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Today’s software is bloated with both code and features that are not used by most users. This bloat is

prevalent across the entire software stack, from operating systems and applications to containers. Containers

are lightweight virtualization technologies used to package code and dependencies, providing portable,

reproducible and isolated environments. For their ease of use, data scientists often utilize machine learning

containers to simplify their workflow. However, this convenience comes at a cost: containers are often bloated

with unnecessary code and dependencies, resulting in very large sizes. In this paper, we analyze and quantify

bloat in machine learning containers. We develop MMLB, a framework for analyzing bloat in software systems,

focusing on machine learning containers. MMLB measures the amount of bloat at both the container and

package levels, quantifying the sources of bloat. In addition, MMLB integrates with vulnerability analysis

tools and performs package dependency analysis to evaluate the impact of bloat on container vulnerabilities.

Through experimentation with 15 machine learning containers from TensorFlow, PyTorch, and Nvidia, we

show that bloat accounts for up to 80% of machine learning container sizes, increasing container provisioning

times by up to 370% and exacerbating vulnerabilities by up to 99%.
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1 INTRODUCTION
Software technical debt is a metaphor introduced by Ward Cunningham in 1992 to describe long-

term costs incurred during the software development process due to short-term workarounds

that are meant to speed up the development process [22]. While technical debt can have solid

technical reasons, this debt—like fiscal debt—needs to be serviced by, e.g., refactoring code, and

removing unnecessary code (dead code) and unnecessary dependencies. The technical debt of

machine learning (ML) systems has recently come under scrutiny [42, 55, 61]. Sculley et al. [55]

identify eight main sources of technical debt in ML systems including common code issues such as

dead code that is never used and duplicate code. The authors also observed that only a small fraction
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Fig. 1. ML code is only a small part of ML production systems.

of code in ML systems in production is used for core machine learning functionality (training or

serving).

Figure 1 shows functionalities included in real-world ML systems, where most of the code used

in deployment is for ML-supporting functionalities. To deploy an ML model, the most common

industry practice is to use containers to package many of the required software components shown

in the figure together [14, 30]. Containers are designed to be lightweight, portable, and isolated

environments that package an application and its dependencies together, providing a consistent

and reproducible runtime environment. However, in practice, containers can be bloated with

unnecessary code and dependencies, resulting in very large sizes [24, 53, 74]. Bloat can be defined

simply as the parts of software that are never used during deployment. Software bloat is a result

of many factors, including unnecessary software features [8] and unnecessary code packaged

with an application [59]. Software bloat has been studied in the context of operating systems [35],

containers [44], Java applications [58], among many other domains.

To the best of our knowledge, ML systems bloat has been mostly overlooked. In this paper, we

argue that the way ML containers are deployed, coupled with the technical debt in all the software

components packaged in the container, leads to unnecessary bloat in ML system deployments that

results in increased resource usage, decreased performance, and increased vulnerabilities. We show

that a significant portion of packaged code in ML systems results in unnecessary bloat that is now

prevalent in ML deployments. ML containers are especially vulnerable to bloat as they aggregate

the bloat in each component of the functionalities in Figure 1, multiplying the effect of the bloat in

the container.

Furthermore, the ML code, highlighted in black in Figure 1, is especially prone to become bloated.

Today most ML code runs using either TensorFlow [1] or PyTorch [46]. Many users rely on readily

available models from, e.g., the TensorFlowModel Garden [63] coupled with, for example, the official

TensorFlow container from DockerHub
1
, or other similar model and container repositories [43, 57].

These containers come pre-packaged with all dependencies. Many users use these containers as

black boxes and do not further optimize the containers [36, 73]. However, what people typically

associate with ML code, i.e., the actual ML model, relies on only a small fraction of the code of these

systems, with each ML model requiring different functionalities from the frameworks. For example,

the requirements from TensorFlow for model serving are different from those of model training.

Hence, many of the features relevant to model training, such as gradient calculation, will be bloat

for a model serving deployment. ML deployments are always very specific, with different pipelines

for training and serving [14, 30]. In this paper, we show how this setup results in unnecessary

bloat in ML deployments, inheriting vulnerabilities in ML containers, and increasing the container

1
https://hub.docker.com/
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resource usage and the bandwidth requirements for deployments while serving no useful purpose

for the ML system.

To perform quantified measurements of bloat in ML containers, we develop a framework to

debloat, analyze, and find vulnerabilities in ML containers. Our framework uses Cimplifier [53],

a tool for identifying bloat in ML containers. The framework then analyzes the bloat to find its

source, its degree, the vulnerabilities the bloat introduces, and the package dependencies of bloat.

To this end, we make the following five contributions.

• We introduce MMLB, a framework for Measuring and analyzing ML deployment Bloat at
the container level and the package level. In addition, MMLB quantifies vulnerabilities and

performs package dependency analysis.

• We bridge the gap of existing research by being the first to conduct a comprehensive study

of ML container bloat. While the framework can be used for other containers, the main focus

of this work is ML containers.

• We study the bloat of 15 different containers running popular ML models using Tensor-

Flow and PyTorch in training, tuning, and serving tasks. We quantify the storage overhead,

the sources of bloat, and the increased provisioning latency caused by this bloat for these

containers.

• We show that ML containers have many vulnerabilities. Bloat is responsible for 66% to 99% of

all vulnerabilities in ML containers. While ML packages are the main source of bloat, generic

packages are the main source of reported vulnerabilities in ML containers.

• We open-source the framework
2
.

2 BACKGROUND
In this section, we provide a brief background on the current state of software debloating, ML

systems, and ML containers.

2.1 Software Debloating
Software bloat leads to increased resource consumption, decreased system security, and increased

maintenance costs [50]. Bloat is a by-product of how software is developed today. New features are

regularly added to software for various reasons, such as addressing users’ needs or attempting to

attract new users. However, not all of these new features will be successful, and thus not used by

most users of the software. Using containers simplifies the process of developing and deploying

complex applications. However, bloat is also added up vertically across the application in all layers

when using containers. New containers are typically built on top of existing containers, e.g., when

creating a PyTorch container, a user will typically start from, for example, a Linux container on

which they will install the PyTorch framework before publishing it to container registries like

DockerHub. When new software is installed in a container, e.g., PyTorch, this is typically done

using a software package manager such as Linux’s Advanced Packaging Tool (APT) [67] or Package

Installer for Python (PIP) [47]. During installation, the package manager installs the software and

all its dependencies. Any bloat in these dependencies is also added to the ML container.

Software bloat has been studied extensively over the years [9, 37, 68] with recent focus from the

security community [6, 20, 51]. Reducing software bloat reduces the attack surface of an application,

removing Common Vulnerabilities and Exposures (CVEs) [50], and gadgets [12]. Due to the benefits

of debloating, a large number of tools have been developed for removing software bloat. These

tools can be divided into three main categories according to their granularity. The first set of

tools focuses on debloating source code, e.g., LMCAS [4] and Chisel [31]. The second set of tools

2
https://github.com/ChalmersMASS/MMLB
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Fig. 2. Stack-plots of the lines of code (LOC) added to TensorFlow and PyTorch over their lifetime. The𝑦−𝑎𝑥𝑖𝑠
is the LoC. The 𝑥 − 𝑎𝑥𝑖𝑠 is time. The sudden drop in the LoC of TensorFlow in late 2019 is due to the release
of TensorFlow 2.0, which removed a lot of code4. The large jump in the LoC of PyTorch in 2018 is due to the
merging of PyTorch and Caffe25.

focuses on debloating binaries, e.g., Nibbler [2]. The third category of tools focuses on file-level

debloating, removing unused files from software. Examples of these tools include DockerSlim [28]

and Cimplifier [53].

Source code and binary debloating tools remove unused code segments according to supplied

program inputs. They are language-dependent, targeting applications written in a certain program-

ming language, and are hence not suitable to use with most ML systems as ML software typically

involves multiple programming languages. The file-level debloating tools are language-agnostic

and can deal with different ML systems. Therefore, in MMLB, we use a file-level debloating tool,

Cimplifier with some modifications, to debloat ML containers.

2.2 ML Systems
In this paper, we aim to study how bloat affects ML systems. While there are many frameworks

for training and serving ML models, such as Caffe [33], Keras [19], MXNet [17], PyTorch [46], and

Tensorflow [1], the two most popular ones by downloads from DockerHub—the world’s largest

container registry—by far are TensorFlow and PyTorch. The official TensorFlow Docker container

has been pulled more than 75.6 million times from DockerHub, while the official PyTorch container

has been pulled more than 9.9 million times
3
. Due to their popularity, these systems have been

actively developed with multiple releases and versions per year, a large developer community, and

an active user base.

To visualize the code growth of TensorFlow and PyTorch over time, we use the Git-of-Theseus

tool [7] to analyze their Github repositories. Git-of-Theseus analyzes all Git commits to a GitHub

repository to provide insights on a code base. We use the tool to create a stack plot of the code

growth per year and how many Lines-of-Code (LoC) added in a year survive over time in the two

projects as shown in Figure 2. The figure shows that both TensorFlow and PyTorch have been

growing steadily over time, with TensorFlow and PyTorch adding on average 0.5 million and 0.4

million LoC per year, respectively. One can also see that while some code gets removed, most

code that gets added to both projects remains unchanged. Like most ML systems, PyTorch and

TensorFlow are both written in C++ and Python. C++ is used to maximize computation performance,

while the actual programming interfaces are written in Python for ease of use.

3
Data obtained from DockerHub API(https://hub.docker.com/v2/repositories/<organization>/<image>) on January 4, 2024.

4
https://github.com/tensorflow/tensorflow/pull/31865

5
https://github.com/pytorch/pytorch/issues/6032
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ML frameworks can run on CPUs. However, due to the extensive computing workloads of ML

tasks, ML frameworks mostly use hardware accelerators to accelerate ML computations. While

there are many accelerators available today, the most commonly used accelerators are Nvidia GPUs.

To use these GPUs, the ML frameworks use many libraries, mostly published by Nvidia, such as

CUDA [40], CuDNN [38], and CuBLAS [41]. Many of these libraries were not originally designed

for ML functionalities, but are now used as a core part of almost any ML program to run on GPUs.

2.3 ML containers
Containers are lightweight virtualization technologies used to package code and dependencies

in a virtual environment that can be easily migrated and redeployed across different clusters

or computing environments. For their ease of use, containers are now the defacto deployment

model used in ML production systems [14, 30]. Containers hide the complexity of ML systems

by including all the different functionalities needed such as CUDA [40], MKL [32], analysis tools,

feature extraction tools, and monitoring tools, in a single container.

Container technology uses a layered filesystem6
. In a layered filesystem, all files are organized in

layers, with each layer representing a fully functioning container that is fully inherited by a new

container that adds one more layer on top. Each layer has added files and folders that expand the

functionality of the container, and in the process create a new container image. Hence, if any of

these layers are bloated, the bloat will be inherited by any container that builds on top of the bloated

layer. The accumulation of bloat across layers contributes to the larger size of ML containers. To

give an example, tensorflow/tensorflow:2.11.0-gpu7, a container image from TensorFlow hosted on

DockerHub, has 39 layers with a total compressed size of 2.67GB. Any bloat in any of the 39 layers

is inherited by the container.
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Fig. 3. Sizes of ML containers versus generic containers. The cumulative distribution function (CDF) of
container sizes is analyzed from the top 100 pulled generic containers and ML containers in DockerHub.

Compared to other generic containers, the size of ML containers is on average larger than that of

generic (i.e., non-ML) containers. To demonstrate this fact, we plot the sizes of the top 100 generic

and ML containers pulled from DockHub, and the growth of four example containers over the

years in Figure 3. The size of ML containers is at least an order of magnitude larger than that of

generic containers as can be seen in Figure 3a. In Figure 3b, the increase in the sizes of basic ML

containers, with only the TensorFlow and PyTorch frameworks, is substantial, doubling over the

past five years. Although the size of the PyTorch container dropped during 2022 because a package

named cudatoolkit was removed from the container, the size of the container increased again

6
https://docs.docker.com/storage/storagedriver/

7
https://t.ly/DYSuW
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Fig. 4. MMLB Framework overview. MMLB selects various combinations of ML frameworks, ML tasks,
ML models, and ML container images. MMLB then debloats the containers using a modified version of
Cimplifier. The debloated containers are then analyzed using container-level analysis, package-level analysis,
vulnerability analysis, and package dependency analysis to find the bloat degree, the sources of bloat, the
vulnerabilities, and the package dependencies.

during 2023. However, generic containers like nginx and mysql, two of the most pulled generic

containers in DockerHub, have only experienced minor growth. The large size of ML containers

leads to longer provisioning times that can be prohibitive for some applications, driving research

on how to optimize ML container provisioning for, e.g., edge applications [16, 26, 29]. Hence, it is of

paramount importance to understand how ML containers are bloated, as reducing the size of these

containers can result in substantial bandwidth and storage savings for hosting and deployments of

these containers while decreasing their attack surface and vulnerabilities.

3 EXPERIMENT SETUP AND FRAMEWORK
We now introduce our framework for removing and analyzing bloat in ML containers. The main

components of our framework are shown in Figure 4. As our goal is to evaluate bloat in ML systems,

we start the section with a detailed description of how we select the evaluated containers. We delve

into the details of each stage in the framework next.

3.1 Model Selection and Container Creation
As there is an ever-increasing number of ML models and ML frameworks, for our analysis to be

representative, we select various combinations of ML frameworks, ML tasks, ML models, and ML

container images to examine. Table 1 summarizes the combinations we used in our experiments.

We focus our study on TensorFlow and PyTorch, as they are the most widely used ML frameworks

considering the number of downloads from DockerHub.

There are three main tasks for ML systems, namely training, tuning and serving. In addition,

ML models are used across various domains, including Natural Language Processing (NLP), Image

Classification (IC), and Image Segmentation (IS). For each domain, there are many developed models,

and each of these models activates different parts of an ML system. To better understand this, our

experiments evaluate the bloat of multiple popular models for all three tasks and for different ML

domains. We use TensorFlow Serving [64] and TorchServe [66] for serving. We sourced models from

open-source model repositories, including TensorFlow Model Garden [63], PyTorch Examples [49],

Fairseq [25], and Nvidia DLExamples [39]. We also selected container images from the official

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 6. Publication date: March 2024.
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Docker TensorFlow (TF) and PyTorch (PT) images, as well as Nvidia GPU Cloud (NGC) images. In

total, we evaluate 15 containers (see Table 1).

Table 1. The containers studied in this paper.

Container Framework Task Model Image Publisher Application Year

𝑐1 TensorFlow-2.4.0 tuning Bert tensorflow/tensorflow:2.4.0-gpu TF NLP 2020

𝑐2 PyTorch-1.12.0 tuning Bert pytorch/pytorch:latest PT NLP 2022

𝑐3 PyTorch-1.11.0 tuning Bert bert:latest NGC NLP 2022

𝑐4 TensorFlow-2.4.0 tuning Bert bert_tf2:latest NGC NLP 2020

𝑐5 PyTorch-1.11.0 serving Bert pytorch/torchserve:latest-gpu PT NLP 2022

𝑐6 TensorFlow-2.4.0 serving Bert tensorflow/serving:2.4.0-gpu TF NLP 2020

𝑐7 TensorFlow-2.4.0 training Transformer tensorflow/tensorflow:2.4.0-gpu TF NLP 2020

𝑐8 PyTorch-1.12.0 training Transformer pytorch/pytorch:latest PT NLP 2022

𝑐9 TensorFlow-2.6.0 training EfficientNet efficientnet_v2_tf2:latest NGC IC 2021

𝑐10 TensorFlow-2.4.0 training ResNet tensorflow/tensorflow:2.4.0-gpu TF IC 2020

𝑐11 PyTorch-1.12.0 training ResNet pytorch/pytorch:latest PT IC 2022

𝑐12 PyTorch-1.11.0 serving ResNet pytorch/torchserve:latest-gpu PT IC 2022

𝑐13 TensorFlow-2.4.0 serving ResNet tensorflow/serving:2.4.0-gpu TF IC 2020

𝑐14 TensorFlow-2.4.0 training MaskRCNN tensorflow/tensorflow:2.4.0-gpu TF IS 2020

𝑐15 TensorFlow-2.4.0 training MaskRCNN nvidia_mrcnn_tf2:latest NGC IS 2020

NLP = Natural Language Processing; IC = Image Classification; IS = Image Segmentation.

3.2 Container Debloating
ML systems are built mostly using C++ and Python, and delivered as shared libraries and Python

packages. Container debloating tools such as DockerSlim [24] and Cimplifier [53] are the only

suitable set of tools for debloating such systems that were implemented with multiple program-

ming languages. We ran experiments with both DockerSlim and Cimplifier. In our experiments,

DockerSlim removes many needed dynamically linked ML GPU libraries, resulting in broken

containers.

The second tool, Cimplifier
8
, has more than just debloating functionalities and can be used

to partition a container into multiple containers. We only evaluated the debloating feature of

Cimplifier. To debloat, Cimplifier takes system call logs extracted from the container based on a

given workload as input and identifies the files accessed using the system calls. Accessed files are

then considered necessary for the container’s functioning for the given workload, while other

files are considered bloat and removed. In this way, Cimplifier can remove both package files and

non-package files. The output is a debloated container with only files necessary for the workload.

Similar to DockerSlim, Cimplifier also failed to debloat some containers due to a problem in the

system call log extraction workflow which was unable to identify some of the files accessed with

more complex workloads. In our development of MMLB, we modified Cimplifier to parse more

complex system call logs, which enables Cimplifier to correctly identify accessed files with complex

workloads. We also removed irrelevant features and only retained the debloating-related features.

Additionally, we automated the process of collecting system call logs to streamline the workflow of

Cimplifier and MMLB.

The system call logs and the container are the main inputs to MMLB for debloating the container.

The bloat of the container is determined by comparing the original container’s files with the

debloated container’s files. Once we obtain a correctly functioning container, we define bloat as

follows.

8
We obtained the original code for Cimplifier from the authors. Both our team and the Cimplifier team collaborated to

open-source it as part of MMLB.
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Definition 3.1. Let 𝐹𝑐 be the set of files in the original container 𝑐 and 𝐹𝑐′ be the set of files in the

debloated container 𝑐′ that are needed for the container to function correctly for a given workload

input. We have 𝐵𝑐 = 𝐹𝑐 − 𝐹𝑐′ , where 𝐵𝑐 is a set of different files between 𝐹𝑐 and 𝐹𝑐′ . We call 𝐵𝑐 the

bloat of container 𝑐 , namely container bloat.

Hence, we consider bloat to be the set of files removed from the original container, which are

unnecessary for the performed task. We note that this set of files might change if the workload

changes. This means that the debloated container is not general [70]. Thus, general-purpose
containers with diverse functionalities and continuous integration require better debloating tools

that are capable of generalizing to diverse workload sets. However, for ML workloads, the standard

practice is that a container is deployed to perform one single functionality, i.e., a container deployed

for training is never used for inference and vice-versa [27]. A trained model is first stored in a model

repository and then deployed using a container that is aimed towards inference only. Hence, using

only inference or training workloads to generate their respective debloated container is sufficient

for ML deployments.

3.3 Analysis Framework
To understand the sources of bloat, MMLB performs a detailed analysis of the bloat found within

the containers focusing on container-level bloat analysis, package-level bloat analysis, vulnerability

analysis, and package-dependencies analysis. The container-level analysis and the vulnerability

analysis are general and can be applied to emerging ML frameworks. The package-level analysis

and package-dependency analysis can be adapted to handle different package managers. As of now,

our work has mostly focused on package managers related to ML systems which limits the results

of the package analysis for applications that do not heavily rely on the three package managers

(APT, PIP and Conda [21]) integrated into our framework.

Container-Level Analysis. We first measure how prevalent bloat is in ML containers using

container-level analysis. We define Container bloat degree to measure how bloated a container

is. It is with respect to the size of the container.

Definition 3.2. Given a container 𝑐 and its debloated container 𝑐′, the container bloat degree 𝑑𝑐 of
𝑐 is:

𝑑𝑐 =
𝑠𝑐 − 𝑠𝑐′

𝑠𝑐

where 𝑠𝑐 is the size of the original container 𝑐 , 𝑠𝑐′ is the size of the debloated container 𝑐′, both
measured in the same units.

The larger 𝑑𝑐 is the greater the amount of bloat is in container 𝑐 . For example, if 𝑑𝑐 = 0.9, it

means that bloat accounts for 90% of the size of the original container 𝑐 . This measure is sensitive

to the accuracy of the debloating tool, i.e., if the tool removes necessary files for the operation

resulting in a non-functioning container, the calculated 𝑑𝑐 has no meaning since some of the files

removed are not bloat.

Package-Level Analysis. Package-level analysis aims to determine where the bloat originates.

The container bloat 𝐵𝑐 could include thousands of files. We categorize the files by the packages they

belong to. Given a container 𝑐 , we find the list of packages 𝑃 included in 𝑐 . MMLB then identifies

the set of files that belong to each package 𝑝 in 𝑃 . We then calculate the per-package bloat degree

using the following definition.
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Definition 3.3. Let 𝐹𝑝 denote the set of files which belong to a package 𝑝 . Given a package 𝑝 , the

package bloat degree 𝑑𝑝 of 𝑝 is:

𝑑𝑝 =
size(𝐹𝑝 ∩ 𝐵𝑐 )

size(𝐹𝑝 )
where size(𝑆) is a function that calculates the total size of all files in a set 𝑆 .

Package bloat degree 𝑑𝑝 is a measure of how bloated a package is relative to the use of the

package in container 𝑐 . From another perspective, 𝑑𝑝 also represents the usage of package 𝑝 , with

lower values indicating higher usage (more precisely, a larger part of the total package is required

and is not bloat). For example, if 𝑑𝑝 = 1, i.e., 𝐹𝑝 ⊆ 𝐵𝑐 , the package 𝑝 is entirely unused, and all the

files of the package 𝑝 are bloat. In the opposite extreme case, if 𝑑𝑝 = 0, i.e., 𝐹𝑝 ∩ 𝐵𝑐 is ∅, then all the

files of the package are used. The case of 0 < 𝑑𝑝 < 1 represents packages that are partially used,

with 𝑑𝑝 representing the fraction of files not required. We develop a package analysis tool to detect

the packages installed in a container and find 𝐹𝑝 for each package 𝑝 automatically.

In this paper, we mostly focus our analysis on ML-related packages. A common way to install

an ML package is via a package manager. Different operating systems may use different package

managers. For example, Ubuntu uses APT, while CentOS uses YUM [15]. MMLB is developed on

Ubuntu 18.04. Therefore, we focus on three package managers: APT, PIP, and Conda. Many ML-

related packages are managed by APT, such as cuDNN and TensorRT. PIP on the other hand is the

standard packagemanager for Python andmanyML-related packages aremanaged by PIP, due to the

prevalence of Python in the field of machine learning. Finally, Conda is a management tool for many

languages, including Python, and is used to create machine learning development/deployment

environments. Our tool categorizes packages based on the three types of package managers,

allowing us to better understand which package managers contributed the most towards bloat for

the containers we examined.

In addition to the analysis of packages categorized by package managers, we also categorize the

detected packages based on functionality. We classify the package into one of the following two

categories:

(1) ML packages. These packages provide functionality to pre-process, build, train, serve,

monitor, and accelerate ML models. For example, TensorFlow, PyTorch, and cuDNN.
(2) Generic packages. These packages are not ML packages, such as curl and bsdutils.

Vulnerability Analysis. Bloat is known to increase the vulnerabilities in software [4, 10, 12, 31, 50].
One common measure of the security impact of bloat is to compare the number of Common

Vulnerabilities and Exposures (CVEs) found in the removed files to the total number of CVEs

discovered [3, 6, 45]. For assessing CVEs in ML containers, it is crucial that the tools can scan for

vulnerabilities in shared libraries and Python packages, which are the two main components of ML

systems. Two tools capable of scanning shared libraries are Grype [5] and Trivy [56]. We integrate

both of these tools into MMLB.

These two tools utilize online CVE databases, scanning a container’s filesystem for CVEs. It is

important to note that this approach can only detect known vulnerabilities in containers. Both

tools depend on generating Software-Bill-Of-Materials (SBOM) files [72]—a nested description

of software artifact components and metadata—generated from operating system files that are

not typically used for any user functionality. The identified operating system files can be then

removed by MMLB. Therefore, as part of the framework, we build a container scanner that scans

the filesystem of the debloated containers for the CVEs found in the original (bloated) container.

Since debloating only removes files, only CVEs in the bloated containers can exist in the debloated

image. Hence, our scanner is guaranteed to find the CVEs in the debloated container.
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Package Dependency Analysis. To understand how the installed dependencies of different

software affect bloat, MMLB performs a package dependency analysis. We then define the follow-

ing.

Definition 3.4. Given an ML container 𝑐 , the package attribute graph of 𝑐 is 𝐺 = (𝑃, 𝐸), where
𝑃 is a set of packages, and 𝐸 is a set of directed edges between packages. For each package 𝑝 in 𝑃 ,

MMLB determines three attributes: the package bloat degree (𝑑𝑝 ), the number of vulnerabilities

(|𝑉 |) and, the depth (𝐷). Particularly, the depth of a package is defined as the shortest path from a

directly-accessed package to the target package. A directly-accessed package is a package

with package bloat degree less than 1, i.e., 𝑑𝑝 < 1. Because such a package has at least one file

accessed by the task. The depth of a directly-accessed package is set to 1. 𝐸 = {(𝑝𝑖 , 𝑝 𝑗 ) |𝑝𝑖 ≠ 𝑝 𝑗 ∈ 𝑃},
where 𝑝𝑖 depends on 𝑝 𝑗 directly.

Algorithm 1 illustrates the process of creating the package attribute graph 𝐺 . The graph 𝐺 is

created from a set of directly-accessed packages 𝑃 . For each package 𝑝𝑖 in 𝑃 , we use the function

FindDependencies to find its dependency packages 𝑃𝑖 . The edges are then created between 𝑝𝑖 and

all the packages in 𝑃𝑖 . The depth of 𝑝 𝑗 is set by adding 1 to the depth of 𝑝𝑖 . The newly identified

packages are also added to 𝑃 to find their dependency packages. For each package, we calculate its

package bloat degree and number of known vulnerabilities. In short, the start nodes of a package

attribute graph are those directly-accessed packages. We use Breadth-First-Search to find all the

direct and transitive dependencies of these directly-accessed packages. Figure 17 in the Appendix

shows an example of the package attribute graph.

Algorithm 1: Package attribute graph creation

Data: Container 𝑐
Result: 𝐺 = (𝑃, 𝐸)
𝑃 ← Φ;

𝐸 ← Φ;

𝑃 ← {𝑝 |𝑑𝑝 < 1} ;
for 𝑝𝑖 ∈ 𝑃 do

𝑃𝑖 ← FindDependencies(𝑝𝑖);

for 𝑝 𝑗 ∈ 𝑃𝑖 do
Add (𝑝𝑖 , 𝑝 𝑗 ) to E;

if 𝑝 𝑗 .𝐷 is not set then
𝑝 𝑗 .𝐷 ← 𝑝𝑖 .𝐷 + 1 ;

end
Add 𝑝 𝑗 to 𝑃 ;

end
𝑝𝑖 .𝑑𝑝 ← GetBloatDegree(𝑝𝑖) ;

𝑝𝑖 .|𝑉 | ← CountKnownVulerabilities(𝑝𝑖) ;

Remove 𝑝𝑖 from 𝑃 ;

Add 𝑝𝑖 to 𝑃 ;

end

A package attribute graph includes the information about the packages needed to perform a task

in a container. Some packages are needed by the task directly (directly-accessed packages), and

some packages are needed because of package dependencies. Based on the definition of a package
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attribute graph, we define the package dependency, PD(𝑝), and package reach, PR(𝑝), in line

with [75]. PD(𝑝) measures how many packages that 𝑝 depends on; PR(𝑝) measures how many

packages depend on 𝑝 .

Definition 3.5. For every package 𝑝 ∈ 𝑃 , the package dependency PD(𝑝) is the set of all the

packages that 𝑝 depends on directly or transitively.

Definition 3.6. For every package 𝑝 ∈ 𝑃 , the package reach PR(𝑝) is the set of all the packages

that have a direct or transitive dependency on 𝑝 .

4 MEASURING BLOAT IN ML SYSTEMS
Our work aims to quantify bloat in ML systems. We aim to answer the following six Research

Questions (RQs):

• RQ1: How prevalent is bloat in ML containers?

• RQ2: How does debloating affect the runtime performance of ML deployments in terms of

accuracy, and training (tuning or response) time?

• RQ3: How does bloat affect ML deployment performance?

• RQ4: What are the bloat sources in ML containers?

• RQ5: How does bloat increase vulnerabilities in ML deployments?

• RQ6: What is the impact of package dependency on bloat and vulnerability?

Experimental Setup. We ran our experiments on an AWS EC2 g4dn.xlarge instance with 4

vCPUs, 16GB of RAM and an Nvidia Tesla T4 GPU. The containers run on Ubuntu 18.04 with

Docker version 20.10.9. We tested MMLB with different GPU setups and observed no differences in

our results. The MMLB framework is implemented in approximately 3,300 lines of Python code.

Experiments. To answer the RQs, we ranMMLB on the 15 containers shown in Table 1, producing a

debloated version for each of these containers, extracting the filesystems of the debloated containers

and analyzing the bloat and vulnerabilities in the original containers. We then ran experiments to

verify that the debloated containers preserved the intended functionality and measured both the

deployment and runtime performance metrics. We detail our results next.

4.1 RQ1: Prevalence of Bloat
We start with the container-level analysis to measure the amount of bloat in the containers listed in

Table 1. Table 2 presents the sizes of the original containers and the sizes of the debloated containers

along with the container bloat degrees 𝑑𝑐 according to Definition 3.2. In our experiments, 13 of the

15 containers have bloat degrees higher than 0.5. The maximum bloat degree is 0.80 for 𝑐2 (tuning a

BERT model using PyTorch), which indicates that the majority of the size of the container is bloat.

The minimum bloat degree is 0.36 for 𝑐14 (training a MaskRCNN model using TensorFlow), which

is still considerable. Only two containers (𝑐10 and 𝑐14) have less than 50% bloat.

Table 3 compares our results with the container bloat degrees of generic containers described

in [53]. The sizes of the generic containers in Table 3 range from 33MB to 985MB, while the sizes

of the ML containers in Table 2 range from 4.49GB to 15.10GB. The sizes of the ML containers

are much larger than those of the generic containers. Meanwhile, the bloat degrees are similar.

Existing file-level debloating tools such as Cimplifier and DockerSlim retain a file as long as it

is used by a container, even if only a small fraction of the file is used. Therefore, if a container

accesses a lot of large files that are only partially used, these tools will not be able to debloat the

container effectively. We compared the sizes of files accessed within the generic containers versus

the ML containers, sorting their sizes in descending order, and identifying files that collectively

contribute to 80% of the total size of the debloated containers. Figure 5 shows Pareto charts of
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Table 2. Sizes of the original and debloated containers.

Container 𝑐 Original Size Debloated Size 𝑑𝑐

𝑐1 6.34GB 2.22GB 0.65

𝑐2 8.52GB 1.74GB 0.80
𝑐3 15.10GB 3.28GB 0.78

𝑐4 11.30GB 2.74GB 0.76

𝑐5 4.54GB 1.90GB 0.58

𝑐6 8.43GB 2.25GB 0.73

𝑐7 6.34GB 2.21GB 0.65

𝑐8 8.52GB 1.79GB 0.79

𝑐9 12.00GB 5.86GB 0.51

𝑐10 6.34GB 3.90GB 0.39

𝑐11 8.52GB 1.79GB 0.79

𝑐12 4.49GB 1.94GB 0.57

𝑐13 8.43GB 3.92GB 0.53

𝑐14 6.34GB 4.04GB 0.36
𝑐15 11.50GB 4.05GB 0.65

Table 3. Container bloat degrees of generic containers studied in [53].

Container Original Size Debloated Size 𝑑𝑐

nginx 133MB 6MB 0.95

redis 151MB 12MB 0.92

mongo 317MB 46MB 0.85

python 119MB 30MB 0.75

registry 33MB 28MB 0.15

haproxy 137MB 10MB 0.93

appcontainers/mediawiki 576MB 244MB 0.58

eugeneware/docker-wordpress-nginx 602MB 207MB 0.66

sebp/elk 985MB 251MB 0.75

these files. Figure 5a illustrates that up to 20 files in the debloated generic containers account for

80% of the total size, ranging from 2MB to 33MB. Most of these files are operating systems files

that also exist in the ML containers. On the other hand, Figure 5b shows that up to 40 files of the

debloated ML containers contribute to 80% of the total size, with file sizes ranging from 200MB to

1,200MB, with all files within the debloated ML containers being shared libraries from ML packages

(detailed in Table 10 in the Appendix). Previous research by Agadakos et al. [2] indicates that

shared libraries tend to be bloated. Given the fact that the shared libraries in ML containers are

substantially larger than those found in generic containers, these files exacerbate the overall size of

bloat. Consequently, these file-level debloating tools such as Cimplifier and DockerSlim are less

effective in debloating such files in ML containers. This inadequacy calls for exploring alternative

approaches, such as binary-level debloating tools for ML-shared libraries, to address the challenge

of efficiently debloating ML containers.
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Fig. 5. Pareto charts of files in debloated generic containers and ML containers. The x-axis shows indices
instead of filenames for simplicity.

Summary. Most containers (13 out of 15) contain significant bloat, over 50% in many cases.

Debloated ML containers tend to be larger than generic ones, primarily due to the large sizes

of ML-shared libraries. More generic binary-level debloating tools are needed to reduce

shared library bloat.

4.2 RQ2: Runtime Performance Comparison
To understand how removing bloat using Cimplifier affects the runtime of ML containers in terms

of loss, accuracy, or training (tuning, serving) time of the containers, we show the performance of

three containers running three representative machine learning tasks—that is, training, tuning, and

serving— to validate the performance of the debloated containers versus the original containers.

For tuning and training, we select containers 𝑐2 and 𝑐10. 𝑐2 tunes a pre-trained Bert model on the

SQuAD V1.1 dataset [52] for 2 epochs. 𝑐10 trains a ResNet model on the ImageNet2012 dataset [54]

for 60 epochs. For serving, we select 𝑐13, which serves a ResNet model. We run the same tasks

in the debloated versions of the three containers. Table 4 shows the final loss, accuracy, and

training/response time of the original containers and the debloated containers. The metrics of the

original containers and the debloated containers are essentially identical, showing that the runtime

of the ML tasks was not affected by the removal of the unused files.

Table 4. Runtime performance of the original containers and debloated containers. Numbers in the parenthesis
represent the metrics of the debloated containers.

Container Final Loss Accuracy Training/Response Time

𝑐2 1.72 (1.72) 84% (84%) 232 minutes (230 minutes)

𝑐10 2.84 (2.84) 66% (66%) 13 days (13 days)

𝑐13 – 75% (75%) 1.1 seconds (1.1 seconds)

Summary. Correct debloating does not affect the runtime of the debloated containers

compared to the bloated ones.
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4.3 RQ3: Deployment Performance Comparison
As previously discussed, containers are usually hosted on a container registry. When a container

is deployed, a user needs to pull (i.e., download) the container from a registry and deploy it. The

time taken to pull a container from a registry and run the container is called the provisioning time,
and consists of three stages: (1) pulling time denotes the time to download a container from the

registry; (2) creation time denotes the time to create a container that has been already pulled to

local storage; this includes the time to create a new layer on top of the container’s existing layered

filesystem; (3) startup time denotes the time to start a container that has been already created;

this includes the time to mount the created layer to the container’s existing layered filesystem.

Note that we do not include the time to execute the container’s entrypoint in the startup time

for this experiment because it has been measured in §4.2. We now study the effect of debloating

on container provisioning times. To facilitate a realistic experiment, we upload the original and

debloated containers and serve them from the Amazon Elastic Registry. We use a g4dn.xlarge
AWS instance to pull, create and start the containers from the registry. For each container, we

repeat the experiment 10 times.

Figure 6a shows the median provisioning time of the original and debloated containers. The

provisioning time of all the debloated containers is reduced significantly compared to the original

ones. For example, for container 𝑐3, the provisioning time reduces from 216s to 59s, a 3.7× accelera-

tion. To understand which stages of provisioning are affected by bloat, we also plot pulling time,

creation time, and startup time in figures 6b, 6c and 6d, respectively. The pulling time of all the

debloated containers is much lower than that of the original containers, because of their smaller

sizes. The creation time of the debloated containers is lower or higher than that of the original

containers. As mentioned earlier, creating a new container involves creating a new layer of the

existing layered filesystem. The performance of this process is not directly affected by image sizes.

Other factors, such as dirty pages in memory and network bandwidth can affect the creation time.

Under different scenarios, the creation performance of the debloated container could be better

or worse than that of the original one. The startup time of the debloated containers is essentially

identical to that of the original containers.

Summary. The provisioning time is improved by up to 3.7× after debloating, especially

during container pulling. In addition to increased latency, transferring bloat wastes resources

such as network bandwidth and energy. Hosting large ML containers on systems with

limited resources, such as tinymachine learning (TinyML) which performsmachine learning

at the edge, is impractical. A better deployment model is needed for these systems.

4.4 RQ4: Sources of Bloat
We now shift our focus to the identification of the main sources of bloat for each container using

package-level analysis. To understand the packages in the ML containers and container bloat,

we divide the packages into different categories according to two different dimensions: package

managers and package functionality.

Table 5 presents the package bloat degrees 𝑑𝑝 of the three package sources, PIP, APT and Conda,

across all the containers analyzed. APT packages have the highest number of packages at 1,051.

PIP packages have the second-highest number of packages at 538. Conda packages have the fewest

packages, 203. All of the Conda packages have a bloat degree of 1. They are all considered bloat in

the containers examined. The distributions of the different package types in Table 5 can be useful

in identifying areas for optimization.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 6. Publication date: March 2024.



Machine Learning Systems are Bloated and Vulnerable 6:15

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12c13c14c15
0

50

100

150

200
P

ro
v
is

io
n

in
g

T
im

e
(s

)
Original container

Debloated container

(a) Provisioning time.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12c13c14c15
0

50

100

150

200

C
on

ta
in

er
P

u
ll
in

g
T

im
e

(s
)

(b) Pulling time.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12c13c14c15
0

2

4

6

8

10

C
on

ta
in

er
C

re
at

io
n

T
im

e
(s

)

(c) Creation time.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12c13c14c15
0.0

0.1

0.2

0.3

0.4

C
o
n
ta

in
er

S
ta

rt
u

p
T

im
e(

s)

(d) Startup time.

Fig. 6. Comparing container provisioning time before and after debloating. The provisioning time in (a),
along with container pulling time in (b), creation time in (c), and startup time in (d), represent median values
calculated over 10 experiments.

Table 5. Bloat degrees categorized by package types. Q(N)=N-th quartile of 𝑑𝑝 .

Package Type Number of Packages Average 𝑑𝑝 Q1 Q2 Q3

PIP 538 0.79 0.53 1.00 1.00

APT 1,051 0.86 0.96 0.99 1.00

Conda 203 1.00 1.00 1.00 1.00

To better understand the sources of container bloat, we categorize files in the containers and

container bloat into four categories: APT package files, PIP package files, Conda package files,

and Non-package files. Figure 7a shows the size proportions of the four categories relative to the

container sizes. APT, PIP, and Conda packages account for 72% to 99% of the container sizes. This

indicates that APT, PIP, and Conda packages are the main components in all the containers we

analyzed. Figure 7b shows the size proportions of the four categories relative to the bloat sizes.

APT, PIP, and Conda packages account for a significant portion of the bloat size, with more than

50% of the bloat coming from APT, PIP, or Conda packages in all containers except 𝑐9, as shown in

Figure 7b.

We also categorize the files in the debloated containers and in the bloat into three categories

according to package functionality: ML package files, Generic (i.e., non-ML) package files, and

Non-package files. Figure 8 shows the components in containers and container bloat. As illustrated

in Figure 8a, ML packages account for 53% to 97% of the container sizes, denoting that they are

a major component of ML containers. Figure 8b shows the components in container bloat. ML

packages account for 31% to 96%, signifying that ML packages are a major source of ML container

bloat. Figure 9 includes three violin plots, showing the distribution of package sizes, package bloat

degrees, and bloat sizes of ML and Generic packages. As can be seen in Figure 9a, ML packages
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Fig. 7. Files in containers and container bloat, categorized according to package managers. Percentages less
than 0.03 are omitted.
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Fig. 8. Files in containers and container bloat, categorized according to package functionality. Percentages
less than 0.03 are omitted.

have larger average and maximum sizes than those of Generic packages. Figure 9b displays the

distribution of package bloat degrees. The package bloat degrees of ML packages and Generic

packages are similar. However, ML packages manifest larger average and maximum bloat sizes

compared to Generic packages, incurring more bloat than Generic packages, as shown in Figure 9c.

We find that the top 30 packages sorted by package bloat sizes are all ML packages. Specifically, 27

of the 30 packages are GPU-related packages. The details of these packages are listed in Table 11 in

the Appendix along with the most frequent unnecessary packages of ML and Generic packages, in

Tables 12, and 13 in the Appendix.

We also analyze package bloat degrees for each debloated container and the removed bloat.

Figure 10 shows that all containers include large amounts of packages with bloat degrees ranging

from 0.9 to 1. This denotes that the majority of packages installed in ML containers are not used.

Another interesting observation is that there is also a reasonable quantity of bloat degrees ranging

from 0 to 0.2, such as 𝑐3,𝑐4,𝑐9 and 𝑐15. This implies that most packages in containers are either used

a lot (0 ≤ 𝑑𝑝 < 0.2) or used very little (0.9 ≤ 𝑑𝑝 ≤ 1). As for container bloat, Figure 11 shows that

the packages with high bloat degrees (0.9 ≤ 𝑑𝑝 ≤ 1) account for 50%+ of the bloat sizes of 13 of the

15 containers.

Case study:We now look deeper into the bloat of libcudnn as an example package. libcudnn is a

popular GPU-acceleration library with primitives for deep neural networks [38]. In our experiments,

libcudnn, which is installed as an APT package, is detected in 12 out of the 15 containers. In

containers like 𝑐1, 𝑐3, 𝑐4, 𝑐6 and 𝑐7, the bloat degree of libcudnn is higher than 0.99, which means
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Fig. 9. Violin plots of package sizes, bloat degrees, and bloat sizes of ML and Generic packages. The width of
the violin at various levels indicates the density of data points there. A wider section of the violin means a
higher density of data points at that value. The marker in the middle of the violin indicates the median value
of the data. The two markers at the end of the violin indicate the minimum and maximum values of the data.
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Fig. 10. Numbers of packages with different bloat degrees in the containers. The x-axis is package bloat
degree. The bin width of 0.1.
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Fig. 12. Package reduction after debloating. At the top of each bar in (a) is the total number of packages in
the original containers. The numbers of intact packages are omitted because they are too small. At the top of
each bar in (b) is the total size of packages in the original containers.

that less than 1% of the size of libcudnn is used in these containers. The size of libcudnn is around

1.55GB, but only a shared library file of 155KB in size of the package is mostly used. The name of

the file is libcudnn.so.8.*, which is a shim layer between the application layer and the cuDNN code
according to the libcudnn documentation

9
. In the other containers, a larger fraction of the library is

used. For package users, the issue is a trade-off between functionality and package size. A more

modular design or a more dynamic method of packaging is needed to solve this issue.

Summary. Packages (APT, PIP, and Conda) are the main source of bloat in ML containers.

Packages with high bloat degree (𝑑𝑝 ≥ 0.9) contribute to at least 32% of bloat sizes in all

containers. Research is needed to modularize ML packages such that only the fraction of

the package needed is included in a container.

4.5 RQ5: Vulnerabilities and Bloat
In this section, we measure how bloat introduces vulnerabilities. We first analyze changes of

packages after debloating. As shown in Figure 12a, there are a lot of packages in the containers

that are entirely removed, i.e., completely unnecessary. For the remaining packages, only a subset

of files are needed. Very few packages remain intact after debloating. Removal of the unnecessary

packages and files reduces the size of the containers noticeably, as shown in Figure 12b. Table 6

shows the number of vulnerabilities, and their severity—with the vulnerabilities in the debloated

container between parentheses. Both Trivy and Grype reported similar numbers of CVEs in the

original containers. However, since Grype reported a slightly higher count of CVEs than Trivy, we

only show the results of Grype.

For all the containers, the total number of CVEs is reduced significantly after debloating. In

the best case (𝑐6 and 𝑐13), 99% of CVEs are removed after debloating, with the lowest percentage

being for 𝑐4 and 𝑐15 where 66% of the vulnerabilities are removed. We see that while bloat in-

creases vulnerabilities, a higher bloat degree does not necessarily translate to a higher number of

vulnerabilities found and removed. Take 𝑐13 as an example, which has a relatively low container

bloat degree (0.53), but a high CVE reduction (99%). This points to the need for a more intelligent

9
https://docs.nvidia.com/deeplearning/cudnn/api/index.html
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container ecosystem where containers are dynamically rebuilt and tested such that the containers

with known vulnerabilities are not available to be pulled from a registry.

Hence, we analyze the distribution of CVEs from different package types categorized according

to functionality. Figure 13a illustrates the distribution of CVEs from ML and Generic packages in

the original containers. It reveals that Generic packages are the main source of reported CVEs in

ML containers. Combining information from Figure 8a and Figure 13a, we found that although ML

packages are the main component of ML containers, very few CVEs are reported for ML packages.

This discrepancy between package sizes and the number of reported CVEs in ML packages is the

main reason that we do not see a correlation between the bloat size and the number of CVEs.

Additionally, it also raises the question if the lower number of reported CVEs in ML packages is

due to the fact that they are truly more secure, or if it is due to the possibility that ML packages

have not been scrutinized as thoroughly as Generic packages for security vulnerabilities.

Table 6. Number of CVEs at each severity level found in the original containers and debloated containers.
Numbers in the parenthesis represent the numbers of CVEs found in the debloated containers.

Container Critical High Medium Low Negligible Total Reduction 𝑑𝑐

𝑐1 13 (12) 159 (99) 976 (213) 394 (98) 70 (3) 1,612 (425) 74% 0.65

𝑐2 4 (3) 41 (10) 207 (7) 84 (0) 54 (0) 390 (20) 95% 0.80

𝑐3 66 (54) 233 (135) 1,077 (140) 391 (14) 69 (3) 1,836 (346) 81% 0.78

𝑐4 41 (27) 381 (231) 1,526 (427) 606 (210) 57 (2) 2,611 (897) 66% 0.76

𝑐5 1 (1) 27 (12) 440 (23) 164 (7) 61 (3) 693 (46) 93% 0.58

𝑐6 0 (0) 51 (0) 531 (1) 239 (7) 66 (0) 887 (8) 99% 0.73

𝑐7 13 (12) 159 (99) 976 (213) 394 (98) 70 (3) 1,612 (425) 74% 0.65

𝑐8 4 (4) 41 (27) 207 (34) 84 (6) 54 (1) 390 (72) 82% 0.79

𝑐9 36 (28) 309 (205) 1,337 (402) 374 (17) 56 (3) 2,112 (655) 69% 0.51

𝑐10 13 (12) 159 (99) 976 (213) 394 (98) 70 (3) 1,612 (425) 74% 0.39

𝑐11 4 (3) 41 (12) 207 (13) 84 (0) 54 (0) 390 (28) 93% 0.79

𝑐12 1 (1) 27 (11) 439 (14) 164 (5) 61 (2) 692 (33) 95% 0.57

𝑐13 0 (0) 51 (0) 531 (1) 239 (7) 66 (0) 887 (8) 99% 0.53

𝑐14 13 (12) 159 (99) 976 (213) 394 (98) 70 (3) 1,612 (425) 74% 0.36

𝑐15 41 (28) 381 (231) 1,547 (429) 615 (210) 57 (2) 2,641 (900) 66% 0.65

Figure 13b illustrates the relative size reduction 𝑅 of ML and Generic packages. 𝑅 is calculated by

the equation 𝑅 =
∑

𝑝∈𝑠 (𝑑𝑝 × size(𝐹𝑝 ))/
∑

𝑝∈𝑠 size(𝐹𝑝 ), where S ∈ {𝑀𝐿,𝐺𝑒𝑛𝑒𝑟𝑖𝑐}. 𝑀𝐿 is the set

of ML packages, and 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 is the set of Generic packages. It is evident from the figure that for

all the containers, Generic packages have a relatively high size reduction, leading to a significant

decrease in CVEs. This is because, as seen in Figure 13a, most CVEs are from Generic packages.

The considerable reduction in the size of Generic packages results in a significant reduction in

CVEs. This explains the low bloat degree but high CVE reduction of 𝑐13. As shown in Figure 13b,

more than 95% of the Generic packages in 𝑐13 are removed, while less than 60% of ML packages

are removed. Table 7 displays the top 10 removed packages in 𝑐13 sorted by the number of CVEs

reported. These packages are all Generic packages with small sizes but a large number of CVEs,

with the single package linux-libc-dev containing 462 reported CVEs. On the contrary, very few

CVEs are reported for the ML packages as shown in Table 8.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 6. Publication date: March 2024.



6:20 Huaifeng Zhang et al.

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

.22

.03

.33

.22

.26

.22

.22

.32

.78

1

.97

.67

1

1

.78

1

.74

.78

1

1

1

.78

.68

ML Generic

(a) Distribution of reported CVEs.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12c13c14c15
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
S

iz
e

R
ed

u
ct

io
n
R

ML Generic

(b) Size reduction of packages.

Fig. 13. Analysis of CVEs in the containers studied.

Table 7. Top 10 packages sorted by number of CVEs in 𝑐13.

Name Version Size(KB) Category #CVE

linux-libc-dev 4.15.0-118.119 4,895 Generic 462

libssl1.1 1.1.1-1ubuntu2.1 18.04.6 3,457 Generic 18

libldap-common 4.45+dfsg-1ubuntu1.6 25 Generic 16

binutils-common 2.30-21ubuntu1 18.04.4 6 Generic 10

perl-modules-5.26 5.26.1-6ubuntu0.3 18,152 Generic 5

tar 1.29b-2ubuntu0.1 480 Generic 4

libsepol1 2.7-1 690 Generic 4

gnupg-l10n 2.2.4-1ubuntu1.3 264 Generic 3

gpgconf 2.2.4-1ubuntu1.3 338 Generic 3

gnupg-utils 2.2.4-1ubuntu1.3 418 Generic 3

Table 8. Summary of CVEs in ML packages.

Name Version Critical High Medium Low Negligible

tensorflow 2.6.0+nv 2 59 153 4 0

torch 1.12.1 1 0 0 0 0

scipy 1.6.3 1 0 2 0 0

horovod 0.22.1 0 1 0 0 0

onnx 1.10.1 0 1 0 0 0

transformers 4.16.2 0 0 1 0 0

Summary. Debloating removed up to 99% of the known CVEs. Reducing the bloat also

reduces the attack surface. Generic packages are the major source of reported vulnerabilities.

Very few CVEs are reported for ML packages. Greater scrutiny is needed on ML packages

to identify their vulnerabilities.

4.6 RQ6: Impact of Package Dependency and Package Reach
To measure the impacts of package dependency and package reach on bloat and vulnerabilities, we

perform package dependency and reach analysis for PIP and APT packages based on the package
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attribute graphs we generated
10
. First, we generate a package attribute graph for each container.

Then for each package 𝑝 , we calculate the number of packages in PD(𝑝) (|𝑃𝐷 |) and the number of

packages in PR(𝑝) (|𝑃𝑅 |) for each package in the graphs. As previously discussed, PD(𝑝) measures

how many packages that 𝑝 depends on; PR(𝑝) measures how many packages depend on 𝑝 . For

example, if package 𝑝0 depends on package 𝑝1 and 𝑝2, and is depended on by package 𝑝3, 𝑝4 and 𝑝5,

then |𝑃𝐷 | of 𝑝0 is 2 and |𝑃𝑅 | of 𝑝0 is 3.
Figures 14a and 14b display the distributions of |𝑃𝐷 | and |𝑃𝑅 | for PIP and APT packages, re-

spectively. The Cumulative Distribution Function (CDF) reveals that the maximum |𝑃𝑅 | value for
PIP packages is lower than the maximum |𝑃𝐷 | value. However, for APT packages, the maximum

|𝑃𝐷 | value is much higher than the maximum |𝑃𝑅 | value. A high |𝑃𝐷 | represents a package that
relies on many other packages and hence may introduce bloat and increase the vulnerability in ML

systems due to the large number of dependencies. Conversely, a high |𝑃𝑅 | indicates that a package
is relied upon by many other packages. Debloating a package with a high |𝑃𝑅 | value can lead to

significant improvements in removing bloat and vulnerabilities in ML systems because it affects

many other packages. On the other hand, removing a package with a high |𝑃𝑅 | value seems riskier

than removing one with a low |𝑃𝑅 | value. The |𝑃𝐷 | and |𝑃𝑅 | values of APT packages are all higher

than those of PIP packages, which suggests that the dependency graph of APT packages is denser

and more complex.

To understand how a package’s depth 𝐷 affects |𝑃𝐷 | and |𝑃𝑅 |, the correlation between package

depth with |𝑃𝐷 | and |𝑃𝑅 | are calculated, respectively. As can be seen in Table 9, for PIP packages,

Cor(𝐷 ,|𝑃𝐷 |) is -0.57, which implies a negative correlation between package depth with |𝑃𝐷 |. It
denotes that the directly-accessed packages and the packages near them tend to depend on more

packages; while the packages far from the directly-accessed packages tend to depend on fewer

packages. However, there’s no such apparent pattern for other correlations.

Table 9. Correlation between packages’ depths with |𝑃𝐷 | and |𝑃𝑅 |

Package Type Cor(𝐷 ,|𝑃𝐷 |) Cor(𝐷 ,|𝑃𝑅 |)
PIP -0.57 -0.07

APT -0.04 -0.01

Based on the 𝑃𝐷 derived from package attribute graphs, we analyze the following attributes:

package bloat degree and number of vulnerabilities. For 𝑃𝐷 of each package, we calculate the

average bloat degree and the total number of vulnerabilities of packages within 𝑃𝐷 . For example,

given a package 𝑝0, 𝑃𝐷 (𝑝0) = {𝑝1, 𝑝2}, which means 𝑝0 depends on 𝑝1 and 𝑝2. Assume 𝑝1’s package

bloat degree is 0.4 and it has 2 vulnerabilities, while 𝑝2’s package bloat degree is 0.6 and it has

4 vulnerabilities. Then the average package bloat degree of 𝑃𝐷 (𝑝0) is 0.5 ( 0.4+0.6
2

); and the total

number of vulnerabilities of 𝑃𝐷 (𝑝0) is 6 (2+4). The distributions of average bloat degrees for the
PIP and APT packages are displayed in Figure 15. The results reveal that, on average, APT packages

have a higher dependence on packages with a higher bloat degree compared to PIP packages, as

indicated by the majority of the APT package CDF curve lying below the PIP package CDF curve.

Figures 16a and 16b show the CDF of total number of vulnerabilities. APT packages also have more

vulnerabilities compared with PIP packages.

10
The attribute graph analysis is not conducted on Conda packages because we found that all the Conda packages have a

bloat degree of 1, which means they are not used.
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Fig. 14. Cumulative distribution function of |𝑃𝐷 | and |𝑃𝑅 | for PIP
and APT packages.
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Fig. 16. Cumulative distribution function of the number of vulnerabilities.

Summary. APT packages have higher package dependency and package reach than PIP

packages, resulting in a significant source of bloat and vulnerability. In addition, APT

packages are reported with more known vulnerabilities. Since APT is used by many other

container types, this suggests that more research is needed to understand how our results

extend to other containers.

5 DISCUSSION
Our results quantify how prevalent bloat is in ML deployments. Bloat not only wastes resources like

storage space and network bandwidth to pull the containers and energy used to store and transfer

the containers, but also increases the overall security risks to ML deployments. In addition, for

container registries and hosting, bloat wastes expensive bandwidth, and increases the provisioning

latency, while serving no real purpose in terms of ML runtime performance. We note that while

this can be said about many other types of software, ML suffers from increased technical debt

due to the way these systems are evolving compared to other applications. As noted by Sculley et

al. [55], ML deployments have only a small fraction of their code performing the actual task. While

companies spend numerous resources in time and effort optimizing ML algorithms, we believe that

bloat is mostly being overlooked. Increasingly relying on pre-packaged containers, sharing them

across organizations and use cases, and oversimplifying the entire deployment process, leads to

increased vulnerabilities and resource wastage. Our work is a plea for leaner and more modular

ML systems and deployments similar to the call by Wirth over 25 years ago [69].

ML packages are a major source of bloat in ML containers. However, some of the ML packages,

such as GPU-related packages, are not open-source. Debloating tools that do not require source

code as input are needed for these ML packages. Furthermore, ML packages include many large

shared library files, meaning that even if only a small part of the libraries is used, the entire file

needs to be retained. This makes existing container debloating tools less effective in debloating

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 6. Publication date: March 2024.



Machine Learning Systems are Bloated and Vulnerable 6:23

ML containers. To address the issue of bloat in ML containers, a more intelligent packaging and

container ecosystem that prevents pulling bloated containers including known vulnerabilities is

needed.

Threats to Validity. Empirical studies inherently face validity threats. We have tried to mitigate

these via our experimental design. While we have only studied four Docker base images, these

were tested using various workloads (training, tuning, serving), and two ML frameworks (PyTorch

and TensorFlow). The chosen ML models also span diverse fields such as NLP, Image Classification,

and Image Segmentation. Ultimately, we tested 15 containers. In addition, to reduce the error due

to the variability when measuring the provisioning time, we repeated all experiments ten times

and compared the median values. We used Grype and Trivy for vulnerability analysis, which are

two widely used container scanning tools. However, these tools depend on file management that

could be eliminated during the debloating process. As a result, we implemented components in

our framework to detect vulnerabilities in the debloated containers by locating the specific files

linked to each CVE in the vulnerability report and verifying if these files are deleted, suggesting

the removal of the CVE.

6 RELATEDWORK
Bloat can be studied on three levels, which are source code bloat, binary bloat, and container bloat.

Source code bloat occurs during the development process and is often caused by the inclusion

of unused features or outdated configurations. To address this issue, several tools have been

proposed to remove bloat from source code directly, i.e., not when the code is deployed. These tools

are usually tailored to specific programming languages such as C/C++ [11, 31], JavaScript [71]

and PHP [6]. These tools typically result in source-code size reduction [6, 11, 31], a reduction in

CVEs [6, 11, 31, 71] and reduction in binary sizes [11].

Binary bloat studies the presence of unused code and dependencies in a binary, i.e., after the

source code is compiled. Several binary debloating tools have been developed. These tools work on

software binaries, for example, Linux shared libraries or executables [2, 3, 18, 50, 51, 62], Java jar

packages [13, 23, 48, 59], and Android APK packages [34, 62]. These tools typically measure their

efficacy by studying the source of bloated dependencies [58, 60], code size reduction [2, 13, 51, 59, 62],

binary size reduction [3, 18, 34, 48, 59, 62], and CVE reduction [3, 18, 50, 51]. Moreover, Tang et

al. [62] have shown that removing binary bloat can lead to improvements in runtime performance,

as well as lower memory and power usage.

Container bloat is the focus of our work. Container bloat is a phenomenon where unnecessary

code, files, and packages are included in containers, mostly due to the way that containers are built

today. To address this issue, several container debloating tools have been developed to remove

unused files and generate a slimmer container [24, 53, 65]. These tools have been applied to web

servers, databases, and web applications. However, their applicability to ML containers has never

been studied before, nor has the bloat characteristics of ML containers been investigated. To

bridge these gaps, our work performs container bloat analysis on ML containers. We design and

implement a framework to conduct an extensive analysis of container bloat in ML containers,

including quantifying container bloat, identifying the sources of the bloat, and assessing the effects

on container security and performance.

7 CONCLUSION
We conducted a quantified measurement study of bloat in machine learning containers using MMLB,

a framework we developed. The framework uses container-level analysis, package-level analysis,

vulnerability analysis, and package dependency analysis to quantify the amount, the source, the

performance overhead, and the vulnerabilities of bloat in ML containers. We measured 15 ML
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containers and found that bloat affects a large number of ML containers, with up to 80% of some

containers consisting of bloat. APT packages are a significant source of bloat and vulnerabilities

due to package dependencies. Additionally, ML packages are a main source of container bloat. Bloat

increases provisioning time by up to 370% and increases vulnerabilities by up to 99%. However, very

few CVEs are reported for these ML packages. Greater scrutiny of ML code for vulnerabilities is

needed. We hope that this work will inspire further research on the quantification of technical debt

in machine learning systems, the development of more modular ML systems and a more intelligent

container ecosystem.
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A APPENDIX
A.1 Package Attribute Graph
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Fig. 17. An example package attribute graph. Each node in the graph is a package. The four lines of text
in a node are the package name, depth, package bloat degree and number of known vulnerabilities of this
package.

A.2 Summary of Large Files in Debloated ML Containers
Tabled 10 is discussed in §4.1. It lists the large files found in debloated ML containers. All the files

are from ML packages.

Table 10. Summary of the large files in debloated ML containers.

File Name Package Name Package Manager Package Functionality Size(MB)

libtorch_cuda.so Torch PIP ML 1,253

libcudnn_cnn_infer.so libcudnn APT ML 1,133

_pywrap_tensorflow_internal.so TensorFlow PIP ML 1,038

libdali_kernels.so nvidia-dali-cuda APT ML 700

libcusolver.so libcusolver APT ML 565

libtorch_cpu.so Torch PIP ML 469

libdali_operators.so nvidia-dali-cuda APT ML 428

libcudnn_ops_infer.so libcudnn APT ML 417

libcufft.so libcufft APT ML 353

libcublasLt.so libcublas APT ML 314

A.3 Analysis of Package Bloat
The following tables are discussed in §4.3: Tables 11, 12 and 13.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 6. Publication date: March 2024.



Machine Learning Systems are Bloated and Vulnerable 6:29

Table 11. Top 30 packages sorted by bloat size.

Package Name Package Manager Avg. Bloat Size(MB) Avg. Bloat Degree Functionality

pytorch Conda 2,570.50 1.00 ML

cudatoolkit Conda 1,568.82 1.00 ML

nvidia-dali-cuda110 PIP 1,012.79 0.75 ML

mkl Conda 820.39 1.00 ML

libcudnn8 APT 761.92 0.61 ML

libcudnn8-dev APT 656.03 0.99 ML

libnvinfer8 APT 388.89 1.00 ML

libnvinfer7 APT 360.26 0.75 ML

libcublas-dev-11-0 APT 341.44 1.00 ML

libcufft-dev-11-0 APT 326.84 1.00 ML

libcusolver-11-0 APT 320.08 0.38 ML

cuda-cusolver-10-2 APT 305.97 1.00 ML

magma-cuda110 Conda 237.68 1.00 ML

libcusolver-11-4 APT 233.57 0.52 ML

nsight-compute-2021.3.0 APT 214.81 1.00 ML

cupy-cuda114 PIP 202.19 1.00 ML

libnpp-11-5 APT 193.96 1.00 ML

libcusolver-11-2 APT 187.30 0.25 ML

libnpp-11-4 APT 184.32 1.00 ML

libcusolver-dev-11-0 APT 172.51 1.00 ML

torch PIP 170.74 0.10 ML

cuda-nvgraph-10-2 APT 166.31 1.00 ML

libcusparse-dev-11-0 APT 163.62 1.00 ML

libnpp-11-2 APT 160.68 1.00 ML

libnpp-dev-11-0 APT 158.76 1.00 ML

nsight-compute-2021.2.2 APT 158.24 1.00 ML

cuda-cufft-10-2 APT 150.16 1.00 ML

cuda-npp-10-2 APT 142.92 1.00 ML

nsight-compute-2020.3.0 APT 141.49 1.00 ML

libnpp-11-0 APT 140.40 1.00 ML
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Table 12. Top 5 unnecessary ML packages.

Package Name Package Manager Frequency Avg. Size(MB)

tensorboard-plugin-wit PIP 8 3.28

torchtext PIP 6 19.53

cuda-nvdisasm-11-0 APT 6 27.57

cuda-gdb-11-0 APT 6 14.92

cuda-sanitizer-11-0 APT 6 29.35

cuda-memcheck-11-0 APT 6 0.41

cuda-cuobjdump-11-0 APT 6 0.27

tensorflow-metadata PIP 5 0.58

scikit-learn PIP 5 69.84

sentencepiece PIP 5 2.80

torchvision PIP 5 47.90

tf-slim PIP 5 3.37

tensorflow-datasets PIP 5 14.96

tensorrt PIP 4 2.53

libcudnn8-dev APT 4 656.03

nvidia-dali-cuda110 PIP 3 1,303.69

cudatoolkit Conda 3 1,568.82

Table 13. Top 1 unnecessary Generic packages. .

Package Name Package Manager Frequency Avg. Size(MB)

gpgv APT 15 0.45

sensible-utils APT 15 0.02

libaudit-common APT 15 0.00

libdb5.3 APT 15 1.72

bsdutils APT 15 0.19

libsemanage1 APT 15 0.26

libsemanage-common APT 15 0.01

base-passwd APT 15 0.04

linux-libc-dev APT 15 5.05

Table 11 lists the top 30 packages sorted by bloat size over the 15 containers, with sizes ranging

from 140.40MB to 2,570.50MB. A package may appear in multiple containers. The average bloat

size and the average bloat degree of each package are shown in the Avg. Bloat Size(MB) and Avg.

Bloat Degree columns, respectively. Many of the packages have average bloat degrees of 1, which

means these packages are unnecessary. All these packages are ML packages.

Table 12 lists the top 5 unnecessary ML packages. Unnecessary packages are packages with a

package bloat degree of 1. The Frequency column shows the number of occurrences of each package

as an unnecessary package in the 15 containers. The packages with the highest 5 frequencies are

listed in the table.

Table 13 lists the top 1 unnecessary Generic packages. The Frequency column shows the number

of occurrences of each package as an unnecessary package in the 15 containers. The packages with

the highest frequency are listed in the table. Note that not all packages are displayed.
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