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Modelling and Contouring Error Bounded Control of a Biaxial
Industrial Gantry Machine

Meng Yuan1, Chris Manzie2, Lu Gan3, Malcolm Good1 and Iman Shames2

Abstract— Dual drive gantry machines are widely used in
industry for manufacturing. However, the non-synchronised
movement of the dual drive may lead to deterioration in
contouring accuracy, and traditional control architectures com-
monly used in machining cannot explicitly bound the contouring
error to meet a desired tolerance. In this paper, we propose a
model predictive control architecture based on switched linear
time invariant control-oriented models, that is able to guarantee
a two-dimensional contouring tolerance in the presence of
uncertainty arising from imperfect drive synchronisation. To
develop the controller, we introduce a high-fidelity model for
the dual drive gantry machine and identify its parameters using
data from an industrial machine, and systematically reduce it to
a control-oriented model. The performance and computational
tractability of the proposed approach is demonstrated using
high fidelity simulations.

I. INTRODUCTION

XY positioning systems involve a manipulator moving
over a two-dimension rectangular area for moving, marking,
welding or cutting objects [1], [2]. Two hardware architec-
tures are used to support the end effector, the cantilever
beam (T-frame) and dual drive gantry (H-frame) systems.
The former requires fewer parts and is lower cost, but suffers
from relative structural flexibility and subsequent loss in
performance compared with the dual drive systems, which
typically have drives along each of the parallel axes [3]. This
has seen more industrial interest in the dual drive systems
for precision engineering applications such as laser cutting
machines, which can have large operating envelopes.

However, difficulties in maintaining complete synchro-
nisation in movement along the parallel axes can cause
deformation in the beam and lead to deteriorated accuracy of
the end effector. This non-synchronised behaviour may arise
due to the different characteristics of the dual drives or the
variational load distribution when loads moving along the
gantry [4]. Consequently, some efforts have been devoted to
modelling the dynamics of the dual drive gantry machine,
e.g. [4], [5]. However, the movement of the end effector
along the perpendicular axis as in [5], or other conditions
such as lateral deformation in the crossbeam [4] which
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impact on accuracy of the end effector model relative to the
real system are ignored.

The objective of controlling the end effector is generally
stated for planar machining applications such as tracking
a desired trajectory closely. Recently, various contouring
control research works have been done on the gantry machine
including [6], [7]. Such ‘adaptive robust control’ approaches
generally rely on using an estimate of contouring error which
is non-trivial to bound in practice. A sliding mode control
method is utilised in [8] to minimise the synchronous and
tracking error, however as in the other cases, a contouring
error bound cannot be guaranteed. Ultimately, it is desirable
to provide a guaranteed tolerance on the manufactured part.

In this paper, we firstly propose a physics-based model that
possesses position-dependent structural coupling characteris-
tics. The parameters of the proposed model are identified for
a commercial industrial laser machine. To guarantee that the
contour error is not violated during the entire process, we ex-
tend the single-axis bounded tracking error control methods
in [9] to the two-axes scenario. The structure of the problem
is exploited to partially decouple the controllers between axes
and reduce the computational load in calculating the control
outputs. Further simplification through the use of a switched
linear time invariant (LTI) approach is undertaken to reduce
the complexity of on-line calculations. The ability of the
proposed controller to maintain a guaranteed tolerance is then
demonstrated using a high-fidelity laser machine simulation.

II. SYSTEM MODELLING AND VALIDATION

A. Structural Configuration

A typical structure of the dual-drive gantry machine con-
sists of two motors that separately sit on parallel linear slides
carrying a crossbeam in the orthogonal direction. Generally,
there is another drive on the gantry holding the end-effector
head. Since intensive finite-element optimisation has been
widely used for structural design of industrial machines,
the structural parts generally have more rigidity than the
joints. Such machines can be successfully modelled with
rigid elements connected by flexible joints [10]. In order to
capture the characteristics of systems with limited stiffness,
we propose a model with linear and torsional springs to
represent the flexible joint that links the crossbeam with
the longitudinal motor as shown in Fig. 1. This schematic
figure shows the behaviour of the system when dual drive
is in synchronised (dot grey line) and non-synchronised
(solid black line) conditions. In order to allow the lateral
deformation in Y direction, linear springs that link the Y -
axis motors and linear guide are introduced. The two linear
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springs with spring constant ks are assumed symmetrically
located at the vertical centre of the two sides of each Y -axis
motors.
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Fig. 1. Schematic of moving gantry machine with Y-axis movement dis-
synchronisation.

In the schematic of the gantry machine, OXY is the fixed
inertial coordinate frame with origin O located in the middle
point between the two linear guides and Y -axis parallel to
the linear guides. Let O′ be the centre of mass (CoM) of
the crossbeam. The half-length of the crossbeam and motor
are L and l respectively. The half-width of the beam is wN .
The dual drives on Y axis are denoted as DY 1 and DY 2
respectively. Here, O′X ′Y ′ is a moving coordinate system
with the X ′-axis paralleling the lateral direction of the beam.

When the movements of the two Y -axis drives are not
synchronised perfectly, the angle formed between the X and
X ′ axes is θ. The moving distance of the X-axis head respect
to O′X ′Y ′ frame is xm which can be directly measured by
the linear encoder on the gantry. Let d denote the projection
of the distance between the head and beam mass centre in
the Y ′ direction. With the inclusion of the moving head and
some carriage blocks, the mass centre G of the entire rigid
parts should be different from the O′. However, considering
the mass of the head is relatively small compared to the total
mass of other parts, the mass centre G is close enough to
the O′. We assume the gantry beam rotates around O′ in the
later analysis when a Y -axis offset occurs.

Finally, let y1, y2 be the position of the Y -axis motors
along the respective guides, which can be measured by the
linear encoders.

B. Lagrangian-based System Modelling

If it is assumed that the rotation angle of the gantry is small
and the beam is rigid, the angle of rotation and position of
CoM for the gantry beam can be approximated by θ = (y2−
y1)/2L and yN = (y1 + y2)/2. Linear springs are included
to support some degree of misalignment between DY 1 and
DY 2, although translational dynamics are neglected in the
modelling. The planar movement dynamics can be described
by the generalised coordinates xm, yN and θ.

Based on these generalised coordinates, the CoM positions
of Y -axis drives, gantry and end effector head are respec-

tively defined as:

P1 = (x1, y1) = (−L cos θ − l, yN − L sin θ),

P2 = (x2, y2) = (L cos θ + l, yN + L sin θ),

PN = (0, yN ),

Pe = (xm cos θ + d sin θ, yN + xm sin θ − d cos θ).

The velocity of the four separate objects, namely two dual
drives, gantry and end effector head, are denoted as V1, V2,
VN and Ve with value:

V1 =

[
L sin θθ̇

ẏN − L cos θθ̇

]
, V2 =

[
−L sin θθ̇

ẏN + L cos θθ̇

]
,

VN =

[
0
ẏN

]
, Ve =

[
Γ cos θ − xm sin θθ̇

ẏN + Γ sin θ + xm cos θθ̇

]
, (1)

where Γ = ẋm + dθ̇. Let M1, M2, Me and Mn denote the
mass of the drive DY 1, drive DY 2, X-axis head drive, and
the gantry respectively. Since the gantry and end-effector are
two distinct rigid bodies, only the rotary kinetic energy of
the gantry is calculated. Let IN denote the moment of inertia
of the gantry corresponding to the central point O′ as:

IN =
1

12
Mn

(
(2L)

2
+ (2wN )

2
)
. (2)

The moment of inertia of the end effector head about its
centre of mass is assumed negligible. The total kinetic energy
is then calculated as

K =
1

2
M1V

T
1 V1 +

1

2
M2V

T
2 V2 +

1

2
MnV

T
N VN

+
1

2
MeV

T
e Ve +

1

2
IN θ̇

2. (3)

The total potential energy stored in linear and torsional
springs is P = krθ

2 + ksL
2 (1− cos θ)

2. The Lagrangian,
L = K − P , allows the dynamic equations for this three
degree-of-freedom system with generalised coordinates qj =
{xm, yN , θ}, j = 1, 2, 3 to be calculated from the Lagrange
equation d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Qqj .

The external generalised forces Qqj are computed based
on kinematic approach:

Qxm = kxix − bxẋm, (4)

QyN = ky(i1 + i2)− by(ẏ1 + ẏ2), (5)

Qθ = (ky(i2 − i1)− by(ẏ2 − ẏ1))L cos θ, (6)

where kx, ky are the force constant of the X,Y -axis motors;
ix, i1, i2 are the current inputs of the end effector motor, and
drives DY 1 and DY 2 respectively; bx, by are the viscous
friction coefficient of gantry and linear guides, where the
viscous coefficients on Y 1 and Y 2 are assumed identical.

The governing equations of the gantry mechanism are
given by (7), (8) and (9), where Mt = M1 +M2 +Me+Mn

is the total mass of the system; Md ,M1−M2 is the mass
difference. Unlike existing models, the governing equations
are able to capture the position dependent structural variation
when the head motor moves along the gantry beam.
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Me(−xmθ̇2 + ẍm + dθ̈ + ÿN sin θ) = Qxm
(7)

Me sin θẍm +MtÿN + (Med sin θ −MdL cos θ +Mexm cos θ) θ̈ +Me(−xm sin θθ̇2 + 2ẋm cos θθ̇ + dθ̇2 cos θ)

+MdLθ̇
2 sin θ = QyN

(8)

Medẍm + (Med sin θ −MdL cos θ +Mexm cos θ) ÿN +

(
L2 (M1 +M2) +

Mn(L2 + w2
N )

3
+Me

(
d2 + x2m

))
θ̈

+ 2krθ + 2L2ks sin θ (1− cos θ) + 2Meθ̇ẋmxm = Qθ

(9)

C. Control Oriented Modelling

The dynamics equation (7) can be reformulated as (10) by
lumping all terms involving yN , θ into a disturbance term:

ẍm +
bx
Me

ẋm =
kx
Me

ix + Fdx, (10)

where the disturbance term is Fdx , xmθ̇
2−dθ̈−ÿN sin θ. To

develop an approximate model of Y -axis without dependence
on the dynamics of xm, the (8) and (9) are approximated at
different operating point x̄m and rearranged as follows by
applying a small angle approximation:

MtÿN + 2by ẏN +Mex̄mθ̈ = ky (i1 + i2) + Fd1, (11)

Mex̄mÿN + Jθ̈ + 2byL
2θ̇ + 2krθ = kyL (i2 − i1) + Fd2,

(12)

where Md is assumed to be zero; J(x̄m) = J0+Mex̄
2
m is the

total moment of inertia which depends on value of x̄m, and

J0 = L2 (M1 +M2)+
Mn(L2+w2

N)
3 +Med

2; the disturbance
force are Fd1 = Me(x̄mθθ̇

2 − θẍm − dθθ̈ − 2ẋmθ̇ − dθ̇2)
and Fd2 = −Me(2θ̇ẋmx̄m + dθÿN + dẍm).

Multiple linearisation for different x̄m is undertaken to
reduce the model mismatch, leading to a switched LTI model
for these axes.

III. SYSTEM IDENTIFICATION AND MODEL VALIDATION

To parameterise the proposed model, data was collected
from a commercial laser machine with 1.5 m beam length
and 3 m moving distance in Y -axis with 0.1 µm measure-
ment resolution.

To simplify the system identification, the terms Mex̄mθ̈
and Mex̄mÿN arising after applying a small angle approxi-
mation to (8) and (9) are neglected and considered as plant-
model mismatch. The full order model is then approximated
by the following dynamic equations for y1 and y2:

Mt

(
ÿ1 + ÿ2

2

)
+ by (ẏ1 + ẏ2) = ky (i1 + i2) (13)

J
ÿ2 − ÿ1

2L
+ byL (ẏ2 − ẏ1) + kr

y2 − y1
L

= kyL (i2 − i1)

(14)

Noting J has x̄m dependency, the approximated transfer
function from current i1 to the drive velocity ẏ1 is:

Giv1(s) =
ky
((
J + L2Mt

)
s2 + 4L2bys+ 2kr

)

(Mts+ 2by) (Js2 + 2L2bys+ 2kr)
(15)

Several of these parameters can be identified from the
machine data sheet (e.g. the force constants, kx and ky) while
the remainder (e.g. J0, Mt, by , kr) must be identified from
the frequency response of collected data. During the data
collection, the Y -axis motors are excited with a 4 A peak
amplitude chirp-signal current when X-axis motor is held
constant at x̄m = 0 m and x̄m = −0.66 m.

The experimental and modelled frequency responses are
shown in Fig. 2 and Fig. 3. The physical system exhibits a
change in anti-resonance frequency from approximately 47
Hz to 45 Hz as the X-axis motor is moved from 0 to 66
cm along the gantry beam, exhibiting a state-dependence of
this motor on the resulting dynamics. The modelled system
is able to capture this dependence and also exhibits a similar
magnitude shift in anti-resonance frequency.
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Fig. 2. Bode plot from drive current to velocity when laser head is located
at x̄m = 0 m.

IV. PROPOSED PREDICTIVE CONTROL STRUCTURE

For the type of two-axes contouring problems commonly
seen industrially, the reference trajectory is time stamped and
is therefore different to other path following problems. In this
section we will present a model predictive control (MPC)
tracking algorithm to address this problem with bounded
contouring error.

A. Bounded Contouring Error and Bounded Tracking Error

As shown in Fig. 4, for a location of the end effector,
(xe(k), ye(k)) at time k, let (xc(k), yc(k)) be the closest
projection of end-effector onto the desired path. The refer-
ence trajectory will have a desired location

(
xd(k), yd(k)

)
,
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Fig. 3. Bode plot from drive current to velocity when laser head is located
at x̄m = −0.66 m.
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Fig. 4. Bounded tracking error leads bounded contouring error.

and thus the contouring error is ε and distance between actual
position and desired position is e.

Lemma 1. Given a desired contouring error bound εc, the
bounded contouring error ‖ε‖∞ ≤ εc can be guaranteed by
bounding the tracking error of X and Y axes as ‖ex‖∞ +
‖ey‖∞ ≤ εc.

Proof: Since xc is the closest point from the actual end
effector position, we have |ε(k)| ≤ |e(k)|, ∀k. Based on the
triangle inequality, we have |e(k)| ≤ |ex(k)|+ |ey(k)|. Then
the following inequalities hold: |ε(k)| ≤ |e(k)| ≤ |ex(k)| +
|ey(k)| ≤ εc.

From Lemma 1, the control objective can be restated as
ensuring ‖ex‖∞ ≤ εx and ‖ey‖ ≤ εy , where εx + εy = εc.

Because the X-axis tracking error in the control oriented
model is ex = xd−xe = xd−xm−dθ, the following remark
is provided to show how to ensure ‖ex‖∞ ≤ εx based on
the X-axis dynamics and reference trajectory.

Remark 1: Consider a desired X-axis tracking error
bound, εx that the system is initialised within, and set the
rotation angle constraint as |θ| ≤ θmax ≤ εx/d. If the
designed X-axis controller can guarantee |xd(k)−xm(k)| ≤
εx − dθmax, ∀k, the bounded tracking error can be guaran-
teed, i.e. ‖ex‖∞ ≤ εx. Note that the RCI set calculation in
this instance potentially introduces an asymmetry between
the X- and Y - axes error bounds due to the dθmax tightening
of εx. This is an artefact of decoupling the axes controller
in the proposed approach.

B. Error Bounded Model Predictive Control Formulation

An tracking error bounded control method for a single axis
machine described as a LTI system with disturbance has been
proposed in [9]. We now extend this work to allow bounds
to be imposed on contouring error in biaxial systems.

The reference trajectory for the end-effector position
is generated off-line and with specified position, velocity
and acceleration constraints. In keeping with standard ap-
proaches, we assume an LTI system as the reference model
for trajectory generation:

r+ = Arr +Brur, (16)

where r ∈ R2, ur ∈ R are the state and input of the reference
model. The matrices Ar and Br are given with reference
sampling time Tr as:

Ar =

[
1 Tr
0 1

]
, Br =

[
0
Tr

]
.

For X-axis reference, r and ur can be rx ,
[
xd vdx

]T
,

ur , ax where xd and vdx are the desired position and
velocity, ax is the desired acceleration. The same model (16)
can be used to describe the evolution of Y axis reference as
well when states ry ,

[
yd vdy

]T
represents the Y -axis

desired position, velocity and ur , ay is the acceleration.
The reference trajectory generated with (16) is considered to
satisfy constraints of the form:

[
−x̄
−v̄x

]
≤ rx ≤

[
x̄
v̄x

]
, −āx ≤ ax ≤ āx, (17)

[
−ȳ
−v̄y

]
≤ ry ≤

[
ȳ
v̄y

]
, −āy ≤ ay ≤ āy. (18)

The discrete-time state space models for the X- and Y -
axis can be derived from (10), (11) and (12) with given
sampling time Ts as

ξ+x = Axξx +Bxix + ExFdx, (19)

ξ+y = Ay(x̄m)ξy +By(x̄m)iy + Ey(x̄m)Fdy, (20)

where ξx ,
[
xm ẋm

]T
, ξy ,

[
yN ẏN θ θ̇

]T
are

the states, ix, iy =
[
i1 i2

]T
are the inputs. The system

coefficient matrix of (19) and (20) and disturbance vector
Fdy can be inferred from (11) and (12), but are not provided
explicitly here due to the space limitation.

The states and inputs of the system are required to remain
within bounded constraints, i.e.:

ξx ∈ Xm ⊆ R2, ξy ∈ Xy ⊆ R4, ix ∈ Ux ⊆ R, iy ∈ Uy ⊆ R2

As a conservative approach, the constraints on states and
inputs are used to define bounds on the disturbance forces
using the explicit form of (19) and (20). This leads to
compact disturbance sets of the form:

Fdx ∈ Wx ⊆ R, Fdy ∈ Wy ⊆ R2.
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Before formulating the proposed MPC, the definition of
robust control invariant (RCI) set and robust admissible input
(RAI) set are required to enforce state and input constraints.
The recursive feasibility of MPC is guaranteed by RCI set
as well, see [9], [11] for more details.

Definition 1: (RCI and RAI set) Consider a general
system x+ = f(x, u, w), where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm
and w ∈ W ⊆ Rq are the state, input and disturbance
vectors; X , U and W are the state, input and disturbance
constraint set respectively. The set R ⊆ X is a robust control
invariant set (RCI) if

x(k) ∈ R,∃u∈U :

f(x(k), u(k), w(k)) ∈ R, ∀w ∈ W,∀k ∈ Z0+.

where Z0+ is the set of non-negative integer number. Fur-
thermore, the set R is called a control invariant (CI) set if
w = 0; the set R∞ is the maximal robust control invariant
set if any R ⊆ R∞. The robust admissible input (RAI) set
for R is Θu(x) = {u ∈ U|f(x, u, w) ∈ R,∀w ∈ W}.

With this definition, we require the reference generated
by (16) stays in the reference CI set r(k) ∈ Rr∞,∀k ∈ Z0+

during all the process by selecting ur(k) ∈ Θur (r(k)) ⊆ Ur.
Then, to ensure

∥∥xd − xm
∥∥
∞ ≤ ε̄x, we start by defining

a set of the system and reference states, Sξx,rx ,

Sξx,rx = {(ξx, rx) |ξx ∈ Xm, rx ∈ Rrx∞,∥∥xd − xm
∥∥
∞ ≤ ε̄x

}
. (21)

If at any time k ∈ Z0+ the combined state
(ξx(k), rx(k)) ∈ Sξx,rx , we want the system and reference
states stay in Sξx,rx in the next time instant as well. This
requires a RCI set Rξx,rx ⊆ Sξx,rx as

(ξx, rx) ∈ Rξx,rx ,∃ix∈Ux :
(
ξ+x , r

+
x

)
∈ Rξx,rx ,

∀ (Fdx, ax) ∈ (Wx ×Θax(rx)) ,

where Θax(rx) is the RAI set for reference CI set Rrx .
For system with disturbance, the RCI set is generally not
finitely determined. We will use the method proposed in [9]
to calculate the Rξx,rx in finite number of steps.

The reference position trajectory is assumed known N
steps ahead, and may be used to establish a reference
velocity trajectory. Thus, using the reference γNx (k) =
[rx(k), · · · , rx(k +N − 1)]

T , the X-axis MPC solves the
following optimisation problem at each time instant:

U∗x (k) = arg min
Ux(k)

N−1∑

i=0

(
Qx
(
xd(i)− xm(i)

)2
+Rxi

2
x(i)

)

s.t. ξx(i+ 1) = Axξx(i) +Bxix(i),

xm(i) =
[

1 0
]
ξx(i),

xd(i) =
[

1 0
]
rx(k + i),

ξx(i) ∈ Rξx,rx(ξx, rx(k + i)), ∀i ∈ Z[0,N−1]
ξx(0) = ξx(k), (22)

where Qx and Rx are the cost function weight on X-
axis position error and control input respectively; Ux(k) =

(ix(0), · · · , ix(N − 1)). At each time instant, the optimal
control ix(k) = i∗x(0) is applied to the plant.

The way of computing RCI set Rξy,ry is similar to that
for Rξx,rx . In order to ensure

∥∥yd − ye
∥∥
∞ ≤ εy , we start

with a set Sξy,ry :

Sξy,ry = {(ξy, ry) | ξy ∈ Xy, ry ∈ Rry∞,∥∥yd − yN − x̄mθ + d
∥∥
∞ ≤ εy

}
. (23)

Since xm is approximated as a piecewise constant x̄m
over its operating range, for system (20) we need to compute
the RCI set Rξy,ry for each instant of x̄m. Clearly, there is
another trade-off in that using finer intervals in x̄m leads to
a better approximation of xm, but leads to more controller
switching and requires more off-line calculation and storage
of the RCI sets. The following requirement is imposed for
the off-line RCI set calculations:

(ξy, ry) ∈ Rξy,ry ,∃iy∈Uy :(
Ay(x̄m)ξy +By(x̄m)iy + Ey(x̄m)Fdy, r

+
y

)
∈ Rξy,ry ,

∀ (Fdy, ay) ∈ (Wy ×Θay (ry)) ,

where Θay (ry) is the RAI set for reference CI set Rry .
At time instant k, the predictive controller for controlling

yN and θ solves the on-line optimisation based on reference
γNy (k) = [ry(k), · · · , ry(k +N − 1)]

T :

U∗y (k) = arg min
Uy(k)

N−1∑

i=0

(
Qy
(
yd(i)− ye(i)

)2
+ ‖iy(i)‖2Ry

)

s.t. ξy(i+ 1) = Ay(x̄m)ξy(i) +By(x̄m)iy(i),

ye(i) =
[

1 0 x̄m 0
]
ξy(i)− d,

yd(i) =
[

1 0
]
ry(k + i),

ξy(i) ∈ Rξy,ry (ξy, ry(k + i)), ∀i ∈ Z[0,N−1]
ξy(0) = ξy(k), (24)

where ‖iy(i)‖2Ry
= iy(i)TRyiy(i). At each time instant, the

optimal control iy(k) = i∗y(0) is applied to the plant. The
constraint required in Remark 1 is guaranteed by enforcing
the state ξy stays in the calculated RCI set.

V. SIMULATION RESULTS

In this section, the proposed controller is demonstrated on
the nonlinear model identified in Section II. The laser head
is required to cut a circle with centre at (0, 0) and 0.05 m
radius. The path includes a straight-line acceleration part to
accelerate the Y -axis to maximum velocity.

The maximum speed and acceleration during the cutting
process are 0.5 m/s and 5 m/s2. With a given contouring
error bound as 1.5 mm, we choose the X-axis and Y -axis
tracking error bound as εx = 1 mm and εy = 0.5 mm. The
upper bound of rotation angle is chosen as θmax = 0.0025
rad, and this gives ε̄x = 0.5 mm.

For the Y -axis control, the switching LTI model is cal-
culated based on 23 segments for x̄m from −0.055 m to
−0.055 m. The weight in MPC cost function is chosen as
Qx = Qy = 105, Rx = 0.02 and Ry is chosen a scalar
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matrix with multiple 0.02 to put more weight on th tracking
errors. The desired and actual contour is shown in Fig. 5.
It can be seen that actual contour stays very close to the
reference during all the process.
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Fig. 5. Desired and actual contour of end effector laser head.

The X-axis tracking error xd − xe is shown in Fig. 6.
The profile of the rotation angle θ and Y -axis tracking error
yd − ye are shown in Fig. 7. It is clear the constraints of
‖ex‖∞ ≤ 1 mm and ‖ey‖ ≤ 0.5 mm are satisfied.
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Fig. 6. X-axis tracking error.
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Fig. 7. Rotation angle and Y -axis tracking error.

Since the entire path only consists of straight line and
circle. The actual contouring error can be directly calculated
and is illustrated in Fig. 8. The maximum contouring error
is 0.58 mm, which is below the specified error and is
around 1.16% of the circle radius. The simulation results
demonstrate the ability of the proposed controller in meeting
a specified contouring error requirement.
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Fig. 8. Actual contouring error during the whole process.

VI. CONCLUSION AND FUTURE WORK

A model for a dual drive industrial gantry machine was
proposed, and captures twist in the gantry beam that may lead
to contour tracking problems. This was used in the design of
a new biaxial model predictive controller that can guarantee
a given contouring tolerance. Further work will investigate
implementation on real machines, with code optimisation for
storage and controller execution time considerations; as well
as any limitations on the reference trajectories selection in
the calculation of the RCI sets used in the controller.
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