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Giant emitters derive their name from nonlocal field-emitter interactions and feature diverse self-interference
effects. Authors of most of the existing works on giant emitters have considered Hermitian waveguides or
photonic lattices. In this letter, we unveil how giant emitters behave if they are coupled to a non-Hermitian
bath, i.e., a Hatano-Nelson (HN) model which features the non-Hermitian skin effect due to the asymmetric
intersite tunneling rates. We show that the behaviors of the giant emitters are closely related to the stability
of the bath. In the convectively unstable regime, where the HN model can be mapped to a pseudo-Hermitian
lattice, a giant emitter can either behave as in a Hermitian bath or undergo excitation amplification, depending
on the relative strength of different emitter-bath coupling paths. Based on this mechanism, we can realize
protected nonreciprocal interactions between giant emitters, with nonreciprocity opposite to that of the bath.
Such giant-emitter effects are not allowed, however, if the HN model enters the absolutely unstable regime,
where the coupled emitters always show secular energy growth. Our proposal provides a paradigm of non-
Hermitian quantum optics, which may be useful for, e.g., engineering interactions between quantum emitters
and performing many-body simulations in the non-Hermitian framework.

DOI: 10.1103/PhysRevResearch.5.L042040

Introduction. Giant emitters, which feature (discrete) non-
local interactions with a bath, are setting up a quantum optical
paradigm and attracting increasing interest [1]. A hallmark
of giant emitters is that their effective relaxation rates and
transition frequencies are closely related to the interference
effects of the nonlocal couplings [2–6]. For example, consider
a two-level giant emitter (with transition frequency ω0) that is
coupled to a one-dimensional waveguide at two points x = 0
and x = d with identical coupling strength g. Its effective
relaxation rate (to the waveguide) in the Markovian limit is
given by [2,7]

�eff = Re{4πg2J (ω0)[1 + exp(ik0d )]}, (1)

where k0 and J (ω0) are the wave number and the density of
states of the waveguide field at frequency ω0, respectively.
Clearly, the relaxation of the giant emitter is inhibited (en-
hanced) if k0d is an odd (even) multiple of π , which can be
understood as the destructive (constructive) interference of the
two coupling paths. Based on such interference effects, one
can realize decoherence-free interaction (DFI) between giant
emitters, provided that they are coupled to the waveguide in
a braided structure with interleaved coupling points [7–11].
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This DFI, which allows giant emitters to interact without
relaxing into the waveguide, is somewhat different from con-
ventional DFIs [12–14] since the frequencies of the emitters
may not fall within the band gap of the bath. Moreover, it is
also possible to realize chiral spontaneous emission and bound
states if an additional phase difference is encoded into the
nonlocal emitter-bath interaction [15–20].

The above giant-emitter effects are based on (structured)
waveguides governed by Bloch’s theorem [21], which states
that the wave functions of a translationally invariant Her-
mitian system are plane waves modulated by a spatially
periodic phase factor. For the case in Eq. (1), this is man-
ifested by the waveguide field acquiring a phase k0d when
traveling between coupling points. Without causing confu-
sions, hereafter, we refer to such effects as conventional
interference effects. In contrast, non-Hermitian systems ex-
hibit a plethora of peculiar properties with no Hermitian
analogs [22–30], such as exceptional points [31–34] and
biorthogonal eigenstates [35,36]. The conventional Bloch’s
theorem can break down in a class of non-Hermitian systems,
which feature non-Hermitian skin effects and are governed by
non-Bloch band theory [37–41]. The most typical example
is the Hatano-Nelson (HN) model [42], a one-dimensional
tight-binding lattice with asymmetric intersite tunneling rates,
whose experimental implementations include coupled-(ring)-
resonator arrays with auxiliary couplers with engineered gain
and loss [43,44], nonreciprocal amplifiers based on reservoir
engineering [45,46], discrete-time non-Hermitian quantum
walks [47–49], and photonic synthetic dimensions [50,51].
The spectra of such non-Hermitian systems are quite sensitive
to boundary conditions, which can result in unconventional
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FIG. 1. (a) Schematic of a giant emitter coupled to a Hatano-
Nelson (HN) model. (b) and (c) Time evolution of Pb(t ) for different
parameters. We assume D = 2 in (b) and ν = 10 and γ = 5 in (c).
Other parameters are gN = 1 and M = 1000.

topological [34,52–59] and quantum optical [60–63] phenom-
ena. In view of this, it is natural to ask how giant emitters
behave in a bath with non-Hermitian skin effect.

To address this question, we here study the dynamics of gi-
ant emitters coupled to an HN model. We reveal that the giant
emitters can exhibit essentially different dynamical behaviors,
depending on which regime of the HN model we consider and
the relative strengths of the nonlocal couplings. We unveil a
series of unconventional quantum optical phenomena, such
as secular energy growth and nonreciprocal DFIs with the
nonreciprocity opposite to the field, which have no coun-
terparts in small-emitter or Hermitian giant-emitter systems.
These findings may find applications in quantum simulation
and inspire further studies in non-Hermitian quantum optics.

Model. We first consider a bosonic mode b coupled to two
lattice sites of an HN model [Fig. 1(a)]. In the interaction
picture, the Hamiltonian is (h̄ = 1 hereafter)

H =
M−2∑

n=0

(tRa†
n+1an + tLa†

nan+1)

+(gN b†aN + gN ′b†aN ′ + H.c.), (2)

where an is the annihilation operator of the nth site of the HN
model (we consider M lattice sites in total; n ∈ [0, M − 1]);
tR = ν + γ and tL = ν − γ are the nearest-neighbor tunnel-
ing amplitudes toward the left and right, respectively, with
ν the base tunneling amplitude and γ describing the non-
Hermiticity of the system (H becomes Hermitian when γ =
0); gN (gN ′) is the coupling strength between mode b and
the N th (N ′th) site of the HN model. We have assumed that
the emitter (i.e., mode b) is resonant with the lattice band
center. Under open boundary conditions, the wave functions
of the bare HN model can be written as ψn = βnφn with β =

√
tR/tL and φn the extended part of the wave function [64]. An

imaginary gauge field [44], described by the imaginary wave
number kIm = −iln(β ), modifies the wave functions so that
all of them pile up at one of the two lattice edges, depending
on the relative strength of tR and tL. In other words, fields are
amplified (attenuated) when traveling toward the direction of
the stronger (weaker) tunneling amplitude.

Before proceeding, we briefly motivate choosing a bosonic
mode as a generalized giant emitter [65]. In the non-Hermitian
case here, the dynamics do not conserve the norm of the
initial state. This may lead to dynamical amplification such
that one should not focus on the single-excitation subspace
where the dynamics of a two-level system is equivalent to
that of a harmonic oscillator. In view of this, we study in this
letter the dynamics of coherent-state mean values (see Sec. I
in the Supplemental Material [66] for more details). Dynamics
in the single-excitation subspace can be revisited by, e.g.,
introducing uniform on-site losses to the lattice sites [61–63],
as will be discussed below.

Conventional interference effects in an HN model. Now
we show that, even in a bath with non-Hermitian skin effect,
it is possible to recover conventional interference effects by
matching the relative coupling strength at the two coupling
points with the non-Bloch phase factor β. Figures 1(b) and
1(c) show the evolution of the mean particle number Pb(t ) =
|ub(t )|2 of the giant emitter, with ub(t ) the mean value of
b and its initial value being ub(0) = 1. To avoid boundary
effects, we consider a long enough HN lattice with M =
1000 and {N, N ′, M − N, M − N ′} � 1. Moreover, we as-
sume {|tR|, |tL|} � |g| so that the non-Markovian retardation
effect is weak [17,67–69].

Figure 1(b) shows that the giant emitter exhibits a frac-
tional decay [i.e., 0 < Pb(t → +∞) < 1] when gN ′/gN =
β±D and D = N ′ − N = 2, although it is coupled to a non-
Hermitian bath featuring directional field amplification. This
signifies the recovering of conventional interference effects
in the sense that the emitter can be effectively decoupled
from the bath due to the nonlocal interaction. The emitter
tends to be completely dissipationless with the increase of
the tunneling amplitudes, which is also consistent with the
Hermitian case. Note that the fractional decay is sensitive to
the relative strength gN ′/gN : Pb(t ) will increase or decrease
with time even if gN ′/gN slightly deviates from the matching
value (cf. the blue dot-dashed and dotted lines). This effect
means that the giant emitter can serve as a precise probe for
the non-Hermiticity γ of the bath. Note that such a fractional
decay will eventually end with a secular energy growth if peri-
odic boundary conditions of the HN model are considered (see
Fig. S1 in the Supplemental Material [66]). This is consistent
with the fact that the non-Hermitian skin effect is sensitive to
boundary conditions, and the HN model is always dynami-
cally unstable under periodic boundary conditions [46].

We also plot the evolution of Pb(t ) for different values of
D in Fig. 1(c), with the matching condition gN ′/gN = β−D

always fulfilled (also true for gN ′/gN = βD). Again, like the
Hermitian case, the giant emitter exhibits D-dependent relax-
ation dynamics ranging from decoherence-free behavior (i.e.,
fractional decay for D = 2, 6) to superradiance-like behavior
[i.e., enhanced relaxation for D = 4 compared with the small-
atom case (gray dashed line)].
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FIG. 2. Time evolution of Pb(t ) and Pc(t ) with (a) ν = 20, γ =
10, and β = √

3; (b) ν = 15, γ = 5, and β = √
2. The gray dashed

lines correspond to the reference values 1
3 in (a) and 1

2 in (b).
The middle inset is a schematic of the nonreciprocal decoherence-
free interaction (DFI) between b and c and the braided coupling
structure. Other parameters are gN = gN+1 = 1, gN+2 = gN+3 = β−2,
and M = 1000.

The recovered conventional interference effects can be
understood from the self-energy [70] of the giant emitter,
which can be obtained as (see Sec. II in the Supplemental
Material [66] for details)


b(z) = ∓ 1

2π
√

z2 − 4tRtL

[
g2

N +g2
N ′ + gN gN ′yD

±(βD+β−D)
]
,

(3)

with y± = (z ±
√

z2 − 4tRtL )/(2
√

tRtL ) and the upper (lower)
sign corresponding to Re(z) > 0 [Re(z) < 0]. The real and
imaginary parts of 
b represent the Lamb shift and effective
relaxation rate, respectively, of b due to its interaction with
the bath. Under the Weisskopf-Wigner approximation [71]
(valid for weak emitter-bath couplings), the dynamics of the
emitter are well captured by the self-energy close to the
real axis [72,73], i.e., 
b(� + i0+) with � the frequency
detuning between the emitter and the band center. In the reso-
nant case � = 0, with the matching condition gN ′/gN = β±D,
the self-energy simplifies to 
b(� = 0) 	 ±ig2

N [1 + β±2D +
(±i)D(1 + β±2D)]/(4π

√
tRtL ), which correctly predicts the

dynamics in Figs. 1(b) and 1(c).
Nonreciprocal DFI. One of the most important applications

of conventional giant-emitter effects is in-band DFIs between
giant emitters [7–11]. To explore whether this unique phe-
nomenon is possible in the non-Hermitian case, we extend
the model in Eq. (2) to include an additional giant emitter
(bosonic mode) c, with the coupling points of the two emitters
arranged in a braided structure, as shown in the inset of Fig. 2.
In the interaction picture, the Hamiltonian of this extended
model is

H ′ =
M−2∑

n=0

(tRa†
n+1an + tLa†

nan+1)

+ (gN b†aN + gN+2b†aN+2 + gN+1c†aN+1

+ gN+3c†aN+3 + H.c.), (4)

where we assume that b is coupled to sites aN and aN+2 (with
coupling strengths gN and gN+2, respectively) and c is coupled
to sites aN+1 and aN+3 (with coupling strengths gN+1 and
gN+3, respectively). Drawing on the result in Fig. 1, we set,
e.g., gN = β2gN+2 and gN+1 = β2gN+3 so that b and c almost
do not decay into the lattice.

Figures 2(a) and 2(b) depict the evolution of Pb(t ) =
|ub(t )|2 and Pc(t ) = |uc(t )|2 (uc is the mean-value amplitude
of c), with initial condition ub(0) = 1 and uc(0) = ua,n(0) = 0
and different values of β. We find that b and c exchange
energy in a nearly decoherence-free manner (there is a very
weak decay due to the finite retardation effect) if the coupling
strengths are matched as discussed above. In sharp contrast
to the Hermitian case, the interaction here is nonreciprocal:
the excitation is attenuated (amplified) when traveling from
b to c (from c to b). The attenuation/amplification is given
by β−2, as shown by the gray dashed lines in Fig. 2, which
is determined by the non-Bloch phase factor as well as the
coupling separation of each giant emitter.

This phenomenon can be understood from the off-diagonal
elements (i.e., the interaction part) of the level-shift operator
of the emitters, which are obtained (see Sec. III in the Supple-
mental Material [66] for details) as


bc(0 + i0+) 	 −g2
N/(2πtR),


cb(0 + i0+) 	 −g2
N/(2πβ2tR). (5)

Since the real and imaginary parts of 
bc(cb)(z) represent the
effective coherent interaction from c to b (from b to c) and
the collective relaxation of the two emitters, respectively, it is
clear that b and c interact in a decoherence-free but nonrecip-
rocal manner, with a strength ratio β−2 for the two directions.
Most interestingly, the nonreciprocity of the interaction is
opposite to that of the bath: while the HN model amplifies
right-moving fields, the emitter pair has a stronger interaction
toward the left (c is placed to the right of b). As we show
in Sec. IV in the Supplemental Material [66], this reversed
nonreciprocity can be understood in an intuitive picture based
on hidden bound states [62,63] which are induced by the
interaction between the emitters and the HN model.

Absolutely unstable regime. So far, we have focused on
the convectively unstable regime with tR > tL > 0 [60], where
the HN model can be mapped to a pseudo-Hermitian lattice
subject to an imaginary gauge field (see Sec. II in the Sup-
plemental Material [66]). In fact, there is a transition point
tL = 0 (or tR = 0) beyond which the HN model enters the
absolutely unstable regime (where tL and tR have opposite
signs). In the convectively unstable regime, a small emitter
displays a complete (fractional) decay if its frequency is inside
(outside) the energy band of the lattice. In the absolutely
unstable regime, however, a small emitter has a secular pseu-
doexponential energy growth [60]. This phenomenon can be
interpreted as a competition between the amplification and the
effective transport of the field in the HN model (see Sec. V in
the Supplemental Material [66]): in the absolutely unstable
regime, there is always a residual excitation component at
the coupling point, suffering rapid amplification before being
transferred away.

In contrast to the small-emitter case, a giant emitter can
exhibit an energy growth even in the convectively unstable
regime [see Fig. 1(b)]. This is due to the reabsorption of
excitations emitted from another coupling point at an earlier
moment and amplified by traveling in the HN model. This
amplification mechanism, which arises from the combination
of the giant-atom interference effect and the non-Hermiticity,
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FIG. 3. Time evolution of Pb(t ) (a) and (b) in the absolutely
unstable regime and (c) at the transition point tL = 0, for different
values of gN+2. In (a) and (b), γ = 20.5; in (c), γ = 20. The cyan
rectangles in (b) and (c) indicate the areas with no energy growth.
Other parameters are gN = 1, ν = 20, and M = 1000.

is essentially different from that of a small emitter in the
absolutely unstable regime.

We find that the conventional interference effects in Fig. 1
cannot be realized in the absolutely unstable regime. Instead,
a giant emitter behaves somewhat like a small one in the
sense of the secular amplification. As shown in Fig. 3, the
giant emitter always shows a monotonic energy growth, and
the growth rate increases with the coupling strength gN+2

(D = 2 is fixed). This is a bit different from the small-emitter
case, where the emitter decays considerably before the energy
growth.

Giant and small emitters also exhibit very different be-
haviors at the transition point tL = 0. As shown in Fig. 3(c),
a small emitter simply exchanges energy with the coupled
site since their dynamics is decoupled from the rest of the
system [60], whereas a giant emitter shows energy growth
since β diverges at this point and the matching condition
gN/gN ′ = β±D thus cannot be fulfilled.

Giant emitter coupled to a stable HN model. A standard HN
model is unstable (convectively or absolutely). Its spectrum
forms a loop in the complex plane, with the imaginary part
positive for some values of k [see the blue solid loop in
Fig. 4(a)]. However, here, we demonstrate how a giant emitter
behaves if it is coupled to a stable HN model with large
enough on-site losses [62,63].

To this end, we assume H → H + Hloss in Eq. (2) with
Hloss = −2i

∑
n γ a†

nan describing uniform on-site losses of
the lattice. As shown in Fig. 4(a), the spectrum of the HN
model is within the lower half-plane in this case (green dotted
loop). This implies that the whole system becomes stable,
without field amplification in the lattice.

Figure 4(b) shows the time evolution of Pb(t ) for different
values of D = N ′ − N . Like the Hermitian case [67,69,74],
the relaxation dynamics of the emitter depend on the cou-
pling separation D (i.e., on the phase accumulation of emitted
photons traveling between coupling points) with no need to
cautiously match the nonlocal couplings. However, fractional
decay is unavailable in this case, regardless of the value of

FIG. 4. (a) Spectra of Hatano-Nelson (HN) models in the com-
plex plane with and without on-site losses. Time evolution of Pb(t )
in the stable regime for different values of (b) coupling separation
D, (c) coupling strength gN ′ , and (d) non-Hermiticity γ . We assume
gN ′ = gN and γ = 5 in (b), D = 2 and γ = 5 in (c), and gN ′ = gN and
D = 2 in (d). Other parameters are gN = 1, ν = 10, and M = 1000.

gN ′ , as shown in Fig. 4(c). This can be understood from
the bath now becoming purely dissipative and equivalent to
any quantum-mechanically consistent descriptions where the
nonreciprocity is introduced by structured loss [75]. Thus, in a
stable HN model, the giant emitter behaves as in a Bloch struc-
tured bath with uniform on-site losses. Moreover, Fig. 4(d)
shows that, in the stable regime, the giant emitter no longer
exhibits qualitatively different dynamics for different signs of
tL, i.e., the transition point of the HN model disappears in this
regime.

Conclusions and outlook. We have unveiled the self-
interference effects of giant emitters coupled to an HN model,
i.e., a structured bath featuring non-Hermitian skin effect.
The behaviors of giant emitters in this setting depend on the
stability of the bath, which is closely related to its tunneling
asymmetry. In the convectively unstable regime, where the
HN model is equivalent to a pseudo-Hermitian lattice, conven-
tional interference effects can be recovered by matching the
nonlocal emitter-bath coupling strengths. We identify a non-
Hermitian DFI condition under which the giant emitters show
protected but nonreciprocal interactions. If the HN model
enters the absolutely unstable regime, giant emitters exhibit
secular energy growth regardless of the coupling strengths. A
stable HN model made by introducing uniform on-site losses
simply behaves like a Bloch (but dissipative) structured bath
in the sense that giant emitters always show conventional
interference effects with no need to cautiously match the
nonlocal couplings.

Our findings can inspire a number of further investigations.
For example, it has been shown recently that the HN model
can be mapped to a two-dimensional hyperbolic lattice with
the effective curvature determined by the non-Hermiticity
γ [64,76]. It thus provides an exciting opportunity to explore
giant-emitter physics in curved spaces without judiciously
distorting the spatial configuration of a kagome lattice [77,78].
In Sec. VI in the Supplemental Material [66], we provide
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a brief discussion of designing a giant emitter coupled to
such an effective hyperbolic lattice. Moreover, it is known
that the spectra of some non-Hermitian topological insulators
are sensitive to boundary conditions such that the conven-
tional bulk-boundary correspondence no longer can predict
the existence of their edge states [29,34,52–57]. Studying
how giant emitters affect these systems can be interesting
since it shows the possibility of probing the topological phase
and creating unconventional, topologically protected bound
states. Considering the exotic behaviors of giant emitters in
(Hermitian) two-dimensional lattices [79–81], it could also
be interesting to consider higher-dimensional non-Hermitian

skin effects [50,59] and study their interplay with giant emit-
ters. The results, such as the nonreciprocal DFIs, hold promise
for non-Hermitian many-body simulations due to the interac-
tion protection mechanism in a non-Hermitian bath [27].
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