
Metabolic collaboration between cells in the tumor microenvironment has a
negligible effect on tumor growth

Downloaded from: https://research.chalmers.se, 2025-07-02 14:40 UTC

Citation for the original published paper (version of record):
Gustafsson, J., Roshanzamir, F., Hagnestål, A. et al (2024). Metabolic collaboration between cells in
the tumor microenvironment has a negligible effect on
tumor growth. Innovation, 5(2). http://dx.doi.org/10.1016/j.xinn.2024.100583

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



w
w
w
.t
he

-in
no

va
tio

n.
or
g

REPORT
Metabolic collaboration between cells in the tumor microenvironment
has a negligible effect on tumor growth
Johan Gustafsson,1 Fariba Roshanzamir,1 Anders Hagnestål,2 Sagar M. Patel,3 Oseeyi I. Daudu,3 Donald F. Becker,3 Jonathan L. Robinson,1,4

and Jens Nielsen1,4,*
*Correspondence: nielsenj@chalmers.se

Received: April 28, 2023; Accepted: January 24, 2024; Published Online: January 30, 2024; https://doi.org/10.1016/j.xinn.2024.100583

ª 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Simplified application of enzyme usage constraints to genome-scale metabolic models with the software GECKO Light.

- Estimation of maximum metabolite influx into tumors at varying levels of hypoxia.

- Simulations of tumor metabolism explain “glutamine addiction” in cancers.

- Metabolic collaboration between cell types in the tumor microenvironment does not increase tumor growth.
ll www.cell.com/the-innovation

mailto:nielsenj@chalmers.se
https://doi.org/10.1016/j.xinn.2024.100583
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xinn.2024.100583&domain=pdf
http://www.thennovation.org
http://www.thennovation.org


REPORT
Metabolic collaboration between cells in the tumor microenvironment
has a negligible effect on tumor growth
Johan Gustafsson,1 Fariba Roshanzamir,1 Anders Hagnestål,2 Sagar M. Patel,3 Oseeyi I. Daudu,3 Donald F. Becker,3 Jonathan L. Robinson,1,4

and Jens Nielsen1,4,*
1Department of Life Sciences, Chalmers University of Technology, SE- 412 96 Gothenburg, Sweden
2Hagnesia AB, SE-43854 Hindås, Sweden
3Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
4BioInnovation Institute, DK2200 Copenhagen, Denmark

*Correspondence: nielsenj@chalmers.se

Received: April 28, 2023; Accepted: January 24, 2024; Published Online: January 30, 2024; https://doi.org/10.1016/j.xinn.2024.100583

ª 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Citation: Gustafsson J., Roshanzamir F., Hagnestål A., et al., (2024). Metabolic collaboration between cells in the tumor microenvironment has a negligible effect on tumor growth.

The Innovation 5(2), 100583.
The tumor microenvironment is composed of a complexmixture of different
cell types interacting under conditions of nutrient deprivation, but the meta-
bolism therein is not fully understood due to difficulties in measuring meta-
bolicfluxes and exchange ofmetabolites between different cell types in vivo.
Genome-scale metabolic modeling enables estimation of such exchange
fluxes as well as an opportunity to gain insight into the metabolic behavior
of individual cell types. Here, we estimated the availability of nutrients and
oxygen within the tumor microenvironment using concentration measure-
ments from blood together with a metabolite diffusion model. In addition,
we developed an approach to efficiently apply enzyme usage constraints
in a comprehensive metabolic model of human cells. The combined
modeling reproduced severe hypoxic conditions and the Warburg effect,
and we found that limitations in enzymatic capacity contribute to cancer
cells’ preferential use of glutamine as a substrate to the citric acid cycle.
Furthermore, we investigated the common hypothesis that some stromal
cells are exploited by cancer cells to producemetabolites useful for the can-
cer cells. We identified over 200 potential metabolites that could support
collaboration between cancer cells and cancer-associated fibroblasts, but
when limiting to metabolites previously identified to participate in such
collaboration, no growth advantage was observed. Our work highlights the
importance of enzymatic capacity limitations for cell behaviors and exem-
plifies the utility of enzyme-constrained models for accurate prediction of
metabolism in cells and tumor microenvironments.
INTRODUCTION
The tumor microenvironment (TME) consists of many different cell types that

share a common influx ofmetabolites from the blood, and its leaky blood vessels
make diffusion the main mechanism for transport of metabolites and oxygen
from the blood to the cells.1–4 Furthermore, the blood vessel density is unevenly
distributed, leading to a highly variable availability of nutrients and oxygen, where
hypoxic and even necrotic regions tend to be more common in the center of the
tumor.5 Cancer cells residing in the TME are generally thought to strive for pro-
liferation, and the metabolic behavior that is optimal for maximizing growth
will vary with the availability of metabolites. Such known behaviors are lactate
export (the Warburg effect6), which is shared with other highly proliferative cells
such as expanding T cells,7 and “glutamine addiction”,8 where the tricarboxylic
acid (TCA) cycle is preferentially fedwith glutamine. Furthermore, bypass ofmito-
chondrial complex I can be used to increase ATP production at a lower substrate
efficiency in cells with high ATP demand,9 although such a behavior has not
explicitly been proven to exist in cancers.

Collaboration scenarios between different “healthy” cell types and tumor cells,
where cells such as fibroblasts andmacrophages are thought to be exploited by
the cancer cells, has been a topic of great interest for the past decade.10–13 Spe-
cifically, these cells are thought to regulate the tumormicroenvironment through
signaling as well as provide nutrients such as lactate and pyruvate to the tumor
cells to enhance their growth. Partial evidence of the latter has been presented,
where cancer-associated fibroblasts have been observed to secrete metabolites
that were taken up by cancer cells,12 but there is no solid evidence that such
collaboration is directly beneficial for growth.

The study of collaborativemetabolism in tumors is difficult for two reasons: (1)
It is challenging to create a realistic in vitro representation of the tumor microen-
ll
vironment using cell lines. For example, the influx of oxygen and all other metab-
olites from blood needs to be controlled and constant over time. (2) It is difficult
to measure metabolite uptake rates in vivo for all metabolites, although isotope
labeling has successfully been employed for single metabolites.14 An alternative
approach is therefore needed.
Genome-scale modeling15 of human metabolism using flux balance

analysis (FBA) involves performing in silico analyses of a reaction network
under steady-state conditions and has been used to investigate meta-
bolism in, for example, muscles,9 tumors,16 and Alzheimer’s disease.17 A
recent approach is the GECKO framework,18 which enables the integration
of enzyme kinetic data with genome-scale metabolic models to simulate
more physiologically meaningful flux distributions even when metabolite
exchange rate data are limited.
In this project, we developed a diffusion model for constraining metabolite up-

take rates in tumors and applied enzyme usage constraints to a human genome-
scale model to simulate tumor metabolism. Our metabolic models showed that
glucose and oxygen are the most limiting substances for growth. Furthermore,
our models predicted glutamine addiction, where fueling the TCA cycle with
glutamine can yield more ATP since it requires less enzyme usage per ATP pro-
duced. In addition, we observed that metabolic collaboration between cancer-
associated fibroblasts (CAFs) and cancer cells likely has a very small effect on
tumor growth.

RESULTS
Simulation of tumor cell growth
We used the genome-scale metabolic model Human119 enhanced with

enzyme constraints tomodel themetabolism of cancer cells in the tumormicro-
environment. The model was manually curated (materials and methods,
Table S1) and a non-growth-associated maintenance (NGAM) requirement
was added as anATP cost of 1.833mmol gDW�1 h�1 derived from literature.20,21

We developed a lightweight version of the GECKO toolbox,18,22 called GECKO
Light (Note S1), which, similar to GECKO, constrains the total metabolic enzyme
usage based on kcat values from the BRENDA database.23 The main improve-
ment in GECKO Light is a substantially decreased execution time (�2 min on
a standard laptop computer) and a smaller generated model size.
We assumed that diffusion is the dominant mechanism for influx of metabo-

lites into tumors24 and developed a diffusionmodel that uses themetabolite con-
centrations in blood and their diffusion coefficients to estimate the metabolite
uptake constraints (Figure 1A, Note S2). Instead of estimating absolute uptake
constraints, which are expected to vary across cells depending on many factors
such as distance to capillaries, we estimated relative uptake constraints accord-
ing to

Ui = aDicb;i

where Ui is the estimated upper bound for the uptake flux of metabolite i, a is
a proportionality constant that is inversely related to the distance to the
closest capillaries, Di is the diffusion coefficient for metabolite i, and cb,i is
the concentration of metabolite i in the blood. While the value of a varies
across cells and is difficult to estimate for a given cell, its value will be the
same for all metabolites within the same cell, which makes it possible to
investigate the metabolism at different pseudodistances from blood
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Figure 1. Modeling cancer cell growth in the tumormicroenvironment (A) Modeling setup. Themetabolite uptake bounds are estimated from a diffusion model based onmetabolite
concentrations in blood and their diffusion coefficients. In addition, enzyme usage constraints are added to themodel using GECKO Light. (B) Simulated specific growth rate (biomass
production) and metabolite exchange rates for different values using the diffusion model. Some fluxes are scaled to enable visualization of all metabolites in the same figure: glucose
upt.: 0.01, glutamine upt.: 0.05, Lipid pool upt.: 0.2, cholesterol upt.: 10, oxygen upt.: 0.1, and lactate exp.: 0.01. (C) Internal fluxes in the same simulations as (B). The glycolytic flux is
multiplied by 0.01 and the fluxes through the complexes are multiplied by 0.1. (D) Growth dependence of metabolites. (Top) A thick line indicates a required uptake rate of at least 95%
of a metabolite for maintaining growth, as determined by flux variability analysis (FVA). (Bottom) The simulated specific growth rate of the model is compared with that when the
maximum uptake rate of a single metabolite is reduced to 90%. (E) Change in specific growth rate when removing parts of the biomass reaction. The figure shows the specific growth
rate ratio between models with reduced and original biomass reaction. In all cases, the model is optimized for growth. “No ATP prot.” refers to removal of the ATP cost from
polymerizing amino acids into proteins, while “No 2xATP” refers to having both the protein generation ATP cost and the growth-associated maintenance (GAM) ATP cost removed
from the biomass reaction. For “No 2xATP, lipids,” the consumption of lipids has also been removed in addition to the other two factors. See Figure S5 for details.
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vessels. In addition, we developed a blood flow model, where the blood flow
into the tumor rather than diffusion was assumed to be the limiting factor for
delivery of metabolites to cells and the influx was modeled to be directly pro-
portional to the contents of the blood (Note S3).

We retrieved blood plasma measurements from several sources to form a
collection of 69 metabolites with associated concentration values25–28 (Note
S4; Tables S2, S3, and S4; Figure S1). Lipids were grouped into sterols (repre-
sented by cholesterol) and other lipids (fatty acyls, glycerolipids, glycerophospho-
lipids, and sphingolipids, represented as amix of fatty acids). For oxygenwe used
the concentration of free oxygen, which can diffuse, excluding roughly 98% of the
total concentration in blood that is bound to hemoglobin.

We collected 18metabolite diffusion coefficients from literature,29–31 and esti-
mated the remaining coefficients using a linear model based on molecular
mass32 (Figure S2, Note S5; Table S4). Lipids are not soluble in water and are
therefore transported together with albumin or a lipoprotein, or potentially as
droplets. These are large particles that do not diffuse well, and we modeled
the diffusion of these particles by using the diffusion coefficient of albumin for
all lipids.
2 The Innovation 5(2): 100583, March 4, 2024
We first simulated the tumor cell growth for different values of the proportion-
ality constant a using FBA (Figure 1B). For small values of a (greater distances
from capillaries), the model cannot produce enough ATP to uphold cell mainte-
nance requirements, resulting in necrosis. For higher values of a, we see a hyp-
oxic region where the cells can survive and grow but are limited in growth by
availability of nutrients and oxygen, followed by a region where the enzyme con-
straints become the major limiting factor for growth. At small values of a, the
limited oxygen supply was primarily used for oxidative phosphorylation, which
providedmuch ATP per substrate. However, whenmore nutrients were available
a larger specific growth rate could be reached by allocating more of the enzy-
matic capacity to glycolysis instead of to these large and slow enzyme com-
plexes. The simulation predicts an early bypass of complex I, while the remaining
electron transport chain (ETC) complexes remain active at a wider a range (Fig-
ure 1C), which is consistent with a previous study where complex I bypass was
described to increase ATP yield at the cost of a lower substrate efficiency.9 The
model exhibits an extreme behavior where oxidative phosphorylation is
completely shut down for large values of a. In practice, such a behavior is gener-
ally not observed. Eighty percent of the ATP has for example been reported to be
www.cell.com/the-innovation

http://www.thennovation.org
http://www.thennovation.org


Figure 2. Predicted amino acid metabolism in simulation of cancer cell growth (A) amino acid fluxes from the simulation used in Figure 1B. Only amino acids with high predicted
fluxes are shown. Positive fluxes correspond to cellular uptake and negative to export. (B) Predicted “glutamine addiction”mechanism. When OXPHOS is limited by its high enzyme
usage, the TCA cycle flux is limited because there is noway for the cell to oxidize the produced NADH/FADH2. Any processes that can either limit the production of NADH/FADH2 while
running the TCA cycle or increase oxidation of NADH/FADH2 will thus lead to a possibility to increase the flux through the TCA cycle, and thereby increase the ATP production. Feeding
the TCA cycle from glutamate instead of pyruvate shortcuts the TCA cycle, reducing two less NAD+ molecules to NADH, while also preserving pyruvate that can be converted into
lactate to oxidize another NADHmolecule. Darker arrows indicate larger fluxes. (C) Prolinemetabolism. Generation of proline can help to increase flux through the TCA cycle as well as
bypass complex I and thereby increase ATP production. The model predicts two mechanisms for this purpose: (1) Oxidation of NADH through any of the PYCR enzymes (complex I
bypass); and (2) by running PRODH in reverse (non-favorable thermodynamically, as indicated by the question mark). The latter would increase flux through complex I, since
D1-pyrroline-5-carboxylate (P5C) would replace oxygen as the electron acceptor in the electron transport chain, and could therefore in theory increase ATP production by consuming
excess NADH and increasing flux through complex V. The brown arrow represents the proline cycle, where PRODH is run in the thermodynamically favorable direction together with
the use of a PYCR enzyme, which forms a cycle that can potentially move electrons from NADH to ubiquinone, thereby bypassing complex I without exporting proline. (D) Succinate
export. Allowing succinate export yields two advantages: (1) Complex II can be run in reverse, which highly resembles the effect from running PRODH in reverse; and (2) the TCA cycle
can be stopped at succinate, reducing production of NADH and FADH2, which enables the cell to run the TCA cycle more rounds and thereby produce more ATP. (E) Increase in ATP
production from allowing themechanisms explained in (C) (PRODH in reverse) and (D) (complex II in reverse). Themodel is optimized for ATP production, the NGAM is set to 0, and the
metabolite uptake bounds are determined by the diffusion model.

REPORT
generated by oxidative phosphorylation in some highly proliferative cells,33 but
regardless of this limitation the model can still serve as a means to understand
observed metabolic behaviors.

Next, we evaluatedwhichmetaboliteswere limiting for growth (Figures 1D and
S3). Glucose and oxygen were by far the two most important metabolites for
growth, followed by a smaller effect from glutamine, while the other limiting me-
tabolites had a small effect (Figure 1D). Neither lactate nor albumin was limiting
for growth since neither of them can give a positive ATP contribution without us-
ing oxygen. Notably, some metabolites such as lipids were limiting for growth,
but the effect is marginal; other substrates can be used in their place with an
almost negligible loss in growth rate. For the hypoxic range, free access to oxy-
gen yielded a clear increase in growth (Figure S4). We repeated our simulations
while removing different components of the biomass reaction to investigate
which cellular processes are limiting for growth, which showed that ATP produc-
tion was themain limiting factor (Figures 1E and S5). To assess the sensitivity of
our results, we repeated our analyses with the growth-associated ATP cost and
NGAM reduced to 50% and 25% of their original values, which confirmed that
glucose and oxygen were still the most important contributors to growth (Fig-
ure S6). Since hypoxia is less common in the healthy body compared with tu-
ll
mors, we also identified five reactions that were important for growth in hypoxia
but not in normoxia as potential targets (Table S5). However, all such reactions
were related to oxidative phosphorylation and are likely not suitable targets. The
lack of such targets is likely caused in part by redundancies in the full metabolic
network, and to identify more targets in future studies, cell-type-specific reaction
networks derived from for example single-cell RNA-seq data fromspecific cancer
types could be used.
The blood flow model produced similar results, although with a substantially

smaller hypoxic region (Figure S7). The major difference is a higher availability
of lipids and oxygen, which increases oxygen usage at small a values.

Amino acid metabolism
The diffusionmodel predicted large uptake fluxes of glutamine, glycine, serine,

and threonine, and export of proline and aspartate, while the rest of the amino
acids were consumed at lower fluxes, primarily for protein synthesis
(Figures 2A and S8). The model did not predict glutamate secretion, which is
observed in some cancer cell lines.34,35 While glutamate export has previously
been linked to nucleotide synthesis,35 our model does not predict any advantage
of such a behavior in the TME.
The Innovation 5(2): 100583, March 4, 2024 3



Table 1. ATP production from amino acids compared with lactate in different settings

Substrate
No
O2

Low
O2

Low
O2 PRODH

Low O2

Sc. Exp.
Enz.
Lim.

Enz. lim.
Sc. Exp.

Lactate 0 5 5 6.5 0.0938 0.0938

Aspartate 0 5 6.5 12.9 0.0937 0.0937

Glutamine 0 5 10 9.1 0.1042 0.1281

Glycine 0 5.7 5.7 8 0.0929 0.0929

Proline 0 4.7 4.7 4.9 0.0944 0.0952

Serine 3.33 9 9 13.0 0.0945 0.0945

Threonine 3.33 9 9 12.5 0.0931 0.0931

Alanine 0 5 5 6.5 0.0932 0.0932

Arginine 0 5 12.3 5.4 0.0943 0.0949

Asparagine 0 5 6.5 12.9 0.0940 0.0944

Cysteine 0 5 5 5.9 0.0927 0.0927

Glutamate 0 5 10 9.1 0.1020 0.1213

Histidine 0 5 11.1 7.3 0.0927 0.0927

Isoleucine 0 5 5 5 0.0922 0.0922

Leucine 0 5 5 5 0.0917 0.0917

Lysine 0 4.8 4.8 4.8 0.0918 0.0918

Methionine 0 5 5 5 0.0830 0.0830

Phenylalanine0 5 5 5 0.0900 0.0900

Tryptophan 0 3.8 3.8 3.8 0.0877 0.0877

Tyrosine 0 5 5 5 0.0916 0.0916

Valine 0 5 5 5 0.0917 0.0917

The table shows the maximum ATP production (mmol*gDW�1h�1) given a
maximal uptake of 10 mmol*gDW�1h�1 of a single substrate and varying
oxygen availability. Columns: “No O2”: No oxygen uptake is allowed, negligible
effects from enzyme constraints. “Low O2”: Oxygen uptake constrained to
1 mmol*gDW�1h�1 (which is not enough to fully oxidize any of the substrates),
negligible effects from enzyme constraints. PRODH in reverse and succinate
export are both blocked. “Low O2 PRODH”: Same as “Low O2”, but with PRODH
in reverse enabled. “Low O2 Sc. Exp.”: Same as “Low O2”, but with succinate
export enabled. “Enz. Lim.”: The total available enzyme pool is constrained to a
low value (0.001 g/gDW). Succinate export is blocked. In practice, this also
means that the reverse PRODH reaction will not be used. “Enz. Lim. Sc. Exp.”:
Same as “Enz. Lim.” but allowing for succinate export. Bold and italic text corre-
spond to a higher ATP production compared with lactate and underlined text to a
lower flux. While comparison to using pyruvate as fuel may at first seem more
relevant since pyruvate is the alternative fuel for the TCA cycle coming from
glycolysis, the pyruvate will be exported as lactate if not used, making compari-
son to lactate fairer from a redox perspective.
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The genome-scale metabolic model can be used to study in detail the most
optimal amino acid metabolism in different conditions, where the NADH/
FADH2 oxidation ratio in the ETC plays an important role. For fast-growing cells
limited by enzymatic capacity, the ratio should be as low as possible tomaximize
ATP production (complex I bypass), while the ratio should be as high as possible
in oxygen-deprived conditions (Note S6). Cells can utilize amino acids in different
ways to manipulate this ratio.

“Glutamine addiction” is a well-known cancer trait,8,36–38 where glutamine, the
most highly abundant amino acid in blood, is used instead of glucose-derived py-
ruvate to feed the TCA cycle. Indeed, the model predicts such behavior. Gluta-
mine is converted to glutamate and enters the TCA cycle, producing three fewer
NADHs per cycle than if pyruvate is used, resulting in increased ATP production,
aspartate production, and reduced reaction oxygen species (ROS) generation
(Figure 2BandNote S6).While aspartate exportwas not observed in a cell culture
experiment of the NCI-60 cell lines,39 aspartate production from glutamine has
4 The Innovation 5(2): 100583, March 4, 2024
been shown to exist in pancreatic cancer cell lines using labeling experiments,40

and is likely disposed of using alternative pathways (Note S6). Glutamine is also
known to be important for immune cells such as T and NK cells, possibly for the
samepurpose, i.e., to increaseATPproduction. However, due to the predatory up-
take of glutamine by cancer cells, glutamine is often depleted in the TME,making
this behavior a weakness in the TME.41

Proline secretion has been observed in cell line experiments35,39 and themodel
predicts two different mechanisms by which proline production from glutamate
can help to increase ATP production: NADH oxidation through PYCR1 (or related
enzymes), which can also form the “proline cycle”42 with PRODH to bypass com-
plex I, or by running PRODH in reverse, enabling the use of complex I without ox-
ygen (Figures2CandS9).The latterhas toourknowledgenotbeen reported, and it
is unclear if sucha reaction is thermodynamically favorable in vivo, although it has
been shown possible in enzyme assays outside cells.43 In addition, allowing
exportofsuccinateenables (1) the reversalofcomplex II,whichcatalyzesasimilar
reaction and has been shown to run in reverse in mammals (Figure 2D)44,45; and
(2) interruption of the TCA cycle, thereby bypassing complex II while running suc-
cinyl-CoA synthetase to produce ATP (Figure 2D). The model predicts these two
effects tobeevenmorebeneficial thanPRODH in reverseunder hypoxia, although
all effects combined yield the highest benefit (Figures 2E and S10).
To investigate the behavior of each amino acid in more detail, we simulated

access to a fixed influx of a single metabolite and optimized for maximum
ATPproduction, comparing the use of eachamino acidas the sole carbon source
to that of using lactate under different conditions (Table 1). A few amino acids
could be used to generate ATP without oxygen, such as serine, which as part
of the serine, one-carbon cycle, glycine synthesis (SOG) pathwayhas been shown
to support ATP production and cancer cell proliferation.46 However, like lactate
most amino acidswere not useful for producingATP in that condition. In hypoxia,
without enzyme constraints, PRODH reversal, and succinate export, some bene-
fits to ATP production could be observed from using amino acids as substrates
compared to lactate. Allowing reversal of PRODH increased the ATP yield from
several amino acids dramatically compared with lactate, and a similar effect
was observed from allowing export of succinate, although the benefits varied
substantially across different amino acids. Under enzyme-limited conditions,
both with and without succinate export, glutamine and glutamate were the car-
bon sources giving the highest ATP yield, consistent with the strategy depicted in
Figure 2B and the glutamine addiction results reported previously.8 Under these
conditions, complex Iwas bypassed,which resulted in a several times higher TCA
cycle flux for glutamine and a higher total ATP production despite having lower
complex V activity (Figure S11). Comparing these results to existing literature, a
previous study showed that glutamine is used to feed the TCA cycle both in hyp-
oxic and normoxic conditions,33 which is consistent with our results assuming
either use of PRODH in reverse or succinate export in hypoxia.
Simulation of cell-type collaborations in the TME
A topic of recent interest iswhether non-cancerous cells in the TMEassist can-

cer cells metabolically by providing them with resources that are advantageous
for growth. It has for example been proposed that CAFs can provide cancer cells
withmetabolites such as lactate and pyruvate,10,47 and it could also be beneficial
if tumor-associatedmacrophages (TAMs) could consumedead cells and cellular
debris and produce nutrients for the cancer cells. We sought to investigate these
collaboration scenarios inmore detail using our diffusionmodeling approach.We
again constrainedmetabolite uptake from blood but built a more complex meta-
bolicmodel consisting of three cell types: cancer cells, fibroblasts, and other cells,
where the latter represent cells that are not expected to provide resources to the
cancer cells, for example immune cells (Figure 3A). The exchange ofmetabolites
between the cell types was controlled by providing separate compartments for
the interstitium around the fibroblasts and other cells (Figure 3B).
The extracellular matrix (ECM) consists mainly of collagens and glycosamino-

glycans (GAGs) and is produced by the fibroblasts. Both the composition of the
ECM and the fraction of the total tumor dry weight that the ECM constitutes vary
largely across tumors. We assumed an ECM composition of 80% collagen (rep-
resented by collagen I) and 20%GAGs (represented by heparan sulfate) to reduce
the number of flexible parameters. We varied the total ECM fraction of the tumor
dry weight and the fraction of each cell type, since these parameters vary sub-
stantially between individual tumors. The different modeling configurations are
listed in Table 2.
www.cell.com/the-innovation
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Figure 3. Collaboration between cell types in the
TME (A) Modeling setup of the tumor microenviron-
ment. Themodel contains three cell types: Fibroblasts
(CAFs), cancer cells, and other cells (e.g., different
types of immune cells). Non-malignant cells are im-
ported to the tumor, resulting in a total biomass re-
action consisting of cancer cell growth and extracel-
lular matrix construction. All cell types have the same
metabolic network (the curated full Human1 model)
with the sameNGAM value as used previously, but the
fibroblasts were extended with reactions for building
the extracellular matrix. (B) Compartment setup to
enable limitation of cell-type collaboration to certain
scenarios. The fibroblasts (CAF) and other cells (OC)
have their own model compartments for the tumor
interstitium. While metabolites can (depending on the
simulation) be transported from the CAF interstitium
to the cancer cell interstitium, such transport is not
possible from the OC interstitium. (C) Effect of
collaboration on the specific growth rate of the tumor.
(D) Number of collaboration metabolites between fi-
broblasts and cancer cells as a function of a,
measured for them2model. We identified in total 233
potential collaboration metabolites across the range
of explored a values.

REPORT
It directly follows from the first law of thermodynamics that CAFs cannot in-
crease the total energy available in the TME unless they actively import or utilize
material from outside the TME, which is a case not investigated here but briefly
addressed later in this section. In cases where the growth is limited by nutrient
availability only, there is therefore nothing the CAFs can do to help the cancer
cells metabolically, given that the cancer cells behave optimally and thereby ex-
press the enzymes needed to utilize the available nutrients. However, as nutrient
availability increases and the growth becomes limited by enzymatic capacity, it
may be possible for the CAFs to increase growth by providing additional enzy-
matic capacity to produce metabolites that are more optimal for cancer cell
growth.

We first simulated the specific growth rates of the models with different
parameter values for ECM and cell-type fractions (m1-m5) and compared
them with that of them0model (Figure 3C). A high fraction of fibroblasts penal-
ized growth at low values of a due to the additional ATP costs fromNGAM, while
the extra enzymatic capacity supplied by a high fibroblast fraction imparts a
growth advantage for high a values. We also observed that the cost of building
the ECM was not negligible in our simulations. However, the addition of ECM
to the model objective function did not substantially alter which metabolites
were limiting for growth relative to them0model, despite a high protein content
(Figure S12A).

Next, we developed an algorithm to identify potential collaborationmetabolites,
defined asmetabolites being exported from fibroblasts and imported into cancer
cells, for all values of a (Figure 3D; Table S6). As expected, the number increased
with increasing a, where the enzymatic capacity becomes increasingly limiting
for growth. However, many of these collaboration metabolites, such as ATP,
are not physiologicallymeaningful and have not been reported as being exported
from fibroblasts.When limiting the collaborationmetabolites to those reported in
literature (lactate, pyruvate, free fatty acids, glutamine, ketone bodies, and
alanine47,48), and comparing with the model in which collaboration is blocked,
the growth difference was negligible (Figure S12B). Although co-injection of tu-
mor cells with fibroblasts in mice can lead to an increased specific growth
rate,49we reason that this effect is likely caused by signaling effects or potentially
ll The
because the fibroblasts complemented defi-
ciencies in the metabolic functionality of these
cancer cells. Likewise, mouse experiments have
suggested a metabolic collaboration between
oxygenated and hypoxic cancer cells.50,51 We,
however, argue that there is an alternative expla-
nation for these results (Figure S13).
The CAFs in this study were represented by a

cell-type-specific model in the sense that they
produced ECM, but they were otherwise generic
and had access to all enzymes. All possible ways
that CAFs can contribute to cancer growth with
the given set of collaboration metabolites were therefore evaluated in our simu-
lations. Other cell types, for example myeloid-derived suppressor cells (MDSCs),
have a different objective and are additionally known to export ROS and reactive
nitrogen species (RNS).52 We therefore extended the set of collaboration metab-
olites with H2O2, which was the only ROS/RNS species identified as a collabora-
tion metabolite, and used the m1 model with a negligible ECM fraction and al-
lowed the CAFs to serve as MDSCs, but only negligible changes to the growth
rate were observed (Figure S12C).
Although the “other cells” cannot provide the cancer cells with resources in the

simulation, they can still minimize their negative impact on growth, which we
have termed passive collaboration.We simulated this behavior bymaximizing tu-
mor growth using them6model, resulting in ATP generation based on enzyme-
demanding processing such as oxidative phosphorylation in the other cells
(Figure S12D). The question is whether the other cells, representing for example
immune cells, are helpful for cancer growth, or if the relationship ismore compet-
itive. TAMs have, however, been reported to switch to oxidative phosphorylation
when exposed to lactate, which could be seen as a sign of such passive
collaboration.53

TAMs are reported to have many metabolic roles in the TME, including both
passive and active collaboration,53,54 which would give them the same role as
other cells or fibroblasts in our simulation. Macrophages, however, also have
an additional function where they can scavenge dead cells and convert them
into metabolites useful to other cells. To investigate to what extent this function
can support tumor growth, we used them0model and assumed that 10% of the
tumor cells produced from growth die. We assumed that the maximum amount
of additional nutrients provided is thus themetabolites that constitute 10% of the
produced biomass (materials and methods), excluding the ATP cost consumed
during growth (Table S7). There is a clear growth advantage, which is larger for
small a values, but the overall effect is relatively small even though no mainte-
nance or metabolite conversion cost is included for the macrophages (Fig-
ure S12E). The reason for the limited utility of such substrates is mainly that in
nutrient-deprived conditions, all oxygen is already being consumed, and oxygen
is required to generate ATP frommost scavenged resources. A similar theory to
Innovation 5(2): 100583, March 4, 2024 5



Table 2. Different model configurations used in the simulations

Model
Cancer cell
fraction

Fibroblast cell
fraction

Other cells
fraction ECM fraction

m0 1 0 0 0

m1 0.6 0.2 0.2 0.01

m2 0.6 0.2 0.2 0.25

m3 0.6 0.2 0.2 0.5

m4 0.75 0.05 0.2 0.25

m5 0.45 0.35 0.2 0.25

m6 0.9699 0.0001 0.03 0.00001

Them0model contains only tumor cells and is identical to the model used in Fig-
ures 1 and 2. ECM fraction represents the weight fraction of the total objective
being maximized that the ECM constitutes.
Permissions: Not applicable.
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that of scavenging dead cells by macrophages concerns catabolism of organ-
elles and apoptosis in CAFs to provide additional nutrients,10 where CAFs could
then for example be recruited to the tumor. Such a case represents an influx of
extramaterial fromoutside the TMEand could provide a small growth advantage
similar to the macrophage case but also suffers from the same problem of oxy-
gen limitation and is likely of limited importance.

We also performed these simulationswith the blood flowmodel. In contrast to
the diffusion model, a small (negligible) collaboration benefit was observed from
collaboration using literature metabolites (Figure S14A), and the macrophage
collaboration utilizing dead cells was more beneficial in this case (Figure S14B).
However, the benefits were still small, confirming our previous conclusion that
these metabolic collaboration scenarios are not important for optimizing cancer
growth.

DISCUSSION
During the past decade, metabolic collaboration between cell types in

the tumor microenvironment has been thought to increase tumor
growth,10–13 although experimental evidence is lacking due to difficulties
in measuring and controlling fluxes into and between cell types in an exper-
imental setup. As an alternative, we used genome-scale modeling of the
human intracellular metabolic network and integrated measurements of
metabolite concentrations in blood and metabolite diffusion coefficients
to estimate the maximal increase in specific growth rate from such collab-
orations at different levels of hypoxia.

The major insight gained from this study was that the metabolic collabo-
ration scenarios between cell types proposed in the literature10–13 have a
negligible effect on tumor growth. Although fibroblasts have been shown
to export lactate55 and some tumors have been shown to take up lacate,56

no direct evidence is presented that such a behavior is beneficial for growth.
In addition, scavenging of dead cells by macrophages or other forms of cell
catabolism such as catabolic behavior of fibroblasts13 only yield a marginal
benefit to growth due to a shortage of oxygen. However, the signaling inter-
play between stromal cells and cancer cells is most likely important for
changing the metabolism of tumor cells.13

An additional insight gained from this study is that ATP production is most
likely the limiting factor for growth of cancer cells in the TME, and that the
ATP production is limited by either lack of nutrients and oxygen, by limitations
in enzymatic capacity, or a combination of both. Other factors not considered
in our model may also play a role in limiting growth, such as extensive ROS pro-
duction or low pH in the interstitial fluid. The high demand for ATP is implicitly
supportedby literature;most of the carbon fromglucose andglutamine imported
by cells is not incorporated into the biomass,57 suggesting that it is used for ATP
production.

The third important insight from this study concerns the use of amino acids for
energy production and the varying ways in which the TCA cycle can be used. Our
model, for example, predicts glutamine addiction8,58,59 and gives plausible expla-
nations to why glutamine is a more optimal substrate than pyruvate for the TCA
cycle at different levels of hypoxia. We also predict potential benefits from
running PRODH in reverse in hypoxia, although it is unclear if such a reaction
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is thermodynamically favorable, and predict a potential 20% increase in ATP pro-
duction from runningmitochondrial complex II in reverse, which has been shown
to take place both in cell lines and in vivo.45

Although we have shown that direct metabolic collaboration between cells in
the TME is not useful for increasing the growth rate of tumor cells, metabolic in-
teractions in the TME are still important. A recent example is the ability of the on-
cometabolite D-2-hydroxyglutarate (D-2HG) to block lactate dehydrogenase.60

The acquisition of mutations in isocitrate dehydrogenase by cancer cells to pro-
duce this oncometabolite is at first counterintuitive—we predict that blocking
lactate production reduces the growth rate of cancer cells. However, as shown
in the aforementioned study, it also blocks lactate production in T cells, which im-
pairs cytotoxicity and thereby increases the survival of cancer cells. Likewise, as
wehave discussed in this study, depletion of glutamine can potentially reduce the
toxicity of T cells.41 Metabolic drivers in cancer therefore need not necessarily in-
crease growth but can also provide other benefits.
Altogether, our results suggest that there is no benefit for tumors to develop a

metabolic collaboration between cell types. Such metabolic collaborations may
still exist, where a cell type can complement deficiencies in tumor cells, which has
for example been observed during glutamine deprivation.61 However, such a
configuration does not improve growth beyond what activating the needed
pathway directly in the tumor cells would yield. Our modeling approach allows
for investigation of the optimal behavior for cells in the TME under the assump-
tions that the diffusion and blood flow models are based upon. While these
models are approximations of the true influx of metabolites into tumors, they
can still serve well for future investigations of different metabolic phenomena
in the tumor microenvironment, and with a systems biology approach unravel
questions that are difficult to address using experiments.
MATERIALS AND METHODS
Details about the materials and methods used are available in Note S7.
REFERENCES
1. Forster, J.C., Harriss-Phillips,W.M., Douglass,M.J., et al. (2017). A review of the development

of tumor vasculature and its effects on the tumor microenvironment. Hypoxia 5: 21–32.
https://doi.org/10.2147/HP.S133231.

2. Nagy, J.A., Chang, S.-H., Dvorak, A.M., et al. (2009). Why are tumour blood vessels abnormal
andwhy is it important to know? Br. J. Cancer 100: 865–869. https://doi.org/10.1038/sj.bjc.
6604929.

3. Jain, R.K., Martin, J.D., Chauhan, V.P., et al. (2020). 8 - Tumor Microenvironment: Vascular
and Extravascular Compartment. In Abeloff’s Clinical Oncology, Sixth Edition, J.E.
Niederhuber, J.O. Armitage, and M.B. Kastan, et al., eds. (Elsevier), pp. 108–126.e7.
https://doi.org/10.1016/B978-0-323-47674-4.00008-6.

4. Sefidgar, M., Soltani, M., Raahemifar, K., et al. (2014). Effect of tumor shape, size, and tissue
transport properties on drug delivery to solid tumors. J. Biol. Eng. 8: 12. https://doi.org/10.
1186/1754-1611-8-12.

5. Busk, M., Overgaard, J., and Horsman, M.R. (2020). Imaging of Tumor Hypoxia for
Radiotherapy: Current Status and Future Directions. Semin. Nucl. Med. 50: 562–583.
https://doi.org/10.1053/j.semnuclmed.2020.05.003.

6. Liberti, M.V., and Locasale, J.W. (2016). The Warburg Effect: How Does it Benefit Cancer
Cells? Trends Biochem. Sci. 41: 211–218. https://doi.org/10.1016/j.tibs.2015.12.001.

7. Cammann, C., Rath, A., Reichl, U., et al. (2016). Early changes in the metabolic profile of acti-
vated CD8+ T cells. BMC Cell Biol. 17: 28. https://doi.org/10.1186/s12860-016-0104-x.

8. Wise, D.R., and Thompson, C.B. (2010). Glutamine Addiction: A New Therapeutic Target in
Cancer. Trends Biochem. Sci. 35: 427–433. https://doi.org/10.1016/j.tibs.2010.05.003.

9. Nilsson, A., Björnson, E., Flockhart, M., et al. (2019). Complex I is bypassed during high inten-
sity exercise. Nat. Commun. 10: 5072. https://doi.org/10.1038/s41467-019-12934-8.

10. Martinez-Outschoorn, U.E., Lisanti, M.P., and Sotgia, F. (2014). Catabolic cancer-associated
fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth.
Semin. Cancer Biol. 25: 47–60. https://doi.org/10.1016/j.semcancer.2014.01.005.

11. Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., et al. (2009). The reverse Warburg ef-
fect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle
8: 3984–4001. https://doi.org/10.4161/cc.8.23.10238.

12. Zhao, H., Yang, L., Baddour, J., et al. (2016). Tumor microenvironment derived exosomes
pleiotropically modulate cancer cell metabolism. Elife 5: e10250. https://doi.org/10.7554/
eLife.10250.

13. Avagliano, A., Granato, G., Ruocco, M.R., et al. (2018). Metabolic Reprogramming of Cancer
Associated Fibroblasts: The Slavery of Stromal Fibroblasts. BioMed Res. Int. 2018:
6075403. https://doi.org/10.1155/2018/6075403.

14. Hui, S., Ghergurovich, J.M., Morscher, R.J., et al. (2017). Glucose feeds the TCA cycle via
circulating lactate. Nature 551: 115–118. https://doi.org/10.1038/nature24057.

15. Orth, J.D., Thiele, I., and Palsson, B.Ø. (2010). What is flux balance analysis? Nat. Biotechnol.
28: 245–248. https://doi.org/10.1038/nbt.1614.
www.cell.com/the-innovation

https://doi.org/10.2147/HP.S133231
https://doi.org/10.1038/sj.bjc.6604929
https://doi.org/10.1038/sj.bjc.6604929
https://doi.org/10.1016/B978-0-323-47674-4.00008-6
https://doi.org/10.1186/1754-1611-8-12
https://doi.org/10.1186/1754-1611-8-12
https://doi.org/10.1053/j.semnuclmed.2020.05.003
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1186/s12860-016-0104-x
https://doi.org/10.1016/j.tibs.2010.05.003
https://doi.org/10.1038/s41467-019-12934-8
https://doi.org/10.1016/j.semcancer.2014.01.005
https://doi.org/10.4161/cc.8.23.10238
https://doi.org/10.7554/eLife.10250
https://doi.org/10.7554/eLife.10250
https://doi.org/10.1155/2018/6075403
https://doi.org/10.1038/nature24057
https://doi.org/10.1038/nbt.1614
http://www.thennovation.org
http://www.thennovation.org


REPORT
16. Lewis, J.E., Forshaw, T.E., Boothman, D.A., et al. (2021). Personalized Genome-Scale
Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors.
Cell Syst. 12: 68–81.e11. https://doi.org/10.1016/j.cels.2020.12.001.

17. Wang, H., Robinson, J.L., Kocabas, P., et al. (2021). Genome-scale metabolic network recon-
struction of model animals as a platform for translational research. Proc. Natl. Acad. Sci.
USA 118: e2102344118. https://doi.org/10.1073/pnas.2102344118.

18. Sánchez, B.J., Zhang, C., Nilsson, A., et al. (2017). Improving the phenotype predictions of a
yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst.
Biol. 13: 935. https://doi.org/10.15252/msb.20167411.

19. Robinson, J.L., Kocabaş, P., Wang, H., et al. (2020). An atlas of human metabolism. Sci.
Signal. 13: eaaz1482. https://doi.org/10.1126/scisignal.aaz1482.

20. Opdam, S., Richelle, A., Kellman, B., et al. (2017). A Systematic Evaluation of Methods for
Tailoring Genome-Scale Metabolic Models. Cell Syst. 4: 318–329.e6. https://doi.org/10.
1016/j.cels.2017.01.010.

21. Kilburn, D.G., Lilly, M.D., and Webb, F.C. (1969). The Energetics of Mammalian Cell Growth.
J. Cell Sci. 4: 645–654.

22. Domenzain, I., Sánchez, B., Anton, M., et al. (2021). Reconstruction of a catalogue of
genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Preprint at
bioRxiv. https://doi.org/10.1101/2021.03.05.433259.

23. Chang, A., Jeske, L., Ulbrich, S., et al. (2021). BRENDA, the ELIXIR core data resource in 2021:
new developments and updates. Nucleic Acids Res. 49: D498–D508. https://doi.org/10.
1093/nar/gkaa1025.

24. Liu, D., Chalkidou, A., Landau, D.B., et al. (2014). Interstitial diffusion and the relationship be-
tween compartment modelling and multi-scale spatial-temporal modelling of 18 F-FLT
tumour uptake dynamics. Phys. Med. Biol. 59: 5175–5202. https://doi.org/10.1088/0031-
9155/59/17/5175.

25. Harada, S., Hirayama, A., Chan, Q., et al. (2018). Reliability of plasma polar metabolite con-
centrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry.
PLoS One 13: e0191230. https://doi.org/10.1371/journal.pone.0191230.

26. Hoogenboezem, E.N., and Duvall, C.L. (2018). Harnessing Albumin as a Carrier for Cancer
Therapies. Adv. Drug Deliv. Rev. 130: 73–89. https://doi.org/10.1016/j.addr.2018.07.011.

27. Quehenberger, O., Armando, A.M., Brown, A.H., et al. (2010). Lipidomics reveals a remarkable
diversity of lipids in human plasma1[S]. J. Lipid Res. 51: 3299–3305. https://doi.org/10.
1194/jlr.M009449.

28. Siggaard-andersen, O., Gøthgen, I.H., Wimberley, P.D., et al. (1990). The oxygen status of the
arterial blood revised: Relevant oxygen parameters for monitoring the arterial oxygen avail-
ability. Scand. J. Clin. Lab. Invest. 203: 17–28. https://doi.org/10.3109/
00365519009087488.

29. Zhang, X., Li, C.-G., Ye, C.-H., et al. (2001). Determination of Molecular Self-Diffusion
Coefficient Using Multiple Spin-Echo NMR Spectroscopy with Removal of Convection and
Background Gradient Artifacts. Anal. Chem. 73: 3528–3534. https://doi.org/10.1021/
ac0101104.

30. Chary, S.R., and Jain, R.K. (1989). Direct measurement of interstitial convection and diffu-
sion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc.
Natl. Acad. Sci. USA 86: 5385–5389. https://doi.org/10.1073/pnas.86.14.5385.

31. Goldstick, T.K., Ciuryla, V.T., and Zuckerman, L. (1976). Diffusion of oxygen in plasma
and blood. Adv. Exp. Med. Biol. 75: 183–190. https://doi.org/10.1007/978-1-4684-
3273-2_23.

32. Valencia, D.P., and González, F.J. (2012). Estimation of diffusion coefficients by using a
linear correlation between the diffusion coefficient and molecular weight. J. Electroanal.
Chem. 681: 121–126. https://doi.org/10.1016/j.jelechem.2012.06.013.

33. Fan, J., Kamphorst, J.J., Mathew, R., et al. (2013). Glutamine-driven oxidative phosphoryla-
tion is a major ATP source in transformed mammalian cells in both normoxia and hypoxia.
Mol. Syst. Biol. 9: 712. https://doi.org/10.1038/msb.2013.65.

34. Seidlitz, E.P., Sharma, M.K., Saikali, Z., et al. (2009). Cancer cell lines release glutamate into
the extracellular environment. Clin. Exp. Metastasis 26: 781–787. https://doi.org/10.1007/
s10585-009-9277-4.

35. Nilsson, A., Haanstra, J.R., Engqvist, M., et al. (2020). Quantitative analysis of amino acid
metabolism in liver cancer links glutamate excretion to nucleotide synthesis. Proc. Natl.
Acad. Sci. USA 117: 10294–10304. https://doi.org/10.1073/pnas.1919250117.

36. Chinopoulos, C., and Seyfried, T.N. (2018). Mitochondrial Substrate-Level Phosphorylation
as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 10:
1759091418818261. https://doi.org/10.1177/1759091418818261.

37. Wang, Y., Bai, C., Ruan, Y., et al. (2019). Coordinative metabolism of glutamine carbon and
nitrogen in proliferating cancer cells under hypoxia. Nat. Commun. 10: 201. https://doi.org/
10.1038/s41467-018-08033-9.

38. Corbet, C., and Feron, O. (2017). Tumour acidosis: from the passenger to the driver’s seat.
Nat. Rev. Cancer 17: 577–593. https://doi.org/10.1038/nrc.2017.77.

39. Jain, M., Nilsson, R., Sharma, S., et al. (2012). Metabolite profiling identifies a key role for
glycine in rapid cancer cell proliferation. Science 336: 1040–1044. https://doi.org/10.
1126/science.1218595.

40. Hollinshead, K.E.R., Parker, S.J., Eapen, V.V., et al. (2020). Respiratory Supercomplexes
Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell
Rep. 33: 108231. https://doi.org/10.1016/j.celrep.2020.108231.

41. Ma, G., Zhang, Z., Li, P., et al. (2022). Reprogramming of glutamine metabolism and its
impact on immune response in the tumor microenvironment. Cell Commun. Signal. 20:
114. https://doi.org/10.1186/s12964-022-00909-0.

42. Tanner, J.J., Fendt, S.-M., and Becker, D.F. (2018). The Proline Cycle As a Potential Cancer
TherapyTarget. Biochemistry57: 3433–3444. https://doi.org/10.1021/acs.biochem.8b00215.
ll
43. Moxley, M.A., and Becker, D.F. (2012). Rapid Reaction Kinetics of Proline Dehydrogenase in
the Multifunctional Proline Utilization A Protein. Biochemistry 51: 511–520. https://doi.org/
10.1021/bi201603f.

44. Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., et al. (2012). Mitochondrial Complex II Can
Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse
Reactions. J. Biol. Chem. 287: 27255–27264. https://doi.org/10.1074/jbc.M112.374629.

45. Spinelli, J.B., Rosen, P.C., Sprenger, H.-G., et al. (2021). Fumarate is a terminal electron
acceptor in the mammalian electron transport chain. Science 374: 1227–1237. https://
doi.org/10.1126/science.abi7495.

46. Tedeschi, P.M., Markert, E.K., Gounder, M., et al. (2013). Contribution of serine, folate and
glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell
Death Dis. 4: e877. https://doi.org/10.1038/cddis.2013.393.

47. Jung, J.G., and Le, A. (2021). Targeting Metabolic Cross Talk Between Cancer Cells and
Cancer-Associated Fibroblasts. In The Heterogeneity of Cancer Metabolism Advances in
Experimental Medicine and Biology, A. Le, ed. (Springer International Publishing),
pp. 205–214. https://doi.org/10.1007/978-3-030-65768-0_15.

48. Sousa, C.M., Biancur, D.E., Wang, X., et al. (2016). Pancreatic stellate cells support tumour
metabolism through autophagic alanine secretion. Nature 536: 479–483. https://doi.org/
10.1038/nature19084.

49. Capparelli, C., Guido, C., Whitaker-Menezes, D., et al. (2012). Autophagy and senescence in can-
cer-associated fibroblasts metabolically supports tumor growth andmetastasis, via glycolysis
and ketone production. Cell Cycle 11: 2285–2302. https://doi.org/10.4161/cc.20718.

50. Sonveaux, P., Végran, F., Schroeder, T., et al. (2008). Targeting lactate-fueled respiration
selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118: 3930–3942. https://doi.
org/10.1172/JCI36843.

51. de la Cruz-López, K.G., Castro-Muñoz, L.J., Reyes-Hernández, D.O., et al. (2019). Lactate in
the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front. Oncol. 9:
1143. https://doi.org/10.3389/fonc.2019.01143.

52. Ohl, K., and Tenbrock, K. (2018). Reactive Oxygen Species as Regulators of MDSC-Mediated
Immune Suppression. Front. Immunol. 9: 2499.

53. Vitale, I., Manic, G., Coussens, L.M., et al. (2019). Macrophages andMetabolism in the Tumor
Microenvironment. Cell Metabol. 30: 36–50. https://doi.org/10.1016/j.cmet.2019.06.001.

54. Lin, Y., Xu, J., and Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: bio-
logical roles and clinical therapeutic applications. J. Hematol. Oncol. 12: 76. https://doi.org/
10.1186/s13045-019-0760-3.

55. Guido, C., Whitaker-Menezes, D., Capparelli, C., et al. (2012). Metabolic reprogramming of
cancer-associated fibroblasts by TGF-b drives tumor growth: connecting TGF-b signaling
with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 11: 3019–
3035. https://doi.org/10.4161/cc.21384.

56. Faubert, B., Li, K.Y., Cai, L., et al. (2017). Lactate Metabolism in Human Lung Tumors. Cell
171: 358–371.e9. https://doi.org/10.1016/j.cell.2017.09.019.

57. Hosios, A.M., Hecht, V.C., Danai, L.V., et al. (2016). Amino acids rather than glucose account
for themajority of cell mass in proliferatingmammalian cells. Dev. Cell 36: 540–549. https://
doi.org/10.1016/j.devcel.2016.02.012.

58. Wei, Z., Liu, X., Cheng, C., et al. (2020). Metabolism of Amino Acids in Cancer. Front. Cell Dev.
Biol. 8: 603837. https://doi.org/10.3389/fcell.2020.603837.

59. Yang, L., Venneti, S., and Nagrath, D. (2017). Glutaminolysis: A Hallmark of Cancer
Metabolism. Annu. Rev. Biomed. Eng. 19: 163–194. https://doi.org/10.1146/annurev-bio-
eng-071516-044546.

60. Notarangelo, G., Spinelli, J.B., Perez, E.M., et al. (2022). Oncometabolite d -2HG alters T cell
metabolism to impair CD8 + T cell function. Science 377: 1519–1529. https://doi.org/10.
1126/science.abj5104.

61. Yang, L., Achreja, A., Yeung, T.-L., et al. (2016). Targeting Stromal Glutamine Synthetase in
Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metabol.
24: 685–700. https://doi.org/10.1016/j.cmet.2016.10.011.

ACKNOWLEDGMENTS
We thank Stig Larsson for reviewing the diffusionmodel andGunjan Purohit for help with

investigating amino acid metabolism.

This work was supported by funding from the Knut and Alice Wallenberg Foundation,

Grant 2015-0279 (J.N.) and in part by NIGMS, National Institutes of Health, Grant

R01GM13264 (D.B.).

AUTHOR CONTRIBUTIONS
J.G., J.R., and J.N. planned the project. J.G. and A.H. developed the diffusion model. J.G.,

F.R., D.B., S.P., and O.D. investigated and drew conclusions about amino acid metabolism.

J.G. wrote all the software and made all analyses and figures. J.G. wrote the draft manu-

script. All authors reviewed and edited themanuscript. J.R. and J.N. supervised the project.

J.N. acquired funding for the project.

DECLARATION OF INTERESTS
The authors declare no competing interests.

SUPPLEMENTAL INFORMATION
It can be found online at https://doi.org/10.1016/j.xinn.2024.100583.
The Innovation 5(2): 100583, March 4, 2024 7

https://doi.org/10.1016/j.cels.2020.12.001
https://doi.org/10.1073/pnas.2102344118
https://doi.org/10.15252/msb.20167411
https://doi.org/10.1126/scisignal.aaz1482
https://doi.org/10.1016/j.cels.2017.01.010
https://doi.org/10.1016/j.cels.2017.01.010
http://refhub.elsevier.com/S2666-6758(24)00021-3/sref21
http://refhub.elsevier.com/S2666-6758(24)00021-3/sref21
https://doi.org/10.1101/2021.03.05.433259
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1088/0031-9155/59/17/5175
https://doi.org/10.1088/0031-9155/59/17/5175
https://doi.org/10.1371/journal.pone.0191230
https://doi.org/10.1016/j.addr.2018.07.011
https://doi.org/10.1194/jlr.M009449
https://doi.org/10.1194/jlr.M009449
https://doi.org/10.3109/00365519009087488
https://doi.org/10.3109/00365519009087488
https://doi.org/10.1021/ac0101104
https://doi.org/10.1021/ac0101104
https://doi.org/10.1073/pnas.86.14.5385
https://doi.org/10.1007/978-1-4684-3273-2_23
https://doi.org/10.1007/978-1-4684-3273-2_23
https://doi.org/10.1016/j.jelechem.2012.06.013
https://doi.org/10.1038/msb.2013.65
https://doi.org/10.1007/s10585-009-9277-4
https://doi.org/10.1007/s10585-009-9277-4
https://doi.org/10.1073/pnas.1919250117
https://doi.org/10.1177/1759091418818261
https://doi.org/10.1038/s41467-018-08033-9
https://doi.org/10.1038/s41467-018-08033-9
https://doi.org/10.1038/nrc.2017.77
https://doi.org/10.1126/science.1218595
https://doi.org/10.1126/science.1218595
https://doi.org/10.1016/j.celrep.2020.108231
https://doi.org/10.1186/s12964-022-00909-0
https://doi.org/10.1021/acs.biochem.8b00215
https://doi.org/10.1021/bi201603f
https://doi.org/10.1021/bi201603f
https://doi.org/10.1074/jbc.M112.374629
https://doi.org/10.1126/science.abi7495
https://doi.org/10.1126/science.abi7495
https://doi.org/10.1038/cddis.2013.393
https://doi.org/10.1007/978-3-030-65768-0_15
https://doi.org/10.1038/nature19084
https://doi.org/10.1038/nature19084
https://doi.org/10.4161/cc.20718
https://doi.org/10.1172/JCI36843
https://doi.org/10.1172/JCI36843
https://doi.org/10.3389/fonc.2019.01143
http://refhub.elsevier.com/S2666-6758(24)00021-3/sref52
http://refhub.elsevier.com/S2666-6758(24)00021-3/sref52
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1186/s13045-019-0760-3
https://doi.org/10.1186/s13045-019-0760-3
https://doi.org/10.4161/cc.21384
https://doi.org/10.1016/j.cell.2017.09.019
https://doi.org/10.1016/j.devcel.2016.02.012
https://doi.org/10.1016/j.devcel.2016.02.012
https://doi.org/10.3389/fcell.2020.603837
https://doi.org/10.1146/annurev-bioeng-071516-044546
https://doi.org/10.1146/annurev-bioeng-071516-044546
https://doi.org/10.1126/science.abj5104
https://doi.org/10.1126/science.abj5104
https://doi.org/10.1016/j.cmet.2016.10.011
https://doi.org/10.1016/j.xinn.2024.100583

	Metabolic collaboration between cells in the tumor microenvironment has a negligible effect on tumor growth
	Introduction
	Results
	Simulation of tumor cell growth
	Amino acid metabolism
	Simulation of cell-type collaborations in the TME

	Discussion
	Materials and methods
	References
	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information


