Going Green EcoDesign2021, December 1-3, 2021

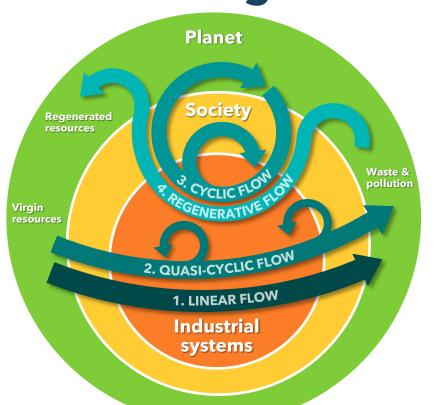
The 12th Int. Symp. on Environmentally Conscious Design and Inverse Manufacturing

Applying Regenerative Sustainability Principles in Manufacturing

Proceedings now available online:

DOI: 10.1007/978-981-99-3818-6_10

Mélanie Despeisse


Associate Professor in Sustainable Digitalized Production, Division of Production Systems, Department of Industrial and Materials Science, Chalmers University of Technology

From less bad to more good

Principle 1: Sourcing materials, energy and water to promote conservation

Principle 2: Respecting regeneration rate

Principle 3: Preventing and mitigating harmful effects to promote preservation

> Principle 4: Respecting assimilation capacity

> > 2

Proposed 12 principles for regenerative sustainability in manufacturing

Principle 1. Source materials, energy and water to promote conservation

→ use renewable, non-toxic, and locally abundant resources

Principle 2. Respect resource regeneration rate

→ use industrial processes that do not exceed ecosystems' renewal capacity

Principle 3. Prevent and mitigate harmful effects to promote preservation

→ eliminate, minimise and treat waste/emissions

Principle 4. Respect the assimilative capacity

→ use industrial processes that do not exceed ecosystems' absorption capacity

Principle 5. Restore natural resource flows locally

→ use industrial processes that restore local ecosystems' health through decontamination and purification

Principle 6. Regenerate damaged resources in products

→ use processes, and systems that reverse harm/recapture harmful substances

Principle 7. Enable eco-efficient and circular resource flows locally

→ design and operate processes and systems that increase efficiency/reduce energy-matter throughput and increase circularity

Principle 8. Maximise value creation through eco-efficient processes

→ design and operate processes and systems that efficiently create value to meet minimum requirements

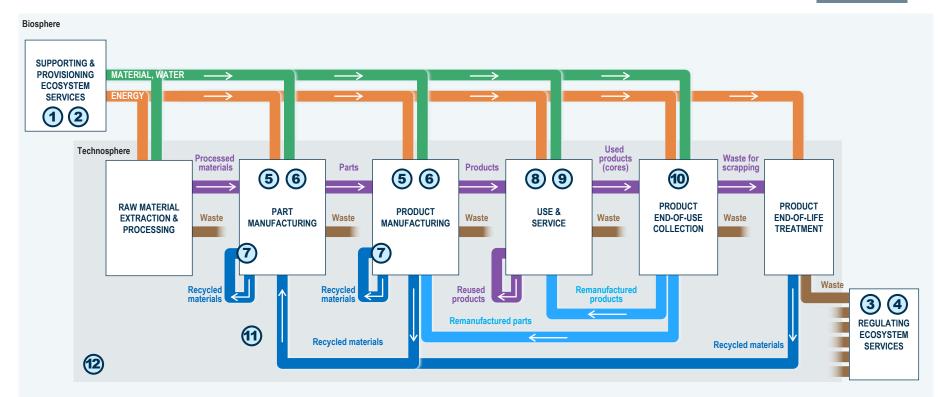
Principle 9. Retain and maintain value embedded in products

→ design and operate processes and systems for durability and repairability

Principle 10. Recapture value embedded in products

→ design and operate processes and systems that capture end-of-life products, components, and materials to give them a new life

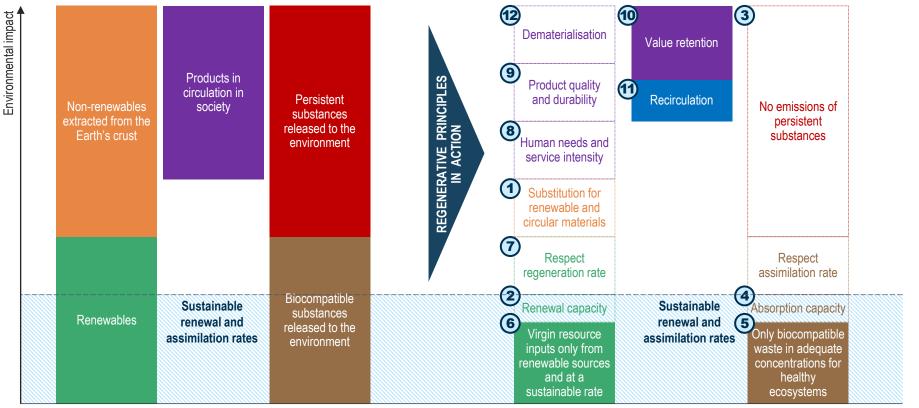
Principle 11. Develop circular processes


→ develop materials, processes and systems for minimum material heterogeneity and contamination to enable value recovery

Principle 12. Maximise value delivery through eco-efficient products

→ design and operate processes and systems for maximum value to society per unit of resource consumed; dematerialisation, miniaturisation, multi-functionality, modularisation, upgradability, repairability, durability, servitization, etc.

Mapping the regenerative principles



Despeisse, M. (2023). Applying Regenerative Sustainability Principles in Manufacturing. In: Fukushige, S., Kobayashi, H., Yamasue, E., Hara, K. (eds) EcoDesign for Sustainable Products, Services and Social Systems I. Springer, Singapore. DOI: 10.1007/978-981-99-3818-6_10 [Best Paper Award]

Measuring regenerative sustainability

	Air	Water	Land	Resources	
Global	Climate change Emissions of CO ₂ contributing to atmospheric concentration	Ocean acidification Average surface ocean saturation state with respect to aragonite (carbonate ion concentration)			Annotations → Reduce negative impact
	Climate action Carbon offsetting and capture		Change in biosphere integrity diversity: Extinction rate, Functional diversity: Biodiversity Intactness Index		 Create positive impact Both/potential for positive impact Earth-system process – Global and regional control variables from the Planetary Boundaries [26]
	Stratospheric ozone depletion Emissions of ozone-depleting substances contributing to stratospheric ozone concentration Photochemical ozone formation	Biogeochemical flows Industrial and intentional biological fixation of Nitrogen (N) Phosphorus (P) flow from freshwater systems into the ocean Phosphorus flow from fertilizers to erodible (agricultural) soils		Fossil resource use Abiotic resource depletion	
				Mineral and metal resource use Abiotic resource depletion	
Local Regional	Nitrogen oxides, carbon monoxide and volatile organic compounds contributing to tropospheric ozone concentration	Marine eutrophication Fraction of nutrients reaching marine end compartment (N)	 Terrestrial eutrophication N deposition acidifying soils and altering land productivity 	Shift to renewables without exceeding – Impa	Environmental footprint monitoring – Impacts and indicators from the European Commission [27]
	 Atmospheric aerosol loading Emissions of aerosol particles (particulate matter, pollutants, smoke) 	 Freshwater eutrophication Fraction of nutrients reaching freshwater end compartment (P) 		non-renewable resources	Sees Environmental performance y betterment – Actions for eco- efficiency, circularity and regenerative sustainability y [see Reference list in the paper]
	Introduction of novel entities	Freshwater use Consumptive blue water use/withdrawal	Land-system change Area of forested land as % of original forest cover and as % of potential forest	Recovery potential through reuse, remanufacturing and recycling	
	Chemical pollution from persistent organic pollutants (e.g. CFC)	as % of mean monthly river flow		Resource circularity Consumption of renewables, recovered parts and recycled materials	
	Particulate matter, human toxicity Impact on human health	Ecotoxicity, freshwater Comparative Toxic Unit for ecosystems	Land use and degradation Soil erosion, loss of nutrient-rich topsoil	Industrial symbiosis	
	Air quality rehabilitation Treatment and removal of airborne pollutants through pollution control technology (e.g. scrubber, catalytic converter, thermal oxidizer)	▼ Water use User deprivation potential	Industrial activities integration in the biophysical environment Exchange of waste and by-products between industrial actors Landscape rehabilitation Decontamination and redevelopment Image: Contamination and redevelopment		
		Water quality rehabilitation Water amendments (recapture or dilute contaminants to healthy composition)		- Resource eniciency	
	Acceptable anthropogenic noises and disturbances Considerations for sensitivity thresholds of natural habitats to operate well within them			Local circularity On-site recirculation of resource and wastes (energy, water and material)	

Reducing environmental impacts below the regenerative threshold

CHALMERS

With thanks to my team, colleagues, project partners and students for advancing the field of industrial sustainability! Yes, we can! ©

Angioletti, C. M., Despeisse, M., Rocca, R. (2017). <u>Product circularity assessment methodology</u>. *IFIP Advances in Information and Communication Technology* 514.

- Barletta, I., Despeisse, M., Hoffenson, S., Johansson, B. (2021). <u>Organisational sustainability readiness: A model and assessment tool for manufacturing companies</u>. Journal of Cleaner Production 284, 125404.
- Bully, C., Gery, J., Nåfors, D., Gong, L., Despeisse, M., Johansson, B., Billesø, M. B. (2020). Increasing eco-efficiency awareness for ship loading process using virtual reality and gamification. Advances in Transdisciplinary Engineering 13, 167-178.
- Chari, A., Niedenzu, D., Despeisse, M., Machado, C. G., Azevedo, J. D., Dias, R., Johansson, B. (2021). <u>Dynamic capabilities for circular manufacturing supply chains exploring the role of I4.0 and resilience</u>. Business Strategy and the Environment.
- Chari, A., Stahre, J., Bärring, M., Despeisse, M., Li, D., Friis, M., Mörstam, M., Johansson, B. (2023). <u>Analysing the antecedents</u> to digital platform implementation for resilient and sustainable manufacturing supply chains - <u>An IDEF0 modelling</u> <u>approach</u>. *Journal of Cleaner Production* 429.
- Chen, X., Despeisse, M., Johansson, B. (2020). Environmental sustainability of digitalization in manufacturing: a review. Sustainability 12(24).
- Chen, X., Kurdve, M., Johansson, B., Despeisse, M. (2023). <u>Enabling the twin transitions: Digital technologies support</u> <u>environmental sustainability through lean principles</u>. *Sustainable Production and Consumption* 38.
- Despeisse, M. (2023). <u>Applying regenerative sustainability principles in manufacturing</u>. International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign 2021). [Best Paper Award]
- Despeisse, M. (2022). How environmentally sustainable is the on-going industrial digitalization? Global trends and a Swedish perspective. Advances in Transdisciplinary Engineering 21, 316-328. [Best Paper Award]
- Despeisse, M., Acerbi, F. 2022. Toward eco-efficient and circular industrial systems: ten years of advances in production management systems and a thematic framework. Production and Manufacturing Research 10(1), pp. 354-382.
- Despeisse, M., Acerbi, F., Wuest, T., Romero, D. (2022). <u>Thematic Research Framework for Eco-Efficient and Circular Industrial</u> <u>Systems</u>. *IFIP Advances in Information and Communication Technology* 664: 379-389. Springer, Cham.
- Despeisse, M., Ball, P. D., Evans, S., Levers, A. (2012). Industrial ecology at factory level: A prototype methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(10).
- Despeisse, M., Ball, P. D., Evans, S., Levers, A. (2012). <u>Industrial ecology at factory level A conceptual model</u>. *Journal of Cleaner Production* 31.
- Despeisse, M., Baumers, M., Brown, P., Charnley, F., Ford, S. J., Garmulewicz, A., Knowles, S., Minshall, T. H. W., Mortara, L., Reed-Tsochas, F. P., Rowley, J. (2017). <u>Unlocking value for a circular economy through 3D printing: A research agenda</u>. *Technological Forecasting and Social Change* 115.
- Despeisse, M., Chari, A., González Chávez, C. A., Monteiro, H., Machado, C. G., Johansson, B. (2022). <u>A systematic review of empirical studies on green manufacturing: eight propositions and a research framework for Digitalized Sustainable Manufacturing</u>, Production and Manufacturing Research 10(1), pp. 727-759.
- Despeisse, M., Davé, A., Litos, L., Roberts, S., Ball, P., Evans, S. (2016). <u>A collection of tools for factory eco-efficiency</u>. Procedia CIRP, 40.
- Despeisse, M., Ford, S. (2015). <u>The role of additive manufacturing in improving resource efficiency and sustainability</u>. *IFIP Advances in Information and Communication Technology* 460, 129-136.

- Despeisse, M., Kishita, Y., Nakano, M., Barwood, M. (2015). <u>Towards a circular economy for end-of-life vehicles: A comparative study UK Japan</u>. *Procedia CIRP* 29.
- Despeisse, M., Lunt, P. (2017). <u>Teaching energy efficiency in manufacturing using gamification: A case study</u>. *IFIP Advances in Information and Communication Technology* 514.
- Despeisse, M., Mbaye, F., Ball, P. D., Levers, A. (2012). <u>The emergence of sustainable manufacturing practices</u>. *Production Planning and Control* 23(5).
- Despeisse, M., Minshall, T. (2017). <u>Skills and education for additive manufacturing: A review of emerging issues</u>. *IFIP* Advances in Information and Communication Technology 513, 289-297.
- Despeisse, M., Oates, M. R., Ball, P. D. (2013). <u>Sustainable manufacturing tactics and cross-functional factory modelling</u>. Journal of Cleaner Production, 42.
- Despeisse, M., Vladimirova, D. (2014). <u>Decision Making for Sustainability: Review and Research Agenda</u>. *IFIP Advances in Information and Communication Technology* 439, PART 2, 146-153.
- Despeisse, M., Yang, M., Evans, S., Ford, S., Minshall, T. (2017). <u>Sustainable Value Roadmapping Framework for Additive</u> <u>Manufacturing</u>. *Procedia CIRP* 61.
- Despeisse, M., Turanoglu Bekar, E. (2020). <u>Challenges in data life cycle management for sustainable cyber-physical</u> production systems. *IFIP Advances in Information and Communication Technology* 592, 57-65.
- Fang, Q., Despeisse, M., Chen, X. (2020). Environmental impact assessment of boatbuilding process with ocean plastic. Procedia CIRP 90.
- Ford, S., Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production 137.
- González Chávez, C.A., Brynolf, S., Despeisse, M., Johansson, B., Rönnbäck, A.Ö., Rösler, J., Stahre, J. (2024). <u>Advancing</u> sustainability through digital servitization: An exploratory study in the maritime shipping industry. *Journal of Cleaner Production* 436.
- González Chávez, C.A., Unamuno, G., Despeisse, M., Johansson, B., Romero, D., Stahre, J. (2023). <u>Analyzing the risks of digital servitization in the machine tool industry</u>. Robot. Comp. Integr. Manuf. 82.
- Machado, C. G., Despeisse, M., Winroth, M., Ribeiro da Silva, E. H. D. (2019). <u>Additive manufacturing from the sustainability</u> perspective: Proposal for a self-assessment tool. Proceedia CIRP, 81.
- Monteiro, H., Carmona-Aparicio, G., Lei, I., Despeisse, M. (2022). <u>Energy and material efficiency strategies enabled by metal</u> <u>additive manufacturing - A review for the aeronautic and aerospace sectors</u>. *Energy Reports*, 8.
- Schurig, A., Despeisse, M., Unterberger, E., Evans, S., Reinhart, G. (2015). <u>Factors for effective learning in production networks</u> to improve environmental performance. *IFIP Advances in Information and Communication Technology* 459, 697-704.
- Syu, F. S., Vasudevan, A., Gonçalves, M. M., Estrela, M. A., Chari, A., Turanoglu Bekar, E., Despeisse, M. (2021). <u>Usability and usefulness of circularity indicators for manufacturing performance management</u>. *Proceedia CIRP* 105, 835-840.
- Tarrar, M., Despeisse, M., Johansson, B. (2021). <u>Driving vehicle dismantling forward A combined literature and empirical</u> <u>study</u>. Journal of Cleaner Production 295.

CHALMERS UNIVERSITY OF TECHNOLOGY