
Joint optimization of steel plate shuffling and truck loading sequencing
based on deep reinforcement learning

Downloaded from: https://research.chalmers.se, 2024-05-18 15:29 UTC

Citation for the original published paper (version of record):
Yuan, M. (2024). Joint optimization of steel plate shuffling and truck loading sequencing based on
deep
reinforcement learning. Advanced Engineering Informatics, 60: 102392-.
http://dx.doi.org/10.1016/j.aei.2024.102392

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Advanced Engineering Informatics 60 (2024) 102392

A
1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Joint optimization of steel plate shuffling and truck loading sequencing based
on deep reinforcement learning
Zhezhuang Xu a, Jinlong Wang a, Meng Yuan a,∗, Yazhou Yuan b, Boyu Chen c, Qingdong Zhang c,
Cailian Chen d, Xinping Guan d

a College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350108, Fujian, China
b School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China
c Sansteel Minguang Co., Ltd., Sanming, 365000, Fujian, China
d Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China

A R T I C L E I N F O

Keywords:
Steel plate shuffling
Truck loading sequencing
Optimization
Deep reinforcement learning
Industrial Internet of Things

A B S T R A C T

Steel plate is one of the most valuable steel products which is highly customized in specification according
to the demands of users. In this case, the outbound scheduling of steel plates is a challenging issue since
its efficiency and complexity are impacted by both steel plate shuffling and truck loading sequencing. To
overcome this challenge, we propose to jointly optimize steel plate shuffling and truck loading sequencing
(SPS-TLS) by utilizing the data of steel plates and trucks collected by Industrial Internet of Things (IIoT).
The SPS-TLS problem is firstly transformed as an orders scheduling problem which is formulated as a mixed-
integer linear programming (MILP) model. Then an alternating iteration algorithm based on deep reinforcement
learning (AltDRL) is proposed to solve the SPS-TLS problem. In AltDRL, the deep Q network (DQN) with
prioritized experience replay (PER) and the heuristic algorithm are combined to iteratively obtain the near-
optimal shuffling position of blocking plates and truck sequence. Experiments are executed based on data
collected from a real steel logistics park. The results confirm that AltDRL can significantly reduce the number
of plate shuffles and improve the outbound scheduling efficiency of steel plates.
1. Introduction

Steel plate is one of the most valuable steel products which is highly
customized in specification according to the demands of users [1,2]. In
this case, each target steel plate has to be precisely retrieved during
outbound scheduling. Traditionally, the retrieval of target steel plates
is manually scheduled, which is inefficient since it is too complex to be
efficiently scheduled by humans. Therefore, it is important to develop
an automatic algorithm to improve the outbound scheduling efficiency
of steel plates.

Initially, all steel plates are distributed across multiple stacks and
need to be retrieved within several days. Each steel plate is assigned an
identifier representing its outbound date. During the retrieval process,
if the plate to be retrieved next is not located at the top of a stack,
all blocking plates above it must be shuffled to other stacks [3]. To
achieve high scheduling efficiency, determining the proper destination
stacks for blocking plates is essential. Otherwise, more shuffles will be
generated directly or indirectly afterward [4]. Such shuffling operations
significantly impact the efficiency of steel plate retrieval, consequently
reducing the throughput of the storage yard. For this reason, some

∗ Corresponding author.
E-mail address: meng.yuan@fzu.edu.cn (M. Yuan).

strategies have been developed to improve the retrieval efficiency of
target steel plates [5–7]. The primary goal of these efforts is to complete
the retrieval tasks with the least shuffling cost, given the specified
retrieval sequence.

However, few existing studies have taken into account the impact of
the truck loading sequence on the retrieval efficiency of steel plates. In
fact, the truck loading sequence determines the retrieval order of target
steel plates in stacks. Redundant shuffling will increase if the plate re-
trieved earlier is stored beneath the plate retrieved later. Such shuffles
cause delays to the entire outbound scheduling process. Therefore, the
truck loading sequence must be considered in the retrieval process of
steel plates. Fig. 1 shows the scheduling of steel plate shuffling and
truck loading sequencing in the retrieval process of steel plates.

To cope with these problems, in this paper, we propose to jointly
optimize the steel plate shuffling and truck loading sequencing (SPS-
TLS) based on the data of plates and trucks collected by Industrial
Internet of Things (IIoT) [8,9]. The SPS-TLS problem is first trans-
formed into an order scheduling problem with the goal of minimizing
the number of plate shuffles during outbound scheduling for the day
vailable online 1 February 2024
474-0346/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aei.2024.102392
Received 8 September 2023; Received in revised form 25 December 2023; Accepte
d 26 January 2024

https://www.elsevier.com/locate/aei
https://www.elsevier.com/locate/aei
mailto:meng.yuan@fzu.edu.cn
https://doi.org/10.1016/j.aei.2024.102392
https://doi.org/10.1016/j.aei.2024.102392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2024.102392&domain=pdf

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
Fig. 1. Scheduling of steel plate shuffling and truck loading sequencing in the retrieval process of steel plates.
and the minimum number of plate shuffles during the forthcoming
outbound process, where the second objective is defined by the number
of blocking plates after retrieving all outbound orders of the day [10].
Then, an alternating iteration algorithm based on deep reinforcement
learning (AltDRL) is designed to solve the SPS-TLS problem. In AltDRL,
the deep Q network (DQN) with prioritized experience replay and a
heuristic algorithm are combined to iteratively obtain the near-optimal
shuffling position of blocking plates and truck sequence.

Specifically, this paper has the following contributions:

1. The steel plate retrieval problem is proposed by jointly opti-
mizing the steel plate shuffling and truck loading sequencing
(SPS-TLS) to minimize both the number of plate shuffles during
the outbound scheduling for the day and the minimum number
of plate shuffles during the forthcoming outbound process. By
solving the problem, the optimal shuffling positions of blocking
plates and truck sequence can be obtained.

2. The AltDRL algorithm is developed to iteratively solve the SPS-
TLS problem, where the retrieval sequence of steel plates is
determined by the heuristic algorithm, and the shuffling po-
sitions of blocking plates are determined by the DQN with
prioritized experience replay (DQN-PER). Two types of features
are extracted in AltDRL algorithm to describe the evolution of
the state, and four heuristic rules are designed to act as the
action space of the DQN agent.

3. Experiments are conducted to verify the effectiveness of the pro-
posed scheme, utilizing data collected from a real steel logistics
park. Based on the numerical experiments, the proposed method
exhibits better convergence property compared to other bench-
marking algorithms in scheduling. Furthermore, the joint opti-
mization of steel plate shuffling and truck loading sequencing
significantly reduces the number of plate shuffles and improves
the retrieval efficiency of steel plates when compared to the
optimization of only plate shuffling under fixed truck loading
sequencing.

The rest of this paper is organized as follows. Section 2 provides an
introduction about related works. Section 3 introduces the scheduling
platform and utilizes the data collected by the IIoT to formulate the
optimization problem of SPS-TLS. Section 4 presents the background
of DQN and PER. The implementation details of the proposed AltDRL
algorithm are shown in Section 5. Section 6 discusses the experimental
results, and the conclusion is given in Section 7.

2. Related works

Issues related to item retrieval are widespread in steel plate yards
and container terminals. Within these areas, items are piled up on
2

the stacks to enhance space utilization. If the item to be retrieved is
not positioned at the top of the stack, the shuffling process must be
initiated [11,12]. Therefore, the retrieval problem becomes one of the
most critical factors affecting the efficiency of yard operations.

2.1. Steel plate retrieval problem

Some research efforts have already considered the retrieval problem
of steel plates. Tang et al. [5] studied the retrieval problem of steel
plates, with the aim of selecting suitable plates in the storage yard
under a given rolling plan to minimize the total shuffling cost. In [7],
Tang et al. formulated the steel plate retrieval problem as a slab stack
shuffling (SSS) problem and developed a modified genetic algorithm
(GA) to solve it. In [13], Tang and Ren developed the dynamic program-
ming approach and segmented dynamic programming-based heuristic
to respectively solve small-scale and real-scale SSS problems. In [14],
Shi and Liu developed a very large-scale neighborhood (VLSN) search
algorithm to iteratively solve the steel hot rolling scheduling problem
considering SSS. Rajabi et al. [15] considered two different variants
of the SSS problem and proposed a new integer programming (IP)
model for each variant. Wu et al. [3] introduced a stack-based retrieval
method to minimize the unproductive relocation number according to
a specific retrieval stack sequence. For other steel plate retrieval prob-
lems, Zhao and Tang [6] presented the heavy plate shuffling problem
aiming at minimizing the total shuffling number and the total crane
traveling distance. Zhao et al. [16] studied a multiple double-load crane
scheduling problem. A two-phase model-based heuristic was developed
to minimize the makespan in their work. Bruno et al. [17] proposed
a bi-objective mathematical model aiming to minimize the number of
shuffles and expired slabs simultaneously in a generic cutting/assembly
center.

2.2. Container retrieval problem

Other studies on shuffling reduction have focused on container
retrieval problem [18–22]. Petering and Hussein [19] introduced a
new mathematical formulation of the block relocation problem with
fewer decision variables, and developed a new look-ahead algorithm
for addressing the problem. In [20], Tanaka and Mizuno proposed
an exact algorithm to solve the unrestricted block relocation problem
with distinct priorities. In [21], Zhu et al. developed an iterative
deepening A* algorithms for larger instances of the container relo-
cation problem. Zhang et al. [22] proposed machine learning-driven
algorithms by integrating optimization methods and machine learning
techniques, to solve the container relocation problem. Boysen and
Emde [23] proposed a parallel stack loading problem (PSLP) aiming

to reduce shuffling during the outbound process by minimizing the

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
number of blocking items in the container storage phase. Furthermore,
Boge and Knust [10] proposed a simulated annealing (SA) algorithm
to address the same parallel stack loading problem. However, these
studies are based on the premise that the truck loading sequence is
known, i.e., each container has a unique priority.

Literature [24–27] investigated container retrieval problems in sce-
narios where the retrieval sequence is partially known. In [24], Azab
and Morita introduced the block relocation problem with appointment
scheduling, in which the truck loading sequence is partially adjustable.
A similar problem was studied in [25], and 5 heuristic algorithms
were proposed to solve the problem. Galle et al. [26] investigated
the stochastic container relocation problem, and developed an optimal
algorithm called Pruning-Best-First-Search (PBFS) to solve small-scale
instances. Zweers et al. [27] proposed a new optimization model where
the containers can be moved in both pre-processing phase and relo-
cation phase. A branch-and-bound (B&B) algorithm was developed to
address the problem.

2.3. Difference with existing works

Table 1 summarizes the main attributes of the retrieval problems in
the literature. The research in this paper differs from the existing works
in three aspects. Firstly, in this study, the steel plate shuffling and truck
loading sequencing are jointly optimized. This is crucial because the
outbound efficiency of steel plates is significantly influenced by both
factors. Secondly, we simultaneously minimize the number of plate
shuffles during the outbound scheduling for the day and the minimum
number of plate shuffles during the forthcoming outbound process in
the SPS-TLS problem, which has not been previously investigated. How-
ever, it is necessary because the remaining steel plates will be retrieved
in the coming days, and the efficiency of retrieval in forthcoming
outbound scheduling cannot be ignored [10,23]. Thirdly, the AltDRL
algorithm is designed based on deep reinforcement learning (DRL) to
solve the SPS-TLS problem iteratively.

Note that a large number of outbound orders are retrieved each
day, and the number of combinations for truck loading sequences is
factorial. This complexity renders the search space of exact algorithms
extremely large, even leading to their ineffectiveness. Heuristic algo-
rithms appear to be capable of providing scheduling results in a very
short time. However, the design of an effective heuristic significantly
relies on experts’ experience. Faced with complex scheduling scenarios,
relying solely on heuristic algorithms makes it challenging to ensure
the quality of the solution. In contrast, the DRL excels in handling
scheduling problems with complex environments and a large number of
states [28]. It interacts with the environment in the offline phase, learns
the best action at each decision point, and can obtain high-quality
solutions without exploring the entire search space. For the SPS-TLS
problem, when the plates to be retrieved at each scheduling point is
determined, DRL utilizes global information to select the best target
stack for the blocking plates, thereby ensuring a globally near-optimal
solution. Therefore, the AltDRL algorithm is proposed in this paper
based on DRL. The details of our works are provided in the following
sections.

3. Problem description and model formulation

This section introduces the platform for steel plates retrieval
scheduling. Then, the joint optimization problem of steel plate shuffling
and truck loading sequencing (SPS-TLS) is investigated. Specifically,
we formulate an integer programming model that aims to minimize
both the number of plate shuffles during the daily outbound scheduling
and the minimum number of plate shuffles during the forthcoming
outbound process, considering the available data of plates and trucks.
By solving the SPS-TLS problem, the optimal truck sequence and
3

shuffling positions of blocking plates can be obtained.
3.1. Problem description

The plate yard is a crucial hub for the steel company to trade
products with customers, which consists of multiple regular stacks for
storing finished steel plates. Due to the large variety and quantity of
steel plates and the limited number of stacks, plates of similar size are
usually stacked on top of another at each stack. Meanwhile, in order
to ensure retrieval efficiency and reduce truck waiting time during the
outbound scheduling of steel plates, plates belonging to the same order
are often placed together. Based on this real stacking distribution, in
this paper, we treat an order as a scheduling unit, which means that if
an order is moved, all the steel plates of the order must be moved to
the same position.

It is important to note that the time for different trucks to arrive at
the yard is uncertain in the real scheduling scenarios, and as mentioned
before, this may cause a surge in shuffling. For example, in Fig. 1,
if both orders 2 and 3 are the outbound orders, and the retrieval
sequencing of order 2 precedes that of order 3, then orders 3 and 4
must be shuffled. On the other hand, if the position after the shuffling
is not reasonable, these blocking orders will inevitably cause further
reshuffling in the future. Repeated shuffling can greatly lower the
scheduling efficiency and generate a huge waste of energy for the crane
responsible for plate lifting.

For the above situation, in this paper, rather than passively waiting
for the real-time arrival of trucks for solving the plate shuffling prob-
lem, we proactively provide the most suitable loading time windows for
different trucks and positions for blocking orders in advance based on
known truck loading information and plate distribution so as to avoid
unnecessary truck waiting and plate shuffling.

3.2. Platform for steel plates retrieval scheduling

The cloud platform plays a crucial role in offering comprehen-
sive solutions and services to companies and customers by effectively
integrating resources in the industrial manufacturing domain [29].
This integration forms the basis for jointly optimizing the steel plate
shuffling and truck loading sequencing. As shown in Fig. 1, the data of
plates and trucks is first uploaded to the platform in advance through
the IIoT. Leveraging the data, a joint scheduling strategy is devised to
allocate loading time windows for different trucks and optimize the
storage positions for blocking plates, which constitutes a key aspect
of our work. Subsequently, the cloud platform deploys the optimized
strategy to the steel plate yard. The outcome of this joint scheduling
approach generates a task list for the cranes to efficiently move the
steel plates within the yard, while minimizing energy consumption.
Consequently, the joint optimization of plate shuffling and truck load-
ing sequencing is vital in reducing waiting time for customers and
operation cost for the cranes.

3.3. General assumptions

Before formulating the mathematical model, two general assump-
tions related to the SPS-TLS problem are made as follows.

(1) Blocking orders can be shuffled into any of the considered stacks.
This is because all the stacks in the yard can be divided into different
sets according to the specifications of the plates, and different sets
are independent of each other. Our work is only for one set, but the
methodology is applicable to other stack sets as well.

(2) Orders are shuffled if and only if any outbound order below
them is to be retrieved. Adopting the assumption, the movement of non-
blocking orders can be avoided, thereby decreasing the search range of
the solution space. On the other hand, shuffling the non-blocking orders
belongs to a pre-marshalling scope, which is beyond the intent of our
work.

(3) The crane handles one steel plate at a time. In practical opera-
tions, magnetic overhead cranes are primarily used for handling steel
plates, and the crane typically lifts only one steel plate at a time for
safety.

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.



(

s
o
s

s

b
t

i

Table 1
Main attributes for the retrieval problems in the literature.
Reference Retrieve sequence Retrieval in forthcoming

outbound scheduling
Method

Known Partially known Unknown

Tang et al. [5] ✓ heuristic
Tang et al. [7] ✓ GA
Shi and Liu [14] ✓ VLSN
Rajabi et al. [15] ✓ IP
Petering and Hussein [19] ✓ LA-N
Boysen and Emde [23] ✓ ✓ IP
Boge and Knust [10] ✓ ✓ SA
Azab and Morita [24] ✓ IP
Galle et al. [26] ✓ PBFS
Zweers et al. [27] ✓ B&B
This paper ✓ ✓ AltDRL
𝑧

𝜑

3.4. Notations definition for optimization model

To formulate the model, we extract five main attributes for each
order, namely order number, stack number, slot number, number of
plates and outbound date, respectively, as shown in Fig. 1. Orders are
encoded as integers in this paper, and the slots where orders are stored
are numbered incrementally from bottom to top in each stack. Some
parameters and variables are defined as follows.

(1) Parameters:
 ∶ Set of all orders for steel plates stacked in the yard, where

= {1,… ||}, || is the total number of orders.
1 ∶ Set of orders for outbound steel plates (outbound orders),

where 1 ⊆ .
2 ∶ Set of orders for steel plates that are not in the outbound plan

non-outbound orders), where 2 ⊆ .
 ∶ Set of stages, where  = {1,… , 𝑇 }, 𝑇= |

|

1||+1. For the first |
|

1||
tages, denoted as  ∖ {𝑇 }, each stage is utilized to retrieve an outbound
rder, while the last stage, 𝑇 , is employed to track the final stacking
tate.

 ∶ Set of stacks, where  = {1,… , 𝑆}, 𝑆 is the total number of
tacks.

 ∶ Set of slots in each stack with the index increasing from the
ottom to the top, where  = {1,… , 𝐾}, 𝐾 is the maximum height of
he stack.

 ∶ Set of intervals, where  = {1,… 𝜎}. One stage consists of 𝜎
ntervals.

𝑖, 𝑗 ∶ Index of the order, 𝑖, 𝑗 ∈ .
𝑘, 𝑙 ∶ Index of the slot in each stack, 𝑘, 𝑙 ∈ .
𝓁 ∶ Index of the stack, 𝓁 ∈ .
𝑡 ∶ Index of the stage, 𝑡 ∈  .
𝜏 ∶ Index of the interval, 𝜏 ∈  .
𝑚𝑖 ∶ Number of plates for order 𝑖.
𝑑𝑖 ∶ Outbound date for order 𝑖, coded as an integer.
𝑦̃𝑖𝓁𝑘 ∶ 1, if order 𝑖 occupies slot 𝑘 of stack 𝓁 in the initial stack

layout; 0, otherwise.
𝑑𝑚𝑎𝑥 ∶ Maximum outbound date for all orders in the yard.

(2) Decision Variables:
𝑥𝑡𝑖𝜏 1, if order 𝑖 is retrieved at interval 𝜏 of stage 𝑡; 0, otherwise.
𝑦𝑡𝑖𝓁𝑘𝜏 1, if order 𝑖 occupies the slot 𝑘 of stack 𝓁 at interval 𝜏 of stage

𝑡; 0, otherwise.
𝑧𝑡𝑖𝓁𝑘𝜏 1, if order 𝑖 is moved from the slot 𝑘 of stack 𝓁 at interval 𝜏

of stage 𝑡; 0, otherwise.
𝑢𝑡𝑖𝓁𝑘𝜏 1, if order 𝑖 is moved to the slot 𝑘 of stack 𝓁 at interval 𝜏 of

stage 𝑡; 0, otherwise.
𝑤𝓁𝑘𝑙 1, if slots 𝑘 and 𝑙 of stack 𝓁 are occupied by orders and the

outbound date of the order in slot 𝑘 is later than that of the order in
slot 𝑙; 0, otherwise.

𝜗𝓁𝑘 1, if the order in slot 𝑘 of stack 𝓁 has to be shuffled during the
process of future order retrieval; 0, otherwise.

𝑜𝑖𝓁𝑘 1, if the order 𝑖 occupying slot 𝑘 of the stack 𝓁 is a blocking
order; 0, otherwise.
4

3.5. Mathematical model for SPS-TLS problem

The objective of the model considered in this paper contains two
functions, as shown in expression (1).

𝐏𝟏 ∶ min 𝑓1 + 𝑓2 (1)

where

𝑓1 =
∑

𝑡∈ ∖{𝑇 }

∑

𝑖∈

∑

𝓁∈

∑

𝑘∈

∑

𝜏∈
𝑚𝑖𝑢

𝑡
𝑖𝓁𝑘𝜏 (2)

𝑓2 =
∑

𝑖∈

∑

𝓁∈

∑

𝑘∈
𝑚𝑖𝑜𝑖𝓁𝑘 (3)

The first function 𝑓1 represents the number of plate shuffles during the
orders outbound process, and the second function 𝑓2 represents the
total number of blocking plates after all outbound orders have been
retrieved. The shuffles in 𝑓1 will directly impact the outbound plates
scheduling efficiency and the queue waiting time of trucks. Minimizing
𝑓1 will effectively avoid yard congestion, thereby improving customer
satisfaction. For the function 𝑓2, literature [10,23] have shown that
minimizing the total number of blocking items can fully improve the
efficiency of outbound scheduling. These blocking items will be shuf-
fled at least once, thus in this paper, we call 𝑓2 the minimum number
of plate shuffles during the forthcoming outbound process.

For the model constraints, we describe them in parts according to
different functions.

(1) Order handling constraints:
∑

𝑡∈ ∖{𝑇 }

∑

𝜏∈
𝑥𝑡𝑖𝜏 = 1,∀𝑖 ∈ 1 (4)

∑

𝑖∈1

∑

𝜏∈
𝑥𝑡𝑖𝜏 = 1,∀𝑡 ∈  ∖ {𝑇 } (5)

∑

𝑡∈ ∖{𝑇 }

∑

𝜏∈
𝑥𝑡𝑖𝜏 ≤ 0,∀𝑖 ∈ 2 (6)

∑

𝑖∈1

𝑥𝑡𝑖𝜏+
∑

𝑖∈

∑

𝓁∈

∑

𝑘∈
𝑢𝑡𝑖𝓁𝑘𝜏 ≤1,∀𝑡 ∈  ∖ {𝑇 } ,∀𝜏 ∈  (7)

∑

𝑘∈
𝑧𝑡𝑖𝓁𝑘𝜏 +

∑

𝑘∈
𝑢𝑡𝑖𝓁𝑘𝜏 ≤ 1,∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝜏 ∈  (8)

∑

𝓁∈

∑

𝑘∈
𝑧𝑡𝑖𝓁𝑘𝜏 = 𝑥𝑡𝑖𝜏 +

∑

𝓁∈

∑

𝑘∈
𝑢𝑡𝑖𝓁𝑘𝜏 ,∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝜏 ∈  (9)

𝑡
𝑖𝓁𝑘𝜏 ≤ 𝑦𝑡𝑖𝓁𝑘𝜏 ,∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ,∀𝜏 ∈  (10)
∑

𝑖∈
𝑧𝑡𝑖𝓁𝑘𝜏 ≤

∑

𝑖∈

(

𝑦𝑡𝑖𝓁𝑘𝜏 − 𝑦𝑡𝑖𝓁,𝑘+1,𝜏
)

,∀𝑡 ∈  ∖ {𝑇 } ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {} ,∀𝜏 ∈ 

(11)
𝑡
𝜏1

≥ 𝜑𝑡
𝜏2
− 𝑆

(

2 − 𝜃𝑡𝜏1 − 𝜃𝑡𝜏2

)

,∀𝑡 ∈  ∖ {𝑇 } ,∀𝜏1 ∈  ,∀𝜏2 ∈  (12)

𝜑𝑡
𝜏1

≤ 𝜑𝑡
𝜏2
+ 𝑆

(

2 − 𝜃𝑡𝜏1 − 𝜃𝑡𝜏2

)

,∀𝑡 ∈  ∖ {𝑇 } ,∀𝜏1 ∈  ,∀𝜏2 ∈  (13)

𝜃𝑡𝜏1 ≤ 1 −
∑

𝑖∈1

𝑥𝑡𝑖𝜏 ,∀𝑡 ∈  ∖ {𝑇 } ,∀𝜏 ∈ ∖ {𝜎} , 𝜏1 = {𝜏 + 1,… 𝜎} (14)

Constraints (4)–(14) describe the critical properties of the retrieval
and shuffle within each stage. Meanwhile, correlating each operation

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
with the divided interval enhances the readability of the model and
facilitates the tracking of solutions. In this group of constraints, con-
straints (4) and (5) respectively state that outbound orders must be
retrieved within the considered stages and that only one order can
be retrieved at one stage. Constraint (6) indicates that non-outbound
orders will not be retrieved at any interval of any stage. Constraint (7)
specifies that only one order can be shuffled or retrieved at any interval.
Constraint (8) clarifies the relationship between decision variables 𝑧𝑡𝑖𝓁𝑘𝜏
and 𝑢𝑡𝑖𝓁𝑘𝜏 , indicating that within the same time interval of a given stage,
an order cannot be simultaneously moved into and moved out of the
same slot. The options of order movement are illustrated in constraint
(9), which means that once the movement occurs, the corresponding
order is either retrieved or moved to a specific slot. Constraint (10)
reveals the relationship between decision variables 𝑧𝑡𝑖𝓁𝑘𝜏 and 𝑦𝑡𝑖𝓁𝑘𝜏 .
Constraint (11) emphasizes the movement sequence of orders, that is,
an order cannot be moved from its slot unless the slot above it is empty.
Constraints (12)–(14) are a set of vital constraints in this paper, where
𝜑𝑡
𝜏 =

∑

𝑖∈
∑

𝓁∈
∑

𝑘∈ 𝓁𝑧𝑡𝑖𝓁𝑘𝜏 and 𝜃𝑡𝜏 =
∑

𝑖∈
∑

𝓁∈
∑

𝑘∈ 𝑧𝑡𝑖𝓁𝑘𝜏 . They
emphasize that only one stack can be operated at a stage and that once
the outbound order is retrieved, no operation will be performed at that
stage.

(2) Updating constraints regarding stack configuration:

𝑦1𝑖𝓁𝑘1 = 𝑦̃𝑖𝓁𝑘,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈  (15)
𝑦𝑡𝑖𝓁𝑘,𝜏+1 = 𝑦𝑡𝑖𝓁𝑘𝜏 + 𝑢𝑡𝑖𝓁𝑘𝜏 − 𝑧𝑡𝑖𝓁𝑘𝜏 ,∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝓁 ∈  ,

∀𝑘 ∈ ,∀𝜏 ∈ ∖ {𝜎} (16)

𝑦𝑡+1𝑖𝓁𝑘1 = 𝑦𝑡𝑖𝓁𝑘𝜎 + 𝑢𝑡𝑖𝓁𝑘𝜎 − 𝑧𝑡𝑖𝓁𝑘𝜎 ,∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈  (17)
∑

𝑖∈
𝑦𝑡𝑖𝓁𝑘𝜏 ≤ 1,∀𝑡 ∈  ,∀𝓁 ∈  ,∀𝑘 ∈ ,∀𝜏 ∈  (18)

∑

𝑖∈
𝑦𝑡𝑖𝓁𝑘𝜏 −

∑

𝑖∈
𝑦𝑡𝑖𝓁,𝑘+1,𝜏 ≥ 0,∀𝑡 ∈  ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {𝐾} ,∀𝜏 ∈  (19)

∑

𝓁∈

∑

𝑘∈

∑

𝜏1={𝜏+1,…𝜎}
𝑦𝑡𝑖𝓁𝑘𝜏1+

∑

𝓁∈

∑

𝑘∈

∑

𝜏1∈

∑

𝑡1={𝑡+1,…,𝑇 }
𝑦𝑡1𝑖𝓁𝑘𝜏1 ≤𝜎𝑇

(

1 − 𝑥𝑡𝑖𝜏
)

,

∀𝑡 ∈  ∖ {𝑇 } ,∀𝑖 ∈ ,∀𝜏 ∈  (20)
∑

𝑖∈

∑

𝑘∈
𝑚𝑖𝑦

𝑡
𝑖𝓁𝑘𝜏 ≤ 𝐾,∀𝑡 ∈  ,∀𝓁 ∈  ,∀𝜏 ∈  (21)

The purpose of the proposed model is to determine the retrieval
sequencing of the outbound orders and the shuffled positions of the
blocking orders. However, the movement dynamically changes the
stack configuration, and it is therefore essential to track these changes
accurately. Following the model in [30], the transformations of the
stack configuration can be expressed as constraints (15)–(21). In con-
straint (15), the stack configuration is initialized utilizing the parameter
𝑦̃𝑖𝓁𝑘, and the configuration status of adjacent intervals and adjacent
stages can be updated by constraints (16) and (17), respectively. Con-
straint (18) indicates that a slot can only hold one order. Constraint
(19) ensures that orders cannot be suspended. Constraint (20) ensures
that the order cannot appear in the stack once it is retrieved. Constraint
(21) forces the height of the stack not to exceed the maximum limit.

(3) Blocking degree constraints:
∑

𝑖∈
𝑑𝑖𝑦

𝑇
𝑖𝓁𝑙1 −

∑

𝑖∈
𝑑𝑖𝑦

𝑇
𝑖𝓁𝑘1 ≤ −1 +

(

𝑑𝑚𝑎𝑥 + 1
) (

1−𝑤𝓁𝑘𝑙
)

,

∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} , 𝑙 = {1,… , 𝑘 − 1} (22)
∑

𝑖∈
𝑑𝑖𝑦

𝑇
𝑖𝓁𝑙1 −

∑

𝑖∈
𝑑𝑖𝑦

𝑇
𝑖𝓁𝑘1 ≥ −𝑤𝓁𝑘𝑙

(

𝑑𝑚𝑎𝑥 + 1
)

,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} ,

𝑙 = {1,… , 𝑘 − 1} (23)

𝜗𝓁𝑘 ≤
∑

𝑙∈{1,…,𝑘−1}
𝑤𝓁𝑘𝑙 ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} (24)

𝜗𝓁𝑘 ≥
∑

𝑙∈{1,…,𝑘−1}
𝑤𝓁𝑘𝑙

/

𝜎,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} (25)

𝑇

5

𝑜𝑖𝓁𝑘 ≤ 𝑦𝑖𝓁𝑘1,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} (26)
Fig. 2. Schematic of reinforcement learning.

𝑜𝑖𝓁𝑘 ≤ 𝜗𝓁𝑘,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} (27)

𝑜𝑖𝓁𝑘 ≥ 𝑦𝑇𝑖𝓁𝑘1 + 𝜗𝓁𝑘 − 1,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} (28)
𝑥𝑡𝑖𝜏 , 𝑦

𝑡
𝑖𝓁𝑘𝜏 , 𝑧

𝑡
𝑖𝓁𝑘𝜏 , 𝑢

𝑡
𝑖𝓁𝑘𝜏 ∈ {0, 1} ,∀𝑡 ∈  ,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ,∀𝜏 ∈ 

(29)
𝑤𝓁𝑘𝑙 , 𝜗𝓁𝑘, 𝑜𝑖𝓁𝑘 ∈ {0, 1} ,∀𝑖 ∈ ,∀𝓁 ∈  ,∀𝑘 ∈ ∖ {1} , 𝑙 = {1,… , 𝑘 − 1}

(30)

To reduce the number of future shuffles, constraints (22)–(30) are
used to formulate the degree of stacking blocking in the final stage.
Constraints (22) and (23) use the decision variable 𝑤𝓁𝑘𝑙 to count how
many orders are blocked by the order in slot 𝑘 of stack 𝑠. Constraints
(24) and (25) define the decision variable 𝜗𝓁𝑘 using 𝑤𝓁𝑘𝑙. Constraints
(26)–(28) are converted from 𝑜𝑖𝓁𝑘 = 𝑦𝑇𝑖𝓁𝑘1𝜗𝓁𝑘, which reveals the rela-
tionship between orders and blocking slots, so that, in objective 𝑓2, the
minimum number of plate shuffles is minimized during the forthcoming
outbound process. Constraints (29) and (30) determine the domain of
decision variables.

The model P1 is an NP-hard problem. Therefore, in order to im-
prove the computation efficiency and obtain a high-quality steel plate
outbound scheduling scheme, an alternating iteration algorithm based
on deep reinforcement learning is proposed.

4. Background of deep Q network with prioritized experience
replay

In this section, the background of deep Q network [31] with priori-
tized experience replay (DQN-PER) is described to provide a theoretical
basis for solving the SPS-TLS problem.

4.1. Reinforcement learning and deep Q network

Reinforcement learning (RL) guides the behavior of the intelligent
agent through the rewards gained by the agent interacting with the
environment [28]. As shown in Fig. 2, at each decision point 𝑡, the
agent observes the current state 𝑠𝑡, chooses and performs an action 𝑎𝑡
according to a specific policy 𝜋

(

𝑎𝑡 ||𝑠𝑡
)

, obtains an immediate reward
𝑟𝑡, after which it gets into the next state 𝑠𝑡+1 with transition probability
𝑝
(

𝑠𝑡+1 ||𝑠𝑡, 𝑎𝑡
)

and so on until the terminal state.
The purpose of RL is to find the optimal strategy 𝜋∗ which max-

imizes the expected sum of long-term rewards in Markov Decision
Process, as defined in Eq. (31),

𝜋∗ = argmax
𝜋

𝑄𝜋 (𝑠, 𝑎)

= argmax
𝜋

E
[

𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯ |𝑠, 𝑎, 𝜋
]

(31)

where 𝑄𝜋 (𝑠, 𝑎) is action value function or Q-value, used to evaluate the
merit of the agent executing action 𝑎 in state 𝑠. 𝛾 ∈ (0, 1] is the discount
factor, which reflects the relative importance of the long-term rewards.
A larger 𝛾 indicates that the agent is more focused on the long-term
rewards.

The Deep Q Network (DQN) [31], as an efficient RL algorithm,

tackles complex Markov decision problems by employing deep neural

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.

c
a
i
b
c
t
b
e

𝐿

b

r

5

w
s
i
s
S
a
B

𝜔

networks to fit the Q-function, taking high-dimensional state features
as inputs and Q values of state–action pairs as outputs. To reduce high
variance of neural network parameter updating, the experience replay
mechanism is introduced in DQN. At first, an experience pool 𝐷 with
apacity 𝑁 is established to store the transition sequence

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
)

t each time-step. As training progresses, once the experience pool
s full, the earliest stored experience sequence is gradually replaced
y the latest generated experience, and the capacity of 𝐷 remains
onstant. Based on the minibatch experiences randomly selected from
he experience pool, the parameters of the neural network are updated
y calculating the loss function at each training step, which can be
xpressed as Eq. (32),

(𝜃) = E
[

(

𝑟𝑡 + 𝛾max𝑎′ 𝑄̂(𝑠𝑡+1, 𝑎′; 𝜃−) −𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)
)2] (32)

where 𝑄 is the online network, and 𝑄̂ is the target network. The Q value
generated by 𝑄̂ plus the real observed reward 𝑟𝑡 constitute the target
value. 𝜃− and 𝜃 are respectively the parameters of the target network
𝑄̂ and the online network 𝑄.

4.2. Deep Q network with prioritized experience replay

Although experience replay can eliminate the correlation of training
samples, undifferentiated random sampling causes DQN to not priori-
tize high-value experience samples, thereby resulting in relatively slow
algorithm convergence. Therefore, prioritized experience replay (PER)
mechanism is developed in [32], and the value of temporal difference
error (𝑇𝐷−𝑒𝑟𝑟𝑜𝑟) is used as evaluation of sample importance, which
can be defined as Eq. (33),

𝑇𝐷 − 𝑒𝑟𝑟𝑜𝑟 = |

|

|

𝑟𝑡 + 𝛾max𝑎′ 𝑄̂(𝑠𝑡+1, 𝑎′; 𝜃−) −𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)
|

|

|

(33)

To prevent the neural network from overfitting, it is necessary to
ensure that the probability of the lowest priority experience sequence
being sampled is also non-zero. The sampling probability of experience
sample 𝑖 is defined as Eq. (34),

𝑃 (𝑖) = 𝑝𝛼𝑖
/

∑

𝑖
𝑝𝛼𝑖 (34)

where 𝑝𝑖 is the priority of experience sample; 𝛼 represents how much
prioritization is used. In Eq. (34), 𝑝𝑖 is calculated according to the
proportional prioritization method, which can be expressed as 𝑝𝑖 =
𝑇𝐷 − 𝑒𝑟𝑟𝑜𝑟+𝜀, where 𝜀 is the greedy rate, which avoids the experience
sample not being replayed when 𝑇𝐷 − 𝑒𝑟𝑟𝑜𝑟 is 0. Meanwhile, to reduce
the extremely high computational burden caused by traversing the
experience pool, the SumTree structure is introduced to obtain the
training samples.

The use of PER changes the data distribution, which is bound
to make deviation. Therefore, the importance sampling weight 𝜔𝑖 is
applied to correct for deviation, which is calculated as follows,

𝜔𝑖 = (𝑁 ⋅ 𝑃 (𝑖))−𝛽
/

max𝑖𝜔𝑖 (35)

where 𝛽 is the compensation coefficient.
After obtaining the importance sampling weight 𝜔𝑖, and the loss

function considering the sample priority is described as,

𝐿(𝜃) = E
[

𝜔𝑡
(

𝑟𝑡 + 𝛾max𝑎′ 𝑄̂(𝑠𝑡+1, 𝑎′; 𝜃−) −𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)
)2] (36)

5. AltDRL algorithm for SPS-TLS problem

In this section, the alternating iteration algorithm based on deep
reinforcement learning (AltDRL) is proposed to solve the SPS-TLS prob-
lem, which is described as Fig. 3.

In AltDRL, the order to be handled at each scheduling point is
determined by the heuristic algorithm, while the DQN-PER is respon-
sible for determining the position of blocking orders in the shuffling
process. Some effective state features are defined to describe the change
of the environment configuration at different training steps. Then the
6

design methods of the reinforcement learning actions and the reward
are introduced successively. The details are as follows.

5.1. Alternating iteration algorithm based on deep reinforcement learning

The proposed alternating iteration algorithm based on deep rein-
forcement learning (AltDRL) is outlined in Algorithm 1. 𝒞1 represents
the initial configuration of plate distribution. In line 2, the function
Search is invoked on 𝒞1 to initiate the algorithm, which returns the
first target outbound order and its corresponding stack. The function
Search is implemented as a heuristic algorithm used to determine the
retrieval sequence of outbound orders. Once the outbound order asso-
ciated with the current scheduling point is identified, reinforcement
learning algorithm is applied to relocate the blocking orders above
it to other stacks until the target outbound order is retrieved. This
is implemented through lines 6–9 of Algorithm 1, where action 𝑎𝑡 is
taken to perform the shuffling operation. Lines 9–11 are used to obtain
the transition sequence (𝜙𝑡, 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) of DQN, where the reward 𝑟𝑡 for
scheduling point 𝑡 is computed using the reward function Reward.

The online network and target network of the proposed AltDRL
algorithm have the same network structure, where the number of nodes
in the input layer and output layer is the same as the dimension of
state features and the number of executable actions, respectively. Lines
12–18 utilize the prioritized experience replay (PER) mechanism to
update the online network of the DQN. Furthermore, a soft target
update strategy is introduced to update the parameters of the target
network by slowly tracking the online network in line 20, where 𝛿 is
a soft parameter forcing the target values to change smoothly. With
this parameter update method, the stability of the algorithm can be
effectively improved.

5.2. Heuristic algorithm to determine the target order

The target order in the proposed AltDRL algorithm is the outbound
order which is retrieved at the current scheduling point. The target
order with a potential contribution to reducing shuffles in current or
future scheduling processes can be quickly identified by adopting the
heuristic algorithm. This approach is already widely used in container
relocation problems. Before illustrating the specific heuristic algorithm,
several parameters are defined as follows:

𝑗 Index of the outbound order;
𝑛𝑏 The number of all plates blocking the chosen order;
𝑔1 The minimum outbound date among the orders in a stack;
𝑔2 The minimum outbound date among the orders in a stack that

are not retrieved at the current date; we set the current date to 1;
𝑔3 The minimum outbound date among the orders stored in a stack

above the highest-positioned outbound order.
𝑔4 The number of steel plates above the highest-positioned out-

ound order in a stack.
The procedure for determining the target order is shown in Algo-

ithm 2, which is inspired by literature [25].

.3. Definition of state features

After obtaining the target order to be retrieved and the stack in
hich it is located, the best shuffling position for the blocking orders

hould be determined by the AltDRL algorithm if the blocking orders
n this step are not empty. To this end, we design two types of
tate features to describe the environment configuration in this part.
ince the order to be retrieved at each scheduling point is determined
ccording to Algorithm 2, the environment is completely observable.
ased on this, two types of state features can be defined as follows,

(1) Order blocking ratio:

(𝓁) = 𝜔̄ (𝓁)
/

𝐾,𝓁 = 1, 2,… , 𝑆 (37)
𝑡 𝑡

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
Fig. 3. Structure of the proposed AltDRL algorithm.
Algorithm 1 Alternating iteration algorithm based on deep reinforce-
ment learning (AltDRL)
Initialize: initial configuration 𝒞1; memory pool 𝐷 with capacity 𝑁 ; online
network 𝑄 with parameters 𝜃; target network 𝑄̂ with parameters 𝜃− = 𝜃; replay
parameters 𝛼 and 𝛽; number of training episodes 𝐿; maximum and minimum
exploration probabilities 𝜖max, 𝜖min; 𝜖 = 𝜖max

1: for episode = 1 ∶ 𝐿 do
2: Determine the first target order 𝑗 and its stack 𝓁𝑗 according to function

Search(𝒞1);
3: Generate the initial state 𝑠1 with feature vector 𝜙1 =

{

𝛺1, 𝛯1
}

;
4: 𝑑𝑜𝑛𝑒 = True; 𝑡 = 1;
5: while 𝑑𝑜𝑛𝑒 do
6: Set the topmost order 𝑗′ of stack 𝓁𝑗 as the order to be handled by

the scheduling point 𝑡;
7: With probability 𝜖 select a random action 𝑎𝑡, otherwise select 𝑎𝑡 =

argmax𝑄(𝜙𝑡, 𝑎; 𝜃), and execute action 𝑎𝑡;
8: If 𝑗′ = 𝑗, then determine the next target order 𝑗 and its stack 𝓁𝑗

according to function Search(𝒞𝑡+1) at scheduling point 𝑡+1; Otherwise,
set the topmost order 𝑗′ of stack 𝓁𝑗 as the order to be handled by the
scheduling point 𝑡 + 1;

9: Observe the next state 𝑠𝑡+1, and calculate the immediate reward 𝑟𝑡
according to function Reward(𝛺𝑡, 𝛺𝑡+1, 𝑎𝑡);

10: Extract the feature vector 𝜙𝑡+1 =
{

𝛺𝑡+1, 𝛯𝑡+1
}

of state 𝑠𝑡+1;
11: Store transition (𝜙𝑡, 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in 𝐷;
12: Compute sampling probability 𝑃 (𝑖) according to Eq. (34) and

sample a minibatch of transitions (𝜙𝑖, 𝑎𝑖, 𝑟𝑖, 𝜙𝑖+1) from the SumTree;
13: Compute importance-sampling weight according to Eq. (35);

14: Set 𝑣𝑖=
{

𝑟𝑖, if episode terminates at step 𝑖 + 1
𝑟𝑖 + 𝛾max𝑎′ 𝑄̂(𝜙𝑖+1, 𝑎′; 𝜃−), otherwise

15: Compute TD−error according to Eq. (33);
16: Update transition priority;
17: Perform a gradient descent step on 𝑤𝑖 ⋅ (𝑣𝑖 −𝑄(𝜙𝑖, 𝑎𝑖; 𝜃))2 to update

the online network;
18: Set 𝑑𝑜𝑛𝑒 = False, if episode terminates at step 𝑡; otherwise, 𝑡 = 𝑡+1;
19: The probability decrease gradually 𝜖 from 𝜖max to 𝜖min;
20: 𝜃− = 𝛿𝜃 + (1 − 𝛿)𝜃−;

where 𝜔̄𝑡(𝓁) represents the number of all steel plates in the stack 𝓁
at scheduling point 𝑡, which are blocking orders with the minimum
delivery date. 𝐾 is the maximum height of the stack. During the AltDRL
training process, the 𝜔𝑡(𝓁) of each stack is used as the input to the
online network 𝑄, thus we encapsulate them with a feature vector 𝛺𝑡,
i.e., 𝛺𝑡 =

[

𝜔𝑡(1), 𝜔𝑡(2),…𝜔𝑡(𝑆)
]

. By limiting the value range of the state
7

Algorithm 2 Procedure to determine the target order
1: Function Search(𝒞)
2: S1: Calculate 𝑛𝑏 for each outbound order 𝑗;
3: S2: If there is only one order with 𝑛𝑏 = 0, choose it as the target order at

this scheduling point. If there are multiple orders with 𝑛𝑏 = 0, then choose
one randomly;

4: S3: If there is no order with 𝑛𝑏 = 0, then calculate 𝑔2 for each stack where
the outbound orders are stored;

5: S4: If there is only one stack with largest 𝑔2, choose the highest-positioned
outbound order stored in this stack as the target order. If there are multiple
stacks with largest 𝑔2, calculate 𝑔3 for these stacks;

6: S5: If there is only one stack with largest 𝑔3, choose the highest-positioned
outbound order stored in this stack as the target order. If there are multiple
stacks with largest 𝑔3, calculate 𝑔4 for these stacks;

7: S6: If there is only one stack with smallest 𝑔4, choose the highest-
positioned outbound order stored in this stack as the target order. If there
are multiple stacks with smallest 𝑔4, then choose the stack with the lowest
number, and the highest-positioned outbound order stored in it as the
target order;

8: S7: Return the target order 𝑗 and the stack 𝓁 where it is located.

feature 𝜔𝑡(𝓁) to [0,1], the gradient explosion of the neural network can
be avoided.

(2) Shuffle effect:
The ‘‘shuffle effect’’ is defined as the outbound date of the order to

be handled minus the minimum outbound date of the orders in each
other stack, and then divided by the maximum outbound date of all
orders. This feature reflects the effect of the order shuffle on retrieving
other orders in each stack. In particular, two adjacent orders are used
to calculate the feature at each scheduling point, so that the agent can
perceive the differences in the evolution of the environment in advance
under the two adjacent shuffling operations, thereby improving the
learning efficiency. The calculating method is given in Algorithm 3.

The above features are extracted to serve as the input of online
network Q in AltDRL, and the total dimension of the features is 3 × 𝑆.

5.4. Definition of actions

Action refers to retrieving the chosen target order or assigning
proper shuffling stack to the blocking order. However, blindly shuffling
the blocking orders to other stacks may cause the agent to repeatedly
perform invalid actions, thereby resulting in the AltDRL being unable

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.

O

s
o
h
s
b
p
t

i

t
b
s
a
p
b
s

d

Algorithm 3 Procedure to calculate the shuffle effect
Input: The retrieved order 𝑗 and the stack 𝓁 where it is located; outbound

date 𝑑𝑗 of order 𝑗; maximum outbound date 𝐷max of all orders.
utput: The feature vector 𝛯𝑡 at scheduling point 𝑡 consisting of the shuffle

effect.
1: Create an empty vector 𝛯𝑡;
2: Extract order 𝑖1 at the top of stack 𝓁;
3: if 𝑖1 = 𝑗 then
4: for 𝑛𝑢𝑚 = 1 to 2𝑆 do
5: Append 0 to 𝛯𝑡;
6: else
7: for ℎ = 1 to 𝑆 do
8: if ℎ ≠ 𝓁 then
9: if ℎ is not an empty stack then

10: Calculate the shuffle effect 𝜉 =
(

𝑑𝑖1 −𝐷min
ℎ

)/

𝐷max; ⊳ 𝐷min
ℎ is

the minimum outbound date of orders in stack ℎ.
11: Append 𝜉 to 𝛯𝑡;
12: else
13: Append 0 to 𝛯𝑡;
14: else
15: Append 0 to 𝛯𝑡;
16: Extract order 𝑖2 stored beneath the order 𝑖1;
17: if 𝑖2 = 𝑗 then
18: for 𝑛𝑢𝑚 = 1 to 𝑆 do
19: Append 0 to 𝛯𝑡;
20: else
21: for ℎ = 1 to 𝑆 do
22: if ℎ ≠ 𝓁 then
23: if ℎ is not an empty stack then
24: Calculate the shuffle effect 𝜉 =

(

𝑑𝑖2 −𝐷min
ℎ

)/

𝐷max;
25: Append 𝜉 to 𝛯𝑡;
26: else
27: Append 0 to 𝛯𝑡;
28: else
29: Append 0 to 𝛯𝑡;

to converge. On this account, we introduce four heuristic scheduling
rules as the action space of the agent. The first three rules are inspired
by container rehandling methods which were first proposed in [33],
and the basic idea of them is to avoid future shuffling when choosing a
new stack for the blocking orders. The fourth rule is to avoid the agent
falling into local optimum when searching for the optimal combination
of actions. Before describing the specific heuristic scheduling rules, two
important parameters are defined as follows:

RI The total number of orders in a stack that are to be retrieved
earlier than the blocking order;

BI The total number of steel plates that will block the highest-
positioned order with the minimum outbound date in a stack if
the blocking order is shuffled into that stack;

Based on the parameters RI and BI , the procedure of heuristic
cheduling rule 1 is given in procedure H1. In steps S3, S4, and S6
f H1, one default condition for screening stacks is that the maximum
eight limit of stacks will not be exceeded if the blocking order is
huffled to those stacks. The RI is used in step S6 to minimize the
locking of retrieving orders in the future caused by shuffling. The
rocedure of heuristic scheduling rule 2 (H2) is the same as H1, except
hat RI is replaced with BI in S6. In the proposed H2, the BI is used to

guarantee a minimum number of shuffles when the order is retrieved at
subsequent scheduling points. Moreover, the main difference between
the heuristic scheduling rule 3 (H3) and H1 is step S6, in which H3
assigns the stack with the 𝑔1 value closest to 𝑑𝑗 to the order 𝑗 if there
s only one stack, otherwise, the order 𝑗 is shuffled to the stack with

the smallest BI . The purpose of this design is to postpone the inevitable
reshuffles as much as possible.
8

H1: Procedure of heuristic scheduling rule 1
S1: Extract the order 𝑗 that needs to be handled and the
outbound date 𝑑𝑗 of the order 𝑗;
S2: If the order 𝑗 is the retrieved order, return the Empty and
end the procedure; Otherwise, go to S3;
S3: If there are stacks satisfying 𝑔1 = 𝑑𝑗 , then assign the stack
with the fewest number of plates to the order 𝑗; Otherwise, go
to S4;
S4: If there are stacks satisfying 𝑔1 > 𝑑𝑗 , then assign the stack
with 𝑔1 value closest to 𝑑𝑗 to the order 𝑗; Otherwise, go to S5;
S5: If there are empty stacks, then assign any empty stack to
the order 𝑗; Otherwise, go to S6;
S6: Assign the stack with the smallest RI . If more than one
stack satisfies the condition, then assign the stack with the 𝑔1
value closest to 𝑑𝑗 to the order 𝑗.

Similarly, the procedure of heuristic scheduling rule 4 is shown in
procedure H4.

H4: Procedure of heuristic scheduling rule 4
S1: Extract the order 𝑗 that needs to be handled and the
outbound date 𝑑𝑗 of the order 𝑗;
S2: If the order 𝑗 is the retrieved order, return the Empty and
end the procedure; Otherwise, go to S3;
S3: If there are stacks satisfying 𝑔1 = 𝑑𝑗 , then assign the stack
with the fewest number of plates to the order 𝑗; Otherwise, go
to S4;
S4: If there are stacks satisfying 𝑔1 < 𝑑𝑗 , then assign the stack
with 𝑔1 value closest to 𝑑𝑗 to the order 𝑗; Otherwise, go to S5;
S5: If there are stacks satisfying 𝑔1 > 𝑑𝑗 , then assign the stack
with 𝑔1 value closest to 𝑑𝑗 to the order 𝑗; Otherwise, go to S6;
S6: Assign any empty stack to the order 𝑗;

Note that the scheduling rules H1 to H3 are greedy search algo-
rithms, and the scheduling sequence formed by AltDRL combining them
will fall into the local optimum. H4 can break the shackles of greedy
search by performing the step S3 before S4, making AltDRL possible to
obtain better scheduling results.

5.5. Definition of rewards

Since the objective of the SPS-TLS problem is to minimize both the
number of plate shuffles during the orders outbound process and the
minimum number of plate shuffles during the forthcoming outbound
process, the reward 𝑟𝑡 for the state–action pair (𝑠𝑡, 𝑎𝑡) can be defined by
wo indicators, as shown in Algorithm 4. The first indicator 𝑟1𝑡 , obtained
y executing action 𝑎𝑡, is called the number of plate shuffles at the
cheduling point 𝑡. In lines 2 and 3 of Algorithm 4, if the return of
ction 𝑎𝑡 is not Empty , then the shuffling must occur. In this case, the
erformance of action 𝑎𝑡 under state 𝑠𝑡 can be more intuitively reflected
y introducing the number of steel plates into the reward evaluation
ystem. The second indicator 𝑟2𝑡 , which is the minimum number of plate

shuffles during the forthcoming outbound process, can be obtained
indirectly by the state features ‘‘Order blocking ratio’’ at current state
𝑠𝑡 and the next state 𝑠𝑡+1, calculated as in line 7 of algorithm 4. 𝑟2𝑡 is
esigned to reflect the immediate gain of executing the action 𝑎𝑡 for

the second optimization objective. The final reward value is obtained
by adding 𝑟1𝑡 and 𝑟2𝑡 .

6. Numerical experiments

In this section, a series of numerical experiments based on data
collected from a real steel logistics park are conducted to examine the
effectiveness of the joint optimization of steel plate shuffling and truck
loading sequencing during the orders outbound process and the superi-
ority of the proposed AltDRL algorithm. The maximum quantity of steel

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.

d
S
v
p
a
i
h
a
i
w
w
s

6

i
p
s
w
t
b

Table 2
Parameter settings of AltDRL.
Parameters Value

Number of hidden layers 5
Number of nodes in each hidden layer 30
Activation function ReLu
Learning rate 0.001
Memory pool size 𝑁 1000
Number of training episodes 𝐿 5000
Sample batches size 64
Maximum exploration probability 𝜖max 0.6
Minimum exploration probability 𝜖min 0.01
Discount factor 𝜆 0.98
𝛿 in the soft target update strategy 0.008
𝛼 in the prioritized experience replay mechanism 0.6
𝛽 in the prioritized experience replay mechanism increase by 0.001 from 0.4 to 1
Algorithm 4 Procedure to calculate 𝑟𝑡
Input: The order blocking ratio at current state 𝑠𝑡 and the next state 𝑠𝑡+1, 𝛺𝑡

and 𝛺𝑡+1; action 𝑎𝑡.
Output: Reward 𝑟𝑡.
1: Function Reward(𝛺𝑡, 𝛺𝑡+1, 𝑎𝑡)
2: if the return of 𝑎𝑡 is not Empty then
3: 𝑟1𝑡 = −𝑀𝑡; // 𝑀𝑡 is the shuffling number of steel plates at scheduling

point 𝑡.
4: else
5: 𝑟1𝑡 = 1;
6: Calculate 𝛺̄𝑡=

∑

𝑠∈𝑆
𝜔𝑡(𝑠) and 𝛺̄𝑡+1=

∑

𝑠∈𝑆
𝜔𝑡+1(𝑠);

7: 𝑟2𝑡 =
(

𝛺̄𝑡 − 𝛺̄𝑡+1
)

×𝐾;
8: 𝑟𝑡 = 𝑟1𝑡 + 𝑟2𝑡
9: Return the reward 𝑟𝑡

plates that each stack can accommodate is set to 60. All experiments
are implemented in python 3.9 on a Windows 11 Professional 64-bit
operating system with Intel Core i7-13700K @ 3.4 GHz CPU and 32 GB
RAM.

The experiments contain four parts. To verify the convergence of
AltDRL in different environment configurations, we compare it with
a version that does not consider the prioritized experience replay,
denoted by AltDRL(non-PER) in this paper. Except for the parameters
unique to prioritized experience replay, both algorithms adopt the same
parameter settings, as shown in Table 2. In addition, the convergence
process of AltDRL for both the number of plate shuffles during the or-
ders outbound process (𝑓1) and the minimum number of plate shuffles
uring the forthcoming outbound process (𝑓2) is analyzed in detail.
ubsequently, the effectiveness of the AltDRL algorithm is further
erified under multiple instances of small sizes and large sizes. In this
art, the Gurobi 11.0 and the Branch-and-Bound (B&B) algorithm [27]
re first used to compare with the AltDRL algorithm on the small-size
nstances. Then, the AltDRL algorithm is compared with each distinct
euristic scheduling rule from this paper, as well as the state-of-the-
rt heuristic algorithms, Adjusted H4 (A_H4) and Adjusted H5 (A_H5),
ntroduced in [25], under the large-size instances. Last but not the least,
e evaluate the superiority of the joint optimization by comparing it
ith optimizing only plates shuffling under the fixed trucks loading

equence. The specific experimental results are presented below.

.1. Convergence of AltDRL algorithm

Fig. 4 presents the change of rewards with the increase of episodes
n the learning process of AltDRL and AltDRL(non-PER). In this ex-
eriment, four instances are used to evaluate the performance of the
olution algorithm, containing 8, 12, 16 and 20 stacks, respectively,
ith corresponding number of orders 69, 105, 146 and 199. In order

o ensure the fairness of comparison, the same random seed is used in
oth algorithms for the same instance. The change of rewards under
9

three instances are given in Fig. 4(a), Fig. 4(b), 4(c) and Fig. 4(d),
respectively, and the results are output every 10 episodes.

It can be seen from Fig. 4 that due to the high exploration probabil-
ity in the early stage, AltDRL and AltDRL(non-PER) tend to randomly
choose actions and the rewards fluctuate around the smaller value.
However, with enough attempts, both algorithms have the opportunity
to choose better actions in different states so as to obtain higher
rewards. These experiences are stored in a memory pool, continu-
ously improving the decision-making ability of the agent during the
algorithm training process. At later stages, AltDRL and AltDRL(non-
PER) tend to choose actions with higher Q values as the exploration
probability gradually decreases with the number of iterations, and
finally the reward stabilizes at a higher value.

It is worth noting that both AltDRL and AltDRL(non-PER) can
converge to the same value as show in Fig. 4(a), since the valuable
experience gained in a simple scheduling scenario can be well uti-
lized. However, during the training process of AltDRL, higher sampling
priority is assigned to high-value experience samples, and hence the
convergence rate of AltDRL is faster than that of AltDRL(non-PER).
Furthermore, the prioritized experience replay mechanism can signifi-
cantly improve the convergence of the algorithm as shown in Fig. 4(b).
By comparison, it is clear that the rewards of AltDRL after convergence
are higher than those of AltDRL(non-PER). This advantage becomes
more pronounced as the size of the instances increases, as shown in
Fig. 4(c) and Fig. 4(d), which indicates that AltDRL can obtain better
results.

6.2. Convergence process of the number of plate shuffles

In this part, the change trends of the number of shuffles are re-
vealed with the increase of episodes in the learning process of AltDRL,
including the number of plate shuffles during the orders outbound
process (Fig. 5(a)), the minimum number of plate shuffles during the
forthcoming outbound process (Fig. 5(b)), and the total number of plate
shuffles (Fig. 5(c)). The experiment is performed based on an instance
of 69 orders in 8 stacks, and the results are output every 10 episodes.

The number of plate shuffles during the orders outbound process
(𝑓1) is a direct reflection of the current order outbound efficiency. A
smaller 𝑓1 indicates higher scheduling efficiency of outbound orders
and less customer waiting time. In the early stages of AltDRL training,
𝑓1 can obviously reach lower values, but this is at the expense of in-
creasing the minimum number of plate shuffles during the forthcoming
outbound process (𝑓2), as can be easily seen from Figs. 5(b) and 5(c).
The 𝑓2 is directly related to the energy consumption and the scheduling
efficiency of the crane in the future order outbound process. As the
training progresses, it can be observed that a slight increase in the value
of 𝑓1 can significantly decrease the value of 𝑓2, as shown in Figs. 5(a)
and 5(b). Until the later stages of AltDRL training, the best compromise
of 𝑓1 and 𝑓2 can be achieved, as shown in Fig. 5(c), which proves the

effectiveness of the proposed algorithm.

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
Fig. 4. Change of rewards in the learning process of AltDRL and AltDRL(non-PER) under different environment configurations.
Fig. 5. Change of the number of plate shuffles in the learning process of AltDRL.
Table 3
Instances with small sizes.

Index S || |

|

1
|

|

Index S || |

|

1
|

|

s1

3 12 4

s3

5 18 7
3 14 4 5 24 8
3 14 4 5 34 10
3 13 5 5 36 12

s2

4 19 5

s4

6 29 10
4 18 5 6 45 15
4 17 6 6 38 12
4 15 6 6 43 14

6.3. Effectiveness of AltDRL algorithm

In this subsection, we compare the AltDRL algorithm with both
exact methods and heuristic algorithms to validate its effectiveness.

6.3.1. Comparisons with the exact methods
In this part, the Gurobi 11.0 and the B&B algorithm are utilized

to compare with the proposed AltDRL algorithm, aiming to verify the
10
effectiveness and applicability of the AltDRL algorithm. The Gurobi
solver is a robust and efficient tool for solving MILP models, providing
accurate solutions for complex optimization problems. The relative
optimality gap for MILP in Gurobi is set to 0 in this paper. Additionally,
the Branch-and-Bound algorithm introduced in [27], is one of the most
state-of-the-art exact algorithms for container retrieval problems. The
experiments are conducted on the small-size instances provided in
Table 3. The Comparison results are presented in Table 4, where the
term ‘‘CPU’’ denotes the runtime of the algorithms, with a maximum
allowed runtime set at 14400 s. Specifically for the AltDRL algorithm,
we provide both offline training time and online computation time for
each instance, enabling an observation of the impact of instance size
on the algorithm’s time complexity.

According to the results in Table 4, it is evident that Gurobi can
only solve a limited number of instances within the specified time con-
straints. As the instance size increases, Gurobi may even fail to obtain
a feasible solution. The B&B algorithm appears effective in quickly
obtaining optimal solutions for small-size instances, as demonstrated in
instance sets s1 and s2. However, the time complexity of the B&B algo-
rithm is significantly influenced by the state of the steel plate stacking.

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
Table 4
Calculation results with small-size instances by AltDRL and exact methods.
Instances Gurobi B&B AltDRL CPU(s)

𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM Gurobi B&B AltDRL

s1

3 12 3 15 12 3 15 12 3 15 145.61 0.93 143.48/≤0.01
3 26 1 27 26 1 27 26 1 27 13 707.00 0.07 155.83/≤0.01
3 9 2 11 8 3 11 9 2 11 7026.52 0.19 113.53/≤0.01
3 20 26 46 20 26 46 20 26 46 1186.31 0.04 100.36/≤0.01

s2

4 – – – 25 7 32 25 7 32 – 460.95 239.46/≤0.01
4 – – – 20 1 21 20 2 22 – 0.05 130.28/≤0.01
4 22 25 47 14 25 39 14 26 40 14 400.00 0.54 194.49/≤0.01
4 – – – 15 3 18 15 3 18 – 0.42 161.18/≤0.01

s3

5 – – – 8 0 8 8 1 9 – 0.90 164.41/≤0.01
5 – – – 12 7 19 11 8 19 – 7.62 220.20/≤0.01
5 – – – 32 14 46 33 11 44 – 14 400.00 395.37/0.01
5 – – – – – – 49 16 65 – – 502.70/0.09

s4

6 – – – 81 2 83 86 4 90 – 1845.51 332.73/≤0.01
6 – – – – – – 42 9 51 – – 586.67/0.02
6 – – – – – – 47 28 75 – – 413.81/0.01
6 – – – – – – 62 4 66 – – 584.17/0.02

*For the AltDRL column beneath the CPU column, the first value represents the algorithm’s offline training time, and the second value represents the algorithm’s
online computation time.
Table 5
Instances with large sizes.

Index S || |

|

1
|

|

Index S || |

|

1
|

|

b1

8 69 22

b3

8 101 24
12 105 37 12 128 29
16 146 48 16 164 37
20 199 48 20 175 42

b2

8 63 16

b4

8 48 15
12 108 27 12 92 27
16 108 31 16 127 38
20 153 45 20 159 38

On the other hand, when the number of retrieval orders exceeds 10,
the computational complexity of B&B becomes exceptionally high and
may even render it ineffective. This is because the number of order
retrieval combinations is factorial, in which case the B&B algorithm
encounters a huge number of branches, resulting in exponential growth
in both time complexity and memory requirements. With millions of
potential branches, the algorithm may require an unacceptably long
time to generate and process them, leading to timeouts. Additionally,
storing the state and information for each branch requires a substantial
amount of memory, exceeding available memory limits, rendering the
algorithm unable to function properly.

On the contrary, the AltDRL algorithm can obtain optimal or near-
optimal solutions for all instances after the offline training. Although
the training time of the AltDRL algorithm gradually increases with
the size of the instances, the AltDRL algorithm consistently completes
offline training with 5000 episodes within 600 s for all instances.
Additionally, the online computation is accomplished within 0.1 s.
These results confirm that AltDRL consistently maintains excellent
performance across various complex scheduling environments.

6.3.2. Comparisons with the heuristic algorithms
In this part, we conducted a performance comparison between

AltDRL and the heuristic scheduling rules adopted in this paper. Specif-
ically, in the comparison methods, the order that needs to be retrieved
at each stage is determined by Algorithm 2, and the shuffling positions
for the blocking orders are determined by each individual heuristic
scheduling rule. In addition, algorithms A_HA and A_H5 are utilized
as comparative benchmarks to further demonstrate the effectiveness.
Four sets of instances extracted from the real scheduling scenario are
considered in the experiment, each containing four instances, and the
sizes of the instances are presented in Table 5. The results obtained by
AltDRL and each heuristic scheduling rule are detailed in Table 6 under
11
instances of different sizes. Meanwhile, the performance of AltDRL in
comparison with A_H4 and A_H5 is displayed in Fig. 6.

It can be seen from Table 6 that the 𝑓1 or 𝑓2 obtained by AltDRL
are better than the single heuristic scheduling rule in most cases, but in
few instances, the performance of the single heuristic rule may exceed
that of AltDRL. This is because heuristic scheduling rules are essentially
greedy algorithms that execute operations that are most beneficial to
the current environment based on an already designed policy. Different
heuristic rules focus on different optimization objectives, such that
only one of the values of 𝑓1 and 𝑓2 can be improved by performing
a single heuristic scheduling rule. However, the sum of 𝑓1 and 𝑓2
generated by any kind of heuristic scheduling rules does not exceed
that of AltDRL for all instances. This is because AltDRL can take full
advantage of the learned experience after training, which enables it
to form the optimal action sequences based on the state evolution,
thereby achieving better scheduling results. These experimental results
demonstrate the superiority of AltDRL over a single heuristic algorithm
in reducing the number of plate shuffles during the orders outbound
process, as well as the minimum number of plate shuffles during the
forthcoming outbound process. The same phenomenon is also evident
in Fig. 6, which not only illustrates the optimization performance
of various algorithms for the SPS-TLS problem but also highlights
the percentage of performance improvement achieved by the AltDRL
algorithm in reaching the overall goal, compared to the best results
obtained from the benchmark algorithms.

6.4. Performance of the joint optimization

In this part, the joint optimization of steel plate shuffling and truck
loading sequencing (SPS-TLS) is compared with optimizing only plates
shuffling under fixed truck loading sequencing (Fix-TLS) to verify the
performance of the proposed scheme. All experiments are performed
on the instances of set b1 in Table 5. For the sake of fairness, the
experiments for Fix-TLS are executed by the DQN algorithm with prior-
itized experience replay, under the same settings of states, actions, and
rewards as AltDRL. All the experimental results of Fix-TLS are averaged
over five independent randomly generated trucks loading sequences
realizations. The comparison results are shown in Fig. 7.

It can be seen from Fig. 7, the SPS-TLS can always achieve fewer
plate shuffles than Fix-TLS, whether for objective 𝑓1 or 𝑓2. For the
four instances shown in Fig. 7, the number of plate shuffles under SPS-
TLS during the orders outbound process is reduced by 55.3%, 78.7%,
75.4% and 62.4% compared with Fix-TLS, respectively. The same

advantages appear in the minimum number of plate shuffles during the

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
Table 6
Calculation results with large-size instances by AltDRL and each heuristic scheduling rule.
instances AltDRL H1 H2 H3 H4

𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM 𝑓1 𝑓2 SUM

b1

8 138 16 154 137 47 184 139 47 186 137 44 181 163 84 247
12 77 27 104 97 35 132 94 26 120 77 39 116 77 54 131
16 106 41 147 126 45 171 124 37 161 106 50 156 106 67 173
20 147 55 202 159 64 223 147 69 216 147 69 216 152 84 236

b2

8 136 18 154 136 31 167 143 26 169 136 31 167 188 114 302
12 180 14 194 178 21 199 185 14 199 178 21 199 213 149 362
16 172 44 216 172 53 225 174 53 227 172 53 225 204 116 320
20 90 52 142 90 52 142 90 52 142 90 52 142 90 78 168

b3

8 125 52 177 128 56 184 126 61 187 125 59 184 137 96 233
12 175 89 264 176 95 271 199 73 272 175 93 268 175 141 316
16 268 101 369 268 105 373 293 103 396 268 105 373 268 159 427
20 141 79 220 142 79 221 142 79 221 140 80 220 140 105 245

b4

8 82 1 83 81 5 86 81 5 86 81 5 86 120 55 175
12 148 18 166 163 14 177 148 29 177 148 29 177 174 72 246
16 197 40 237 197 55 252 182 70 252 182 70 252 187 120 307
20 170 69 239 170 79 249 170 79 249 170 79 249 170 132 302
Fig. 6. Calculation results with large-size instances by AltDRL, A_HA and A_H5.
Fig. 7. Change of the number of plate shuffles based on the SPS-TLS and Fix-TLS under different environment configurations.
12

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.

P
M
r
M
c
C
a

D

i
i

D

forthcoming outbound process, and the results of SPS-TLS are reduced
by 69.1%, 33.9%, 6.0% and 8.6%compared to Fix-TLS, respectively.
This is because for Fix-TLS, blindly giving the truck loading sequence
forces the plate shuffling to be optimized only in a greedy way. The
SPS-TLS can break the limitation of truck loading sequence and find
the optimal plate shuffling scheme in a larger solution space. Therefore,
the SPS-TLS is important in reducing steel plate shuffling and improving
scheduling efficiency.

7. Conclusion

In this paper, we propose to utilize the data of plates and trucks
collected from a real steel logistics park by the IIoT to jointly optimize
the steel plate shuffling and truck loading sequencing, so as to im-
prove the outbound efficiency of plates. The SPS-TLS problem is firstly
transformed into an orders scheduling problem which is formulated
as a mixed integer linear programming model. Moreover, the deep Q
network with prioritized experience replay is introduced to develop
the AltDRL algorithm to address the proposed problem. Meanwhile,
two types of state features are designed in this paper to describe
the environment configuration, and four heuristic scheduling rules are
proposed to act as optional action sets for the intelligent agent.

Furthermore, the performance of the AltDRL algorithm is validated
by comparing it with two advanced exact methods in small-size in-
stances and popular heuristic algorithms in large-size instances. The
experimental results indicate that, although the AltDRL algorithm may
not achieve the same solution quality as exact methods in certain
small-size instances, its stability in computational time surpasses that
of exact methods. This stability of exact algorithms is notably influ-
enced by the state of steel plate stacking and the number of orders
to be retrieved. Additionally, despite having lower time complexity,
heuristic algorithms exhibit noticeably weaker solution quality than the
AltDRL algorithm. It is important to note that, for the SPS-TLS problem,
the outbound steel plate orders are known one day in advance. This
implies that there is sufficient time to train and improve models for
specific scheduling environments, thereby achieving better scheduling
results. For various practical and complex scheduling environments, the
training of the AltDRL algorithm can typically be completed within one
hour, presenting its outstanding applicability to real-world scheduling
problems.

In future work, we aim to explore the utilization of reinforcement
learning to develop a joint scheduling algorithm for plate storage and
outbound processes, thereby providing better solutions for complex
engineering problems.

CRediT authorship contribution statement

Zhezhuang Xu: Conceptualization, Investigation, Methodology,
roject administration, Writing – original draft. Jinlong Wang:
ethodology, Validation, Writing – original draft, Writing –

eview & editing. Meng Yuan: Conceptualization, Investigation,
ethodology. Yazhou Yuan: Conceptualization. Boyu Chen: Data

uration, Resources. Qingdong Zhang: Data curation, Resources.
ailian Chen: Formal analysis, Methodology. Xinping Guan: Formal
nalysis, Methodology.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
13

Data will be made available on request.
Acknowledgments

This work is supported by the Fujian Industry-University Cooper-
ation Project under Grant 2022H6005, the National Natural Science
Foundation of China under Grant 61973085, Grant 62273295 and the
Overseas Qishan Scholars Program under Grant 511262.

References

[1] G.L. Putra, M. Kitamura, Study on optimal design of hatch cover via a three-
stage optimization method involving material selection, size, and plate layout
arrangement, Ocean Eng. 219 (2021) 108284.

[2] J. Wang, Z. Xu, W. Wen, R. Wang, Y. Lin, Y. Yuan, B. Chen, Q. Zhang,
Optimization for storage scheduling of steel plates based on cloud manufacturing
platform, IEEE Trans. Ind. Inform. 19 (12) (2023) 11653–11663.

[3] L. Wu, Z. Jiang, X. Li, A stack-based retrieval method for the steel plate yard
retrieval problem in shipbuilding, Flex. Serv. Manuf. J. (2023) 1–35.

[4] B. Jin, S. Tanaka, An exact algorithm for the unrestricted container relocation
problem with new lower bounds and dominance rules, European J. Oper. Res.
304 (2) (2023) 494–514.

[5] L. Tang, J. Liu, A. Rong, Z. Yang, An effective heuristic algorithm to minimise
stack shuffles in selecting steel slabs from the slab yard for heating and rolling,
J. Oper. Res. Soc. 52 (2001) 1091–1097.

[6] R. Zhao, L. Tang, Integer programming model and dynamic programming based
heuristic algorithm for the heavy plate shuffling problem in the iron and steel
industry, in: 2010 International Conference on Logistics Systems and Intelligent
Management, ICLSIM, 3, IEEE, 2010, pp. 1381–1385.

[7] L. Tang, J. Liu, A. Rong, Z. Yang, Modelling and a genetic algorithm solution
for the slab stack shuffling problem when implementing steel rolling schedules,
Int. J. Prod. Res. 40 (7) (2002) 1583–1595.

[8] K. Keung, C. Lee, P. Ji, Industrial internet of things-driven storage location
assignment and order picking in a resource synchronization and sharing-based
robotic mobile fulfillment system, Adv. Eng. Inform. 52 (2022) 101540.

[9] Z. Xu, R. Wang, X. Yue, T. Liu, C. Chen, S.-H. Fang, FaceME: Face-to-
machine proximity estimation based on RSSI difference for mobile industrial
human–machine interaction, IEEE Trans. Ind. Inform. 14 (8) (2018) 3547–3558.

[10] S. Boge, S. Knust, The parallel stack loading problem minimizing the number of
reshuffles in the retrieval stage, European J. Oper. Res. 280 (3) (2020) 940–952.

[11] G. Bruno, M. Cavola, A. Diglio, C. Piccolo, A unifying framework and a
mathematical model for the Slab Stack Shuffling Problem, Int. J. Ind. Eng.
Comput. 14 (1) (2023) 17–32.

[12] Z. Zhang, P. Wang, W. Wang, Optimization and operation scheduling for a steel
plate yard based on greedy algorithm, J. Netw. 8 (7) (2013) 1654.

[13] L. Tang, H. Ren, Modelling and a segmented dynamic programming-based
heuristic approach for the slab stack shuffling problem, Comput. Oper. Res. 37
(2) (2010) 368–375.

[14] Y. Shi, S. Liu, Very large-scale neighborhood search for steel hot rolling
scheduling problem with slab stack shuffling considerations, IEEE Access 9
(2021) 47856–47863.

[15] P. Rajabi, G. Moslehi, M. Reisi-Nafchi, New integer programming models for slab
stack shuffling problems, Appl. Math. Model. 109 (2022) 775–796.

[16] G. Zhao, J. Liu, L. Tang, R. Zhao, Y. Dong, Model and heuristic solutions for
the multiple double-load crane scheduling problem in slab yards, IEEE Trans.
Autom. Sci. Eng. 17 (3) (2019) 1307–1319.

[17] G. Bruno, M. Cavola, A. Diglio, C. Piccolo, A unifying framework and a
mathematical model for the slab stack shuffling problem, Int. J. Ind. Eng.
Comput. 14 (1) (2023) 17–32.

[18] M. Caserta, S. Schwarze, S. Voß, Container rehandling at maritime container
terminals: A literature update, Handb. Termin. Plan. (2020) 343–382.

[19] M.E. Petering, M.I. Hussein, A new mixed integer program and extended look-
ahead heuristic algorithm for the block relocation problem, European J. Oper.
Res. 231 (1) (2013) 120–130.

[20] S. Tanaka, F. Mizuno, An exact algorithm for the unrestricted block relocation
problem, Comput. Oper. Res. 95 (2018) 12–31.

[21] W. Zhu, H. Qin, A. Lim, H. Zhang, Iterative deepening A* algorithms for
the container relocation problem, IEEE Trans. Autom. Sci. Eng. 9 (4) (2012)
710–722.

[22] C. Zhang, H. Guan, Y. Yuan, W. Chen, T. Wu, Machine learning-driven algorithms
for the container relocation problem, Transp. Res. B 139 (2020) 102–131.

[23] N. Boysen, S. Emde, The parallel stack loading problem to minimize blockages,
European J. Oper. Res. 249 (2) (2016) 618–627.

[24] A. Azab, H. Morita, The block relocation problem with appointment scheduling,
European J. Oper. Res. 297 (2) (2022) 680–694.

[25] Q. Zeng, Y. Feng, Z. Yang, Integrated optimization of pickup sequence and
container rehandling based on partial truck arrival information, Comput. Ind.
Eng. 127 (2019) 366–382.

[26] V. Galle, V.H. Manshadi, S.B. Boroujeni, C. Barnhart, P. Jaillet, The stochastic
container relocation problem, Transp. Sci. 52 (5) (2018) 1035–1058.

http://refhub.elsevier.com/S1474-0346(24)00040-5/sb1
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb1
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb1
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb1
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb1
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb2
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb2
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb2
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb2
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb2
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb3
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb3
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb3
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb4
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb4
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb4
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb4
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb4
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb5
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb5
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb5
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb5
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb5
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb6
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb7
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb7
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb7
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb7
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb7
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb8
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb8
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb8
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb8
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb8
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb9
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb9
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb9
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb9
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb9
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb10
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb10
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb10
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb11
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb11
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb11
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb11
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb11
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb12
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb12
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb12
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb13
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb13
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb13
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb13
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb13
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb14
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb14
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb14
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb14
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb14
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb15
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb15
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb15
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb16
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb16
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb16
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb16
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb16
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb17
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb17
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb17
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb17
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb17
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb18
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb18
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb18
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb19
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb19
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb19
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb19
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb19
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb20
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb20
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb20
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb21
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb21
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb21
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb21
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb21
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb22
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb22
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb22
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb23
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb23
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb23
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb24
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb24
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb24
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb25
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb25
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb25
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb25
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb25
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb26
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb26
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb26

Advanced Engineering Informatics 60 (2024) 102392Z. Xu et al.
[27] B.G. Zweers, S. Bhulai, R.D. van der Mei, Optimizing pre-processing and
relocation moves in the stochastic container relocation problem, European J.
Oper. Res. 283 (3) (2020) 954–971.

[28] S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning, Appl. Soft Comput. 91 (2020) 106208.

[29] Z. Zhao, S. Liu, M. Zhou, A. Abusorrah, Dual-objective mixed integer linear
program and memetic algorithm for an industrial group scheduling problem,
IEEE/CAA J. Autom. Sin. 8 (6) (2021) 1199–1209.

[30] A. Azab, H. Morita, Coordinating truck appointments with container relocations
and retrievals in container terminals under partial appointments information,
Transp. Res. Part E: Logist. Transp. Rev. 160 (2022) 102673.
14
[31] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[32] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay, 2015,
arXiv preprint arXiv:1511.05952.

[33] L. Tang, W. Jiang, J. Liu, Y. Dong, Research into container reshuffling and
stacking problems in container terminal yards, IIE Trans. 47 (7) (2015) 751–766.

http://refhub.elsevier.com/S1474-0346(24)00040-5/sb27
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb27
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb27
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb27
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb27
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb28
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb28
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb28
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb29
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb29
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb29
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb29
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb29
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb30
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb30
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb30
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb30
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb30
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb31
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb31
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb31
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb31
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb31
http://arxiv.org/abs/1511.05952
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb33
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb33
http://refhub.elsevier.com/S1474-0346(24)00040-5/sb33

	Joint optimization of steel plate shuffling and truck loading sequencing based on deep reinforcement learning
	Introduction
	Related Works
	Steel Plate Retrieval Problem
	Container Retrieval Problem
	Difference with Existing Works

	Problem Description and Model Formulation
	Problem Description
	Platform for Steel Plates Retrieval Scheduling
	General Assumptions
	Notations Definition for Optimization Model
	Mathematical Model for SPS-TLS Problem

	Background of Deep Q Network with Prioritized Experience Replay
	Reinforcement Learning and Deep Q Network
	Deep Q Network with Prioritized Experience Replay

	AltDRL Algorithm for SPS-TLS Problem
	Alternating Iteration Algorithm Based on Deep Reinforcement Learning
	Heuristic Algorithm to Determine the Target Order
	Definition of State Features
	Definition of Actions
	Definition of Rewards

	Numerical Experiments
	Convergence of AltDRL Algorithm
	Convergence Process of the Number of Plate Shuffles
	Effectiveness of AltDRL Algorithm
	Comparisons with the Exact Methods
	Comparisons with the heuristic Algorithms

	Performance of the Joint Optimization

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

