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Abstract—Many industrial applications of machining require
a bounded tracking error during transient and steady processes.
Traditional control architectures in machining are unable to
explicitly bound tracking errors, and therefore conservative
operation is required to ensure satisfactory performance. In
this paper, we propose a model-predictive-based approach to
guarantee bounded error tracking for the family of systems with
available end effector position measurements. The state and input
constraints and the bounded error requirements are satisfied by
a model predictive controller (MPC) that enforces the system and
reference states to remain in a polyhedral robust control invariant
(RCI) set. We propose an algorithm for calculating this RCI set in
a finite number of computation steps and give the formulation of
the MPC. The superiority of the proposed control approach over
a conventional tracking controller is demonstrated via simulation
of a laboratory machine.

Index Terms—Trajectory tracking, model predictive control,
bounded error tracking

I. INTRODUCTION

In the field of industrial precision motion control, many ap-
plications require the manipulated unit to track a time-varying
reference or a given path as closely as possible. Tracking error
plays an important role in assessing the control performance
of a range of machine applications including CNC machines
[1], and X-Y tables with ball screw driven servos [2]. This
subset of machining applications is the system considered in
this paper, which is characterised by the measurements of
the end effector position being available to the tracking error
controller, either directly or through capability provided by
incorporation of additional sensing [3].

Traditionally, the link between the motor and end effec-
tor/load is constructed with high stiffness and is treated as
rigid while designing the tracking controller. Greater rigidity
implies more weight, and hence larger and more costly motors
may be required to avoid increasing the time required to
perform a given operation [4]. Alternatively, using lighter (but
more flexible) manipulators promises faster movements and
more efficient utilisation of energy. However, the flexibility
of the lightweight structure can cause system vibration which
compromises the trajectory tracking performance [5], and may
even lead to system instability [6] if not considered in the
tracking controller design.

Many control synthesis designs have been proposed to
achieve end effector tracking whilst considering the structural

flexibility. In the context of the plants being considered in
this work (where end effector measurements are available), it
has been demonstrated that consideration of the the structural
dynamics has led to improved performance in tip tracking
[5], X-Y tables [3], [7] and ball screw systems [2], [8], [9].
However, achieving a guaranteed tolerance of tracking error
using these approaches, particularly in the presence of system
disturbances, is not possible.

In [10], a bounded error tracking model predictive controller
(MPC) is designed for a linear time invariant (LTI) system
subjected to state and input constraints in the absence of model
disturbances. A robust control invariant (RCI) set is utilised in
the MPC formulation to ensure the reference is achievable and
state, input and performance constraints can be guaranteed.

In this paper, we extend the approach of [10] in two ways.
Firstly, the MPC problem is augmented to consider distur-
bances on the plant model characterised by modelling error
or bounded external disturbances. Secondly, an algorithm for
estimating the RCI set used in the MPC problem is proposed,
that ensures the set can be determined in a fixed number of
iterations, thereby alleviating a potential shortcoming of the
approach in [10]. The proposed approach is simulated on a
representative system to demonstrate adherence to the desired
system constraints and to assess the computational tractability
of the proposed approach.

Notation: R and Z, Z+, Z0+ are the sets of real and
integer, positive integer, non negative integer numbers, and
Z[0,i] stands for the integer set from 0 to i for i ∈ Z+. Consider
a ∈ R

na , b ∈ R
nb , then (a, b) �

[
aT , bT

]T ∈ R
na+nb

represents the stacked vector. Set Bn(p) is the closed ball in
R

n with respect to the infinity norm with radius p. For two
sets X and Y , X +Y is the Minkowski set sum. Vector x(k)
is the value at sampling instant k, the time Ts · k, where Ts

is the sampling period. Vector x+ stands for the value of x at
the next time instant, and xi|k represents the predicted value
of x at the time sample k + i based on the data at sample k.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider a general two-inertia flexible system with an
actuator-driven moving part and a flexibly connected end
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effector. The dynamics of the mechanical system can be
represented as:

x+
m = xm + Tsvm

v+m = vm +
Ts

Mm
(ktu− ks (xm − xe)− cs (vm − ve)− Fd)

x+
e = xe + Tsve

v+e = ve +
Ts

Me
(ks (xm − xe) + cs (vm − ve)) (1)

where Mm, Me are, respectively, the mass of the motor and
end effector; xm and xe are the position of the motor and
end effector separated by the flexible link; vm and ve are
the velocity of the motor and end effector respectively; u
is the current command to the drive system calculated by
the controller; ks and cs are the spring constant and internal
damping coefficient of the flexible link; kt is the force constant
of the motor; Ts is the sampling period.

In this paper, the disturbance force Fd is the sum of the
cogging force and the friction force. More generally, Fd

can include plant model mismatch and measurement noise,
although these are not explicitly considered in this work.

The model of cogging force is adopted from [11]:

Fc(xm) =

N∑
j=1

(
Scj sin

(
2πj

τ
xm

)
+ Ccj cos

(
2πj

τ
xm

))

(2)
where τ is the pole pitch of the linear motor; N is a positive
integer number.

The friction model employed is based on the Lorentzian
model of [12] employing the Karnopp remedy [13], [14] to
avoid simulation issues around zero velocity:

Ff (xm, vm, u) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
fc + fv|vm|+ fs

1+( vm
vs

)
2

)
sgn(vm) |vm| > λ

Fe |vm| ≤ λ

|Fe| ≤ |fc + fs|
(fs + fc) sgn(Fe) otherwise

(3)

where Fe � (ktu− Fc(xm)) is the externally impressed
force; fc is the Coulomb friction coefficient; fv is the viscous
friction coefficient; fs and vs are parameters of the Stribeck
component in the model; λ is the zero velocity interval which
is usually chosen as a small number.

The nonlinear mechanical system dynamics (1)-(3) can be
written in state space form as:

x+ = Ax+Bu+ Ew (4)

where the state vector is x � (xm, vm, xe, ve); w stands for
the nonlinear components in (2) and (3). The specific matrices
of the LTI model (4) are given as

A =

⎡
⎢⎢⎣

1 Ts 0 0

−Tsks

Mm

Mm−Ts(cs+fv)
Mm

Tsks

Mm

Tscs
Mm

0 0 1 Ts
Tsks

Me

Tscs
Me

−Tsks

Me

Me−Tscs
Me

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0
Tskt

Mm

0
0

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

0
− Ts

Mm

0
0

⎤
⎥⎥⎦ (5)

The constraints of state, input and disturbance are shown
below:

x ∈ X , u ∈ U , w ∈ W (6)

This disturbance set W is determined by the range of
function Fc + F̄f in this paper, and the function F̄ is given
as:

F̄f (xm, vm, u) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
fc +

fs

1+( vm
vs

)
2

)
sgn(vm) |vm| > λ

Fe − fvvm |vm| ≤ λ

|Fe| ≤ |fc + fs|
(fs + fc) sgn(Fe)− fvvm otherwise

(7)

Remark 1. The LTI model (4) can be used to represent a vari-
ety of flexibly-connected two-inertia systems with translational
and/or rotational degrees of freedom.

Furthermore, to ensure bounded error tracking, it is neces-
sary to impose constraints on the reference that can be tracked.
With this in mind, the reference is assumed to be generated
by an external LTI system as

r+ = Arr +Brur

x∗
e = Crr (8)

where r ∈ R
nr , ur ∈ R

mr , x∗
e ∈ R are the state, input and

output of the reference model, subject to the constraints,

r ∈ X r, ur ∈ Ur (9)

Moreover, it is considered that the reference is generated
offline, and as such a sufficient feedforward amount of the ref-
erence trajectory (denoted by N sampling instants) is available
to the controller at each time step.

Ultimately, it is desired to ensure that the tracking error
between the reference and the end effector is bounded by some
constant, ε, to guarantee the tolerance of the machined part.
This bounded tracking error requirement can be considered as
a performance constraint which is represented as

‖x∗
e(k)− xe(k)‖∞ ≤ ε, ∀k ∈ Z0+ (10)

III. PROPOSED TRACKING CONTROL SYNTHESIS

The control synthesis problem has two stages described
in the following subsections. In the first (offline) stage, the
maximal robust control invariant set is estimated using a novel
algorithm. In the second (online) stage, this set is imposed as
a constraint in the MPC problem to ensure recursive feasibility
of the implemented controller and subsequently stability of the
tracking error.
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A. Estimation of the Maximal Robust Control Invariant Set

The following three definitions are presented for complete-
ness in general setting:

Definition 1. (RCI and maximal RCI sets) Consider the
system x+ = Ax+ Bu+ Ew, where x ∈ X ⊆ R

n, u ∈ U ⊆
R

m and w ∈ W ⊆ R
q are the state, input and disturbance

vectors. The set R ⊆ X is a robust control invariant set (RCI)
if

x(k) ∈ R, ∃u∈U , Ax+Bu+ Ew ∈ R, ∀w ∈ W, ∀k ∈ Z0+.

Furthermore, the set R is called a control invariant (CI) set
if w = 0; the set R∞ is the maximal robust control invariant
set if any R ⊆ R∞.

Definition 2. (Robust admissible input set) The robust
admissible input set of R is

Θu(x) = {u ∈ U|Ax+Bu+ Ew ∈ R, ∀w ∈ W}
Definition 3. (One-step reachable set) The one-step reach-
able set represents the set of states that can be robustly steered
to a given set Y ⊆ R

n in one step under any possible
disturbance w ∈ W , and can be computed as

D (Y,W) � {x ∈ R
n|∃u∈U , Ax+Bu+ Ew ∈ Y, ∀w ∈ W}

(11)

With these concepts, we assume the reference is generated
offline and stays within the control invariant (CI) set r(k) ∈
Rr

∞, ∀k ∈ Z0+ by selecting ur(k) ∈ Θur (r(k)) ⊆ Ur. This
guarantees the constraints in (9) are satisfied.

Having ensured the invariance of the reference, we now shift
attention to ensuring ‖x∗

e − xe‖∞ ≤ ε by defining a set of the
combined system and reference states, Sx,r ,

Sx,r =
{
(x, r) ∈ R

n+nr |x ∈ X , r ∈ Rr
∞, ‖x∗

e − xe‖∞ ≤ ε
}

At any time k ∈ Z0+ if (x(k), r(k)) ∈ Sx,r, the controller
we developed should ensure (x(k + 1), r(k + 1)) ∈ Sx,r for
every admissible r(k + 1). This requires a robust control
invariant set Rx,r ⊆ Sx,r, specifically,

(x, r) ∈ Rx,r,∃u∈U , (Ax+Bu+ Ew,Arr +Brur) ∈ Rx,r,

∀ (w, ur) ∈ (W ×Θur (r)) . (12)

One method of computing this RCI set Rx,r involves
the iteration Ri+1 = Ri ∩ D (Ri, (W ×Θur (r))), where
R0 = Sx,r, until Ri = Ri+1. Then Rx,r = Rx,r

∞ = Ri+1.
This method requires the computed two successive sets Ri

and Ri+1 are same, and this maximal RCI set Rx,r
∞ is called

finitely determined [15].
In [10], an algorithm is proposed to computer a convex

RCI set Rx,r for disturbance-free system x+ = Ax + Bu,
which involves the above-mentioned iteration with computa-
tion Ri+1 = Ri ∩ D (Ri,Ur) until Ri+1 = Ri. However,
the stop criterion is numerically difficult to be satisfied when
the finitely determined condition of the maximal RCI set
is generally not met for system with external disturbance
[16]. Consequently, we propose a modification here based

on an estimate of the one-step reachable set using an inner
approximation [15]:

D̂ (Y, p) = {x ∈ R
n| ∃u∈U , Ax+Bu+ Ew + d ∈ Y,

∀d ∈ B
n(p), ∀w ∈ W} (13)

where d is a vector; the parameter p is a tuning parameter
that can be used to influence the conservativeness of the
estimation. The modified algorithm for computing Rx,r is
given as follows:

Algorithm 1
1) Initialisation:
Let i = 0,

Rs � (Rn ×Rr
∞),

R̄0 = {(x, r) ∈ R
n+nr |x ∈ X , ‖x∗

e − xe‖∞ ≤ ε},
and R0 = Rs ∩ R̄0.

2) Iteration: Ri+1 = Rs ∩ R̄i+1, where

R̄i+1 = R̄i ∩ D̂
(R̄i, p

)

D̂
(R̄i, p

)
=

{
(x, r) ∈ R

n+nr | ∃u∈U ,
(Ax+Bu+ Ew,Arr +Brur) + d ∈ R̄i,

∀d ∈ B
n+nr (p), ∀ (w × ur) ∈ (W ×Ur)

}

3) if Ri ⊆ Ri+1 + B
n+nr (p), calculation terminates.

4) Update i = i+ 1, return to 2).

The following theorem provides a guarantee for the finite
termination of the proposed algorithm in estimating the max-
imal robust control invariant set:

Theorem 1. Given a desired end effector tracking error bound
ε and a closed ball with radius p, Algorithm 1 terminates in
finite number of steps. If the computed set Ri+1 	= ∅, then
Rx,r = Ri+1 ⊆ Rx,r

∞ is a polyhedral RCI set for the flexible
system (4) and reference system (8) subjected to the state and
input constraints, and robust to w ∈ W and ur ∈ Θur (r).

Proof. (sketch) The proof follows similar steps to [10], with
appropriate modification to allow for the non-empty W and the
use of the approximation of one-step reachable set D̂(·).

B. MPC problem formulation

With an RCI set estimated offline as described above, the
online task for the controller requires ensuring that the system
and reference states within this set at all times to guarantee the
end effector position is within the specified tolerance bound
for any feasible reference r ∈ Rr

∞. At k ∈ Z0+, N ∈ Z+, the
future reference γN

k = (r(k), · · · , r(k +N − 1)) is assumed
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Fig. 1. Linear motor based test bench for system identification.

known. The following online optimisation problem is then
solved at each time instant:

U∗(k) = argmin
U(k)

N−1∑
i=0

(
Q
(
x∗
e(k + i)− xe(i|k)

)2
+Ru2

i|k
)

s.t. xi+1|k = Axi|k +Bui|k
ri|k = r(k + i)

x∗
e(k + i) = Crr(k + i)

xi|k ∈ Rx,r(x, ri|k), ∀i ∈ Z[0,N−1]

x0|k = x(k) (14)

where U(k) =
(
u0|k, · · · , uN−1|k

)
. At each time instant, the

optimal control u(k) = u∗
0|k is applied to the plant.

Remark 2. The satisfaction of the system states inside the
projected RCI set xi|k ∈ Rx,r(x, ri|k) ensures the state, input
and performance constraints are guaranteed, specifically, x ∈
X , u ∈ U , ‖x∗

e − xe‖∞ ≤ ε.

IV. SIMULATION RESULTS

A. System Identification

In this section, the proposed controller is demonstrated via
simulation using a model of the industrial test bench shown in
Fig. 1. Model parameters and external disturbances were estab-
lished from system identification experiments with the linear-
motor-based test bench. The LinX® linear motor, designed
by ANCA Motion, is a high-precision permanent magnet
synchronous tubular motor. Linear encoders are installed on
the motor base and the end effector for position measurement.

The friction and cogging force are identified as the distur-
bance force on the motor base in (1) for high fidelity sim-
ulation purposes. The spectral analysis based on fast Fourier
transform is used to find the frequency component of the cog-
ging force. The power spectral density with constant velocity
at 0.06 m/s is shown in Fig. 2. The pole pitch is identified as
τ = 87.5 mm based on the fundamental peak. It can be seen
that the first three harmonics are sufficient to approximate the
cogging force. The identified model parameters of cogging
force are Sc1 = 4.07, Cc1 = 9.20, Sc2 = 0.95, Cc2 = −0.26,
Sc3 = −0.72, Cc3 = 0.57.
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Fig. 2. Spectral analysis of cogging force.

The identified values of the friction model parameters for
the test bench are fc = 36.36, fv = 250.9, fs = 22.04,
vs = 2.82 and λ is chosen as 10−6. Fig.3 shows the
comparison between the measured friction data and the value
calculated based on friction model Ff . It indicates that the
model provides an excellent representation of the measured
data.

-300 -200 -100 0 100 200 300
Velocity, mm/s

-150

-100

-50

0

50

100

150
F

ric
tio

n,
 N

Measured friction force
Estimated friction force based on model

Fig. 3. Friction model fits with the measured friction force data.

To identify the parameters in (5), a point-to-point movement
is conducted on the test bench. Then the parameters are
identified using a least square method. The identified motor
and end effector masses are Mm = 39.61 kg, Me = 0.38
kg. The spring constant and internal damping coefficient are
ks = 2908 N/m and cs = 2.10 Ns/m.

The models of the disturbance force w is assumed unknown
in the controller design process, and only the range of the
disturbance force is known. The range of the disturbance force
is calculated from the maximum values of (2) and (7) in the
domain of interest and found to be w ∈ [−70, 70] N.

B. Simulation Results and Comparison

In this section, we desire the end effector to track a reference
trajectory with a tracking error bound ε = 5mm. The tracking
performance using the proposed method is compared with that
obtained with a conventional cascaded PI controller. The states
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of the reference model are the desired position and velocity
of the end effector, namely r � (x∗

e, v
∗
e). The reference is

generated from a double integrator model whilst considering
position and velocity constraints, i.e. (0,−1) ≤ r(t) ≤ (0.1, 1)
[m, m/s]. Acceleration is the input to the reference model, and
is subject to the constraints −10 ≤ ur(t) ≤ 10 [m/s2]. The LTI
model of the reference (8) prior to constraint consideration, is
given as follows:

r+ =

[
1 Ts

0 1

]
r +

[
0
Ts

]
ur

x∗
e =

[
1 0

]
r (15)

The state and input constraints of system are taken to be :

−

⎡
⎢⎢⎣

0.05
1

0.05
1

⎤
⎥⎥⎦ ≤ x ≤

⎡
⎢⎢⎣

0.15
1

0.15
1

⎤
⎥⎥⎦

− 20 ≤ u ≤ 20

Yalmip [17] and MPT3 [18] are used to estimate the one-
step reachable set, D̂ (·) in (13). The RCI set is subsequently
calculated using Algorithm 1, and the cost function J =

105
(
x∗
e(k + i)− xe(i|k)

)2
+u2

i|k is used in the MPC problem
formulation.

In order to demonstrate the performance of the proposed
controller, a point-to-point trajectory with 10 m/s2 maximum
acceleration, 1 m/s maximum velocity and 0.1 m moving
distance is considered for tracking control. The sample period
of the proposed controller is 1 ms. Fig. 4(a) shows the
tracking performance of the proposed controller, while the
current command is given in Fig. 4(b). It can be seen that
the trajectory of end effector position stays inside the error
bound throughout the process, thus satisfying the tolerance
constraint. Furthermore, the input current remains within the
acceptable range, demonstrating the efficacy of the proposed
approach.

(a)
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(b)

Fig. 4. Point-to-point tracking performance of proposed controller : (a)
trajectory; (b) current input command.

For comparison, the widely applied cascaded PI controller
is considered to provide a benchmark for assessing the per-
formance of the proposed algorithm. Since the position and

velocity of the end effector are assumed measurable, the
difference between the speed of the motor and end effector
is used as an additional feedback in the velocity loop. For a
fair comparison, the cascaded controller is tuned based on the
same cost function used in the MPC formulation.

To provide a fairer comparison between the cascaded PI
and the proposed algorithm, two sampling rates of the PI
controller are considered to allow for the increased computa-
tional demand of the optimisation problem in (14). In the first
case, an identical sample rate of 1 kHz is considered for both
controllers, whilst a faster rate of 4 kHz is also used to reflect
the potentially slower updates available through incorporation
of an MPC approach.

The end effector tracking error resulting from the different
methods is shown in Fig. 5. The maximum tracking error of
the proposed controller, and the 1 kHz and 4 kHz sampling
rate cascaded controllers are 4.5 mm, 9.2 mm and 8.0 mm
respectively. It can be seen that the proposed controller guar-
antees the bounded error tracking, whereas the error bound
is violated by both cascaded PI controllers. Also, it can be
seen that the vibration of the end effector is considerably
reduced by the proposed controller. After the reference reaches
the desired position, the value of current command calculated
by the proposed controller reduces to zero considering the
tracking error is already within the bound tolerance. This
causes the small vibration and steady state offset of the
proposed controller after deceleration - if it was desirable to
fully remove the steady state error, this could be tackled by a
integrator augmented MPC as discussed in [19].
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Proposed controller with 1kHz sampling rate
Cascaded controller with 1kHz sampling rate
Cascaded controller with 4kHz sampling rate
Error Bound

Constraint violation

Fig. 5. Point-to-point reference tracking error of end effector based on
proposed control method and cascaded PI controllers with different sampling
rates.

To further assess the capabilities of the proposed approach,
a sinusoidal reference with maximum acceleration of 9.8
m/s2, x∗

e = 0.05 + 0.05 cos(14t), is considered for reference
tracking. This form of reference is widely used in laser cutting
applications for generating a circular contour.

The sinusoidal reference tracking performance of the pro-
posed controller is shown in Fig. 6(a) with the resulting
control input Fig.6(b). As expected, the end effector follows
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the command closely without violating the error tolerance. The
control input also stays within the input constraint.

The end effector tracking error of proposed method and
cascaded PI controllers is given in Fig. 7. The error tolerance
is achieved by the proposed controller and the 4 kHz sample
rate cascaded controller. However, the error bound is violated
by using 1 kHz sample rate cascaded controller.
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Fig. 6. Sinusoidal tracking performance of proposed controller : (a) trajectory;
(b) current input command.
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Fig. 7. Sinusoidal reference tracking error of end effector based on proposed
control method and cascaded PI controllers with different sampling rates.

The simulation results demonstrate the proposed approach
is able to guarantee a given error tolerance and significantly
reduce the vibration of the end effector.

V. CONCLUSION

A model-predictive-based bounded error trajectory tracking
control scheme is proposed in this paper. The estimation of
maximal RCI set for systems with external disturbance is
considered. Simulation results demonstrate the proposed con-
trol scheme can guarantee the desired tracking error tolerance
without violating state and input constraints. An improved
performance of ensuring tracking error bound and reducing
vibration is achieved by the proposed method compared to
the conventional cascaded PI controller.

Further work involves implementing this error bound track-
ing controller on industrial machines, and consider the con-
troller design when the position and the velocity of the end
effector are not directly measured.
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[14] H. Olsson, K. Åström, C. Canudas de Wit, M. Gäfvert, and
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