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Abstract

This thesis investigates how Deep Generative Models (DGMs) can address
important drug discovery problems involving sampling from unnormalized
distributions. It consists of two papers focusing on this challenge’s aspects:
molecular design and conformational sampling. The first paper proposes a new
training scheme to fine-tune graph-based DGMs for de novo molecular design.
Our method can produce molecules with specific properties even when they
are scarce or missing in the training data and outperforms previously reported
graph-based methods on predicted dopamine receptor type D2 activity while
maintaining diversity. The second paper develops Surrogate Model-Assisted
Molecular Dynamics (SMA-MD), which combines a DGM with statistical re-
weighting and short Molecular Dynamics simulations to generate equilibrium
ensembles of molecules. SMA-MD can produce more diverse and lower energy
ensembles than conventional molecular dynamics simulations. These contribu-
tions constitute important stepping stones towards the automation of the drug
discovery process.
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Chapter 1

Introduction

Drug discovery is the process of identifying and developing new compounds that
can modulate the activity of a biological target, such as a protein or a gene, for
therapeutic purposes. Drug discovery is a complex, costly, and time-consuming
endeavor, requiring multidisciplinary expertise and collaboration. According to
some estimates, it takes an average of 10 years and 2.6 billion dollars to bring
a new drug to the market [1]. Hence, finding ways to speed up and simplify
this process is crucial.

Machine Learning (ML) technologies can streamline and expedite various
aspects of drug design. They can help identify and validate new targets by
analyzing massive amounts of biological and genomic data [2], [3], enhance the
design and optimization of drug candidates by using generative models and
molecular simulations [4]–[6], and improve the prediction of drug properties and
safety [7]–[9]. In addition, natural language processing and computer vision
techniques can facilitate the clinical development and testing of drugs [3], [10].

Sampling from unnormalized distributions is an important open scientific
problem with applications in drug discovery [11], material science [12] and
machine learning [13], [14]. The objective is to generate samples, x, following
a certain probability density p(x), proportional to some function from which
the normalizing constant is unknown. This function is usually an exponential
of some fitness function f(x). There are several approaches to sample from
unnormalized distributions, such as simulation-based methods [15], [16] or
Markov Chain Monte Carlo [17]–[19]. However, they perform poorly for
high-dimensional and topologically complex data, such as molecules. Deep
Generative Models (DGMs) are a class of machine learning models that can
be used to generate new data samples that are similar to the training data.
DGMs are topologically flexible and well-behaved in high-dimensional spaces.

This thesis explores two solutions based on DGMs to sample from unnormal-
ized molecular distributions p(x). First, we explore molecular design, in which
x is a molecular graph and f is an oracle function assessing the desirability of
a molecule. Second, we delve into conformational sampling, where x will be a
3-dimensional arrangement of atoms and f will be the negative reduced energy.

The first paper [20] presents a novel training scheme to fine-tune graph-
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4 CHAPTER 1. INTRODUCTION

based Deep Generative Models for de novo molecular design. This scheme
guides the model to generate molecules with desired properties, even when
they are rare or absent in the training data. We use a Graph Neural Network
to model the action probability distributions for building molecular graphs,
and introduce a memory-aware loss function to speed up and stabilize learning.
We demonstrate the effectiveness of this approach on several design tasks,
especially for generating molecules with predicted dopamine receptor type D2
activity.

The second paper [21] introduces a new method for generating equilibrium
ensembles of molecules that combines a DGM with statistical reweighting and
short Molecular Dynamics (MD) simulations. The method, called Surrogate
Model-Assisted Molecular Dynamics (SMA-MD), can produce more diverse
and lower energy ensembles than conventional MD simulations, and can also
estimate implicit solvation free energies. SMA-MD is demonstrated to be an
efficient and transferable approach for sampling from the Boltzmann distribution
of small molecular systems.

Finally, we will discuss how these methods could impact drug design
pipelines in the future and what important problems towards the automa-
tion of drug design remain unsolved.



Chapter 2

Background

2.1 The drug discovery process

Drug discovery is the process of finding new medications based on the knowledge
of a biological target. A biological target is a key molecule involved in a
particular metabolic or signaling pathway that is associated with a specific
disease condition or pathology. Drug discovery is a multi-step process that
aims to create molecules that can bind to the target and modulate its function,
resulting in a therapeutic benefit to the patient [22] (Figure 2.1).

The first stage of drug discovery involves target identification and validation.
Target identification [23] is the process of finding a biological target, such as a
protein or a gene, that is involved in the disease mechanism and can be modu-
lated by a drug. Popular techniques include genomics [24] and proteomics [25],
which aim to describe the structure, function, and dynamics of genes/proteins
in the human body. Target validation is the process of confirming that the
target is indeed relevant to the disease and is performed using methods such
as gene knockouts. Gene knockouts [26] consist of removing or inactivating
specific genes within an organism’s genome to determine the effect on the
disease mechanism.

The second stage is drug design and consists of lead discovery and optim-
ization. Lead discovery is the process of screening large libraries of chemical
compounds for those that have potential activity against the target. One
important method is de novo design [27], which is a computational technique
to generate novel molecular structures that have desired properties or functions.
Lead optimization is the process of improving the properties of lead compounds,
such as potency, selectivity, solubility, stability, and toxicity, to make them
suitable for further development. One key technique is Quantitative Structure-
Activity Relationship (QSAR) modeling [28], [29], which involves predicting
the biological activity of a compound based on its chemical structure.

Finally, drug development covers the steps taken to convert the lead com-
pound into an approved drug product for human use. Drug development
includes preclinical research to evaluate the safety and efficacy of the compound
in animal models, clinical research to test its effects in human volunteers,
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Target iden�fica�on
and valida�on:

- Genomics and proteomics.
- Gene knockouts and RNA    

 interference.

Drug design:
- Lead discovery: Screening 

and de-novo design.
- Lead op�miza�on: Docking 

and Free Energy Perturba�on.

Drug development:
- Pre-clinical: In-vitro and

in-vivo experiments.
- Clinical: Human tes�ng.

Figure 2.1: The drug discovery process: stages and key techniques

regulatory review to obtain approval from authorities such as the European
Medicines Agency or the Food and Drug Administration, and post-market
monitoring to ensure its safety and quality after launch.

2.2 Molecular representations

In this work, we restrict ourselves to representing molecules at the Born-
Oppenheimer level of detail, which specifies the position of the nuclei of
the atoms in a molecule. Molecules are dynamic and adopt a variety of 3-
dimensional structures called conformations. In equilibrium, the ensemble of
conformations, x, that a molecule can adopt follows the Boltzmann distribution,

µ(x) = Z−1 exp(−βU(x)), with Z =

∫
dx exp(−βU(x)), (2.1)

where U(x) is the potential energy and β is the inverse temperature. Conforma-
tional ensembles contain substantial information about molecules, such as their
structural diversity or relative populations. However, generating representative
conformational ensembles is challenging due to the long time and length scales
involved in transitions among conformations.

In some situations, it is possible to approximate the Boltzmann distribution
by only accounting for the local maxima of the distribution. This set of
representative conformations is referred to as conformers. The conformer
with minimum energy is referred to as the ground state and is often the
most statistically representative. Conformers are simpler yet less complete
descriptions of molecules when compared with conformational ensembles.

Conformational ensembles and conformers can be encoded as arrays of
3-dimensional structures. One simple way to store this information is to use
the Cartesian Coordinates (CCs) of the atoms as shown in Figure 2.2 (a).
Nevertheless, this representation is sensitive to global roto-translations of the



2.2. MOLECULAR REPRESENTATIONS 7

Atom Type Coordinates (Å)
0 O 0.00 0.00 0.00
1 C 1.21 0.00 0.00
2 C 2.07 1.19 0.00
3 H 1.70 -0.97 0.00
4 H 2.70 1.14 0.98
5 H 2.76 1.13 -0.89
6 H 1.53 2.13 -0.02

C
H H

H
HO

C- -=
-

-
-

CC=0
0=CC

Molecular graph

Cartesian coordinates

SMILES strings

Internal coordinates
Reference d (Å) 𝛼 (rad) 𝜏 (rad)

- - - -
[0,-,-] 1.21 - -
[1,0,-] 1.47 2.20 -
[1,0,2] 1.08 2.04 3.14
[2,1,0] 1.13 1.86 2.08
[2,1,0] 1.13 1.89 -2.16
[2,1,0] 1.10 2.00 -0.02

(c)

(a) (b)

(d)

Figure 2.2: Molecular representations for acetaldehyde: Cartesian Coordinates
(a), Internal Coordinates (b), consisting of distances (d), angles (α), and
dihedral angles (τ), molecular graph (c), and SMILES strings (d).

structure, which is not desirable in many applications. For this reason, Internal
Coordinates (ICs) may be used instead. ICs are a combination of bond lengths,
bond angles, and dihedral angles which can be converted to CCs, and are
illustrated in Figure 2.2 (b). The collection of ICs describing a complete
structure, along with atom types and reference atoms is known as the Z-matrix.

For some applications, a simpler molecular representation including solely
topological information may be preferred. The connectivity of a molecule
can be represented using its chemical graph, which is a collection of nodes
(atoms) and edges (chemical bonds). An example is depicted in Figure 2.2 (c).
The information contained in a molecular graph can be stored in a string of
characters using the Simplified Molecular-Input Line-Entry System (SMILES)
[30] as exemplified in Figure 2.2 (d). SMILES is widely used for exchanging and
storing molecular structures in databases and software. A molecular graph can
be inferred from a SMILES string, but several SMILES strings can correspond
to a given chemical graph. This can cause issues for some models, as they may
generate inconsistent outputs for the same molecule depending on the input
SMILES.

The optimal molecular representation depends on the problem at hand
and the available computational resources. For example, if the goal is to
accurately predict the biological activity of a molecule, then a representation
that captures the 3-dimensional structure of the molecule may be required. On
the other hand, if the goal is to perform a large-scale virtual screening of a
database of compounds, then the molecular graph may be sufficient. More
elaborated molecular descriptors provide more accurate predictions at the cost
of increasing compute time. Properties of different molecular representations
are summarized in Table 2.1.
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Advantages Drawbacks
CCs Simple Sensitive to roto-translations
ICs Invariant to roto-translations Requires specification of reference atoms
Graph Unique Lack of 3-dimensional information

SMILES Simple and lightweight
Not unique.
Lack of 3-dimensional information.

Table 2.1: Advantages and drawbacks of different molecular representations:
Cartesian Coordinates (CCs), Internal Coordinates (ICs), chemical graphs, and
Simplified Molecular-Input Line-Entry System (SMILES) string.

2.2.1 Symmetries in molecular Machine Learning

Symmetries are an important consideration when designing Machine Learning
solutions for chemistry [31]–[34]. For example, if we were to predict the forces
on the atoms of an isolated molecule, it is desirable for the prediction to rotate
along with the input molecule. However, if we were to predict its strain energy,
the prediction should not change with global roto-translations of the input.
We say that the forces model should be equivariant w.r.t. rotations while
the energy model should be invariant. Similarly, when we use graph-based
representations, we want our model to be invariant to the ordering of the atoms,
and different SMILES strings for the same chemical graph. In general, given a
model m and a transformation t, we say that m is equivariant w.r.t. t if

m (t(x)) = t (m(x)) (2.2)

and invariant if
m (t(x)) = m(x). (2.3)

Considering symmetries is important in practice since it reduces sample
complexity (makes training more efficient and alleviates the need for data
augmentation) and reduces the hypothesis space of learnable models [32], [35].

Graph Neural Networks (GNNs) [36], [37] are a widely used method for
incorporating symmetries in molecular ML models. GNNs consist of layers
that update the node features by aggregating information from their neighbors.
This operation is known as message passing, and it can be expressed as:

x
(l+1)
i = ϕ


x(l)i ,

⊕

j∈N (i)

ψ
(
x
(l)
i , x

(l)
j

)

 , (2.4)

where the feature vector x
(l)
i of atom (node) i in layer l gets updated com-

bining the messages ψ
(
x
(l)
i , x

(l)
j

)
from the neighboring atoms N (i) using an

aggregation function
⊕

, and an update function ϕ. By using this message
passing scheme, GNNs are invariant to the permutation of nodes in the graph
(atom order). Moreover, GNNs can also incorporate other symmetries, such
as rotation or translation, by designing the functions ϕ and ψ to be either
invariant or equivariant to the desired transformations. For example, invariance
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Design

MakeAnalyze

Test

Design candidate molecules

Synthesize themCreate hypothesis

Evaluate them

Figure 2.3: Design-Make-Test-Analyze cycle. A model for drug design.

and equivariance to rotations can be achieved, respectively, by incorporating
interatomic distances and relative positions as geometric features.

2.3 Machine Learning accelerated drug design

Drug design is a stage of drug discovery involving iterative trial-and-error
testing. For example, how does property A change when group B is changed
in this molecule? This situation is often represented with a model known as
the Design-Make-Test-Analyze (DMTA) cycle, illustrated in Figure 2.3.

The DMTA cycle is often time-consuming and costly, but ML can offer a
promising solution for its automation and acceleration. In the design phase,
DGMs can be used to generate novel molecules with desired features such
as high binding affinity or low toxicity [4], [38]–[40]. In the make phase,
better synthesis routes may be found more efficiently by using automated
methods [9], [41]–[43]. In the test phase, ML can enable faster predictions of
important attributes of potential drug candidates, such as solubility, stability, or
pharmacokinetics [44], [45]. For example, one can use regression or classification
models to estimate the properties of new molecules based on their structural
or physicochemical features. Another important example is using DGMs for
generating 3-dimensional conformations of molecules from which properties
may be estimated [5], [31], [46]–[52]. In the analyze phase, ML can generate
plausible interpretations of the test phase results and provide insights into the
structure-activity relationship or mechanism of action of new molecules [8],
[53], [54]. Moreover, new directions for further optimization or discovery may
be suggested by using techniques such as Active Learning or Reinforcement
Learning [55], [56].



10 CHAPTER 2. BACKGROUND

2.3.1 De novo design

De novo design is a computational approach to generate novel molecular
structures that have desired properties or functions. This tool is used during
lead generation and optimization stages. DGMs are increasingly being adopted
for de novo design, leading to the emerging field of generative chemistry. Most
approaches start from training a prior generative model on large chemical
datasets, which can be seen as ‘foundation models’ for chemistry. However,
these models are usually expensive to train and may not generate molecules
that satisfy the design requirements. Therefore, transfer learning [57], [58]
is used to bias the prior model towards regions of chemical space that are
more desirable. There are two main approaches. The first one consists of
fine-tuning the prior model on a smaller dataset of molecules satisfying the
design constraints [59]. The second one relies on the availability of a scoring
model, assessing the desirability of molecules, and consists of biasing the prior
model to promote the generation of highly scored compounds [4]. If target
data are scarce, usually the first approach is preferred, but if a reliable model
is available, it may be exploited by following the second approach.

One popular mathematical formulation of the second scenario consists of
sampling from an unnormalized distribution with support over the composi-
tional space of molecules. The objective is to sample from the distribution,

p(x) ∝ exp(σS(x) + log pP(x)), (2.5)

where x is a molecular graph, S is a scoring model, pP(x) is the probability
density of finding molecule x sampling from an pre-trained unbiased model
and σ is a parameter balancing both contributions. Intuitively, the first term
modulates the probability of the pre-trained model so that high-scoring com-
pounds are sampled more likely compared to those scored poorly. Computing
the normalizing constant of this distribution is not tractable as it requires
accounting for every possible molecular graph.

Several types of generative models have been proposed to model the distri-
bution p(x) [60]. Previous work based on SMILES strings has used Recurrent
Neural Networks (RNNs) [4], [59], [61], Variational Autoencoders (VAEs) [62],
[63], or Generative Adversarial Networks (GANs) [64], [65]. Methods using
a graph representation have used different types of GNNs [66] such as Gated
Graph Neural Networks (GGNN) [38] or Graph Convolutional Neural Net-
works (GCNNs) [67] to iteratively sample actions that build up a chemical
graph. More recently, 3D-generative models [39], [68] have explored molecular
generation directly in the binding pocket, potentially accounting explicitly for
physical interactions. Prevalent methods are diffusion models [69]–[71] and
normalizing flows [72] powered by Equivariant Neural Networks [31], [32].

2.3.2 Molecular property prediction

Predicting the properties of molecules is an essential part of drug design since
it allows for the identification of promising candidates and reduces the cost
and time of experimental testing. Naturally, molecular properties are a core
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component of scoring functions. Here, we focus on two methods for predicting
the properties of molecules, graph-based and conformational ensemble-based
methods.

On the one hand, graph-based models for property prediction take the
molecular graph (or SMILES) as input and generate predictions as outputs.
Diverse models can be used in this context such as logistic regression, support
vector machines, random forests or neural networks [73]. One particularly
important type of models are QSAR models [7], which are used to predict
the activity of drug candidates w.r.t. a given target. QSAR models can be
classified into regression models, which predict continuous activity values, or
classification models, which predict categorical activity values [8]. These models
tend to be lightweight and fast and therefore are often used for building scoring
functions guiding generative models.

On the other hand, conformational ensemble-based methods rely on inferring
molecular properties from a representative conformational ensemble, {xi}.
Given independent and identically distributed (i.i.d.) conformations sampled
from the Boltzmann distribution, a molecular property, O can be computed
via the Monte Carlo estimator:

O = Ex∼µ(x)[o(x)] ≈
1

N

N∑

i=1

o(xi), xi
i.i.d.∼ µ(x), (2.6)

where o(x) computes the microscopic contribution of a property for a conform-
ation. For example, if O is the distance between two atoms, o(x) would be the
distance between those atoms in each conformation. Although conformational
ensemble-based methods tend to be more accurate than graph-based, this
comes at the cost of generating representative ensembles.

2.3.3 Conformational sampling

Conformational ensemble-based methods rely on i.i.d. samples from the
Boltzmann distribution, Equation 2.1. Therefore, generating these samples,
referred to as conformational sampling, is a crucial step. In general, computing
the normalizing constant of the Boltzmann distribution, the partition function
Z, is not tractable. Therefore, conformational sampling consists of sampling
from an unnormalized distribution with support over the conformational space.

Key solutions to conformational sampling such as molecular dynamics
simulations to Markov-Chain Monte Carlo (MCMC) methods require many
simulation steps to generate representative ensembles, especially for high-
dimensional and meta-stable systems. A promising approach to this problem
consists of approximating the Boltzmann distribution of a molecular system with
a DGM. To be an effective solution, the DGM must allow efficient sampling and
exact likelihood evaluation. Efficient i.i.d. sampling allows to side-step iterative
simulation methods, and exact likelihood evaluation allows to recover unbiased
samples through importance sampling. Methods implementing this solution
are called Boltzmann Generators (BGs) [5], [46], [48]. However, currently, BGs
suffer from limited transferability across molecular systems and conformational
sampling remains an important open problem.
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Chapter 3

Summary of Included
Papers

3.1 De Novo Drug Design Using Reinforcement
Learning with Graph-Based Deep Generat-
ive Models

In the first article, we propose a new training scheme to fine-tune graph-based
DGMs for de novo molecular design tasks. We show how our computational
framework can successfully guide a pre-trained generative model toward the
generation of molecules with a specific property profile, even when such mo-
lecules are not present in the training set and unlikely to be generated by the
pre-trained model. We explored the following tasks: generating molecules of
decreasing/increasing size, increasing drug-likeness, and increasing bioactivity.

We use GraphINVENT [38] as a graph-based molecular DGM. GraphIN-
VENT is based on a Gated Graph Neural Network (GGNN) that generates
molecules by iteratively sampling actions that build upon an input graph. The
action space is divided into three possible actions: add atom, add bond, and
terminate graph. The model is trained by minimizing the Kullback-Leibler di-
vergence between target and predicted action probability distributions (APDs).

Our Reinforcement Learning framework uses a memory-aware loss that
keeps track of the best agent so far and is updated every few learning steps.
By doing so, we remind the current agent of sets of actions that can lead to
high-scoring compounds, in turn accelerating and improving agent learning.
The scoring model is designed for each specific optimization task and can be
based on simple rules or more complex models such as QSAR models.

We tested our framework by fine-tuning a pre-trained graph-based DGM to
favor property profiles relevant to drug design, including increasing pharma-
cological activity. We model bioactivity using a QSAR model for dopamine
receptor type D2 (DRD2) activity. Optimization for DRD2 activity is a widely
used de novo design bioactivity benchmark and allows us to easily compare to

13
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previous work. We achieve models that generate diverse compounds with pre-
dicted DRD2 activity for 97 % of sampled molecules, outperforming previously
reported graph-based methods on this metric.

Our contribution is an important stepping stone toward the design of more
advanced molecular DGMs which will allow scientists to efficiently traverse the
chemical space in search of promising molecules. We believe the use of DGMs
in fields such as drug design has the potential to help chemists come up with
new ideas and accelerate the complex process of molecular discovery.
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3.2 Generation of conformational ensembles of
small molecules via Surrogate Model-Assisted
Molecular Dynamics

In the second paper, we present a new method for generating equilibrium con-
formational ensembles of molecules, called Surrogate Model-Assisted Molecular
Dynamics (SMA-MD). This method combines a DGM that samples the slow
degrees of freedom of molecules with a reweighting and short simulation step
that equilibrates the fast degrees of freedom. SMA-MD can generate more
diverse and physically realistic ensembles than conventional MD simulations.

We use a two-step procedure to generate molecular conformations. First,
we use a deterministic algorithm to generate the local structure of each atom,
and then we use a diffusion model to sample the torsion angles of rotatable
bonds [52]. The diffusion model is trained on MD simulations of small non-
cyclic molecules. Second, we reweight the generated conformations against the
Boltzmann distribution and run short parallel MD simulations to thermalize
and mix the fast degrees of freedom.

We evaluate our method by comparing it with MD and Replica Exchange
(RE) simulations on various metrics, such as conformer generation, potential
energy, free energy of solvation, and slow transitions. We show that SMA-
MD outperforms MD in generating more diverse and energetically favorable
ensembles, and matches RE in capturing the relevant states and properties of
molecules.

We conclude that SMA-MD is an efficient and robust method for sampling
from the Boltzmann distribution of molecules. We highlight the advantages of
SMA-MD over MD, such as data aggregation, parallelization, and independence
of initial conditions. We also discuss the limitations and future directions of
SMA-MD, such as extending it to cyclic molecules, improving the computational
cost of sampling, and training Boltzmann surrogates with large-scale data.

SMA-MD shows promising results toward accelerating the generation of
representative conformational ensembles of molecules with DGMs. As such,
SMA-MD is a step toward faster methods for predicting molecular properties,
which is fundamental in drug design.
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Chapter 4

Discussion and Future
Work

This thesis investigates how DGMs can address important drug discovery
problems involving sampling from unnormalized distributions. It includes two
papers focusing on different aspects of this challenge: molecular design and
conformational sampling. In the first paper, we proposed a training scheme to
fine-tune graph-based DGMs for de novo molecular design, which can generate
molecules with specific properties even when they are scarce or missing in the
training data. In the second paper, we developed Surrogate Model-Assisted
Molecular Dynamics (SMA-MD), which combines a DGM with statistical
reweighting and short MD simulations to generate equilibrium ensembles of
molecules. SMA-MD can produce more diverse and lower energy ensembles
than conventional MD simulations.

These contributions constitute important stepping stones towards the auto-
mation of the drug discovery process. They demonstrate the potential of
DGMs to sample from complex and high-dimensional molecular spaces, and
to optimize molecules for multiple criteria. They also highlight the challenges
and limitations of these models.

We demonstrated the effectiveness of our approach for fine-tuning graph-
based DGMs by generating 97 % active molecules for the dopamine receptor
type D2. However, the QSAR model that we used for both fine-tuning the
DGM and evaluating the method only relied on graph-level information. A
more challenging and realistic task is to predict pharmacological activity while
taking into account 3-dimensional information. Moreover, de novo design is
inherently a 3-dimensional problem, and therefore methods that can generate
molecules directly in 3D and optimize them for the target interaction are a
promising direction for future work.

DGMs are a powerful tool for conformational sampling and we have demon-
strated that methods based on DGMS can outperform classic MD simulations
in the context of small molecules. However, transferability across molecular
systems is challenging and it is unclear if our conclusions generalize to more
complex systems such as drug-like molecules or proteins. This is an interesting

17
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avenue for future work. Additionally, the models presented in this thesis cannot
provide information about the kinetics of molecules, which is necessary for
predicting some properties. Building transferable DGMs of the transition
probability of molecular conformations remains an open problem and will also
be explored in future research. Finally, exploring how conformational DGMs
can speed up binding affinity predictions remains an important open problem
that we may explore in the future.
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