometry irreps with eigenvalues through eigenmodes

The purpose of this section is to provide a better understanding of the connection between
isometry irreps and eigenvalues, i.e., which eigenvalue formulas from the previous section
apply to which isometry irreps, through individual eigenmodes in the various operator spectra.
The eigenvalue results in the previous section and in previous works like [2, 36] were obtained
using methods that did not rely on writing down explicit modes and hence could not give
a precise relation to the spectra of isometry irreps, which was derived in full detail in [1].
Exceptions to this where explicit modes have been constructed are spinors [40], one-forms [45]
and the entire singlet sector [17].

Lacking this connection between eigenvalues and isometry irreps has led to a potential
problem, namely that there seems to be fewer distinguished eigenvalues than isometry irreps.
For instance, for two-forms, which is the first instant where this phenomenon arises, we found
in the previous section four different eigenvalues that should be related to five different modes
all having the same isometry irrep, namely the five r = p cross diagrams for two-forms in
the appendix of [1]. Similar properties can be identified for the Lichnerowicz operator (three
eigenvalues and six modes), three-forms (six eigenvalues and eight modes) and vector-spinors
(eight eigenvalues and twelve modes). However, the eigenvalues found in the previous section
are consistent with supersymmetry for all modes in the left-squashed vacuum, as will be clear
from the next section, indicating that there might not be a problem after all.

To get a better understanding of this issue we will construct all eight sets of two-form
modes and compute their individual eigenvalues in this section. The results obtained provide
strong support for the existence of these degeneracies which are made explicit in the next
section. We start the discussion in this section by reviewing the one-form and spinor cases
which will also define our notation and explain our approach, which is in the spirit of the
spinor analysis in [40].

The modes will, in all cases, be constructed by letting differential operators Y (of orders
zero,11 one and two) act on a scalar mode functions ϕ. From [1], we know that the isometry
irreps in the scalar Fourier expansion are (p, q; p) with p ≥ 0 and q ≥ 0 (all of multiplicity one)
which we illustrate diagrammatically in a cross diagram in figure 1. As is well-known, the
zero-form eigenvalues are ∆(1)

0 = m2

9 20Cg (see section 3). In what follows, it is understood
that these cross diagrams should be infinitely extended in the two positive directions and that
they are always made large enough to account for all special cases that arise for small p or q.

11The zeroth order differential operators are just constants, like Y(2)i
a = sa

i in eq. (4.2).
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∆(1)
0

1
2
3
4

1 2 3 4
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×
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×

×
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×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

Figure 1. Scalar cross diagram. Each cross corresponds to an isometry irrep (p, q; r), for p ≥ 0,
q ≥ 0, of eigenmodes ϕ of ∆0 with eigenvalues ∆(1)

0 = m2

9 20Cg, as given in eq. (3.88).

4.1 Warm-up: one-form and spinor modes

One-form modes. We want to construct the transverse, DaYa = 0, eigenmodes Ya of ∆1.
We will again make use of eq. (2.40) but this time write it as

∆Ya = CgYa − 1√
5
aa

bcĎcYb +
3
5Ya, (4.1)

which tells us that we only need to act with one derivative on Ya to obtain the eigenvalues of ∆.
The first step in this analysis is to construct a basis for all one-form modes spanning

the entire set of isometry irreps. Equivalently, we can write down an expression for the most
general one-form mode in the isometry irrep (p, q; r) which can be done using a scalar ϕ
and a one-form differential operator Ya. Since scalars only exists for r = p, see, e.g., [1],
the scalar will be in the isometry irrep (p, q; p) which implies that we have to consider Ya

in non-trivial representations of spC
1 to get one-forms with r ̸= p.

Not yet enforcing transversality, the one-form isometry irreps from [1] consists of one
1spC

1
and two 3spC

1
. With this, we mean that the isometry irreps are obtained by decomposing

(p, q; p)⊗ (1spC
1
⊕ (2× 3spC

1
)) into irreps, i.e., there are three cross diagrams with r = p and

two each with r = p± 2 by standard addition of angular momentum.12 Hence, we need one
singlet Ya and two triplets Y i

a, for which we use

Y(1)
a = Ďa, Y(2)i

a = sa
i, Y(3)i

a = aa
bcsb

iĎc. (4.2)

Here, sa
i are the components of the spC

1 Killing vectors, see [40].13 We normalise them
such that [si, sj ] = ϵijksk, where si = sa

i∂a, which one can check explicitly using that the
only non-vanishing components are

sî
j = 1√

5
δj

i , (4.3)

where we have used the index split a = (̂i, 0, i) as in appendix A and [36]. We will need the
H-covariant derivative of the Killing vector components [40] (see appendix A),

Ďasb
i = −3ϵijksa

jsb
k. (4.4)

12There are sometimes special cases for small p or q where there are fewer isometry irreps than indicated
here. These details will provide a consistency check presented below.

13Note that the index i in this section refers to sp1 and is not the same as the h-index i in section 2.
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A general one-form in the (p, q; r) isometry irrep can now be written as a linear combina-
tion of PrY(1)ϕ, PrY(2)iϕ and PrY(3)iϕ, where Pr projects onto the spC

1 -irrep (r)C . Note that
since Pr acts on the spC

1 indices of the differential operators and the (suppressed) isometry
irrep index of ϕ, it clearly commutes with ∆, which is also obvious from the fact that the
eigenmodes of ∆ fall into isometry irreps.

The projection operator Pr can also be implemented as a differential operator. As a
first step in this direction, note that PpY iϕ ∝ Yjsjs

iϕ since the latter clearly only contains
a r = p piece. More generally, the projector is given by

Pr =
∏

r′ ̸=r

CspC
1
− CspC

1
(r′)

CspC
1
(r)− CspC

1
(r′) , (4.5)

where r′ runs over all spC
1 -irreps except (r)C , since the right-hand side clearly vanishes on any

other irrep than (r)C and becomes the identity when restricted to this spC
1 -irrep.14 In this

equation, CspC
1
(r) is just the eigenvalue of the Casimir on the (r)C irrep but to use it in practice,

we also need the action of the Casimir operator on Yϕ. As an example, when the differential
operator is a 3spC

1
, i.e., Y i, we have (irrespective of the suppressed so(7) index on Y i)

CspC
1
Y iϕ = −(TkT

kY i)ϕ−Y i(TkT
kϕ)− 2(TkY i)(T kϕ) =

(
Cϕ

spC
1
+2

)
Y iϕ− 2ϵijkYjskϕ, (4.6)

where Tk are the spC
1 generators and the 2 comes from CspC

1
(3) = 2.15

The next step is to compute the action of ∆ using eq. (4.1). To this end, we first compute

aa
bcĎc(Y(1)

b ϕ) = 3√
5
Ďaϕ = 3√

5
Y(1)

a ϕ, (4.7)

aa
bcĎc(Y(2)i

b ϕ) = 6√
5
sa

iϕ+ aa
bcsb

iĎcϕ = 6√
5
Y(2)i

a ϕ+ Y(3)i
a ϕ, (4.8)

aa
bcĎc(Y(3)i

b ϕ) = Ďas
iϕ− sa

i□̌ϕ− 6ϵijksa
jskϕ− 7√

5
aa

bcsb
iĎcϕ

= Y(1)siϕ+ (Cg − 6)Y(2)iϕ− 7√
5
Y(3)iϕ, (4.9)

where, in the last step, we used that □̌ϕ = −Cϕ
g ϕ, eq. (2.41) and eq. (4.6). Putting eq. (4.1)

and eqs. (4.7)–(4.9) together we get

∆Pr

(
Y(1)

a Y(2–3)i
a

)
ϕ = Pr

(
Y(1)

a Y(2–3)i
a

)
Cg 0 − 1√

5s
i

0 Cg − 3
5 − 1√

5(Cg − 6)
0 − 1√

5 Cg + 2

ϕ, (4.10)

where we have indicated the spC
1 -irrep block structure of the matrix and Y(2–3)i

a should be
understood as the block (Y(2)i

a Y(3)i
a ) so that the matrix multiplication between the row vector

containing the differential operators Y and the matrix on the right-hand side makes sense.
14Note that the projector is unique as long as the spC

1 -irreps are non-degenerate. This is true in our setting
since Pr will act on Yϕ and the tensor product of two spC

1 -irreps has a non-degenerate irrep decomposition.
15We write Cϕ

spC
1

= CspC
1 (p) and Cϕ

g = Cg(p, q; p) for the eigenvalues of the Casimirs CspC
1 and Cg,

respectively, on the irrep (p, q; p) of ϕ.
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Note that the lower left zero block occurs since no spC
1 index can appear when computing ∆Yϕ

for an spC
1 singlet Y. This block triangular structure is a generic feature that will reappear

in the spinor and two-form analyses below. The above matrix can easily be diagonalised
to obtain the eigenmodes and their corresponding eigenvalues.

Here, we are only interested in the transverse eigenmodes. From [1], we know that
imposing transversality reduces the one-form isometry irrep content from one 1spC

1
and two

3spC
1

to just two 3spC
1

. Computing the divergences we find

DaY(1)
a ϕ = □̌ϕ, (4.11)

DaY(2)i
a ϕ = siϕ, (4.12)

DaY(3)i
a ϕ = − 3√

5
siϕ, (4.13)

which may be written, using that Cϕ
g PrY(1)

a siϕ = CgPrY(1)
a siϕ since Pr ̸=pY

(1)
a siϕ = 0, as

DaPr

(
Y(1)

a Y(2–3)i
a

)
ϕ = Pr

(
−Cg si − 3√

5s
i
)
ϕ, (4.14)

where the vertical bar on the right-hand side indicate the spC
1 block structure that is manifest

on the left-hand side. From this, we see that the expectation from [1] is borne out; Y(1)
a ϕ is

not transverse but can be combined with Y(2,3)i
a ϕ to make them transverse.

Diagonalising eq. (4.10) and then using eq. (4.14), we find the transverse eigenmodes
PrỸ(1)±i

a ϕ of ∆1 and their corresponding eigenvalues ∆(1)±
1 , where

Ỹ(1)±i
a = 2

√
5Y(1)

a si + 1√
5

(
10Cg − 21∓ 3

√
20Cg + 49

)
Y(2)i

a −
(
7±

√
20Cg + 49

)
Y(3)i

a ,

(4.15)

∆(1)±
1 = m2

9
(
20Cg + 14± 2

√
20Cg + 49

)
, (4.16)

which agrees with the eigenvalues in eq. (3.89).
As mentioned above, there are some special cases of isometry irreps that can occur when

either p or q is small [1]. To see for exactly which (p, q; r) the eigenmodes and their associated
eigenvalues exist, we compute their norms

∥PrỸ(1)±ϕ∥2 =
∫

vol
(
Ỹ(1)±i

a ϕ
)
Pr

(
Ỹ(1)±a

i ϕ
)
, (4.17)

where the integral is over the squashed seven-sphere. Note that either all or none of the
eigenmodes in each copy of an irrep (p, q; r) vanish since the representation is irreducible,
hence we have contracted the spC

1 indices in the above equation without loosing information
about which eigenmodes exist.

To proceed, we use eq. (4.5) to write the projector in terms of the Casimir operator.
In the case at hand, we are dealing with 3spC

1
operators, so r = p, p ± 2 and r′ takes the

two values different from r out of these three. Hence, we have to act with the Casimir CspC
1

twice on the modes. We already saw in eq. (4.6) how to act once. When acting with the
Casimir operator again, we also get a term

ϵijk(ϵjmnYmsn)sk = −Y is2 + 1
2ϵ

i
jkYjsk + Yjs

ij , (4.18)
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where sij = s(isj). Thus, the squared norms ∥PrỸ(1)±ϕ∥2 can be written as linear com-
binations of

⟨Y(m)iϕ, δijY(n)jϕ⟩, ⟨Y(m)iϕ, ϵijkY(n)jskϕ⟩, ⟨Y(m)iϕ, Y(n)jsijϕ⟩, (4.19)

where m,n = 1, 2, 3 are labels (not spC
1 indices) and Y(1)i ≡ Y(1)si.

To compute the norms of the eigenmodes we note that it suffices to compute the one-form
scalar products

⟨Y(1)ϕ,Y(1)ϕ⟩ = Cϕ
g ∥ϕ∥2,

⟨Y(1)ϕ,Y(2)isiϕ⟩ = Cϕ
spC

1
∥ϕ∥2, ⟨Y(1)ϕ,Y(3)isiϕ⟩ = − 3√

5
Cϕ

spC
1
∥ϕ∥2, (4.20)

⟨Y(2)iϕ,Y(2)jφ⟩ = 1
5⟨ϕ, δ

ijφ⟩, ⟨Y(2)iϕ,Y(3)jφ⟩ = 1√
5
⟨ϕ, ϵijkskφ⟩, (4.21)

⟨Y(3)iϕ,Y(3)jφ⟩ = 1
5C

ϕ
g ⟨ϕ, δijφ⟩ − 9

10⟨ϕ, ϵ
ijkskφ⟩+ ⟨ϕ, sijφ⟩, (4.22)

by using that ⟨Ysiϕ,Y ′ϕ⟩ = −⟨Yϕ,Y ′siϕ⟩, which follows from the spC
1 -irrep of ϕ being

unitarity, where Y,Y ′ are differential operators (that may have suppressed spC
1 indices).

Apart from these, we have to compute the zero-form scalar products that appear when
putting the above together, e.g.,

⟨ϕ, sijsijϕ⟩ = Cϕ
spC

1

(
Cϕ

spC
1
− 1

2

)
∥ϕ∥2. (4.23)

Putting everything together to compute the norms in eq. (4.17), i.e., the eigenmodes
from eq. (4.15), the projector from eq. (4.5), the action of the Casimir from eq. (4.6) and
eq. (4.18), the one-form scalar products from eqs. (4.20)–(4.22) and the zero-form scalar
products like eq. (4.23), we get

∥Pp+2Ỹ(1)±ϕ∥2 ∝ 1
25(p + 2)(p + 3)

((
20q(p + q + 3) + (5p + 6)2)(20q(p + q + 3) + (5p + 13)2)

∓
(
20q(p + q + 3)(5p − 1) + (5p + 6)2(5p + 13)

)√
20q(p + q + 3) + (5p + 13)2

)
,

(4.24)

∥PpỸ(1)±ϕ∥2 ∝ 2
25p(p + 2)

((
5q(p + q + 3) + (5p + 14)

)(
20q(p + q + 3) + (5p + 7)2)

±
(
55q(p + q + 3) + (5p + 14)(5p + 7)

)√
20q(p + q + 3) + (5p + 7)2

)
,

(4.25)

∥Pp−2Ỹ(1)±ϕ∥2 ∝ 1
25p(p − 1)

((
20q(p + q + 3) + 5p(5p + 16) + 56

)(
20q(p + q + 3) + 5p(5p + 2) + 49

)
±
(
20q(p + q + 3)(5p + 11) + 25p2(5p + 13) + 8(75p + 49)

)√
20q(p + q + 3) + 5p(5p + 2) + 49

)
,

(4.26)

where we have dropped the denominators in eq. (4.5) except for the sign to make sure that
the proportionality coefficients are positive. Using the same equations, we have also verified
that the eigenmodes are orthogonal, as a consistency check. Examining for which (p, q)
they vanish, we arrive at the cross diagrams in figure 2, which are consistent with [1]. Note
that one immediately sees why there are columns without crosses (i.e., constant p) from the
representation theory. For instance, if ϕ is an spC

1 singlet, Y iϕ transforms in the 3⊗ (0) = (2)
of spC

1 . This (2) corresponds to the p = 0 columns in the r = p+ 2 diagrams and the fact
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Figure 2. Transverse one-form cross diagrams. Each cross corresponds to an isometry irrep (p, q; r)
of transverse eigenmodes, listed in eq. (4.15), of ∆1 with an associated eigenvalue given in eq. (4.16).
Both columns have a unified 3spC

1
one-form differential operator generating the eigenmodes and a

unified expression for the eigenvalues.

that 3 ⊗ (0) does not contain a (0) when decomposed into irreps corresponds to the fact that
there are no p = 0 crosses in the r = p diagrams. Note also that it is easy to see why there
are columns without crosses from the prefactors in eqs. (4.24)–(4.26).

In the formalism we use here, there is however no manifest reason for why there are rows
without crosses (i.e., constant q). Again looking at eqs. (4.24)–(4.26), we see that this requires
that the expressions under the square roots become perfect squares for particular values of q,
namely q = 0 in the examples at hand, and non-trivial cancellations between the terms.

Spin-1/2 modes. Turning now to the spinors, we want to find the eigenmodes of i /D1/2.
Since this is a linear operator, we will not use eq. (2.40) here but instead just act with i /D1/2
directly. The structure of the analysis is very similar to the one-form case presented above so
we will just present the results, skipping most of the calculations.

The spinor isometry irreps from [1] consists of two 1spC
1

and two 3spC
1

. Following [40],
we first define

ξi = iΓaη sa
i, (4.27)

where η is the G2-invariant spinor as above, and then let

Y(1) = η, Y(2) = iΓaη Ďa, Y(3)i = ξi, Y(4)i = iΓaξi Ďa. (4.28)
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The H-covariant derivatives of η and ξi are [40] (cf. eq. (A.6))

Ďaη = 0, Ďaξ
i = −3ϵijksa

jξk, (4.29)

where the former follows from η being G2-invariant and H ⊂ G2 and the latter follows
from the first one and eq. (4.4).

Next, we act with i /D1/2 to obtain

i /DPr

(
Y(1–2) Y(3–4)i

)
ϕ = Pr

(
Y(1–2) Y(3–4)i

)


21
4
√

5 Cg 0 − 2√
5s

i

1 −3
√

5
4 0 0

0 0 − 27
4
√

5 Cg − 6
0 0 1 5

√
5

4

ϕ,

(4.30)
where we have used the same tricks as in the one-form case and the notation with the spC

1 block
structure is also the same. Diagonalising this, we find the differential operators generating
the eigenmodes and their associated eigenvalues, which are consistent with eqs. (3.98)–
(3.99) above,

Ỹ(1)± =
(
9±

√
20Cg + 81

)
Y(1) + 2

√
5Y(2), (4.31)

Ỹ(2)±i =
(
7±

√
20Cg + 49

)
Y(1)si + 2

√
5Y(2)si +

+ 1√
5

(
10Cg − 21∓ 3

√
20Cg + 49

)
Y(3)i +

(
7±

√
20Cg + 49

)
Y(4)i, (4.32)

i /D
(1)±
1/2 = m

3

(3
2 ±

√
20Cg + 81

)
, (4.33)

i /D
(2)±
1/2 = m

3

(
−1
2 ±

√
20Cg + 49

)
. (4.34)

Lastly, we compute the scalar products

⟨Y(1)ϕ,Y(1)ϕ⟩ = ∥ϕ∥2, ⟨Y(1)ϕ,Y(2)ϕ⟩ = 0,

⟨Y(1)ϕ,Y(3)isiϕ⟩ = 0, ⟨Y(1)ϕ,Y(4)isiϕ⟩ = Cϕ
spC

1
∥ϕ∥2, (4.35)

⟨Y(2)ϕ,Y(2)ϕ⟩ = Cϕ
g ∥ϕ∥2,

⟨Y(2)ϕ,Y(3)isiϕ⟩ = Cϕ
spC

1
∥ϕ∥2, ⟨Y(2)ϕ,Y(4)isiϕ⟩ =

3√
5
Cϕ

spC
1
∥ϕ∥2, (4.36)

⟨Y(3)iϕ,Y(3)jφ⟩ = 1
5⟨ϕ, δ

ijφ⟩, ⟨Y(3)iϕ,Y(4)jφ⟩ = − 1√
5
⟨ϕ, ϵijkskφ⟩, (4.37)

⟨Y(4)iϕ,Y(4)jφ⟩ = 1
5C

ϕ
g ⟨ϕ, δijφ⟩ − 7

5⟨ϕ, ϵ
ijkskφ⟩, (4.38)

to investigate when the eigenmodes above exist and find the results presented in figure 3,
which is consistent with [1].
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Figure 3. Spinor cross diagrams. The corresponding eigenmodes of i /D1/2 are listed in eqs. (4.31)–
(4.32) and the associated eigenvalues in eqs. (4.33)–(4.34).

4.2 Two-form modes

When we now set out to find explicit expressions for the transverse (DaYab = 0) two-form
eigenmodes Yab of ∆2, we will face several technical challenges beyond those found in the
one-form and spinor analyses. In order to only have to act with one derivative, we will again
make use of eq. (2.40), this time written as

∆2 = Cg + 3P7 −
2√
5
Ď[2], (4.39)

where Ď[2]Yab = a[a
cdĎ|dYc|b], as before.

As in the analyses above, the first step is to construct a basis for the two-forms in a
generic isometry irrep (p, q; r). Before implementing transversality, the two-form isometry
irreps consists of one 1spC

1
, five 3spC

1
and one 5spC

1
, according to [1]. The appearance of a

5spC
1

here is new compared to the previous cases and is, in fact, the largest spC
1 -irrep needed

for all of the so(7)-irreps relevant to the supergravity compactification [1]. This is one of
the technical complications referred to above.
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After some algebra we arrive at the following set of differential operators to generate
the two-form eigenmodes

Y(1)
ab = aab

cĎc, (4.40)

Y(2)i
ab = aab

csc
i, Y(3)i

ab = ϵijksa
jsb

k,

Y(4)i
ab = s[a

iĎb], Y(5)i
ab = cab

cdsc
iĎd,

Y(6)i
ab = a[a|

cdsc
iĎd|b],

(4.41)

Y(7)ij
ab = s[a

{i|ab]
cdsc

|j}Ďd, (4.42)

where the braces around i, j on the last line indicate the symmetric traceless part, i.e., the
5spC

1
in 3spC

1
⊗ 3spC

1
. Note the appearance of the differential operator

Ďab = Ď(aĎb), (4.43)

which is the symmetrised composition of two derivatives, in the expression for Y(6)i
ab . That

the corresponding mode is necessary is a fundamental result of the analysis presented here.
To establish that this mode is needed one can compute Ď[2] on the more standard mode
functions obtained from Y(4)i

ab and verify that the mode function Y(6)i
ab ϕ gets generated, as we

will see below. The acceptance that the mode functions Y(6)i
ab ϕ are unavoidable is the key

that makes it possible to complete the analysis of the two-form modes.16

Of course, one has to make sure that the mode functions constructed here are independent.
One such concern could involve

ϵijks[a
jab]

cdsc
kĎd (4.44)

that seems to give an additional mode function independent of the above ones. However,
the identity

ϵijka[a
cdsb]

jsc
k = 1

2ϵ
i
jkaab

csc
jsdk + 1

2
√
5
cab

cdsc
i (4.45)

shows that the above expression is in fact a linear combination of ϵijkY
(2)j
ab sk and Y(5)i

ab .
Next, we compute the action of Ď[2] and P7 and put everything together using eq. (4.39)

to obtain

∆Pr

(
Y(1)

ab Y(2–6)i
ab Y(7)jk

ab

)
ϕ = Pr

(
Y(1)

ab Y(2–6)i
ab Y(7)jk

ab

)
M∆2ϕ, (4.46)

16Mode functions can also be constructed using Γa matrices but these must then be decomposed into
octonionic quantities and SpC

1 Killing vector components in order to check that different mode functions are
really independent. One example is Y ij

ab = iξ̄{iΓabcξj}Ďcϕ where the right-hand side can be rewritten using
the identity iξ̄{iΓabcξj} = 6s[a

{i|abc]
dsd

|j}.
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where

M∆2 = (4.47)

Cg + 18
5 0 0 0 2√

5s
i si 0

0 Cg + 27
5

1
2
√

5 (2−∆C) 3
4
√

5∆C
2√
5C

ϕ
g

1
40 (44C

ϕ
g − 87∆C) 7

10δ
{j
i sk}

0 − 18√
5 Cg − 6

5 0 0 − 3
2
√

5 (2C
ϕ
g − 3∆C) − 3√

5δ
{j
i sk}

0 − 2√
5 0 Cg − 7

10
6
5 − 1

20
√

5 (20C
ϕ
g + 30∆C − 33) − 1√

5δ
{j
i sk}

0 2√
5

1
5

1
10 Cg + 12

5 − 3
20

√
5 (10∆C − 7) 0

0 0 0 − 1√
5 − 4√

5 Cg − 1
10 0

0 0 0 0 0 0 Cg


and we have defined ∆C ≡ CspC

1
− Cϕ

spC
1
− 2. Note the appearance of Cg, Cϕ

g and ∆C in this
expression, which makes it structurally more complicated than the one-form and spin-1/2
cases above where only Cg enters in the analogous matrices. In fact, one might be worried that
all three of them will also enter in the two-form eigenvalues, since we know from section 3 that
the eigenvalues should not contain either Cϕ

g or ∆C. As we will see below, the eigenvalues do
match what we found in section 3 but some eigenmodes contain Cϕ

g and ∆C.17

One complication in this calculation is the appearance of the Weyl tensor so we should
recall that eq. (2.38) relates the Weyl tensor acting on two-forms to the Casimirs of g2 and
h. However, while Ch only has one eigenvalue on 7g2 , it has several when acting on 14g2

in 21so(7), and hence one has to construct the projectors onto the various h-irreps using
sa

i, aabc and cabcd. These projectors and some identities that facilitate the calculation can
be found in appendices A and B.

Since we are only interested in the transverse eigenmodes, we also compute the divergences

DbPr

(
Y(1)

ba Y(2–6)i
ba Y(7)jk

ba

)
ϕ = Pr

(
Y(1)

a Y(2–3)i
a

)

×


0 0 0 1

2s
i 0 − 7

4
√

5s
i 0

0 3√
5 1 + 1

2∆C
1
2C

ϕ
g 3∆C − 1

4
√

5C
ϕ
g + 3

√
5

4 ∆C 3
2
√

5δ
{j
i s

k}

0 1 0 0 −2
√
5 1

2C
ϕ
g + 3

4∆C − 1 1
2δ

{j
i s

k}

ϕ, (4.48)

where Y(1)
a and Y(2–3)i

a are the one-form differential operators from eq. (4.2).

The eigenmodes of ∆2 are found by diagonalising eq. (4.47). We then use the above
equation to check which of these are transverse. This results in eigenmodes PrỸabϕ and

17Note that Cg = Cϕ
g + 3∆C + 6, which follows from eq. (2.41), enables terms containing Cϕ

g and ∆C to
cancel.
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associated eigenvalues given by

Ỹ(1)
ab = Y(1)

ab , (4.49)

Ỹ(2)±i
ab = 1

10
(
−5Cg − 21∓ 3

√
20Cg + 49

)
Y(1)

ab s
i

− 1
4Cg

(
Cg + Cϕ

g + 20± 2
√
20Cg + 49

)
Y(2)i

ab

+ 3
2
√
5
Cg

(
13±

√
20Cg + 49

)
Y(3)i

ab + 7
2
√
5
CgY(4)i

ab

− 1
4
√
5
Cg

(
15±

√
20Cg + 49

)
Y(5)i

ab + CgY(6)i
ab , (4.50)

Ỹ(3)i
ab = 1

36Cg(5∆C + 16)Y(1)
ab s

i

+ 1
4
(
2Cg

2 − Cg(7∆C + 16)− 3(∆C + 2)(3∆C − 4)
)
Y(2)i

ab

−
√
5
2

(
2Cg

2 − 3Cg(3∆C + 8) + 36(∆C + 2)
)
Y(3)i

ab

+ 1
2
√
5
(
Cg(10∆C + 13)− 57(∆C + 2)

)
Y(4)i

ab

− 1
4
√
5
(
Cg(5∆C + 6)− 30(∆C + 2)

)
Y(5)i

ab −
(
Cg + 3(∆C + 2)

)
Y(6)i

ab , (4.51)

Ỹ(3)′ij
ab = 5

36(∆C + 2)Y(1)
ab s

{ij} + 1
2
(
Cg − 2(∆C + 2)

)
Y(2){i

ab sj}

−
√
5
2

(
2Cg − 9(∆C + 2)

)
Y(3){i

ab sj} +
√
5(∆C + 2)Y(4){i

ab sj}

−
√
5
4 (∆C + 2)Y(5){i

ab sj} −
(
Cg + 3(∆C + 2)

)
Y(7)ij

ab , (4.52)

∆(1)
2 = m2

9
(
20Cg + 72

)
, (4.53)

∆(2)±
2 = m2

9
(
20Cg + 44± 4

√
20Cg + 49

)
, (4.54)

∆(3),(3)′
2 = m2

9 20Cg, (4.55)

which is consistent with eqs. (3.90)–(3.92).
Lastly, we compute the norms of these eigenmodes to see for which (p, q; r) they exist.

We employ the same strategy as in the one-form case above, using eq. (4.5) to implement the
projectors Pr. The calculation is a lot more involved, particularly because of the symmetrised
derivatives Ďab in Y(6)i

ab and the 5spC
1

mode operator Y(7)ij
ab . The latter implies that there, in

some cases, are four factors in eq. (4.5), so we need relations like eq. (4.18) for differential
operators transforming in 5spC

1
with up to four si instead of just two.

Using the results of the scalar product computations (see appendix C), we derive for
which isometry irreps the eigenvalues exist. The result, which is consistent with [1], is
presented in figure 4.

It turns out that PrỸ(3)i
ab ϕ and PrỸ(3)′ij

ab ϕ are not orthogonal for r = p, p± 2. To arrive
at the correct cross diagrams, we compute the norm of a linear combination of PrỸ(3)i

ab ϕ and
PrỸ(3)′ij

ab ϕ orthogonal to the former. This results in some arbitrariness in the split of the 3
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Figure 4. Transverse two-form cross diagrams. The corresponding eigenmodes are listed in eqs. (4.49)–
(4.52) and the associated eigenvalues in eqs. (4.53)–(4.55). Note that the last column is associated to
a linear combination of the eigenmodes formed from Ỹ(3)i

ab and Ỹ(3)′ij
ab which is orthogonal to PrỸ(3)i

ab ϕ.

and 5 cross diagrams corresponding to the same eigenvalue, ∆(3)
2 = ∆(3)′

2 . Specifically, it is
arbitrary whether the r = p − 2, q = 0 crosses, r = p, q = 0 crosses and r = p + 2, q ≤ 1
crosses in the three ∆(3)

2 cross diagrams are placed where they are or at the corresponding
places in the five ∆(3)′

2 cross diagrams since there exists a differential operator transforming
in 5spC

1
with such cross diagrams. Note, however, that for instance the p = 1 crosses in

the r = p diagram of ∆(3)
2 cannot be moved to ∆(3)′

2 since PrYabϕ vanishes for r = p = 1
for any Y transforming in 5spC

1
.
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4.3 Isometry singlet modes

We end this section by giving the singlet mode functions, constructed recently in [17], in the
notation of this paper. The singlet modes that have not yet been constructed in this paper
belong to the spectra of i /D3/2, ∆L and Q. These singlet modes will be further discussed
in the next section.

To construct the isometry singlet modes, we use that isometry irrep singlet fields are
constructed from isotropy singlet tensors in a one-to-one fashion. Thus, the G-singlets are
obtained by decomposing the Spin(7)-irrep of the field into H-pieces and then using the
resulting H-singlets. The relevant decompositions can be found in, e.g., [1], from which we
see that the only H-singlets are one in 1g2 and one in 27g2 . Hence, all G-singlets can be
constructed using the G2 singlets and the additional H singlet in 27g2 , which is the traceless
part of sa

isbi. Using this method, we must check transversality of the singlets explicitly.
Explicitly, the scalar singlet is obviously a constant, ϕ = 1, with eigenvalue

∆0 1 = 0, (4.56)

while the spinor is the G2-invariant η with

i /D1/2 η = 7m
2 η. (4.57)

There are no one-form or two-form singlets since neither 7g2 nor 14g2 contain any H-singlets.
Turning to 27, there is one singlet given by

hab := s{a
isb}i = sa

isbi −
3
35δab, (4.58)

as mentioned above. A short calculation shows that this is transverse and, using eq. (2.40), that

∆Lhab =
28m2

9 hab. (4.59)

Turning to three-forms, there is one singlet, aabc, appearing already when decomposing
35 under Spin(7) → G2. From Ďaabcd = 0, it easy to see that da = 4mc and hence

Qa = 4ma. (4.60)

There is another three-form singlet since there is a 27g2 in the G2 decomposition of 35so(7).
Using what we saw in section 3, this can be written as a[ab

dhc]d, where hab is the 27 singlet
from above, and a calculation gives

Q(a[ab
dhc]d) = −2m

3 a[ab
dhc]d. (4.61)

Lastly, there is one vector-spinor singlet since the decomposition of 48so(7) contains 27g2 .
Again using the decomposition presented in section 3, we can write it as iΓbhbaη and compute
the eigenvalue

i /D3/2(iΓbhbaη) = −m6 iΓ
bhbaη. (4.62)

These results agree with [17].
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5 Implications for the N = 1 and N = 0 vacua

The full content of isometry irreps of the squashed seven-sphere compactification, including
the structure of the supermultiplets in the left-squashed case listed below, was derived in [1]
and presented there in the form of cross diagrams, like those in section 4 (see the appendix
of [1]). While this reference gives no information about the possible values of E0, with the
results obtained in [2] and in the previous sections of this paper we can finally associate these
supermultiplets with their proper mass and energy values E0. There are general formulas
for these values covering infinite sets of supermultiplets but some Wess-Zumino multiplets
with a low value of the Casimir Cg require a separate scrutiny since they may be associated
with some unusual sign choices. In the right-squashed vacuum, the fields in these multiplets
also give rise to ambiguities concerning their boundary conditions as was demonstrated
recently for the Cg = 0 Wess-Zumino multiplets in [17]. This last issue appears also in the
left-squashed supersymmetric vacuum but in a more ordered fashion as we will see below
when we study the Wess-Zumino multiplets with Cg > 0.

We present the results for the general cases in the tables in section 5.1, which ends with
a discussion of the special low Cg cases. How to arrive at these results are explained in
appendix E. The spectrum of the right-squashed non-supersymmetric AdS4 theory obtained
by skew-whiffing, or flipping the orientation flipping of S7, is discussed in section 5.2. In
section 5.2.3 we analyse some implications for the boundary theory, in particular the potential
presence of marginal operators relevant for the issue of stability of the skew-whiffed theory.

5.1 Supermultiplets in the left-squashed vacuum

In terms of the Spin(2, 3)-irreps D(E0, s), the N = 1 supermultiplets that appear in eleven-
dimensional supergravity compactified on the left-squashed seven-sphere are [1]:18

1×
(
D(E0, 2+)⊕D(E0 − 1

2 ,
3
2) ⊕D(E0 + 1

2 ,
3
2) ⊕D(E0, 1+)

)
, (5.1)

6×
(
D(E0,

3
2) ⊕D(E0 − 1

2 , 1
±)⊕D(E0 + 1

2 , 1
∓)⊕D(E0,

1
2)
)
, (5.2)

6×
(
D(E0, 1−)⊕D(E0 − 1

2 ,
1
2) ⊕D(E0 + 1

2 ,
1
2) ⊕D(E0, 0−)

)
, (5.3)

8×
(
D(E0, 1+)⊕D(E0 − 1

2 ,
1
2) ⊕D(E0 + 1

2 ,
1
2) ⊕D(E0, 0+)

)
, (5.4)

14×
(
D(E0,

1
2) ⊕D(E0 − 1

2 , 0
±)⊕D(E0 + 1

2 , 0
∓)

)
, (5.5)

As explained in [1] the multiplicities (numbers in front of the multiplets) refer to the
number of cross diagrams connected to these multiplets as given in the appendix of [1]. In
the following we will refer to these Heidenreich supermultiplets [39] by their highest spin
component, except for the last case, the Wess-Zumino multiplets.

Using the results of this paper, we can associate masses and energy values E0 to the
supermultiplets listed above, see appendix E for details on how this can be done. The results
are given in two tables, table 4 for those with maximum spin 2+, 3/2, 1− and 1+, and table 5,
for the Wess-Zumino supermultiplets with Cg > 0. The two special cases, the Wess-Zumino
multiplets with Cg = 0, are given separately after these tables, in table 8. These latter
multiplets were also discussed recently in [17].

18Note the order of the E0 values, i.e., (E0, E0 − 1
2 , E0 + 1

2 , E0) chosen so that short gauge supermultiplets
contain only the first two entires.
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sp E0 E0 − 1
2 E0 + 1

2 E0 SpC
1 E0 values

2+ 2+(∆(1)
0 ) 3

2(i /D
(1)+
1/2 ) 3

2(i /D
(1)−
1/2 ) 1+(∆(1)

2 ) 1 3
2 + 1

6
√
20Cg + 81

3
2 1

3
2(i /D

(2)−
1/2 ) 1+(∆(2)+

2 ) 1−(+)(∆
(1)−
1 ) 1

2(i /D
(3)+
3/2 ) 3 3

2 + 5
6 + 1

6
√
20Cg + 49

3
2 2

3
2(i /D

(2)+
1/2 ) 1−(−)(∆

(1)+
1 ) 1+(∆(2)−

2 ) 1
2(i /D

(3)−
3/2 ) 3 3

2 − 5
6 + 1

6
√
20Cg + 49

1−1 1−(+)(∆
(1)+
1 ) 1

2(i /D
(4)+
3/2 ) 1

2(i /D
(2)+
1/2 ) 0−(Q(2)+) 3 3

2 + 5
3 + 1

6
√
20Cg + 49

1−2 1−(−)(∆
(1)−
1 ) 1

2(i /D
(2)−
1/2 ) 1

2(i /D
(4)−
3/2 ) 0−(Q(2)−) 3 3

2 − 5
3 + 1

6
√
20Cg + 49

1+
1 1+(∆(3)

2 ) 1
2(i /D

(2)−
3/2 ) 1

2(i /D
(2)+
3/2 ) 0+(∆(1)

L ) 3 3
2 + 1

6
√
20Cg + 9

1+
2 1+(∆(3)′

2 ) 1
2(i /D

(2)′−
3/2 ) 1

2(i /D
(2)′+
3/2 ) 0+(∆(1)′

L ) 5 3
2 + 1

6
√
20Cg + 9

Table 4. Supermultiplets with maximum spin s = 2, 3/2, 1 and parity p. Here, each entry,
represented by s(operatoreigenvalue

mode type), corresponds to a specific spin component of a supermultiplet.
The notation indicates also the relevant cross diagrams of ∆p, for p = 0, 1, 2, and i /D1/2 as given in
section 4. The sign subscript on 1−(±) shows which branch of the mass formula for spin 1− in table 3
that is being used. All operator eigenvalues are listed in section 3.3. The SpC

1 entries specify the
number of cross diagrams belonging to the supermultiplet. The short, i.e., massless, supermultiplets
are 2+ for (p, q; r) = (0, 0; 0) and 1−2 for (2, 0; 0) and (0, 0; 2).

The irreps in the SpC
1 column in table 4 correspond to the sets of cross diagrams (see

section 4 or the appendix of [1]) relevant for each supermultiplet: that is, 1 means that
there is just one cross diagram with r = p, 3 that there are three cross diagrams with
r = p, r = p ± 2 and finally 5 implies five cross diagrams with r = p, r = p ± 2 and
r = p ± 4. More precisely, it corresponds to the spC

1 -irrep of the differential operators
generating the modes. In the process of finding which cross diagrams belong to each of these
sets of supermultiplets they are also given a specific operator eigenvalue. How to obtain
this information is explained in appendix E.

The last two supermultiplets 1+
1 and 1+

2 in table 4 contain fields with identical isometry
irreps (for r = p and r = p ± 2) and with the same values of E0. However, as shown in
section 4, the eigenmodes of ∆2 in the two cases are nevertheless different, as indicated by
the superscripts on ∆(3)

2 and ∆(3)′
2 , but with the same eigenvalues (see eqs. (4.49)–(4.55) and

figure 4). This phenomenon appears twice also in the table for the Wess-Zumino multiplets
with Cg > 0, table 5. It is tempting to try to tie this to the appearance of ∆L in all these
supermultiplets but we leave this issue for future work. We also note that none of the scalar
and Dirac fields in table 4 have Neumann boundary conditions since they all have E0 ≥ 3/2
(all irreps in the spin 1− cross diagrams have Cg ≥ 19/4). In fact, it is easy to see from the
supermultiplet structure and the unitarity bounds that higher-spin supermultiplets never
admit Neumann boundary conditions.19

We now turn to the six infinite sequences of Wess-Zumino multiplets with Cg > 0 in
table 5. The cross diagrams and operator eigenvalues for the first two Wess-Zumino multiplets
in this list are specified by the spin-1/2 entries, see figure 3 and eqs. (4.33)–(4.34). Note that

19For massless vector supermultiplets, the spinor has degenerate boundary conditions (E0 = 3/2).
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Mult. E0 E0 − 1
2 E0 + 1

2 SpC
1 E0 values

WZ1 1
2(i /D

(1)+
1/2 ) 0−(Q(3)+) 0+

(+)(∆
(1)
0 ) 1 3

2 + 5
2 + 1

6
√
20Cg + 81

WZ2 1
2(i /D

(1)−
1/2 ) 0+

(−)(∆
(1)
0 ) ↔ 0−(Q(3)−) 1 3

2 ±
(
−5

2 + 1
6
√
20Cg + 81

)
WZ3 1

2(i /D
(1)+
3/2 ) 0+(∆(2)+

L ) 0−(Q(1)+) 1 3
2 + 5

6 + 1
6
√
20Cg + 1

WZ4 1
2(i /D

(1)′+
3/2 ) 0+(∆(2)′+

L ) 0−(Q(1)′+) 5 3
2 + 5

6 + 1
6
√
20Cg + 1

WZ5 1
2(i /D

(1)−
3/2 ) 0−(Q(1)−) 0+(∆(2)−

L ) 1 3
2 − 5

6 + 1
6
√
20Cg + 1

WZ6 1
2(i /D

(1)′−
3/2 ) 0−(Q(1)′−) 0+(∆(2)′−

L ) 5 3
2 − 5

6 + 1
6
√
20Cg + 1

Table 5. Wess-Zumino supermultiplets for Cg > 0. See table 4 for definitions. The upper sign in the
WZ2 E0 value corresponds to (D,D,D) boundary conditions for p+ q ≥ 3, (D,N,D) for p+ q = 2
and (N,N,D) for p+ q = 1. The scalar 0+ and pseudo-scalar 0− should change places in the WZ2
supermultiplet if the lower sign in the E0 formula is used, as indicated by the arrow. The lower sign
is only valid for p+ q = 2 and p+ q = 1 and then corresponds to (N,N,D) and (D,N,D) boundary
conditions, respectively. The subscript on 0+

(±) indicates which branch of M2(∆0) is used.

the isometry singlet mode of ∆0 should be removed from 0+
(−), but not from 0+

(+), as explained
in [32]. Looking at WZ1-2, this is consistent with the fact that the (0, 0; 0) eigenmode of
i /D1/2 has an eigenvalue given by i /D

(1)+
1/2 and there is no (0, 0; 0) eigenmode of i /D1/2 with

eigenvalue i /D
(1)−
1/2 , see figure 3.

For the Wess-Zumino multiplets numbered 3 to 6, on the other hand, it is not possible,
with the information obtained in this paper, to group the remaining twelve cross diagrams,
for each of the operators i /D3/2, ∆L and Q, in the appendix of [1] into two separate sets
of 1 + 5. However, by invoking also results from [35] this can be done.20 The result is
presented in figure 5. If one constructs the corresponding eigenmodes, we expect that the
crosses below the boxed crosses cannot uniquely be assigned to the 1 or the 5, similar to
what we found in section 4.2.

From the general structure of a Wess-Zumino multiplet D(1
2 , E0) ⊕ D(0±, E0 − 1

2) ⊕
D(0∓, E0 + 1

2), we see that there can be no Neumann boundary conditions if E0 ≥ 2. For
3
2 < E0 < 2, the boundary conditions are (D,N,D) and if all boundary conditions are
flipped the fields fit into a supermultiplet (1

2 , 0
∓, 0±) where the scalar and pseudo-scalar have

switched places and the boundary conditions are (N,N,D).21

That only irreps with Cg ≥ 4 occur in figure 5, except for the isometry singlet with
Cg = 0, implies that Neumann boundary conditions are never possible in WZ3–6, only in
WZ2. This happens for the five irreps with p+ q ≤ 2 and Cg values given in table 6.

Specifically, the (1/2, 0+, 0−) WZ2 supermultiplet as given in table 5 have (D,D,D)
boundary conditions for p+ q ≥ 3, (D,N,D) for p+ q = 2 and (N,N,D) for p+ q = 1. For

20Note that the ∆ of [35] is the lowest conformal dimension of a given supermultiplet and, hence, shifted
compared to the E0-value we use here, ∆ = E0 − 1/2, see Footnote 3.

21The case E0 = 3/2 is identical to the 3/2 < E0 < 2 one except that the boundary conditions for the spinor
now stay the same if the boundary conditions for the scalar and pseudo-scalar are flipped.
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Figure 5. The cross diagrams in the appendix of [1] that remain when all other supermultiplets with
their respective cross diagrams have been removed. These twelve diagrams correspond to two sets of
1 ⊕ 5. The displayed division into two different sets, see table 5, relies on the results of [35] for small
p or q. The multiplicities of the isometry irreps are one for crosses and two for boxes with crosses.
The single encircled cross, in the irrep (0, 0; 0), is the Page supermultiplet (see below) containing the
mode “coming from nowhere” in the analysis of [1, 17].

(p, q; r) (0, 1; 0) (1, 0; 1) (1, 1; 1) (0, 2; 0) (2, 0; 2)
(d2, d1) (5,1) (4,2) (8,2) (14,1) (10,3)
Cg 4 19/4 39/4 10 12

Table 6. Irreps with r = p and Cg > 0 for which Wess-Zumino multiplets in WZ2 admit both
Dirichlet and Neumann boundary conditions. The implications of this are explained in the text. Here,
(d2, d1) denotes the dimensions of the sp2- and spC

1 -irreps.

p+q = 2 (last three entries in table 6) and p+q = 1 (first two entries in table 6) the boundary
conditions of all three fields can be flipped and they then fit in a (1/2, 0−, 0+) supermultiplet
with boundary conditions (N,N,D) and (D,N,D), respectively. Note that the E0 value of
the supermultiplet given in the table should be replaced by 3 − E0 in these cases.

Also for the Cg values in the range 12 < Cg < 25 (p+q = 3) both Dirichlet and Neumann
boundary conditions are possible in WZ2 but now only for the scalars 0+. A complete list
of fields with E0 in this window is provided in table 9 below. After skew-whiffing there
seems to be no reason for choosing one or the other of the boundary conditions for these
0+ fields. The supermultiplets in the left-squashed case containing these scalar fields can,
however, only be of the kind (D,D,D).

It would be interesting to find a way to discriminate between the different boundary
conditions respecting supersymmetry. This could potentially be achieved by relating the
squashed vacuum to the round one with N = 8. In this context, we note that if one
squashes the seven-sphere continuously and follows the spinors in the isometry irrep (0, 0; 2)
of G = Sp2 × SpC

1 , which comes from the Spin(8)-irrep (0, 0, 1, 0) on the round sphere (see
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table 17), the relevant eigenvalue is [40]

i /D1/2(0, 0; 2) = −
√
7

10
10λ2 + 25√
1 + 8λ2 − 2λ4

m(λ), (5.6)

where
m2(λ) = 1 + 8λ2 − 2λ4

28λ2 (5.7)

comes from demanding that R = 42m2 for all values of the squashing parameter λ. From this,
we see that the associated AdS4 field starts out as a fermionic singleton, with i /D1/2(0, 0; 2) =
−7m

2 and E0 = 1, in the round sphere vacuum (λ2 = 1) and ends up as the massless spin-1/2
companion of the gauge field in the short massless supermultiplet related to the SpC

1 isometry
after squashing (λ2 = 1/5), with i /D

(2)−
1/2 (0, 0; 2) = −9m

2 and E0 = 3
2 . Hence, this is one

example of Higgsing involving a singleton and, thus, also a change of boundary conditions
triggered by squashing.22

Another relevant point is that there can be exactly marginal singlet operators that can
be used to deform the dual CFT, as discussed in, e.g., [9]. We will return to the issue of
marginal operators in section 5.2.3 where we give the full content of marginal single- and
multi-trace operators for the theory discussed in this paper. A perhaps relevant fact here
is that the right-squashed spectrum does not allow for any single- or double-trace marginal
operators. If these considerations are applied to the left-squashed case, such deformations
will break supersymmetry.

As an example where different boundary conditions are possible, we consider the irrep
(1, 0; 1) (with dimension (4,2)) in the Einstein-squashed spectrum. The scalar 0+ in this
multiplet has M2(0+

(−)) = 95m2/9, from which we see that

0+
(−)(∆

(1)
0 )(1,0;1) : E0 = 3

2 ± 1
6
(
18− 4

√
11

)
>

1
2 , (5.8)

which is compatible with both Dirichlet (E0 > 3/2) and Neumann (1/2 < E0 < 3/2) boundary
conditions. For the other two fields in this Wess-Zumino multiplet we have

1
2(i

/D
(1)−
1/2 )(1,0;1) : E0 = 3

2 ± 1
6
(
15− 4

√
11

)
> 1, (5.9)

0−(Q(3)−)(1,0;1) : E0 = 3
2 ± 1

6
(
4
√
11− 12

)
>

1
2 , (5.10)

which also allow for both types of boundary conditions. One should note here that the
three fields in a supermultiplet must have the same sign of the square root term in E0, due
to supersymmetry, which implies that the supermultiplets will involve fields with different
boundary conditions as described above.

Remarkably, it is not consistent to assume that all fields will retain their boundary
conditions when squashing the seven-sphere from the round S7 to the Einstein-squashed
one, even though the spectrum can be understood in this way through a Higgs/de-Higgs

22The language used here describes what happens when going from round to squashed, for consistency
with [1, 17], even though the round vacuum has to be in the IR of the squashed one for any potential RG-flow
connecting the two, see section 6.
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Spin Eigenvalue Mass E0

1
2 i /D

(1)+
1/2 = 7m

2 M = −8m 11
2

1
2 i /D

(1)−
3/2 = −m

6 M = 4m
3

13
6

0+ ∆(1)
0 = 0 M2

(+) = 80m2 6

0+ ∆(2)−
L = 28m2

9 M2 = −8m2

9
3
2 ± 1

6

0− Q(3)+ = 4m M2 = 48m2 5

0− Q(1)− = −2m
3 M2 = 40m2

9
8
3

Table 7. AdS4 spin, operator eigenvalues, masses and E0 values of isometry singlet (Cg = 0) modes
and the associated AdS4 fields. The plus subscript on M2 indicates the branch of the mass formula in
table 3. The ± in the E0 column corresponds to different boundary conditions. Below, we will see
that supersymmetry fixes the plus sign.

Mult. E0 E0 − 1
2 E0 + 1

2 SpC
1 E0 values

(WZ1)0
1
2(i /D

(1)+
1/2 ) 0−(Q(3)+) 0+

(+)(∆
(1)
0 ) 1 3

2 + 4 = 11
2

Page 1
2(i /D

(1)−
3/2 ) 0+(∆(2)−

L ) 0−(Q(1)−) 1 3
2 + 2

3 = 13
6

Table 8. Wess-Zumino supermultiplets with Cg = 0.

mechanism [1, 17]. This fact is clear from looking at the irrep (0, 2; 0) for which all three
fields come from fields with Dirichlet boundary conditions in the round sphere vacuum which
leads to an impossible set of boundary conditions (see table 6) in the left-squashed case if
supersymmetry is kept intact. In fact, also for the irrep (1, 0; 1) it is clear that one cannot
keep the boundary conditions when squashing since the spin-1/2 field comes from the massless
field (1, 0, 1, 0) with E0 = 3/2 in the round spectrum. This field has neither Dirichlet nor
Neumann boundary conditions, as discussed in, e.g., [9].

The last supermultiplets to account for are the Wess-Zumino ones with Cg = 0. There
are only two such multiplets, see table 8, which is clear from the cross diagrams in [1]. We
have listed the two Wess-Zumino multiplets that exist for Cg = 0 separately since all the
relevant mode functions can be constructed explicitly as done recently in [17] and reproduced
in section 4.3 of this paper. The results obtained there are summarised in table 7.

The fields corresponding to isometry singlet modes (see table 7) fit into two Wess-Zumino
supermultiplets uniquely, given in table 8. All three fields in both these supermultiplets have
Dirichlet boundary conditions, which in the case of the Page multiplet is a consequence of
supersymmetry. This is most easily seen by noting that the spin-1/2 fields have E0 > 2.

After skew-whiffing the situation is a bit more complicated since there is no supersymmetry
in the right-squashed vacuum and several choices of boundary conditions become possible [17].
We shall return to this issue below.

While the (WZ1)0 value E0 = 3
2 + 4 fits into the general E0 formula for WZ1 this is not

the case for the Page multiplet which does not fit into any of the E0 formulas in table 5.
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However, it does nevertheless belong to WZ5–6 as we will now explain. The reason for
the odd behaviour of the Page multiplet is that it utilises a special property that arises for
Cg = 0 in the E0 formulas for all three fields in the multiplet, similar to the five cases in
table 6. These formulas are of the form 3

2 ± |
√
20Cg + 1 − X| where the argument of the

absolute value is negative only for the singlet isometry irrep. This leads to the scalar and
pseudo-scalar of the Page multiplet changing places relative to WZ5–6 and the E0 value
being reflected in 3/2 relative to the formula in table 5.

Note that if the E0 value of the spinor in the Page multiplet would have been less than
2, the boundary conditions of the fields could have been flipped and the multiplet would
have fitted exactly into WZ5–6 as given in the table. Attempting this with the actual values
of E0 leads to a violation of the unitarity bounds.

The Page WZ-multiplet contains the scalar that was discussed by Page in [46]. This
scalar is the squashing mode of the S7 compactification and was shown by Page to have
M2 = −8

9m
2 (just above the BF bound) in the Einstein-squashed case.

Clearly there are no singletons in the spectrum of the left-squashed seven-sphere [1].
The singleton that exists after skew-whiffing to the right-squashed vacuum [1] will be dis-
cussed below.

5.2 Boundary conditions and marginal operators in the N = 1 and N = 0
vacua

One reason for constructing the entire operator spectrum of the left-squashed seven-sphere
is that one can use supersymmetry as a consistency check of the results and then flip
its orientation, i.e., perform a so called skew-whiffing [32], to produce the right-squashed
compactification with no supersymmetry. This solution is known to be BF-stable [37] despite
having no supersymmetry and there should therefore exist, in view of the swampland AdS
swampland conjecture first discussed in [5], some other decay mode with respect to which
the right-squashed vacuum is unstable.

One possible such decay mode is related to special composite operators in the boundary
theory of the AdS4 gravity theory and condensation of scalar composites in the bulk. As
discussed in the Introduction (and in the references cited there), if marginal operators exist
(∆ = 3), either single, double- or multi-trace, that may signal an instability of the AdS4
theory. For the gravity theory in the bulk, this corresponds to looking for composite scalar
gauge singlet states with total E0 = 3.

Such trace operators can be of only a few kinds, namely, (schematically) λ2ϕn for
n = 0, 1, 2 and ϕn for n = 1, . . . , 6, with the spinor λ and scalar ϕ representing both the bulk
fields and their dual single-trace operators (with ∆ = E0). Note that in the last cases in
these lists the fields have to be singletons and scalar singletons are known to exist only in the
round sphere case [1]. There is also a spinorial singleton with E0 = 1 in the right-squashed
spectrum [1] which could play a role here. In fact, in the recent analysis of the singlet sector
of the right-squashed spectrum in [17] the fields in this sector were found to either give rise
to two kinds of marginal triple-trace operators, of which one involved the fermionic singleton
mentioned above, or to give rise to no marginal operators depending on which of two possible
choices of boundary conditions one imposes on the fields.
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Here, we will generalise this analysis to all fields by including also the ones coming from
modes with Cg > 0, i.e., non-singlet modes. These fields have non-trivial properties even in
the left-squashed supersymmetric case which were analysed in section 5.1. In section 5.2.2,
we will therefore perform a complete analysis of all fields which can have Neumann boundary
conditions in both the left- and right-squashed vacuum, after discussing skew-whiffing and
the right-squashed spectrum in section 5.2.1. Marginal operators will be discussed in detail
in section 5.2.3. There we will find that, since there exist several fields in the squashed
vacua with E0 ≤ 3

2 , bound states containing different fields may give rise to large numbers of
marginal operators depending on the boundary conditions. In fact, one such mixed example
was discussed recently in [17].

5.2.1 Skew-whiffing and the spectrum of the right-squashed vacuum

To see the effects on the spectrum of an orientation flip, we should recall how it is implemented,
see for instance [32]. The definition of the linear operators Q, i /D1/2 and i /D3/2 are sensitive
to the orientation and, as explained in [32], the sign of their spectra are flipped when the
orientation is changed.23 Thus this has implications only for the AdS4 fields with spin 3/2,
1/2 and the pseudo-scalars 0−. In practice, we can implement this conveniently by only
referring to the operators, eigenvalues and cross diagrams of the left-squashed seven-sphere
and flip the signs of the linear operators in the mass formulas as follows (cf. table 3):

3
2 (±)

(i /D1/2) : MR = i /D1/2 +
7m
2 , (5.11)

1
2 (±)

(i /D1/2) : MR = i /D1/2 −
9m
2 , (5.12)

1
2 (±)

(i /D1/2) : MR = −i /D3/2 +
3m
2 , (5.13)

0−(±)(Q) : M2
R = (Q− 3m)2 −m2, (5.14)

where we have introduced the following notation for masses of scalar and spin-1/2 fields in
the left- and right-squashed vacua: we keep the standard notation M2 and M in the cases
where the orientation does not matter, while, when it does matter, we from now on use the
notation M2

L or ML and M2
R or MR for the left- and right-squashed cases, respectively. The

right-squashed masses have several interesting consequences. The first one is that the spinor
η, satisfying i /D1/2η = 7m

2 η, is no longer a Killing spinor and hence does not lead to a massless
spin-3/2 field in AdS4 gravity theory and supersymmetry is therefore lost. Furthermore,
when using this spinor for the spin-1/2 fields one finds a field with mass M = −m which, if
given Neumann boundary conditions, will have E0 = 1. This spinorial singleton is known
from [1] to exist in the right-squashed case (see also [17]).

5.2.2 Possible boundary conditions for the fields in both vacua

We will here tabulate the scalar fields in AdS4 in the mass range −m2 ≤ M2 ≤ 3m2

and the fermions having |M | ≤ m. These are the only masses for which fields with both
23This way to implement skew-whiffing is designed to keep the AdS4 the same when flipping, including the

flux determined by m. One way to do this is to leave the vielbein, the epsilon-tensor and the gamma-matrices
intact on S7 and produce the sign flip in the volume form by letting the coordinates yi go to −yi. The same
effect can be obtained by changing m → −m and keeping the S7 intact.
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Dirichlet and Neumann boundary conditions are possible. Since the boundary conditions
affect the conformal dimension of the dual operator, this is crucial for the analysis of marginal
multi-trace operators in section 5.2.3.

To list these mass values we need the Cg Casimir

Cg(p, q; r) =
1
2(p

2 + 2q2 + 4p+ 6q + 2pq) + 3
4r(r + 2). (5.15)

We will specify the irreps using the Dynkin labels (p, q; r) as above. The dimensions of the
sp2- and sp1-irreps can be obtained from these as

d2(p, q) =
1
6(p+ 2q + 3)(p+ q + 2)(p+ 1)(q + 1), (5.16)

d1(r) = r + 1, (5.17)

respectively.
The issue of stability, and as we saw above its connection to the existence of fields with

E0 ≤ 3
2 , is thus related to when Neumann boundary conditions are possible on AdS4 for

scalar and Dirac fields. This is clear from their energy formulas

E0(s = 0±) = 3
2 ± 1

2

√
M2

m2 + 1 ≥ 1
2 , E0

(
s = 1

2

)
= 3

2 ± 1
2

∣∣∣∣Mm
∣∣∣∣ ≥ 1, (5.18)

where the bounds are due to unitarity. Note also the immediate implication that for scalars
M2 ≥ −m2 which is the BF bound. This implies that Neumann boundary conditions are
possible, implementing also unitarity, provided that

Scalars: −m2 < M2 ≤ 3m2, Spinors: −m ≤M ≤ m. (5.19)

Inserting the various operator spectra into the formulas for the mass matrices we can
check if there are modes that satisfy these bounds. We might suspect from experience with
the round S7 spectrum that such states are quite rare. In fact, for the round S7 the only
such fields are the (2, 0, 0, 0) (i.e., 35v of so(8)) scalars in the Spin(2, 3)-irrep D(1, 0+) and
the supersingleton24 in D(1

2 , 0) ⊕D(1, 1
2) in the so(8)-irreps (1, 0, 0, 0) and (0, 0, 1, 0) (i.e.,

8v and 8c) as shown in [1]. There are also some fields in the round spectrum with E0 = 3
2

that hence have neither Dirichlet nor Neumann boundary conditions. These are scalars
from the first massive level in the irrep (3, 0, 0, 0) (or 112v) and spin-1/2 fields in the irrep
(1, 0, 1, 0) (or 56s). There are no pseudo-scalars of any similar kind. However, we find here
(see below) that in the AdS4 spectra coming from the squashed sphere, fields of these kinds
are quite abundant. The exception here is the singletons which exist only in the form of
a singlet in the right-squashed vacuum [1, 17].

We list, for the squashed sphere vacua, the scalar, pseudo-scalar and spinor fields in
the mass ranges specified above, that is, the isometry irreps for which both Dirichlet and
Neumann boundary conditions are possible, in tables 9–11, respectively. The analysis

24Singletons belong to the lower (minus) branch of the E0 formulas for scalars and spin-1/2 fermions but have
a more intricate behaviour near the AdS4 boundary than ordinary fields with Neumann boundary conditions.
Often, singletons are considered as fields confined to the boundary.
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in the left-squashed case will show that whenever there are two branches (either in the
operator eigenvalues or in M2) only the minus branch will have any irreps in these ranges.
Similarly, only the plus branches of eigenvalues appear in the right-squashed part of the
pseudo-scalar and spinor tables. The scalar fields closest to the BF bound are the ones
in the (p, q; r) = (2, 0; 2) isometry irrep of 0+

(−)(∆
(1)
0 ), both in the left- and right-squashed

case. These have M2 = −(12
√
321− 212)m2/3, which is less than one part per mille above

the BF bound −m2.
Here we note that the singlet spin-3/2 mode, which belong to the spectrum of i /D(1)−

3/2 ,
is not present in neither the left- nor right-squashed part of table 11 due to it having
E0 = 13/6 > 2 and E0 = 7/3 > 2, respectively. Even though the E0 formula corresponding
to this eigenvalue in the left-squashed case is 3

2 ± 1
6 | − 5 +

√
20Cg + 1|, where the square root

could a-priori make Neumann boundary conditions possible, Neumann boundary conditions
are in fact never allowed by unitarity due to which values of Cg occur in the cross diagram
associated to this eigenvalue.

In the right-squashed vacuum we find the members of the (WZ1)0 multiplet that were
discussed above and in [17], namely the singlet ones in 1/2(i /D(1)+

1/2 ) and 0−(Q(3)+). The
issue of instability due to possible marginal operators constructed from these two singlet
modes was discussed in [17] with the conclusion that marginal operators can either appear
or not depending on the boundary conditions of the corresponding fields. We will discuss
this further in section 5.2.3.

We might add here that in general it is not possible to demand that a given eigenmode
of an operator should generate fields in the left- and right-squashed vacua with the same
boundary conditions. In the left-squashed vacuum, we know from section 5.1 that either
the spinors associated with i /D

(1)−
1/2 or the pseudo-scalars associated with Q(3)− need to

have Neumann boundary conditions for the isometry irreps (0, 1; 0) and (1, 0; 1) to respect
supersymmetry. However, we see from tables 10 and 11 that the fields associated with these
modes in the right-squashed vacuum can only have Dirichlet boundary conditions. Some fields
must be allowed to change boundary conditions also when squashing, as was mentioned already
in section 5.1 where the example of the WZ2 supermultiplet in the irrep (0, 2; 0) was given.

The spin-3/2 fields are also affected by skew-whiffing but, in this case, only what happens
to the Killing spinor mode leads to anything interesting and this was already discussed above.

The scalar fields with 5
2 < E0 ≤ 3 and the spinor fields with 2 < E0 ≤ 3 might also

be of interest since they too are dual to relevant single-trace operators. These have masses
satisfying 3m2 < M2 ≤ 8m2 and m < |M | ≤ 3m, respectively, and can thus only have
Dirichlet boundary conditions. We list these in appendix D.

The implications for the issue of possible instabilities due to marginal operator appearing
in the right-squashed vacuum are discussed in section 5.2.3. Having tabulated all fields with
small masses we note that some of them have indeed negative values which is in accord
with the assertion of [47].
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Field (p, q; r) Cg M2/m2 E0

0+
(−)(∆

(1)
0 ) (0, 1; 0) 4 1

9
(
476− 36

√
161

) 3
2 ± 1

6
(
18−

√
161

)
(1, 0; 1) 19/4 1

9
(
491− 144

√
11

) 3
2 ± 1

3
(
9− 2

√
11

)
(1, 1; 1) 39/4 − 1

3
(
24

√
69− 197

) 3
2 ± 1

3
(
9−

√
69

)
(0, 2; 0) 10 − 1

9
(
36

√
281− 596

) 3
2 ± 1

6
(
18−

√
281

)
(2, 0; 2) 12 − 1

3
(
12

√
321− 212

) 3
2 ± 1

6
(
18−

√
321

)
(1, 2; 1) 67/4 − 1

9
(
144

√
26− 731

) 3
2 ± 1

3
(
2
√
26− 9

)
(0, 3; 0) 18 0 3

2 ± 1
2

(2, 1; 2) 18 0 3
2 ± 1

2

(3, 0; 3) 87/4 1
3
(
277− 24

√
129

) 3
2 ± 1

3
(√

129− 9
)

0+(∆(2)−
L ) (0, 0; 0) 0 − 8

9
3
2 ± 1

6

Table 9. Scalars that can have both Dirichlet and Neumann boundary conditions. The listed fields
and their properties are the same in the left- and the right-squashed vacuum. Note that only the
five first rows can respect supersymmetry with Neumann boundary conditions in the left-squashed
vacuum, see section 5.1. All brackets are positive.
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Field (LS7) (p, q; r) Cg M2
L/m

2 E0

0−(Q(2)−) (1, 1; 1) 39/4 5
9
(
67− 8

√
61

) 3
2 ± 1

3
(√

61− 5
)

(0, 1; 2) 10 20
9
(
17−

√
249

) 3
2 ± 1

6
(√

249− 10
)

0−(Q(3)−) (0, 1; 0) 4 − 8
9
(
3
√
161− 37

) 3
2 ± 1

6
(√

161− 12
)

(1, 0; 1) 19/4 − 1
9
(
96
√
11− 311

) 3
2 ± 2

3
(√

11− 3
)

(1, 1; 1) 39/4 1
3
(
137− 16

√
69

) 3
2 ± 1

3
(√

69− 6
)

(0, 2; 0) 10 8
9
(
52− 3

√
281

) 3
2 ± 1

6
(√

281− 12
)

(2, 0; 2) 12 8
3
(
19−

√
321

) 3
2 ± 1

6
(√

321− 12
)

Field (RS7) (p, q; r) Cg M2
R/m

2 E0

0−(Q(1)+) (0, 1; 0) 4 − 8
9

3
2 ± 1

6

(1, 1; 1) 39/4 7
9

3
2 ± 2

3

(0, 2; 0) 10 4
9
(
73− 5

√
201

) 3
2 ± 1

6
(√

201− 10
)

(2, 0; 2) 12 4
9
(
83− 5

√
241

) 3
2 ± 1

6
(√

241− 10
)

(3, 0; 1) 51/4 3 3
2 + 1

0−(Q(2)+) (1, 0; 1) 19/4 7
9

3
2 ± 2

3

(2, 0; 0) 6 16
9

3
2 ± 5

6

0−(Q(3)+) (0, 0; 0) 0 0 3
2 ± 1

2

Table 10. Pseudo-scalars that can have both Dirichlet and Neumann boundary conditions. The
list is divided into the ones occurring in the left-squashed vacuum (LS7) and those belonging to the
right-squashed vacuum (RS7). Some details about which (p, q; r) belong to which branch of 0−(Q(1)±)
have been collected from [35] and used here. Note that the last entry for 0−(Q(1)+) is special since
the option with a minus sign in E0, corresponding to a singleton, is not possible in the RS7 vacuum.
This follows from the results in [1]. Note also that Neumann boundary conditions for 0−(Q(2)−) do
not respect supersymmetry in the left-squashed vacuum, see section 5.1. All brackets are positive.
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Field (LS7) (p, q; r) Cg ML/m E0

1
2 (i /D

(1)−
1/2 ) (0, 1; 0) 4 − 1

3
(
15−

√
161

) 3
2 ± 1

6
(
15−

√
161

)
(1, 0; 1) 19/4 − 1

3
(
15− 4

√
11

) 3
2 ± 1

6
(
15− 4

√
11

)
(1, 1; 1) 39/4 1

3
(
2
√
69− 15

) 3
2 ± 1

6
(
2
√
69− 15

)
(0, 2; 0) 10 1

3
(√

281− 15
) 3

2 ± 1
6
(√

281− 15
)

(2, 0; 2) 12 1
3
(√

321− 15
) 3

2 ± 1
6
(√

321− 15
)

1
2 (i /D

(2)−
1/2 ) (2, 0; 0) 6 0 3

2

(0, 0; 2) 6 0 3
2

(1, 1; 1) 39/4 1
3
(
2
√
61− 13

) 3
2 ± 1

6
(
2
√
61− 13

)
(0, 1; 2) 10 1

3
(√

249− 13
) 3

2 ± 1
6
(√

249− 13
)

Field (RS7) (p, q; r) Cg MR/m E0

1
2 (i /D

(1)+
1/2 ) (0, 0; 0) 0 −1 3

2 − 1
2

(0, 1; 0) 4 1
3
(√

161− 12
) 3

2 ± 1
6
(√

161− 12
)

(1, 0; 1) 19/4 4
3
(√

11− 3
) 3

2 ± 2
3
(√

11− 3
)

1
2 (i /D

(2)+
1/2 ) (1, 0; 1) 19/4 − 2

3
3
2 ± 1

3

(2, 0; 0) 6 − 1
3

3
2 ± 1

6

(1, 1; 1) 39/4 2
3
(√

61− 7
) 3

2 ± 1
3
(√

61− 7
)

(0, 1; 2) 10 1
3
(√

249− 14
) 3

2 ± 1
6
(√

249− 14
)

(2, 0; 2) 12 1 3
2 + 1

2

(2, 1; 0) 12 1 3
2 + 1

2

Table 11. Spinors that can have both Dirichlet and Neumann boundary conditions. The special
entries are of two kinds: 1) The one in the LS7 part of the table with E0 = 3

2 , which have neither
Dirichlet nor Neumann boundary conditions (see [7]). 2) The first and last entries in the RS7 part
of the table where only one sign in E0 is given as dictated by the fact that the only singleton that
exists belongs to the RS7 vacuum and is a singlet [1]. Note that Neumann boundary conditions for
1
2 (i /D

(2)−
1/2 ) do not respect supersymmetry in the left-squashed vacuum, see section 5.1. All brackets

are positive.

5.2.3 Marginal operators in the dual CFTs

Having obtained a detailed understanding of the spectrum of the non-supersymmetric right-
squashed vacuum in the previous subsection, including the ambiguities due to the many
possible choices of boundary conditions, we can now analyse the question of marginal operators.

As a preamble we consider the left-squashed spectrum of fields and list the possible
marginal operators. It should be noted that these operators cannot, of course, lead to
instabilities since stability is in this case guaranteed by supersymmetry. However, despite
being part of supermultiplets, the boundary conditions of the fields involved, and hence their
E0 values, are not uniquely determined as we saw in the previous subsections.

The scalar sp2 × spC
1 -singlet marginal operators, depending on the boundary conditions

and even for boundary conditions that do not respect supersymmetry, in the left-squashed
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#1p
g Field 1: E0 . . .

3+ 0+
(−)(∆

(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1

1+ 0+
(−)(∆

(1)
0 )−(0,3;0) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1

2− 0+
(−)(∆

(1)
0 )−(2,1;2) : 1 0−(Q(3)−)−(1,1;1) :

7
2 −

√
23
3 0+

(−)(∆
(1)
0 )−(1,1;1) :

√
23
3 − 3

2

1− 0+
(−)(∆

(1)
0 )−(0,3;0) : 1 0−(Q(3)−)−(1,1;1) :

7
2 −

√
23
3 0+

(−)(∆
(1)
0 )−(1,1;1) :

√
23
3 − 3

2

1− 0+
(−)(∆

(1)
0 )−(2,1;2) : 1 0−(Q(3)−)−(2,0;2) :

7
2 − 1

6
√
321 0+

(−)(∆
(1)
0 )−(2,0;2) :

1
6
√
321− 3

2

1+ 1
2(i /D

(2)−
1/2 )(2,0;0) : 3

2
1
2(i /D

(2)−
1/2 )(2,0;0) : 3

2

1+ 1
2(i /D

(2)−
1/2 )(0,0;2) : 3

2
1
2(i /D

(2)−
1/2 )(0,0;2) : 3

2

Table 12. Possible scalar g = sp2 × spC
1 singlet marginal operators with parity p in LS7 depending

on the boundary conditions. The subscripts after the eigenvalues indicate the isometry irreps (p, q; r)
while the superscript indicates the boundary conditions when applicable (+ for Dirichlet, − for
Neumann). The leftmost column gives the number of g-singlets in the composite. Note that only
the ones containing two spinors are compatible with the boundary conditions that preserve N = 1
supersymmetry.

case are given in table 12. With boundary conditions preserving supersymmetry, the only
scalar singlet marginal operators are those guaranteed by supersymmetry, formed from the
spinors with E0 = 3/2 from the massless vector supermultiplets.

Turning to the more interesting case of the right-squashed non-supersymmetric vacuum,
there is a lot more freedom in choosing boundary conditions leading to a much longer list of
marginal operators. We present these in table 13. There are several features of this table
that deserve a comment. We use here the language of the boundary CFT3 theory although
the notation is from the bulk theory.

First, we note that in the right-squashed vacuum there are no marginal single- or
double-trace operators,25 while both marginal triple- and quadruple-trace operators occur.
Secondly, as observed in [17], in the singlet sector the two possible boundary conditions
for the pseudo-scalar generate either two marginal operators or none (see table 13). This
phenomenon generalises to the entire spectrum. In other words, instead of choosing the
Neumann boundary conditions on which almost all of table 13 is based, we can use Dirichlet
boundary conditions when possible and thereby eliminate all of the marginal operators. With
such boundary conditions, the theory cannot be afflicted by any instability issues related
to scalar singlet marginal operators.

Although they seem possible, it remains to be seen if such choices of boundary conditions
can be made freely or if they are constrained in some way. In any case, although this may
seem like a step towards proving stability it is just a small one since there may exist a number
of other decay modes we are still ignorant about.

25This fact might be of some importance, see for instance [48] for the role of such operators.
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#1p
g Field 1: E0 . . .

1+ 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3 0+(∆(2)−

L )+
(0,0;0) :

5
3

1− 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3 0−(Q(1)+)+

(0,1;0) :
5
3

1+ 0−(Q(1)+)−(1,1;1) :
5
6 0−(Q(1)+)−(1,1;1) :

5
6 0+(∆(2)−

L )−(0,0;0) :
4
3

1− 0−(Q(1)+)−(1,1;1) :
5
6 0−(Q(1)+)−(1,1;1) :

5
6 0−(Q(1)+)−(0,1;0) :

4
3

1− 0−(Q(1)+)−(1,0;1) :
5
6 0−(Q(1)+)−(1,1;1) :

5
6 0−(Q(1)+)−(0,1;0) :

4
3

1+ 0−(Q(1)+)−(1,0;1) :
5
6 0−(Q(1)+)−(1,0;1) :

5
6 0+(∆(2)−

L )−(0,0;0) :
4
3

1− 0−(Q(1)+)−(1,0;1) :
5
6 0−(Q(1)+)−(1,0;1) :

5
6 0−(Q(1)+)−(0,1;0) :

4
3

1− 0−(Q(3)+)−(0,0;0) : 1 0−(Q(3)+)−(0,0;0) : 1 0−(Q(3)+)−(0,0;0) : 1

1− 0−(Q(3)+)−(0,0;0) : 1 0+
(−)(∆

(1)
0 )−(0,3;0) : 1 0+

(−)(∆
(1)
0 )−(0,3;0) : 1

1− 0−(Q(3)+)−(0,0;0) : 1 0+
(−)(∆

(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1

1+ 0+
(−)(∆

(1)
0 )−(0,3;0) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1

3+ 0+
(−)(∆

(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1 0+

(−)(∆
(1)
0 )−(2,1;2) : 1

1+ 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3

0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(3)+)−(0,0;0) : 1

1− 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3

0−(Q(2)+)−(2,0;0) :
2
3 0+

(−)(∆
(1)
0 )−(0,3;0) : 1

8+ 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3

0−(Q(1)+)−(1,1;1) :
5
6 0−(Q(1)+)−(1,1;1) :

5
6

4+ 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3

0−(Q(1)+)−(1,1;1) :
5
6 0−(Q(2)+)−(1,0;1) :

5
6

3+ 0−(Q(2)+)−(2,0;0) :
2
3 0−(Q(2)+)−(2,0;0) :

2
3

0−(Q(2)+)−(1,0;1) :
5
6 0−(Q(2)+)−(1,0;1) :

5
6

1− 0−(Q(3)+)−(0,0;0) : 1 1
2(i /D

(1)+
1/2 )−(0,0;0) : 1 1

2(i /D
(1)+
1/2 )−(0,0;0) : 1

Table 13. Possible scalar g = sp2 × spC
1 singlet marginal operators with parity p in RS7 depending

on the boundary conditions, with notation as in table 12. Note that the lines without a number in the
leftmost column are continuation lines.
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6 Conclusions and comments

In this paper, we have reported on technical progress on the computation of the eigenvalue
spectra of operators on the squashed seven-sphere relevant in the compactification of eleven-
dimensional supergravity. The full isometry irrep spectrum was derived in [1], including the
structure of the AdS4 supermultiplet spectrum for the left-squashed vacuum. With the results
of [36] and this paper on the solution of the spin-3/2 equation, these supermultiplets can be
associated with values of E0, pinpointing the Spin(2, 3)-irrep D(E0, s), thus providing a full
understanding of the left-squashed spectrum.26 This is the case also after skew-whiffing to the
right-squashed non-supersymmetric vacuum, whose spectrum becomes fully determined up to
a number of ambiguities connected to the possibility to choose either Dirichlet or Neumann
boundary conditions for a number of fields. Some ambiguities of this kind exist also in the
supersymmetric left-squashed case. These results are summarised in tables 4–13 of section 5.

This progress was made possible by deriving more powerful versions of some key formulas
used in solving operator equations on coset manifolds, see [36] and section 2, here the squashed
S7 represented by the coset Sp2 ×SpC

1 /Sp1 ×Sp1. Using these refined formulas, in particular
eq. (2.38) and eq. (2.40), we finally managed to solve also the spin-3/2 equation. These
results are summarised in section 3.3 but they were reported on already in [36] where some
additional details can be found compared to the presentation in this paper.

The structure of the results is to a large extent as expected apart from some surprising
features: we found degeneracies in the spectrum of two-forms, in the sense that different mode
functions have identical operator eigenvalues. We demonstrated this explicitly by constructing
all eigenmodes of the operator ∆2, providing a direct means of calculating the eigenvalues.
These novel results are presented in section 4. This kind of degeneracy appears in (almost) all
supermultiplets that involve fields associated to the eigenmodes of the Lichnerowicz operator
on the squashed seven-sphere, as was shown in section 5.

We also found that supersymmetry alone is not enough to determine the boundary
conditions for a number of supermultiplets. This issue was discussed in section 5 where the
supermultiplet structure was presented in full detail.

The implications for the skew-whiffed non-supersymmetric right-squashed seven-sphere
compactification are discussed at the end of the previous section. Here, the boundary
condition ambiguities appear for many fields which implies that one can find a large number
of scalar singlet marginal operators in the boundary CFT3. This is of interest since the
right-squashed case is BF-stable and has, in fact, not yet been shown to be unstable, although
this is predicted by the swampland AdS swampland conjecture [5, 6]. However, in order
to determine the fate of the right-squashed vacuum one must analyse the corresponding β
functions to determine whether a marginal operator leads to an instability or not. We leave
this for a future study. Interestingly enough, there are multiple sets of boundary conditions
for which no scalar singlet marginal operators exists. This phenomenon was recently observed
in [17] to be a property of the singlet sector of the spectrum.27 Another property of the space

26Note that, as explained in section 5.1, we use results of [35] to resolve some ambiguities that would
otherwise appear for the supermultiplets denoted WZ3–6 for small p or q.

27Generally, we believe that Dirichlet boundary conditions can always be chosen in non-supersymmetric
vacua such that the only possible scalar singlet marginal operators are single-trace operators or multi-trace
operators dual to composites containing a singleton or fields with E0 = 3/2.
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of singlet scalar marginal operators found in section 5.2.3 is that there are none that are
either single- or double-trace. The implications of this fact might be worth investigating.

The squashed spectra clearly also imply that the boundary theories contain a large
number of relevant operators which can generate RG-flows to other CFTs. For instance, a
double-trace operator constructed as the square of a single-trace operator dual to a scalar field
with Neumann boundary conditions generates a flow that leads, in the infrared, to the dual
scalar field having Dirichlet boundary conditions [9]. It would be interesting to investigate
whether there are RG-flows connecting the boundary conditions preserving supersymmetry in
the left-squashed vacuum. Another interesting potential RG-flow is one that corresponds to
a domain-wall interpolating between either of the squashed vacua and the round S7 vacuum
in the bulk, as discussed, but not found explicitly, in [49, 50] (see also, e.g., [9, 48, 51]) or
one that connects the left- and right-squashed vacua.

The operator corresponding to the field associated with the squashing mode (the ∆L-row
in table 7) is relevant in the squashed vacuum and irrelevant in the round vacuum [17]. This
indicates that an RG-flow connecting the two would have to start from the squashed vacuum
in the UV and flow to the round one in the IR. Another argument for this is provided by
the F-theorem [52–54], which states that the S3 free energy decreases along RG-trajectories.
Holographically, the free energy is given by28

FS3 = IEAdS = πL2

2GN
, (6.1)

where IEAdS is the regularised on-shell action of Euclidean AdS, L2 the AdS curvature
radius and GN the four-dimensional Newton’s constant. By dimensional reduction, we have
GN ∝ ℓPl

9/Vol(M7) where ℓPl is the eleven-dimensional Planck length. The flux quantisation
condition gives the number of M2-branes as N ∝ Vol(M7)/(ℓPl

6L). Putting this together
to eliminate ℓPl, we get FS3 ∝ N3/2L7/2/

√
Vol(M7). Lastly, computing the volume of the

squashed S7 and fixing the proportionality constant through the well-known round S7 answer
or by properly keeping track of all numerical factors in the quantisation condition and the
dimensional reduction (see, e.g., [53]), we arrive at (cf. [46, 49, 50])

F (round)
S3 = π

√
2

3 N3/2, F (squashed)
S3 = π

√
2

3

√
55

37 N
3/2. (6.2)

Note that the latter is about 20% larger than the former, consistent with the above assertion
that the RG-flow, if it exists, goes from squashed in the UV to round in the IR.

It would also be interesting to investigate if the marginal operators found in this paper
can be used to argue holographically for a manifold of non-supersymmetric dual CFTs, in
line with [9], which requires computing the β functions of the marginal operators. However,
no solid conclusions can be drawn without incorporating 1/N or finite N effects, which
currently seems out of reach.

The methods and results of this paper can also be used to analyse compactifications on
S7/Zk. Some AdS/CFT aspects in this context are discussed in, e.g., [16, 55].

28It should be understood that this, and what follows, is only valid to leading order in N or L2/GN .
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From the results of this paper it is clear that all values of E0 in the squashed vacua
are of the form

E0 =
(3
2 ±A

)
+ 1

6
√
20Cg +X, X = 1, 9, 49, or 81, (6.3)

with a constant A that is also restricted to a small number of special rational values. The
simplicity of this result is striking, especially in view of how the various values of E0 arose,
potentially containing three layers of nested square roots, one each coming from the operator
eigenvalues, the mass formulas and finally from the formulas for E0(s) as functions of M or
M2. Even more intriguing is the fact that also the operator eigenvalue spectra are given by
similar formulas, either with or without a square root term. From section 3 we see that the
general forms of the eigenvalues of operators quadratic in derivatives are

κ2 = m2

9 (20Cg +B), κ2 = m2

9
(
20Cg + Ã± B̃

√
20Cg +X

)
, (6.4)

while for linear operators, the eigenvalues are all of the form

κ = m

3
(
±Â±

√
20Cg +X

)
. (6.5)

It is interesting to note, however, that all eigenvalues of the form κ2 = m2

9 (20Cg + Ã ±
B̃
√
20Cg +X) can be expressed as a square minus a constant term proportional to m2 which

immediately eliminates the square root in the corresponding formula for M2, as was noticed
already in [2]. In fact, looking at the table of mass matrices in section 2, we realise that
the same phenomenon will appear when using the mass formulas in the expressions for E0.
The reason behind the universal simple results for E0 is then clear. This might nevertheless
point towards the existence of a more direct derivation of E0.

In this context we should mention that the expressions for E0 for the various supermulti-
plets was recently derived by entirely different methods in [35], giving in addition a refined
version of the results in terms of a universal formula for E0. Interestingly enough, these
methods do not involve solving the operator equations on the squashed seven-sphere but
instead rely on ExFT methods. The results of this paper partially overlap with those of [35],
in particular, the E0 results that were derived explicitly for finitely many levels in [35]. Note
also that the many ambiguities in the choice of Dirichlet or Neumann boundary conditions
we have found are not discussed in [35].

We end with an observation concerning the degeneracies mentioned above. There are
three pairs of identical supermultiplets, all containing a scalar sector governed by ∆L, one
pair of 1+ and two pairs of Wess-Zumino multiplets. We know from explicit calculations of
the spectrum of ∆2-eigenmodes in section 4, which gives also E0, that an infinite set of pairs
of different eigenmodes (with r = p or r = p± 2) with identical isometry irreps appear with
the same eigenvalues and, thus, also the same E0 for the corresponding fields. We do not
have an explanation for this feature but hope to come back to it in a future publication.

Instead, we point out some facts related to the operator ∆L which is involved in all
these cases. It is known from the work of House and Micu [56] that ∆L is related to a first
order differential operator, here denoted as QL, by

∆L − 3m2 = (QL +m)2, (6.6)
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which implies

M2(0+(2)) = ∆L − 4m4 = (QL +m)2 −m2 =⇒ E0(0+(2), QL) =
3
2 ± 1

2

∣∣∣∣QL

m
+ 1

∣∣∣∣. (6.7)

Note that this seems to imply that ∆L ≥ 3m2 which, however, must be supplemented by a
precise statement about which modes of the two operators the House-Micu equation is valid
for. This is a rather non-trivial issue as we will indicate below.

One might interpret this to mean that the three known eigenvalues of ∆L could be used
twice, that is, that we should be able to use the positive and negative parts of the spectrum
of QL when taking the square root of the House-Micu formula. Thus we consider

∆(1)
L = m2

9 (20Cg + 36) =⇒ QL = −m± m

3
√
20Cg + 9, (6.8)

∆(2)+
L = m2

9
(
20Cg + 32 + 4

√
20Cg + 1

)
=⇒ QL = −m±

(2
3m+ m

3
√
20Cg + 1

)
, (6.9)

∆(2)−
L = m2

9
(
20Cg + 32− 4

√
20Cg + 1

)
=⇒ QL = −m±

∣∣∣∣−2
3m+ m

3
√
20Cg + 1

∣∣∣∣. (6.10)

However, this interpretation has a number of problems. First, QL = −m± m
3
√
20Cg + 9 is

not a possible set of eigenvalues for an operator like Q acting on transverse three-forms as we
saw in section 3. One issue here is that although the irrep 27 describes both the symmetric
second rank tensors and part of the three-forms, the transversality conditions act differently
on these tensors making the House-Micu formula difficult to apply. For instance, at least one
of the sets of suggested QL-eigenvalues in eq. (6.8) could instead be relevant for non-transverse
three-form modes. Furthermore, only one of the two signs in eqs. (6.9) and (6.10) give existing
Q-eigenvalues and these are precisely the eigenvalues of Q that correspond to eigenmodes with
only a 27-part and that are used by the pseudo-scalars in the supermultiplets using ∆(2)±

L , i.e.,
WZ3–6. So, Q does not resolve the analogous degeneracies of ∆3 and since these Q-eigenvalues,
which should also be QL-eigenvalues, have cross diagrams that already cover all isometry
irreps of these supermultiplets, it seems like QL cannot resolve the degeneracies either.
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A Conventions on octonions, gamma-matrices and SpC
1 Killing vectors

The octonions are elements of a non-associative algebra spanned by a real unit 1 and octonionic
imaginary units oa, where a = 1, . . . , 7, with multiplication

oaob = −δab + aab
coc, (A.1)

where aabd (index lowered by δcd) are the completely antisymmetric octonionic structure
constants with independent components

aabc = 1 for abc = 123, 257, 365, 437, 761, 642, 415, (A.2)

in a particular basis. By splitting the index as a = (̂i, 0, i), where î = (1̂, 2̂, 3̂) = (1, 2, 3) and
i = (5, 6, 7), the non-zero components of aabc can conveniently be summarised as follows29

aîĵk̂ = ϵijk, aijk̂ = −ϵijk, a0iĵ = −δij , (A.3)

in terms of the standard totally antisymmetric ϵijk and the Kronecker delta δij . The Hodge
dual of aabc, denoted cabcd, is

cabcd = 1
6ϵabcdefg a

efg, (A.4)

where the seven-dimensional epsilon tensor is totally antisymmetric with ϵ1234567 = 1. This
implies that cabcd has non-zero components

c0ijk = ϵijk, c0̂iĵk = −ϵijk, cîĵ
kl = −2δkl

ij . (A.5)

It is sometimes convenient to express the seven-dimensional gamma-matrices Γa in terms
of aabc, cabcd and the Killing spinor of the squashed seven-sphere, η, satisfying30

Daη = − i

2mΓaη, η̄η = 1. (A.6)

The octonionic conventions above lead then to the relations

aabc = iη̄Γabcη, cabcd = −η̄Γabcdη, (A.7)

which are consistent with the gamma-matrices satisfying their defining relations

{Γa,Γb} = 2δab, Γabcdefg = iϵabcdefg1. (A.8)

The fact that the squashed seven-sphere is a weak G2 manifold is then encoded in the equation

Daabcd = mcabcd, (A.9)
29The indices i, j, k should be shifted to (1, 2, 3) to make sense of eq. (A.3).
30The octonions can be identified with Spin(7) spinors and the gamma-matrices Γa realised through

multiplication by oa. G2 is the automorphism group of the octonions or, equivalently, the subgroup of Spin(7)
leaving the unit octonion 1, identified with the spinor η, invariant. See, e.g., [36] for more details on this
perspective and how to derive some of the following relations using it.

– 57 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

which is a direct consequence of the above relations with the octonionic structure constants
and the Killing spinor equation.

The consistency of these conventions can be verified by explicitly writing out the seven
8 × 8 gamma-matrices, with spinor indices A,B,C, . . . taking the eight values A = (0̂, a),
as follows:31

(Γa)B
C : (Γa)b

c = iaab
c, (Γa)b

0̂ = −iδab. (A.10)

Note that all seven Γa are purely imaginary and antisymmetric and that they satisfy eq. (A.8).
To derive and simplify the components of Γab and Γabc we need some structure constant

identities. We list these and, for the convenience of the reader, some other structure constant
identities that are used heavily throughout the paper. We have

aabca
cde = 2δde

ab + cab
de, (A.11)

aabca
bcd = 6δd

a, (A.12)
aabca

abc = 42. (A.13)

The analogous identities involving cabcd are

cabcd c
defg = aabca

efg − 9c[ab
[efδ

g]
c] − 6δefg

abc , (A.14)

cabcd c
cdef = 8δef

ab + 2cab
ef , (A.15)

cabcd c
bcde = −24δe

a, (A.16)
cabcd c

abcd = 168. (A.17)

Some identities involving contractions between the aabc and cabcd structure constants are:

cabcda
def = 6a[ab

[eδ
f ]
c] , (A.18)

cabcda
cde = 4aab

e, (A.19)
cabcda

bcd = 0. (A.20)

Two other identities that have been used in this work are

δab =
1
4!aa

cdab
efccdef , (A.21)

a[ab
[dac]

ef ] = 1
3aabca

def − 2c[ab
[deδ

f ]
c] . (A.22)

These and the following identities may be verified directly by using the components in the
basis given above. By using the Fierz identity of the G2-invariant η,

Γaηη̄Γa = 1− ηη̄, (A.23)

one can also prove eqs. (A.11)–(A.21) more elegantly.
31Note that vector a, b, c, . . . and spinor A, B, C, . . . indices are raised and lowered by δab and δAB (and their

inverses), respectively.
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Using the octonionic definition of the gamma-matrices (Γa)B
C above we can express also

the antisymmetric matrices (Γab)CD this way. We find

(Γab)C
D : (Γab)cd = −cab

cd + 2δcd
ab, (Γab)c

0̂ = −aabc. (A.24)

Finally, for the symmetric matrices (Γabc)DE we have

(Γabc)D
E : (Γabc)de = −ic[ab

efac]f
d − ia[ab

eδd
c] − 2ia[ab

dδe
c],

(Γabc)d
0̂ = −icabcd,

(Γabc)0̂
0̂ = −iaabc. (A.25)

The first one of these expressions can be simplified further using the identity (note the
order of the indices)

c[ab|d|
fac]f

e = 6
(
δ

[c′
[a abd]

e]δcc′
)∣∣

[abc]. (A.26)

Then, the required symmetry property in de becomes clear:

(Γabc)de = i
(
aabcδ

de − 6δ(d
[aabc]

e)). (A.27)

Finally, we see that Tr(Γabc) = 0 as it must.
The relations above show that this representation of the gamma-matrices is consistent

with the definition of the structure constants aabc in terms of the Killing spinor η. To clarify
this further we can solve the Killing spinor equation and get an explicit form of this spinor.
We know from the left-squashed S7 compactification that the holonomy is G2 and hence that
the Killing spinor equation has one solution. Normalising it to η̄η = 1 we for now assume
that, in the above basis, η has only one non-zero real constant component. Then

DaηB = − i

2m(Γa)B
CηC :

B = b : ∂aηb +
1
4ωade

(
(Γde)b

cηc + (Γde)b
0̂η0̂

)
= − i

2m
(
(Γa)b

cηc + (Γa)b
0̂η0̂

)
B = 0̂: ∂aη0̂ +

1
4ωade(Γde)0̂

cηc = − i

2m(Γa)0̂
cηc (A.28)

It is clear from these two equations that a spinor η with only a constant non-zero component
η0̂ has a chance to be a solution. Assuming this to be the case, the second equation is solved
and the first becomes the single condition on the spin connection

1
4ωa

deabde = m

2 δab =⇒ ω̂abc =
m

3 aabc, (A.29)

where the hat indicates that there might be (and are in case of the squashed seven-sphere)
other terms that vanish when contracted with aabc this way. This condition is in fact satisfied
but the easiest way to verify the assumed form of the Killing spinor is instead to consider
the integrability condition

Wab
cdΓcdη = 0, (A.30)
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where Wab
cd is the Weyl tensor and the only linearly independent solution is

ηA = (1, 0, . . . ., 0). (A.31)

Note that this explicit form of η and the gamma-matrices is consistent with η̄Γabcη = −iaabc.
One can check that this η solves not only the integrability condition but also the Killing
spinor equation on the left-squashed seven-sphere but not on the right-squashed one [38, 43].
That the integrability condition eq. (A.30) has exactly one independent solution is equivalent
to the fact that the holonomy of the Killing spinor equation is G2, i.e., 1

4Wab
cdΓcd generates

the Lie algreba g2.
There are also identities where structure constants are contracted with the SpC

1 Killing
vector components

sa
j = (sî

j , s0
j , si

j) =
( 1√

5
δj

i , 0, 0
)
. (A.32)

The SpC
1 Killing vectors are used heavily in the mode calculations in section 4. From the

explicit realisation of aabc and cabcd given above one finds the following identities:

aa
bcsb

isc
j = 1√

5
ϵijksa

k, (A.33)

cab
cdsc

isd
j = 1√

5
ϵijkaab

csc
k − 2s[a

isb]
j , (A.34)

s[a|
isd

iad|bc] =
1
15aabc +

2
√
5

3 ϵijksa
isb

jsc
k, (A.35)

In addition, there is an important derivative relation given in [40] which in our notation reads

Dasb
i = 1

2
√
5
aab

csc
i − 3ϵijksa

jsb
k. (A.36)

B G2 and H projection operators and Casimirs

Projection operators picking out the various G2-irreps occurring in the decompositions of
two-forms, three-forms, spinors and vector-spinors on S7 under Spin(7) → G2 are, for the
convenience of the reader, given below (the other so(7)-irreps of interest are also g2-irreps
and so do not need to be decomposed). For spinors, one- and two-forms, we also give the
projection operators onto the H-irreps occurring when decomposing Spin(7) → G2 → H.
This is relevant for section 4, in particular section 4.2 since Ch is not proportional to the
identity on 14g2 ⊂ 21so(7). In appendix B.2, we give our conventions for the Casimirs of
the various groups.

B.1 Projection operators

One-forms. The one-form irrep 7 of so(7) does not decompose when breaking so(7) to g2.
However, when breaking to h = spA

1 ⊕ spB+C
1 ⊂ g2, it decomposes as 7 → (0, 2)⊕ (1, 1). Since

sa
isb

i is a H-singlet and has rank three when seen as an operator acting on one-forms, we have

(P(0,2))a
b = 5sa

isb
i, (B.1)
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where we have fixed the coefficient by demanding P(0,2)
2 = P(0,2). It follows that the projector

onto (1, 1) is

(P(1,1))a
b = δb

a − 5sa
isb

i. (B.2)

Two-forms. The two-form irrep 21 decomposes into 7 ⊕ 14 under g2. Since aa
bc can be

viewed as an intertwiner 21 → 7, we have

(P7)ab
cd = 1

6aab
eacde = 1

6(2δ
cd
ab + cab

cd), (B.3)

(P14)ab
cd = (1− P7)ab

cd = 1
6(4δ

cd
ab − cab

cd). (B.4)

From this, we see that

cab
cd = (4P7 − 2P14)ab

cd, (B.5)

which is often useful in computations.
When restricting to H, the 7 decomposes as described in the one-form case above and

the 14 decomposes into (0, 2) ⊕ (2, 0) ⊕ (1, 3). The projection operators projecting onto
the H-irreps in 7 can be constructed using aabc and the projectors from the one-form case.
For instance, we see that (cf. eq. (B.1))

(P(0,2)⊂7)ab
cd = 5

6aab
ese

isf
iaf

cd = 75(P7ςP7)ab
cd, (B.6)

where
ςab

cd = s[a|
is[c|

i s|b]
js

|d]
j (B.7)

is a useful building block for constructing the projectors. One can verify that all four g2-blocks
of ςab

cd, viewed as a linear operator acting on two-forms, that appear when decomposing
21 → 7 ⊕ 14 have rank three. Since the 7 × 7 block is proportional to the projector
(P(0,2)⊂7)ab

cd, the off-diagonal blocks intertwine (0, 2) ⊂ 7 and (0, 2) ⊂ 14 and the 14× 14
block is proportional to (P(0,2)⊂14)ab

cd. Working out the normalisation, we find

(P(0,2)⊂14)ab
cd = 75

2 (P14ςP14)ab
cd. (B.8)

Another useful building block is (cf. eq. (B.2))

(σ − 5ς)ab
cd = (δ[c|

[a| − 5s[a|
is[c|

i)s|b]
js

|d]
j , where σab

cd = δ
[c|
[a|s|b]

is
|d]
i . (B.9)

The off-diagonal g2-blocks of (σ− 5ς)ab
cd vanish while the 7× 7 and 14× 14 blocks have ranks

four and eight which are the dimensions of (1, 1) ⊂ 7 and (1, 3) ⊂ 14, respectively. Hence, by
demanding that the projectors square to themselves to fix the normalisation, we find

(P(1,1)⊂7)ab
cd = 10P7(σ − 5ς)ab

cdP7, (P(1,3)⊂14)ab
cd = 10P14(σ − 5ς)ab

cdP14. (B.10)

The last projector is simply

(P(2,0)⊂14)ab
cd = (P14 − P(0,2)⊂14 − P(1,3)⊂14)ab

cd. (B.11)
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These projection operators can be used to get an expression for the Weyl tensor. Specifi-
cally, by using eq. (2.38) on two-forms we find that

Wab
cd = 1

5(4P14 + 8P(0,2)⊂14 − 10P(1,3)⊂14)ab
cd = 1

5P14(4− 100σ + 800ς)ab
cdP14. (B.12)

In computations, we sometimes find it useful to rewrite this as

Wab
cd = 4

5δ
cd
ab − 20σab

cd + 160ςab
cd + 12(P7σ)ab

cd − 120(P7ς)ab
cd − 60(ςP7)ab

cd. (B.13)

Three-forms. The three-form irrep 35 of so(7) decomposes into 1⊕7⊕27 when restricted
to g2. Clearly, aabc and ca

bcd can be viewed as intertwiners from three-forms to scalars and
one-forms, respectively, which allows us to easily construct the projection operators onto 1
and 7. The projector onto the 27 is then obtained by subtracting the previous two from
the identity. Fixing the normalisations through P 2 = P , this gives

(P1)abc
def = 1

42aabca
def , (B.14)

(P7)abc
def = − 1

24cabc
gcg

def = 1
24(6δ

def
abc + 9δ[d

[acbc]
ef ] − aabca

def ), (B.15)

(P27)abc
def = (1− P1 − P7)abc

def = 1
56(42δ

def
abc − 21δ[d

[acbc]
ef ] + aabca

def ). (B.16)

Spin 1/2. The spinor 8 of so(7) splits into a singlet 1, the Killing spinor, and a 7 when
restricted to g2. The projection operators are

P1 = ηη̄, P7 = Γaηη̄Γa, (B.17)

where η is the normalised Killing spinor (η̄η = 1) discussed in detail in appendix A.
The projectors can be written in terms of gamma-matrices as

P1 = 1
8 + i

48aabcΓabc, P7 = 7
8 − i

48aabcΓabc, (B.18)

where we have used that aabc = iη̄Γabcη. This is seen by computing the traces Tr(PΓ(n))
where n = 0, 1, 2, 3 indicates the number of indices on Γ. The above proves the Fierz identity
Γaηη̄Γa = 1 − ηη̄ which is nothing but P1 + P7 = 1.

Lastly, we note that the projectors onto the H-irreps appearing in the decomposition of
the spinor under so(7) → h are immediately obtained from the above as

P(0,2) = Γaη(5sa
isb

i)η̄Γb, P(1,1) = Γaη(δb
a − 5sa

isb
i)η̄Γb. (B.19)

Spin 3/2. Gamma-traceless vector-spinors, or spin-3/2 fields, transform in the 48 of so(7),
which decomposes into 7 ⊕ 14 ⊕ 27 under so(7) → g2. From eqs. (3.64)–(3.67) one can read
off the projection operators (with supressed spinor indices)

(P7)a
b = 1

6(6δ
b
aη + iaa

bcΓcη)η̄, (B.20)

(P14)a
b = −(P14)ac

dbΓcηη̄Γd, (B.21)
(P27)a

b = δb
(aΓ

cηη̄Γc), (B.22)

where (P14)ac
db on the second line is the two-form projection operator.
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Casimir Adjoint

Csp1(r) = 1
4 r(r + 2) Csp1(2) = 2

Csp2(p, q) = 1
4 p(p+ 2q + 4) + 1

2 q(q + 3) Csp2(2, 0) = 3

Cg2(p, q) = 1
3 p(p+ 3q + 5) + q(q + 3) Cg2(0, 1) = 4

Cso(7)(p, q, r) = 1
2 p(p+ 2q + r + 5) + q(q + r + 4) + 3

8 r(r + 6) Cso(7)(0, 1, 0) = 5

Table 14. Casimir eigenvalues on irreps specified by Dynkin labels with the adjoint representation
given explicitly.

B.2 Casimir conventions

In this subsection, we give our conventions for the Casimirs of the groups appearing in
the analysis. First, the isometry group (G = Sp2 × SpC

1 ) Casimir in the master formula
for ∆, eq. (2.40), is

Cg(p, q; r) = −TAT
A = 2Csp2(p, q) + 3CspC

1
(r), (B.23)

where (p, q) and (r) are the Dynkin labels of sp2 and spC
1 , respectively, Csp2 and Csp1 are

given in table 14 and, as in section 2, we raise and lower G-indices using −κAB/6 and its
inverse, where κAB is the negative definite Cartan-Killing form. The Casimir of the isotropy
group, H = SpA

1 × SpB+C
1 , is

Ch = −TiT
i = 2CspA

1
+ 6

5CspB+C
1

, (B.24)

where H-indices are raised and lowered using the restriction of −κAB/6 to h and its inverse.
The Casimirs of Spin(7) and G2 also appear in eq. (2.40). These are defined by

Cso(7) = −ΣabΣab, Cg2 = −(P14)abcdΣabΣcd. (B.25)

Formulas for their eigenvalues on irreps in terms of Dynkin labels are provided in table 14.

C Non-transverse modes and two-form mode scalar products

In this appendix we give the non-transverse eigenmodes of ∆1 and ∆2 that, just like the
transverse ones, are obtained by diagonalising eqs. (4.10) and (4.47). We also provide the
two-form scalar products that are needed to derive the cross diagrams in figure 4 and below.
In [1], the isometry irrep spectra are first derived for the transverse and non-transverse modes
combined by decomposing the Spin(7)-irreps into H-irreps and, then, the non-transverse
pieces are subtracted to arrive at the transverse irrep spectra. Deriving the cross diagrams
for the non-transverse modes and combining these with the transverse ones of section 4 thus
provides a consistency check of this last step in [1] upon comparison.

From eq. (4.10), we immediately see that the non-transverse one-form eigenmode is
generated by

Ỹ(2)
a = Y(1)

a = Ďa (C.1)
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∆(2)
1

1
2
3
4

1 2 3 4
0 p0

q r = p

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×

Figure 6. Non-transverse one-form cross diagrams. Each cross corresponds to an isometry irrep
(p, q; r) of non-transverse eigenmodes of ∆1 generated by the differential operator in eq. (C.1) and
with the eigenvalue in eq. (C.2).

with eigenvalue

∆(2)
1 = Cg (C.2)

and norm

∥Ỹ(2)ϕ∥2 = Cϕ
g ∥ϕ∥2. (C.3)

Hence, this non-transverse eigenmode exists for (p, q; r) = (p, q; p) with (p, q) ̸= (0, 0) corre-
sponding to the cross diagram in figure 6. Note that the cross-diagrams in figures 2 and 6
combined exactly match the isometry irrep spectrum of (transverse and non-transverse)
one-froms obtained from the (0, 2) and (1, 1) H-diagrams in [1].32 This provides the first
consistency check of the type described above.

Turning to two-forms, the non-transverse ∆2-eigenmodes obtained by diagonalising
eq. (4.47) are generated by the following differential operators with associated eigenvalues:

Ỹ(4)i
ab = 1

20
(
15∆C − 13±

√
20Cg + 49

)
Y(2)i

ab + 3
2
√
5

(
13∓

√
20Cg + 49

)
Y(3)i

ab

+ 1
2
√
5

(
12∓

√
20Cg + 49

)
Y(4)i

ab −
√
5
2 Y(5)i

ab + Y(6)i
ab , (C.4)

∆(4)±
2 = m2

9
(
20Cg + 14± 2

√
20Cg + 49

)
. (C.5)

To compute the norms of these non-transverse eigenmodes, and also for the norms of the
transverse eigenmodes in eqs. (4.49)–(4.52) leading to figure 4, we need the scalar products
of the basic building blocks Y(1–7)

ab from eqs. (4.40)–(4.42). Hence, we compute

⟨Y(1)ϕ,Y(1)ϕ⟩ = 6Cϕ
g ∥ϕ∥2, (C.6)

⟨Y(1)ϕ,Y(2)isiϕ⟩ = 6Cϕ
spC

1
∥ϕ∥2, (C.7)

⟨Y(1)ϕ,Y(3)isiϕ⟩ =
2√
5
Cϕ

spC
1
∥ϕ∥2, (C.8)

⟨Y(1)ϕ,Y(4)isiϕ⟩ = − 3√
5
Cϕ

spC
1
∥ϕ∥2, (C.9)

32Recall that 7 → (0, 2)⊕ (1, 1) when Spin(7) → H.
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⟨Y(1)ϕ,Y(5)isiϕ⟩ = 4⟨Y(1)ϕ,Y(4)isiϕ⟩, (C.10)

⟨Y(1)ϕ,Y(6)isiϕ⟩ =
27
10C

ϕ
spC

1
∥ϕ∥2, (C.11)

⟨Y(1)ϕ,Y(7)ijsijϕ⟩ = −1
6C

ϕ
spC

1

(
4Cϕ

spC
1
− 3

)
∥ϕ∥2, (C.12)

⟨Y(2)iϕ,Y(2)jφ⟩ = 6
5⟨ϕ, δ

ijφ⟩, (C.13)

⟨Y(2)iϕ,Y(3)jφ⟩ = 2
5
√
5
⟨ϕ, δijφ⟩, (C.14)

⟨Y(2)iϕ,Y(4)jφ⟩ = 1√
5
⟨ϕ, ϵijkskφ⟩, (C.15)

⟨Y(2)iϕ,Y(5)jφ⟩ = 4⟨Y(2)iϕ,Y(4)jφ⟩, (C.16)

⟨Y(2)iϕ,Y(6)jφ⟩ = 1
5C

ϕ
g ⟨ϕ, δijφ⟩+ ⟨ϕ, sijφ⟩, (C.17)

⟨Y(2)iϕ,Y(7)jkskφ⟩ = − 1
10C

ϕ
spC

1
⟨ϕ, δijφ⟩ − 1

12⟨ϕ, ϵ
ijkskφ⟩+

1
30⟨ϕ, s

ijφ⟩, (C.18)

⟨Y(3)iϕ,Y(3)jφ⟩ = 2
25⟨ϕ, δ

ijφ⟩, (C.19)

⟨Y(3)iϕ,Y(4)jφ⟩ = 1
5⟨ϕ, ϵ

ijkskφ⟩, (C.20)

⟨Y(3)iϕ,Y(5)jφ⟩ = 2√
5
⟨Y(2)iϕ,Y(4)jφ⟩ − 2⟨Y(3)iϕ,Y(4)jφ⟩, (C.21)

⟨Y(3)iϕ,Y(6)jφ⟩ = 1√
5
Cϕ

spC
1
⟨ϕ, δijφ⟩+ 1√

5
⟨ϕ, sijφ⟩, (C.22)

⟨Y(3)iϕ,Y(7)jkskφ⟩ = − 1
10
√
5
Cϕ

spC
1
⟨ϕ, δijφ⟩ − 1

12
√
5
⟨ϕ, ϵijkskφ⟩+

1
30
√
5
⟨ϕ, sijφ⟩, (C.23)

⟨Y(4)iϕ,Y(4)jφ⟩ = 1
10C

ϕ
g ⟨ϕ, δijφ⟩ − 1

4⟨ϕ, ϵ
ijkskφ⟩+

1
2⟨ϕ, s

ijφ⟩, (C.24)

⟨Y(4)iϕ,Y(5)jφ⟩ = −2
5⟨ϕ, ϵ

ijkskφ⟩, (C.25)

⟨Y(4)iϕ,Y(6)jφ⟩ = 1
20
√
5
(
Cϕ

g − 30Cϕ
spC

1

)
⟨ϕ, δijφ⟩+ 1

8
√
5
(
4Cϕ

g − 9
)
⟨ϕ, ϵijkskφ⟩

− 11
4
√
5
⟨ϕ, sijφ⟩, (C.26)

⟨Y(4)iϕ,Y(7)jkskφ⟩ = − 3
20
√
5
Cϕ

spC
1
⟨ϕ, δijφ⟩ − 1

12
√
5
(
3Cϕ

spC
1
− 2

)
⟨ϕ, ϵijkskφ⟩

− 11
30
√
5
⟨ϕ, sijφ⟩, (C.27)

⟨Y(5)iϕ,Y(5)jφ⟩ = 8⟨Y(4)iϕ,Y(4)jφ⟩+ 2⟨Y(4)iϕ,Y(5)jφ⟩, (C.28)

⟨Y(5)iϕ,Y(6)jφ⟩ = 2⟨Y(4)iϕ, (3P7 − 1)Y(6)jφ⟩, (C.29)

⟨Y(5)iϕ,Y(7)jkskφ⟩ = 2⟨Y(4)iϕ, (3P7 − 1)Y(7)jkskφ⟩, (C.30)

⟨Y(6)iϕ,Y(6)jφ⟩ = 1
200C

ϕ
g

(
20Cϕ

g − 39
)
⟨ϕ, δijφ⟩ − 1

80
(
36Cϕ

g − 171
)
⟨ϕ, ϵijkskφ⟩

+ 1
40

(
20Cϕ

g − 3
)
⟨ϕ, sijφ⟩, (C.31)
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⟨Y(6)iϕ,Y(7)jkskφ⟩ = − 1
200C

ϕ
spC

1

(
10Cϕ

g − 47
)
⟨ϕ, δijφ⟩

− 1
120

(
5Cϕ

g − 19Cϕ
spC

1
+ 7

)
⟨ϕ, ϵijkskφ⟩ (C.32)

+ 1
300

(
5Cϕ

g − 100Cϕ
spC

1
+ 214

)
⟨ϕ, sijφ⟩, (C.33)

⟨Y(7)ijϕ,Y(7)
kl φ⟩ =

1
50

(
Cϕ

g − 5Cϕ
spC

1

)
⟨ϕ, δ{i

{kδ
j}
l} φ⟩+

9
100⟨ϕ, δ

{i
{kϵl}

j}msmφ⟩

− 1
10⟨ϕ, δ

{i
{ksl}

j}φ⟩, (C.34)

where

P7Y(6)i
ab = 1

6Y
(1)
ab s

i − 1
6Y

(2)i
ab □̌+ 1

2ϵ
i
jkY

(2)j
ab sk + 1

6
√
5
Y(4)i

ab + 1
12
√
5
Y(5)i

ab , (C.35)

P7Y(7)ij
ab = 1

6Y
(2){i
ab sj}. (C.36)

To compute scalar products and norms like ⟨PrYmϕ, PrY(n)ϕ⟩, we need to use eq. (4.5)
in cases where the differential operators are not spC

1 -singlets. For the 5spC
1

case, we need
some spC

1 identities, such as

ϵ(iklδ
j)
(mδ

k
n)ϵ

(m|p
rYpqs

|n)qrsl = 1
3Y

ijs2 + 1
4δ

ijYklskl −
1
4ϵ

(i
klYj)ksl

− 1
6Y

k(isk
j)(7 + 3s2) + 3

2ϵ
(i|k

mYkls
|j)lm + 1

2Ykls
ijkl, (C.37)

since eq. (4.5) requires four successive applications of the Casimir

CspC
1
Y ijϕ = −(TkT

kY ij)ϕ− Y ij(TkT
kϕ)− 2(TkY ij)(T kϕ)

=
(
Cϕ

spC
1
+ 6

)
Y ijϕ− 4ϵ(iklYj)ksl, (C.38)

where the 6 comes from CspC
1
(5) = 6. This reduces the computation of ⟨PrYmϕ, PrY(n)ϕ⟩

to eqs. (C.6)–(C.34) with φ substituted by one of

δijϕ, ϵijks
kϕ, sij , (C.39)

in the 3spC
1

cases (of the form ⟨Y iϕ,Y ′jφ⟩) and one of

δ
(k
(i δ

l)
j)ϕ, ϵ(i

(k|m|δ
l)
j)smϕ, δ

(k
(i sj)

l)ϕ, ϵ(i
(k|m|sj)m

l)ϕ, sij
klϕ, (C.40)

in the 5spC
1

cases (of the form ⟨Y ijϕ,Y ′
klφ⟩). Lastly, to put the above together, we need

identities like eq. (4.23) in the 3spC
1

case and, for instance,

⟨ϕ, sl
jsij

ilϕ⟩ = −Cϕ
spC

1

( 5
36 − 23

54C
ϕ
spC

1
+ 4

9
(
Cϕ

spC
1

)2
)
∥ϕ∥2, (C.41)

in the 5spC
1

case.
Calculating the norms of the non-transverse ∆2-eigenmodes using the above scalar

products, we arrive at the cross-diagrams in figure 7. Note that the cross diagrams in figures 4
and 7 combined exactly match the complete two-form isometry irrep spectrum obtained by
combining the relevant H-diagrams in [1], providing a non-trivial consistency check.33

33Recall that 21 → (1, 1)⊕ 2× (0, 2)⊕ (2, 0)⊕ (1, 3) when Spin(7) → H.
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Figure 7. Non-transverse two-form cross diagrams. Each cross corresponds to an isometry irrep
(p, q; r) of non-transverse eigenmodes of ∆2, listed in eq. (C.4), with associated eigenvalues given in
eq. (C.5).

D Spin-0 fields with 5
2 < E0 ≤ 3 and spin-1/2 fields with 2 < E0 ≤ 3

We start by listing the bosonic and fermionic fields in the AdS4 spectrum of the round S7 with
E0 ≤ 3 [32]. These are, apart from the massless graviton (with E0 = 3), spin-1 gauge fields
(with E0 = 2) and massive 1− vector fields from the levels n = 1 and n = 2 (with E0 = 5

2
and E0 = 3), the scalar, pseudo-scalar and spin-1/2 fermion fields listed in tables 15 and 16.

To facilitate the comparison between the squashed and the round cases, we present
the decomposition of some of the Spin(8) irreps under Spin(8) → Sp2 × SpC

1 , for both left-
and right-squashing when this is relevant (indicated by L and R on the arrow), in table 17.
Recall from, e.g., [32] that the left- and right-squashings can be defined by how the three
eight-dimensional irreps of Spin(8) behave. While 8v = (1, 0, 0, 0) → (1, 0; 1) = (4,2) is
true in both cases the irreps 8c = (0, 0, 1, 0) and 8s = (0, 0, 0, 1) interchange their behaviour
when skew-whiffed, see table 17.

In the case of the AdS4 spectra related to the squashed sphere, we here list the scalar
and pseudo-scalar fields in the range 5

2 < E0 ≤ 3, see table 18, which complements tables 9
and 10 to provide a full account of all such fields with E0 ≤ 3. These fields have masses
between M2 = 3m2 and M2 = 8m2 and can thus only have Dirichlet boundary conditions.
The analogous fermions have 2 < E0 ≤ 3 and masses in the range m < |M | ≤ 3m. These
fields can be found in tables 19 and 20, complementing table 11.
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0+
(−)(∆0) 0−(−)(Q)

n Spin(8) irrep M2 E0 B.c. Spin(8) irrep M2 E0 B.c.

−1 (1, 0, 0, 0) = 8v 3m2 1
2 sing.

0 (2, 0, 0, 0) = 35v 0 1 Neu. (0, 0, 2, 0) = 35c 0 2 Dir.
1 (3, 0, 0, 0) = 112v −m2 3

2 deg. (1, 0, 2, 0) = 112cv 3m2 5
2 Dir

2 (4, 0, 0, 0) 0 2 Dir. (2, 0, 2, 0) 8m2 3 Dir.
3 (5, 0, 0, 0) 3m2 5

2 Dir.
4 (6, 0, 0, 0) 8m2 3 Dir.

Table 15. Scalar and pseudo-scalar fields with E0 ≤ 3 in the AdS4 spectrum based on the round S7

where n is the level number. All massless (pseudo-)scalar fields in the spectrum are present in this
list. These fields are dual to relevant operators in the boundary CFT3. We also specify whether the
fields have singleton (E0 = 1

2 ), Neumann ( 1
2 < E0 <

3
2 ), degenerate (E0 = 3

2 ) or Dirichlet (E0 >
3
2 )

boundary conditions.

1
2 (−)

(i /D1/2) 1
2 (−)

(i /D3/2)

n Spin(8) irrep M E0 B.c. Spin(8) irrep M E0 B.c.

−1 (0, 0, 1, 0) = 8c −m 1 sing.
0 (1, 0, 1, 0) = 56s 0 3

2 deg.
1 (2, 0, 1, 0) m 2 Dir. (0, 1, 1, 0) −3m 3 Dir.
2 (3, 0, 1, 0) 2m 5

2 Dir.
3 (4, 0, 1, 0) 3m 3 Dir.

Table 16. Spin-1/2 fermion fields with E0 ≤ 3 in the AdS4 spectrum based on the round S7 where
n is the level number. All massless spin-1/2 fields in the spectrum are present in this list. These
fields are dual to relevant operators in the boundary CFT3. We also specify whether the fields have
singleton (E0 = 1), Neumann (1 < E0 <

3
2 ), degenerate (E0 = 3

2 ) or Dirichlet (E0 >
3
2 ) boundary

conditions.

Spin(8) −→ Sp2 × SpC
1

8v = (1, 0, 0, 0) −→ (1, 0; 1) = (4,2)
35v = (2, 0, 0, 0) −→ (2, 0; 2)⊕ (0, 1; 0) = (10,3)⊕ (5,1)
112v = (3, 0, 0, 0) −→ (3, 0; 3)⊕ (1, 1; 1) = (20,4)⊕ (16,2)
294v = (4, 0, 0, 0) −→ (4, 0; 4)⊕ (2, 1; 2)⊕ (0, 2; 0) = (35′,5)⊕ (35,3)⊕ (14,1)
8c = (0, 0, 1, 0) L−→ (0, 1; 0)⊕ (0, 0; 2) = (5,1)⊕ (1,3)
8s = (0, 0, 0, 1) L−→ (1, 0; 1) = (4,2)
56s = (1, 0, 1, 0) L−→ (1, 1; 1)⊕ (1, 0; 3)⊕ (1, 0; 1) = (16,2)⊕ (4,4)⊕ (4,2)
8c = (0, 0, 1, 0) R−→ (1, 0; 1) = (4,2)
8s = (0, 0, 0, 1) R−→ (0, 1; 0)⊕ (0, 0; 2) = (5,1)⊕ (1,3)
56s = (1, 0, 1, 0) R−→ (2, 0; 2)⊕ (2, 0; 0)⊕ (0, 1; 2)⊕ (0, 0; 0) =

(10,3)⊕ (10,1)⊕ (5,3)⊕ (1,1)

Table 17. Decompositions of some Spin(8)-irreps into Sp2 × SpC
1 -irreps. The behaviour of the irreps

8c = (0, 0, 1, 0) and 8s = (0, 0, 0, 1) define how the decompositions work in the left- and right-squashed
seven-sphere vacua.
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H
E
P
0
2
(
2
0
2
4
)
1
4
4

Field (p, q; r) Cg M2/m2 E0

0+
(−)(∆

(1)
0 ) (1, 3; 1) 103/4 911

9 − 8
√
149 3

2 + 1
3
(√

149− 9
)

(2, 2; 2) 26 916
9 − 4

√
601 3

2 + 1
6
(√

601− 18
)

(0, 4; 0) 28 956
9 − 4

√
641 3

2 + 1
6
(√

641− 18
)

(3, 1; 3) 115/4 971
9 − 16

√
41 3

2 + 1
3
(
2
√
41− 9

)
Field (LS7) (p, q; r) Cg M2

L/m
2 E0

0−(Q(1)−) (0, 0; 0) 0 40
9

3
2 + 7

6

(0, 2; 0) 10 16
9
(
16−

√
201

) 3
2 + 1

6
(√

201− 8
)

(2, 0; 2) 12 8
9
(
37− 2

√
241

) 3
2 + 1

6
(√

241− 8
)

0−(Q(2)−) (2, 1; 0) 12 40
9

3
2 + 7

6

(3, 0; 1) 51/4 5
9
(
79− 16

√
19

) 3
2 + 1

3
(
2
√
19− 5

)
(1, 0; 3) 55/4 55

9
3
2 + 4

3

0−(Q(3)−) (1, 2; 1) 67/4 1
9
(
551− 96

√
26

) 3
2 + 2

3
(√

26− 3
)

(0, 3; 0) 18 8 3
2 + 3

2

(2, 1; 2) 18 8 3
2 + 3

2

Field (RS7) (p, q; r) Cg M2
R/m

2 E0

0−(Q(1)+) (4, 0; 0) 16 4
9
(
103− 5

√
321

) 3
2 + 1

6
(√

321− 10
)

(1, 2; 1) 67/4 1
9
(
427− 80

√
21

) 3
2 + 1

3
(
2
√
21− 5

)
(0, 3; 0) 18 8 3

2 + 3
2

(2, 1; 2) 18 8 3
2 + 3

2

0−(Q(2)+) (1, 1; 1) 39/4 1
9
(
299− 32

√
61

) 3
2 + 1

3
(√

61− 4
)

(0, 1; 2) 10 16
9
(
19−

√
249

) 3
2 + 1

6
(√

249− 8
)

(2, 0; 2) 12 8 3
2 + 3

2

(2, 1; 0) 12 8 3
2 + 3

2

0−(Q(3)+) (0, 1; 0) 4 4
9
(
47− 3

√
161

) 3
2 + 1

6
(√

161− 6
)

(1, 0; 1) 19/4 1
9
(
203− 48

√
11

) 3
2 + 1

3
(
2
√
11− 3

)
Table 18. Scalars and pseudo-scalars with 5

2 < E0 ≤ 3 in both the left- and right-squashed vacuum.
Note that the properties of the scalar fields are the same in the two vacua.
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0
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2
0
2
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Field (LS7) (p, q; r) Cg ML/m E0

1
2(i /D

(1)−
1/2 ) (1, 2; 1) 67/4 1

3
(
4
√
26− 15

) 3
2 + 1

6
(
4
√
26− 15

)
(0, 3; 0) 18 2 3

2 + 1
(2, 1; 2) 18 2 3

2 + 1
(3, 0; 3) 87/4 1

3
(
2
√
129− 15

) 3
2 + 1

6
(
2
√
129− 15

)
1
2(i /D

(2)−
1/2 ) (2, 1; 0) 12 4

3
3
2 + 2

3

(3, 0; 1) 51/4 1
3
(
4
√
19− 13

) 3
2 + 1

6
(
4
√
19− 13

)
(1, 0; 3) 55/4 5

3
3
2 + 5

6

(0, 2; 2) 16 1
3
(
3
√
41− 13

) 3
2 + 1

6
(
3
√
41− 13

)
(1, 2; 1) 67/4 1

3
(
8
√
6− 13

) 3
2 + 1

6
(
8
√
6− 13

)
(2, 1; 2) 18 1

3
(√

409− 13
) 3

2 + 1
6
(√

409− 13
)

(1, 1; 3) 75/4 1
3
(
2
√
106− 13

) 3
2 + 1

6
(
2
√
106− 13

)
(3, 1; 1) 79/4 1

3
(
2
√
111− 13

) 3
2 + 1

6
(
2
√
111− 13

)
(2, 2; 0) 20 1

3
(√

449− 13
) 3

2 + 1
6
(√

449− 13
)

1
2(i /D

(1)−
3/2 ) (0, 0; 0) 0 4

3
3
2 + 2

3
1
2(i /D

(3)−
3/2 ) (1, 0; 1) 19/4 −7

3
3
2 + 7

6

(2, 0; 0) 6 −8
3

3
2 + 4

3
1
2(i /D

(4)−
3/2 ) (1, 1; 1) 39/4 −1

3
(
2
√
61− 7

) 3
2 + 1

6
(
2
√
61− 7

)
(0, 1; 2) 10 −1

3
(√

249− 7
) 3

2 + 1
6
(√

249− 7
)

Table 19. Spinor fields with 2 < E0 ≤ 3 in the left-squashed vacuum.
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0
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(
2
0
2
4
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1
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4

Field (RS7) (p, q; r) Cg MR/m E0

1
2(i /D

(1)+
1/2 ) (1, 1; 1) 39/4 2

3
(√

69− 6
) 3

2 + 1
3
(√

69− 6
)

(0, 2; 0) 10 1
3
(√

281− 12
) 3

2 + 1
6
(√

281− 12
)

(2, 0; 2) 12 1
3
(√

321− 12
) 3

2 + 1
6
(√

321− 12
)

(1, 2; 1) 67/4 4
3
(√

26− 3
) 3

2 + 2
3
(√

26− 3
)

(0, 3; 0) 18 3 3
2 + 3

2

(2, 1; 2) 18 3 3
2 + 3

2
1
2(i /D

(2)+
1/2 ) (0, 2; 2) 16 1

3
(
3
√
41− 14

) 3
2 + 1

6
(
3
√
41− 14

)
(3, 0; 1) 51/4 2

3
(
2
√
19− 7

) 3
2 + 1

3
(
2
√
19− 7

)
(1, 2; 1) 67/4 2

3
(
4
√
6− 7

) 3
2 + 1

3
(
4
√
6− 7

)
(2, 1; 2) 18 1

3
(√

409− 14
) 3

2 + 1
6
(√

409− 14
)

(1, 1; 3) 75/4 2
3
(√

106− 7
) 3

2 + 1
3
(√

106− 7
)

(3, 1; 1) 79/4 2
3
(√

111− 7
) 3

2 + 1
3
(√

111− 7
)

(2, 2; 0) 20 1
3
(√

449− 14
) 3

2 + 1
6
(√

449− 14
)

(3, 0; 3) 87/4 8
3

3
2 + 4

3

(4, 0; 2) 22 1
3
(√

489− 14
) 3

2 + 1
6
(√

489− 14
)

(0, 3; 2) 24 3 3
2 + 3

2
1
2(i /D

(1)−
3/2 ) (0, 0; 0) 0 5

3
3
2 + 5

6
1
2(i /D

(1)+
3/2 ) (0, 1; 0) 4 −5

3
3
2 + 5

6
1
2(i /D

(2)+
3/2 ) (1, 1; 1) 39/4 −2

3
(√

51− 3
) 3

2 + 1
3
(√

51− 3
)

1
2(i /D

(3)+
3/2 ) (0, 0; 2) 6 −3 3

2 + 3
2

(2, 0; 0) 6 −3 3
2 + 3

2

Table 20. Spinor fields with 2 < E0 ≤ 3 in the right-squashed vacuum.

E Derivation of the supermultiplets

In this appendix, we explain, in detail, how one can associate E0 values and cross diagrams
to each of the supermultiplets as summarized in tables 4, 5 and 8.

In the process of explaining this we also obtain information of how to assign unique
operator eigenvalues to the various cross diagrams, or single crosses in some special cases.
Based on the results of [1, 36] we here use supersymmetry to carry this analysis as far as
possible but a second goal is to correlate these results with the ones obtained in section 4
where we provide a direct connection between cross diagrams and operator eigenvalues. This
is particularly important for the novel results concerning ∆2 which will give new important
insights into the structure of supermultiplets. Thus, we will use the notation for cross
diagrams and their eigenvalues introduced in section 4 and in some cases compare them
to the cross diagrams listed in the appendix of [1]. Alternatively, one can start from the
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results of sections 3 and 4 and arrive at the same results without using [1] except for the
cross diagrams of the supermultiplets only associated to mode types that were not analysed
in section 4, specifically the results in figure 8 below.

In what follows, we do not look for numerical coincidences that could give rise to
exceptional supermultiplets for small p or q. Although we do not present the details, we
have verified that no such exceptions are possible when accounting for the full spectrum
of supermultiplets.

Spin-2 supermultiplets. We start from the top of the list of supermultiplets, eqs. (5.1)–
(5.5) above, and follow it downwards. The first one is thus the spin 2+ supermultiplets

D(E0, 2+ : ∆0)⊕D(E0 − 1
2 ,

3
2 : i /D1/2)⊕D(E0 + 1

2 ,
3
2 : i /D1/2)⊕D(E0, 1+ : ∆2), (E.1)

where we have included the operators responsible for the different spectra. The values of E0
are computed from the operator eigenvalues as follows: using table 3 and eq. (3.88) we get
M2(2+) = ∆0 with eigenvalues ∆(1)

0 = 20m2

9 Cg which gives (see table 2)

E0(2+) = 3
2 + 1

2

√(
M

m

)2
+ 9 = 3

2 + 1
2

√
20
9 Cg + 9 = 3

2 + 1
6
√
20Cg + 81, (E.2)

applicable to all isometry irreps in the cross diagram of ∆0, that is, all irreps (p, q; r) with
p = r ≥ 0, q ≥ 0 (see [1] or figure 1). There is, however, a special case namely the short
massless supergravity multiplet in the irrep (0, 0; 0). Looking more carefully at the cross
diagrams for the different fields in the spin 2+ supermultiplets one finds that the cross
diagrams of [1] are related as follows34

2+ : [∆0](1), (3/2)(−) : [i /D1/2](1) = [∆0](1), (3/2)(+) : [i /D1/2](2) = [∆0](1)− (0, 0; 0),
1+ : [∆2](2 + 3− 1) = [∆0](1)− (0, 0; 0), (E.3)

where the bracket [. . .] enclosing the operator indicates that it refers to a cross diagram and
not an eigenvalue. Here [i /D1/2](1) refers to the first cross diagram in the list of i /D1/2 in
the appendix of [1] while [∆2](2 + 3− 1) means that one should add the ∆2 cross diagrams
number 2 and 3 and subtract diagram number 1. Thus we see that the last two fields in the
supermultiplets have cross diagrams that do not contain the irrep (0, 0; 0) which therefore
gives rise to a short supermultiplet, the supergravity multiplet. In particular this means that
the Dirac eigenvalues are associated with cross diagrams as follows

i /D1/2(1) =
m

2 + m

3
√
20Cg + 81 =⇒ E0 = 3

2 − 1
2 + 1

6
√
20Cg + 81, (E.4)

i /D1/2(2) =
m

2 − m

3
√
20Cg + 81 =⇒ E0 = 3

2 + 1
2 + 1

6
√
20Cg + 81, (E.5)

which follows from the old results of [40] or the results in this paper.35

34The signs appearing as indices on the 3/2 components refer to the sign in their energies E0 ± 1
2 .

35Note that the sign in front of the first term cannot be deduced from the eigenvalue calculations in
section 3 of this paper, which are based on computing (i /D1/2)2, but follows here instead from implementing
supersymmetry. The mode calculation in section 4, on the other hand, does provide the sign.

– 72 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

Similarly, we conclude that, in analogy with ∆0(1) = m2

9 20Cg, we have

∆2(2 + 3− 1) = m2

9 (20Cg + 72) =⇒ E0(1+) = 3
2 + 1

6
√
20Cg + 81, (E.6)

with the same E0 as for the spin 2+ component, as required by supersymmetry.
Using the notation of section 4 we can summarize the result as follows: the four fields in

the 2+ supersmultiplet make use of the following cross diagrams and eigenvalues

2+(∆(1)
0 ), 3

2(i
/D

(1)+
1/2 ), 3

2(i
/D

(1)−
1/2 ), 1+(∆(1)

2 ), (E.7)

given in figures 1, 3 and 4. It is interesting to note that the combination of diagrams from the
appendix of [1] appearing in [∆2](2+3−1) = [∆0](1)−(0, 0; 0) comes out automatically in the
mode calculation presented in section 4 as ∆(1)

2 . This will happen many times in the following
when comparing these two approaches but from now on we do not give any details on this
issue. We should mention that apart from combining entire cross diagrams it is also necessary
in some cases to move columns or rows, or just single crosses, between diagrams in [1] in
order to generate the ones that come out of the mode function analysis in section 4. This is
to be expected since the analysis of [1] only provides the mutliplicity of the isometry irreps for
the various operators; the split into separate cross diagrams in [1] is to some extent arbitrary.

Spin-3/2 supermultiplets. Turning to the next set of supermultiplets, the six spin-3/2
ones, we have

D(E0,
3
2 : i /D1/2)⊕D(E0 − 1

2 , 1
± : ∆2 or 1)⊕D(E0 + 1

2 , 1
∓ : ∆1 or 2)⊕D(E0,

1
2 : i /D3/2). (E.8)

Here we must relate each of the two spin 1 parity assignments to three cross diagrams, a
fact that follows by checking how supersymmetry works starting from the six cross diagrams
for the spin-3/2 component. We conclude immediately that these are determined by the
six Dirac cross diagrams not already used above, all associated to the eigenvalues with a√
20Cg + 49. The reason for this is that we must use up all the Dirac modes associated to

spin-3/2 fields, which is the first component of the spin-3/2 supermultiplet.
All the forty i /D3/2 cross diagrams in the appendix of [1] must appear a single time

each when looking at the entire spectrum. The fact that the spin-1/2 fields in the spin-3/2
supermultiplets are related to the i /D3/2 and not i /D1/2 is a consequence of supersymmetry
which uniquely gives this answer.

From the results derived in [40] (or in section 4 of this paper) we have

i /D1/2(3, 5, 7) = −m6 − m

3
√
20Cg + 49 =⇒ E0(3/2) =

3
2 + 5

6 + 1
6
√
20Cg + 49, (E.9)

where the first spin-1 field in the supermultiplet is 1− (see below), and

i /D1/2(4, 6, 8) = −m6 + m

3
√
20Cg + 49 =⇒ E0(3/2) =

3
2 − 5

6 + 1
6
√
20Cg + 49 (E.10)

where the first spin-1 field is 1+ (see below). In the notation of section 4 these are, respectively,
denoted i /D

(2)−
1/2 and i /D

(2)+
1/2 , see figure 3.
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To establish the results for the spin-1 components is here a bit more intricate than for
the 2+ multiplets above. The spin 1 content of these six branches (cross diagrams) is three
each of 1+ and 1−. However, the six ∆1 cross diagrams are used twice since the mass square
operator has two square root branches, see table 3. The second occurrence of these six sets of
cross diagrams will appear in the six sets of 1− supermultiplets discussed below. The two
sets of ± signs gives four different sets of E0 values and all four are needed for everything
to work out. To see this we recall the derivation of the E0(1−) values here.

To obtain the E0(1−) values we start from table 2,

E0(1−) =
3
2 + 1

2

√
M2/m2 + 1, (E.11)

where M2 has two branches (see table 3)36

M2(1−(±)) = ∆1 + 12m2 ± 6m
√
∆1 + 4m2 = (

√
∆1 + 4m2 ± 3m)2 −m2, (E.12)

where also ∆1 has two branches, denoted ∆(1)±
1 in eq. (3.89),

∆1 = m2

9
(
20Cg + 14± 2

√
20Cg + 49

)
= m2

9
(√

20Cg + 49± 1
)2 − 4m2. (E.13)

Inserting the last expression into the one immediately above it gives

M2(1−) = m2

9
(√

20Cg + 49± 1± 9
)2 −m2. (E.14)

The sign choice associated with ∆1 is the one that must be correlated to the different cross
diagrams as will be done shortly.

The four choices of signs in eq. (E.14) give −10,−8, 8, 10 to be added to the square
root in M2. Using 10 and −10 we get37

E0(1−) =
3
2 ± 5

3 + 1
6
√
20Cg + 49, (E.15)

while 8 and −8 give

E0(1−) =
3
2 ± 4

3 + 1
6
√
20Cg + 49. (E.16)

The first set of E0(1−) values will be needed in the spin 1− supermultiplets as demon-
strated below while the second set fit into the spin 3/2 ones analysed here. This last statement
follows since the values to be added to 3

2 are ±5
6 which arise as 4

3 − 1
2 = 5

6 and −4
3 + 1

2 = −5
6

when relating the different values of E0 in the multiplet. We therefore conclude that the
content of the six 3/2 supermultiplets is as given above in terms of the numbered Dirac
cross diagrams.

Note that the six cross diagrams of ∆1 are identical to the
√
20Cg + 49 Dirac ones. This

is clear from figures 2 and 3 which also correlates the signs in their operator eigenvalues.38

36Recalling from [32] that ∆1 ≥ 7m2 we see that
√
∆1 + 4m2 ≥ 3m.

37Note that
√
20Cg + 49 ≥ 10 for all irreps in the relevant Dirac cross diagrams.

38The same result is obtained by supersymmetry alone, namely that the ∆1 cross diagrams numbered 1, 3
and 5 in [1] have eigenvalues from the minus branch and diagrams 2, 4 and 6 from the plus branch.
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This assignment of signs must be a consistent choice also in the 1− supermultiplets which
it is as we will see below.

The 1+ field in this supermultiplet has to come from modes with eigenvalues given by
∆(2)±

2 due to the
√
20Cg + 49. For these, we have

∆(2)±
2 = m2

9
(
20Cg + 44± 4

√
20Cg + 49

)
=⇒ E0(1+) = 3

2 ± 2
6 + 1

6
√
20Cg + 49. (E.17)

Hence, the fields associated to ∆(2)±
2 fit into the supermultiplet containing the spin-3/2 field

associated to i /D(2)∓
1/2 . Note that the corresponding cross diagrams in figures 3 and 4 agree.

The i /D3/2-eigenvalues that should be used for the spin 1/2 components to fit into these
six spin 3/2 supermultiplets are (see eq. (3.102))

i /D
(3)±
3/2 = m

3

(1
2 ±

√
20Cg + 49

)
=⇒ E0(1/2) =

3
2 ± 5

6 + 1
6
√
20Cg + 49, (E.18)

where the eigenvalues with a plus and a minus are associated with, respectively, the same
cross diagrams as those with eigenvalues i /D(2)−

1/2 and i /D
(2)+
1/2 (see eq. (3.99) and figure 3).

We can summarise the situation for the six spin 3/2 supermultiplets, using the notation
of section 4, as follows (ordered as E0, E0 − 1

2 , E0 + 1
2 , E0)

3
21

: 3
2(i

/D
(2)−
1/2 ), 1+(∆(2)+

2 ), 1−(+)(∆
(1)−
1 ), 1

2(i
/D

(3)+
3/2 ), (E.19)

3
22

: 3
2(i

/D
(2)+
1/2 ), 1−(−)(∆

(1)+
1 ), 1+(∆(2)−

2 ), 1
2(i

/D
(3)−
3/2 ). (E.20)

We emphasise that since for the spin 3/2 operator i /D3/2 we have no independent way to
relate eigenvalues to cross diagrams (as was done in section 4 for i /D1/2, ∆1 and ∆2) we have
here relied entirely on supersymmetry and used the cross diagrams of [1].

The 1− supermultiplets. The six sets of 1− supermultiplets are of the form

D(E0, 1− : ∆1)⊕D(E0− 1
2 ,

1
2 : i /D1/2 or 3/2)⊕D(E0+ 1

2 ,
1
2 : i /D3/2 or 1/2)⊕D(E0, 0− : Q), (E.21)

where i /D1/2 and i /D3/2 occur in a similar way to how in the previous case there were three
supermultiplets with spin-1 fields coming from ∆1 and ∆2. That this happens here is a
direct consequence of supersymmetry and is easily established using the known eigenvalues
of the various operators.

The eigenvalues of the 3 + 3 cross diagrams of ∆1 were in this case identified above as
the ones coming from 10 and -10 in the expression for E0(1−) in eq. (E.15). Thus

∆(1)+
1 : E0(1−(+)) =

3
2 + 5

3 + 1
6
√
20Cg + 49, (E.22)

∆(1)−
1 : E0(1−(−)) =

3
2 − 5

3 + 1
6
√
20Cg + 49, (E.23)

where the cross diagrams associated to the two sets of ∆(1)±
1 -eigenvalues are specified in

figure 2.
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The last component of these supermultiplets is the pseudo-scalar 0−. Using the√
20Cg + 49 eigenvalues of Q in eq. (3.96)

Q(2)± = m

3
(
1±

√
20Cg + 49

)
, (E.24)

and the 0− mass operator from table 3

M2(0−) = (Q+ 3m)2 −m2, (E.25)

we find as expected that all six cross diagrams satisfy

E0(0−) = E0(1−). (E.26)

Finally, we must check that also the spin-1/2 fields fit into these 1− supermultiplets. It
is interesting to note that we need to use both i /D1/2 and i /D3/2 eigenvalues for this to work.
Let us start with the spin-1/2 energies E0 = 3

2 ± 1
2 |M/m| where the minus sign cannot occur

in these supermultiplets due to the unitarity bound E0(1) ≥ 2. The mass related to the i /D1/2
and i /D3/2 operators are (see table 3, eq. (3.99) and eq. (3.103))

M(1/2, i /D(2)±
1/2 ) = −i /D1/2 −

9m
2 = −13m

3 ∓ m

3
√
20Cg + 49, (E.27)

M(1/2, i /D(4)±
3/2 ) = i /D3/2 +

3m
2 = 7m

3 ± m

3
√
20Cg + 49, (E.28)

where we should note that it is the second set of
√
20Cg + 49 eigenvalues of i /D3/2 that

must be used here. This produces the following two sets of energy values (for Dirichlet
boundary conditions)

E0(1/2, i /D
(2)±
1/2 ) = 3

2 ∓ 13
6 + 1

6
√
20Cg + 49, (E.29)

E0(1/2, i /D
(4)±
3/2 ) = 3

2 ± 7
6 + 1

6
√
20Cg + 49. (E.30)

Hence the supermultiplets are (ordered as (E0, E0 − 1/2, E0 + 1/2, E0)), in terms of the
notation of section 4,

1−1 : 1−(+)(∆
(1)+
1 ), 1

2(i
/D

(4)+
3/2 ), 1

2(i
/D

(2)+
1/2 ), 0−(Q(2)+), (E.31)

1−2 : 1−(−)(∆
(1)−
1 ), 1

2(i
/D

(2)−
1/2 ), 1

2(i
/D

(4)−
3/2 ), 0−(Q(2)−), (E.32)

where as before the lower sign in the bracket 1−(±) indicates which branch of M2 is used.
These results for the cross diagrams imply that there are two short gauge multiplets when
Cg = 6, and hence E0 = 2, connected to the two adjoint irreps (2, 0; 0) and (0, 0; 2) of the
isometry group Sp2 × SpC

1 .

The 1+ supermultiplets. So far, N = 1 supersymmetry, together with the operator
eigenvalues derived in previous works and the result for the spin-3/2 operator obtained in [36],
have been sufficient to uniquely fix all relations between operator eigenvalues and isometry
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irreps (that is, cross diagrams). This nice state of affairs will no longer persist when we now
turn to the eight spin 1+ supermultiplets, each with the content

D(E0, 1+ : ∆2)⊕D(E0 − 1
2 ,

1
2 : i /D3/2)⊕D(E0 + 1

2 ,
1
2 : i /D3/2)⊕D(E0, 0+ : ∆L), (E.33)

where the potential ambiguity for the last entry, the 0+ scalars, which could be given by
either ∆0 or ∆L is settled by supersymmetry.

It is clear that the remaining eight cross diagrams for ∆2 in figure 4 account for the 3
and 5 spin 1+ components of these supermultiplets. These must therefore all be associated
with the eigenvalues eq. (3.92) and energies

∆2 = m2

9 20Cg =⇒ E0(1+,∆2) =
3
2 + 1

6
√
20Cg + 9. (E.34)

Now we understand that the spin-1/2 fields must be associated with i /D3/2 since the eigenvalues
of i /D1/2 do not contain

√
20Cg + 9.

Similarly, the scalar fields 0+ are related to ∆L-eigenvalues eq. (3.93) and the energies

∆L = m2

9 (20Cg + 36) =⇒ E0(0+,∆L) =
3
2 + 1

6
√
20Cg + 9. (E.35)

The unexpected feature that appears here is that neither of the two sets of eigenvalues,
related to the 3 and 5 cross diagrams, have a negative square root branch (cf. ∆(2)±

2 ).
This means that there is a degeneracy in the spectrum since different modes in the same
isometry irrep must pairwise be associated with the same operator eigenvalue. This must
happen for all the fields in these 1+ supermultiplets whose irreps are of the kind (p, q; r)
with either r = p or r = p± 2. As we will discover below when discussing the Wess-Zumino
supermultiplets, the ones containing scalar fields related to ∆L, and only these ones, will
display the same phenomenon.

This being concluded here, we should now recall the results of section 4 on the ∆2
eigenmodes and their eigenvalues which support this conclusion. In fact, in section 4
we identified explicitly the different mode functions that have the same ∆2-eigenvalues,
∆2 = m2

9 20Cg, and the modes are precisely the ones in the 3 and 5 cross diagrams given
above. The notation used in section 4 to make this clear was to denote eigenvalues associated
with the mode functions (and thus the cross diagrams) related to 3 by ∆(3)

2 while those
related to 5 was denoted ∆(3)′

2 despite the fact that their eigenvalues (and masses and E0)
are the same. Unfortunately, why this happens is not clear from the results we have obtained
so far. We mention here the fact (which is further discussed in the Conclusions, section 6)
that this degeneracy occurs only in supermultiplets related to modes of ∆L.39

To conclude the discussion of the 1+ multiplets we need also the spin-3/2 eigenvalues

i /D
(2)±
3/2 = −m2 ± m

3
√
20Cg + 9 =⇒ E0(1/2, i /D

(2)±
3/2 ) = 3

2 ± 1
2 + 1

6
√
20Cg + 9, (E.36)

which completes the two 1+ lines in table 4. The relevant cross diagrams are the same for
all four entries in each line 1+ in table 4, and coincide with those specified in figure 4. It is
now clear that there are, as expected, no short multiplets in this case.

39However, not in all supermultiplets containing ∆L since the ones in 5 with r = p ± 4 are not degenerate.
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The situation for spin 1+ can be summarised as follows:

1+
1 : 1+(∆(3)

2 ), 1
2(i

/D
(2)−
3/2 ), 1

2(i
/D

(2)+
3/2 ), 0+(∆(1)

L ), (E.37)

1+
2 : 1+(∆(3)′

2 ), 1
2(i

/D
(2)′−
3/2 ), 1

2(i
/D

(2)′+
3/2 ), 0+(∆(1)′

L ), (E.38)

where we emphasise again that we in section 4 have derived the eigenvalues for the cross
diagrams of 3 and 5 and found them to coincide, hence the notation ∆(3)

2 and ∆(3)′
2 . For

the rest of the spins, on the other hand, the corresponding mode calculations have not
been done but it follows from supersymmetry that their cross diagrams are identical to
the 3 ⊕ 5 ones of ∆(3),(3)′

2 .

The Wess-Zumino supermultiplets. There are 14 sets of Wess-Zumino supermultiplets
(see eq. (5.5)) of which two sets must be related to the remaining modes of the Dirac operator
with eigenvalues

√
20Cg + 81. This fits nicely with the fact that also the two M2

(±)(0+)
branches of scalars connected to ∆0 are left to account for. This explains the first two lines,
denoted WZ1 and WZ2, of table 5.

Thus the WZ1 and WZ2 multiplets have E0 and cross diagrams governed by the spin-1/2
fields. These have M(1/2) = −i /D(1)±

1/2 − 9m
2 with i /D

(1)±
1/2 = m

2 ± m
3
√
20Cg + 81 (see table 3

and eq. (3.98)) where the modes for the upper sign fills a whole cross diagram and similarly
for the modes with the lower sign except that the singlet is missing, see figure 3.

The E0 spectrum, valid for the upper sign on i /D
(1)±
1/2 and for all Cg ≥ 0, is

E0(1/2, i /D
(1)+
1/2 ) = 3

2 + 1
2 |M/m| = 3

2 + 5
2 + 1

6
√
20Cg + 81, (E.39)

For the lower sign the situation is slightly different due to the absolut value on the mass
in E0. Now Cg > 0 but |M | = m

3 | − 15 ∓
√
20Cg + 81| depends on the relative size of the

two terms under the absolut sign. We get the following two cases

E0(1/2, i /D
(1)−
1/2 ) = 3

2 + 1
2 |M/m| = 3

2 − 5
2 + 1

6
√
20Cg + 81, Cg ≥ 36

5 , (E.40)

E0(1/2, i /D
(1)−
1/2 ) = 3

2 + 1
2 |M/m| = 3

2 + 5
2 − 1

6
√
20Cg + 81, Cg <

36
5 , (E.41)

where the limit in the last case is only satisfied by the two values Cg = 4, 19
4 (recall that

the spectrum here involves only irreps (p, q; p)). Note that we have here used only the
upper (Dirichlet) sign in E0(1/2) = 3

2 ± 1
2 |M/m|. The other case, related to Neumann

boundary conditions, is studied separately in section 5.1 for the five possible values of Cg

allowed by unitarity (which occur only for the lower sign in i /D
(1)±
1/2 and not necessarily for

all the members of the supermultiplets). Further details on the cases allowing for Neumann
boundary conditions are given in section 5.2.

It is now interesting to compare the situation above for the spin-1/2 fields with the one
for the scalars. From table 2 and table 3 we see that ∆(1)

0 = m2

9 20Cg gives a dependence
of M2(0+) on the absolut value of

√
20Cg + 81 ± 18. This gives, for the plus branch (and

for Dirichlet boundary conditions),

E0(0+
(+)) =

3
2 + 3 + 1

6
√
20Cg + 81, (E.42)

– 78 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
4

while for the minus branch we again find two cases

E0(0+
(−)) =

3
2 − 3 + 1

6
√
20Cg + 81, Cg ≥ 243

20 , (E.43)

E0(0+
(−)) =

3
2 + 3− 1

6
√
20Cg + 81, Cg <

243
20 , (E.44)

which contains the five values listed in table 6, that is, Cg = 4, 19
4 ,

39
4 , 10, 12. Here the signs

in the bracket on 0+
(±) refer to the two branches of M2(0+) in table 3.

This also fits with the
√
20Cg + 81 branch of eigenvalues for Q (see eq. (3.97) and table 3)

Q(3)± = m± m

3
√
20Cg + 81 =⇒ M2(Q(3)±) =

(
4m± m

3
√
20Cg + 81

)2
−m2, (E.45)

and hence E0 depends on the absolut value of
√
20Cg + 81± 12. This gives E0 values (for

Dirichlet boundary conditions), noting that
√
20Cg + 81 > 12 for all irreps in WZ2,

E0(0−, Q(3)±) = 3
2 + 1

2

√
(M/m)2 + 1 = 3

2 ± 2 + 1
6
√
20Cg + 81. (E.46)

Again the lower sign in E0 is not discussed here and the reader is referred to section 5.1
for more details.

These results lead to the two Wess-Zumino supermultiplets WZ1 and WZ2 in the Wess-
Zumino table for Cg > 0 in section 5.1 which turn out to have a slightly different structure
(note the order of the fields (E0, E0 − 1

2 , E0 + 1
2)):

WZ1Cg≥0 :
1
2(i

/D
(1)+
1/2 ), 0−(Q(3)+), 0+

(+)(∆
(1)
0 ), E0 = 3

2 + 5
2 + 1

6
√
20Cg + 81, (E.47)

WZ2Cg≥ 243
20

: 1
2(i

/D
(1)−
1/2 ), 0+

(−)(∆
(1)
0 ), 0−(Q(3)−), E0 = 3

2 − 5
2 + 1

6
√
20Cg + 81, (E.48)

plus the special cases listed above to complete WZ2 for 0 < Cg <
243
20 . We note here that

without involving Neumann boundary conditions there are no Wess-Zumino supermultiplets
with Cg = 4, 19

4 ,
39
4 , 10, 12. These five cases are studied in detail in section 5.1.

The Q cross diagrams relevant for fields in WZ1 and WZ2 can be found in the appendix
of [1].40 By supersymmetry, they have to be identical to the i /D

(1)±
1/2 cross diagrams in

figure 3. Note that the singlet irrep (0, 0; 0) should be removed from the irrep spectrum of
0+

(−)(∆
(1)
0 ) even though it appears in the cross diagram of ∆(1)

0 , as explained in [32], which
is consistent with the cross diagrams of i /D(1)±

1/2 . One should note that there is only one
mode with Cg = 0 here, and that this mode belongs to the multiplet WZ1. The multiplet
WZ2 lacks the Cg = 0 mode which it must to be consistent with unitarity. The Cg = 0
mode is discussed further in section 5.1.

The final twelve sets of Wess-Zumino multiplets are in some sense less intriguing since
the only special case is Cg = 0 (see [17]).41 Leaving this case for a separate discussion we
now explain the rows WZ3–6 in table 5. Checking which operator eigenvalues that have

40The cross diagrams in the appendix of [1] are related by [i /D1/2](1) = [∆0](1) = [Q](1), [i /D1/2](2) =
[∆0](1)− (0, 0; 0) = [Q](6 + 7− 5).

41Note that in all three expressions for the mass discussed here the square root term is larger then the term
without a square root when Cg > 0.
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not been used so far we find that they are all of the
√
20Cg + 1 form and occur only for

∆L, Q and i /D3/2. The remaining cross diagrams in [1] are also precisely the ones that are
needed to form the Wess-Zumino supermultiplets denoted WZ3–6 in table 5. From the
results of [1] we conclude that these should be grouped into two SpC

1 sets of 1 + 5. To verify
this we need the eigenvalues for these three operators ∆L, Q and i /D3/2. We start with the
spin-1/2 ones (see eq. (3.100) and table 3)

i /D
(1)±
3/2 = m

6 ± m

3
√
20Cg + 1 =⇒ M(1/2) = i /D3/2 +

3m
2 = 4m± m

3
√
20Cg + 1 (E.49)

which give the spin-1/2 E0 values in all the WZ3–6 multiplets as

E0(1/2) =
3
2 + 1

2 |M/m| = 3
2 ± 5

6 + 1
6
√
20Cg + 1, (E.50)

where only the sign for Dirichlet boundary conditions is used. One can check that Neumann
boundary conditions are impossible due to unitarity.42

The eigenvalues of the modes associated with the scalar fields are determined by eq. (3.94)

∆L = m2

9
(
20Cg + 32± 4

√
20Cg + 1

)
= m2

9
(√

20Cg + 1± 2
)2+3m2, (E.51)

and with M2 = ∆L − 4m2 table 3 we find

E0(0+,∆(2)±
L ) = 3

2 ± 1
3 + 1

6
√
20Cg + 1, (E.52)

and the ones of the pseudo-scalars (see eq. (3.95) and table 3)

Q(1)± = −m3 ± m

3
√
20Cg + 1 =⇒ M2(0−) =

(8m
3 ± m

3
√
20Cg + 1

)2
−m2, (E.53)

which leads to

E0(0−) =
3
2 ± 4

3 + 1
6
√
20Cg + 1. (E.54)

For the scalars 0± Neumann boundary conditions are possible for the minus branch in their
expressions for E0 above but since Neumann boundary conditions are impossible for the
spin-1/2 fields, as we saw above, supersymmetry implies that this is the case also for the
scalars. A full analysis of possible Neumann boundary conditions is carried out in section 5.2,
then for both the left- and right-squashed vacua.

The above facts clearly give rise to Cg > 0 Wess-Zumino supermultiplets of the following
two kinds (ordered as (E0, E0 − 1

2 , E0 + 1
2))

WZ3–4 : 1
2(i

/D
(1)+
3/2 ), 0+(∆(2)+

L ), 0−(Q(1)+), E0 = 3
2 + 5

6 + 1
6
√
20Cg + 1, (E.55)

WZ5–6 : 1
2(i

/D
(1)−
3/2 ), 0−(Q(1)−), 0+(∆(2)−

L ), E0 = 3
2 − 5

6 + 1
6
√
20Cg + 1. (E.56)

The remaining cross diagrams cannot, with the available information from [1, 2, 17, 36, 40]
and this paper, be associated with WZ3–4 or WZ5–6 in a unique way so we have put all

42Recall that Neumann boundary conditions are related to irreps with E0 ≤ 3
2 .
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Figure 8. All isometry irreps of the twelve Wess-Zumino supermultiplet towers WZ3–6 (including
the Page supermultiplet), corresponding to two sets of 1 ⊕ 5. The colours at the intersections of the
grid lines indicate the multiplicities of the isometry irreps.

their irreps into one coloured cross diagram in figure 8. However, from the lists of cross
diagrams in the appendix of [1] it seems clear that each pair, i.e., WZ3–4 and WZ5–6, must
be connected to 1 + 5 worth of cross diagrams. This completes the explanation of all the
entries in the Wess-Zumino table for Cg > 0.

The analysis of the Wess-Zumino multiplets with Cg = 0 is carried out in detail in
section 5.1, following closely [17], and is hence not discussed here.

As should now be clear, using the results obtained in this section all supermultiplets
appearing in the left-squashed S7 spectrum (listed in the beginning of section 2.1 and
section 5.1), except the twelve Wess-Zumino multiplets that involve the Lichnerowicz operator,
can be uniquely associated with operator eigenvalues and groups of cross diagrams from
the appendix of [1]. Thus it is possible to decide exactly which cross diagrams these twelve
Wess-Zumino multiplets must be connected to in order that all the cross diagrams are used
in a consistent way. However, to be able to divide these cross diagrams in two groups and
associate them with the two branches of E0 values the information in this paper is not
enough. Fortunately, using input from [35] this can be done, i.e., the results of [35] allows us
to split figure 8 (which gives the isometry irrep content of WZ3–4 and WZ5–6 combined)
into the two rows in figure 5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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