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Abstract

There is no doubt that society depends crucially on software systems. Correct
software is therefore a pressing matter. An important aspect of software
correctness is security: for example, a banking application is secure, if at least
it does not send your credit card number to an unauthorised third party. It is
well-known that software is riddled with bugs. Some are introduced by human
mistakes; some by deficiencies of the programming languages at use. Security
vulnerabilities arising from both kinds of bugs appear time and again, affecting
the security needs of millions of users. It thus becomes imperative to design
programming languages that help programmers avoid bugs. Developers must
demand assurances that secure programming languages indeed produce secure
software. This warrants mathematical justification in the form of proof. To
increase reusability, these proofs would ideally be carried out in a framework
that is modular on the features of the programming language.

Language-based security investigates the security aspects of software, such
as confidentiality or integrity, from the perspective of programming language
theory. One approach to information-flow control (IFC) studies the design
of programming languages in which programs are secure-by-construction. In
this approach, types guide the development of programs, and the type system
ensures that well-typed programs are secure. Practical programs feature effects
such as nontermination or printing. Type systems for IFC need therefore to
take these into account to guarantee security. Establishing the correctness of
IFC type-systems for effectful languages is a complex matter, which often relies
on ad hoc methods that depend on the concrete kinds of effects.

In this thesis, we describe a novel theory of information flow with effects. In
our framework the correctness of IFC type-systems can be proved modularly
with respect to the kind of effects. This theory builds upon existing models
of information flow and models of effects, and thus, is readily applicable.
Independently, this thesis makes two additional contributions. First, we show
how to extend concurrent IFC languages with asynchronous exceptions, which,
e.g., enable secure interthread communication. Second, we present a new
technique for proving correctness of IFC type systems based on normalization.
As a byproduct of independent interest, we present novel normalization results
for the family of so-called Fitch-style modal calculi.

Keywords security, programming languages, information-flow control
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Overview





I
Introduction

Information security is at stake. Computing systems that manage users’ sen-
sitive data are vulnerable to attacks, sometimes innocent,1 by individuals or
organizations who want to steal their data. Unfortunately, the success of at-
tacks is higher that anyone would hope for, thus compromising the information
security needs of these systems and their users.

The primary reason for the success of these attacks is that the languages and
tools upon which computing systems are built have not been designed with
security in mind. Therefore, they are unable to guarantee that users’ sensitive
information is handled in a secure fashion.

This thesis investigates the theoretical foundations of programming languages
in which secure-by-construction systems ought to be written. The overarching
goal of this thesis is to provide better tools and methods to help in the design
and implementation of programming languages in which programs handling
sensitive data are secure-by-construction. To this end, this thesis makes several
novel contributions to the research area known as language-based security
(LBS), specifically to information-flow control (IFC).

Language-Based Security Language-based security (LBS) (Kozen 1999; Schnei-
der et al. 2001; Sabelfeld and Myers 2003) is a research area that approaches
security in computing systems from the perspective of programming language
theory. The goal of language-based security is to guarantee that several aspects
of information security, such as confidentiality or integrity, are preserved at
the level of computer programs. To that end, language-based security studies
programming languages, type systems, runtime monitors, and other mechanisms
that constrain how programs can access and use sensitive data. These mecha-
nisms enforce that all accesses and uses happen in concordance with a security

1Bugs are present in virtually every piece of software.
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I. Introduction

property that acts as a formal baseline for secure programs. Security properties
further depend on higher-level specifications, known as security policies, that
specify what and how principals, those users who partake in the system, can
access and use sensitive information.

Before spelling out the concrete contributions of this thesis, we need a way
to organise them. For this purpose, let us recall Schenider’s definition2 of
language-based security as:

A set of techniques based on programming language theory and
implementation, including semantics, types, optimization, and veri-
fication, brought to bear on the security question.

This rather broad definition alludes to, among others, types and semantics as
studied in the theory of programming languages. From the point of view of
this thesis, these two subareas consist of:

Types Refers to the use of type disciplines—viz. type systems—for enforcing
at compile time that programs preserve information security. Those type
systems typically come equipped with special-purpose type constructors
to label pieces of programs and data with security levels. Then it is the
job of the typing rules to guarantee that when the program runs labelled
data behaves according to the security policy. Examples of these kinds
of (security) type systems are the dependency core calculus (Abadi et al.
1999) and the Haskell library MAC (Russo 2015).

Semantics Refers to the use of mathematical models, so called denotational
semantics, to give mathematical meaning to programs, security spec-
ifications, and security properties. In addition, those models can be
used to study and verify security properties of security type systems and
languages. Examples of models for information security are partial equiva-
lence relations (Sabelfeld and Sands 2001), dependency categories (Abadi
et al. 1999), and classified sets (Kavvos 2019).

This categorization serves as a conceptual framework in which to organise
the articles contained in this thesis according to their main area of contribution,
namely types and semantics.

Thesis Structure This thesis consists of five peer-reviewed articles—A, B,
C, D and E—some of which have been accepted for publication in conferences,
symposia, and workshops spanning from security- to programming languages

2Attributed by Kozen (1999, Section 4).
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I.1. Information-Flow Control

-oriented venues. As mentioned above, we classify these articles according to
their area of contribution. Figure I.1 depicts this classification.

Language-Based Security

Types Semantics

Paper D

Paper E

Paper C

Paper A

Paper B

Figure I.1.: Areas of contribution of the articles included in this thesis.

Rest of this Introduction The rest of this chapter is divided into two
sections:

• Section I.1 introduces information-flow control. This language-based
security technique is the focus of most of the articles in this thesis. The
aim of this section is not to introduce new material, but to present relevant
terminology and concepts in a unified form.

• Section I.2 outlines the contents of each article contained in this thesis,
and discusses its main contributions. This section further states the
individual contributions of the author of this thesis.

I.1. Information-Flow Control
Information-flow control is a language-based security technique that aims to
secure information by tracking where users’ sensitive data propagates during

5



I. Introduction

program execution. In contrast to other language-based security techniques
such as access control, information-flow control guarantees end-to-end security.
The classic scenario for information-flow control consists of a system with
public and secret information, such that information should not propagate from
secret to public. Formally, we call this specification a security policy. Then
the objective of information-flow control is to ensure that a program’s public
output is independent of its secret inputs, that is, it satisfies a security—or
information-flow—property known as noninterference (Goguen and Meseguer
1982). This condition defines what programs are secure. Information-flow
control mechanisms usually enforce noninterference by tracking how information
propagates through the control flow of programs, ensuring that their public
outputs do not depend on their secret inputs. Enforcement can be done
statically at compile time, dynamically at runtime, or combining both.

To summarize, information-flow control approaches to security consist of:

• a programming language;

• a framework for describing security policies;

• a framework for writing security specifications for programs;

• a formal security property expressing what does it mean for programs to
be secure with respect to security specifications; and

• an enforcement mechanism to ensure that programs comply with their
security specifications, i.e. they are secure.

In the rest of this section, we describe some of the points above in more detail.

Security Policies

Security policies express in high-level languages the information security re-
quirements of computing systems, that is, how information is allowed to be
used in those systems (Kozyri et al. 2022).

In this thesis, we consider security policies that consist of a set of principals,
i.e. those users or actors whose sensitive data is at stake, together with a
specification of the permitted and forbidden flows of information among these.
The intuitive reading is that these policies specify what flows of information
are allowed through the execution of programs handling principals’ data. Note
that security policies are independent of the programming language under
consideration, and hence of the programs one can write. In Sections I.1 and I.1,
we will discuss the missing pieces that relate security policies to programs.

6



I.1. Information-Flow Control

Example I.1.1. Consider a system with three principals, say Alice, Bob and
Charlie. These could, for instance, be employees of some company. A security
policy would then include at least these principals: Alice, Bob and Charlie;
together with a specification of allowed information flows that depends on the
information security concerns of the company.

For example, suppose that Charlie is the boss of Alice and Bob. If Alice
and Bob were working on separate projects and they were not allowed to
share information, then the security policy would specify that information is
permitted to flow from Alice and Bob to Charlie but neither from Alice to
Bob nor from Bob to Alice. It is implicitly understood that information is
always allowed to flow from a principal to themselves.

Typically, security policies are formalized using some kind of lattice (Denning
1976). The elements of this lattice, or security levels, sometimes also called
labels, or sensitivities, are an abstraction over the distinct principals (or sets of
them), and the partial order relation specifies the allowed flows of information.
In fact, the lack of a relationship between two levels corresponds to a forbidden
flow. Note that security levels in a lattice and “real” principals need not be in
one-to-one correspondence; for instance, in the previous example there could
be a security level Alice and Bob for data that is permitted to flow both to
Alice and to Bob, although there is no principal “Alice and Bob”.

An intuitive way to understand a security policy is by visualizing its Hasse
diagram. The diagram representing the security policy in Example I.1.1 is the
following:

Charlie

Alice Bob

Alice and Bob

Figure I.2.: Hasse diagram representing the security policy in Example I.1.1.

Security policies can be as complex as the situation requires. Sometimes
these may even consist of an infinite number of security levels, e.g., to model
open systems. In the simplest scenario, the security policy consists of two
security levels L, for public, and H, for secret, and a relation states that every
flow of information is allowed except from H to L, i.e. flows to equal or higher

7



I. Introduction

sensitivity are allowed, e.g. from public to secret, but flows from higher to lower
sensitivity are forbidden, namely from secret to public. The Hasse diagram
representing this policy is the following:

H

L

Figure I.3.: Hasse diagram representing the two-level security policy.

The public-secret situation generalizes to more complex scenarios, i.e., those
with nontrivial security lattices. In those cases, the attacker belongs to an
arbitrary security level “public”, and confidential data to a level “secret”.
Importantly, flows of information from the later to the former should be
disallowed.

Security Specifications

Security specifications classify different parts of programs, such as input and
return values, routines and functions, input and output channels, effects, etc.,
with security levels drawn from a security policy.

In this thesis, we focus on static approaches to information-flow control via
type systems, where the security levels of different parts of programs are known
at compile time. These are ascribed security levels using special-purpose type
constructors.

Example I.1.2. A security specification for a program of type f : Bool→ Bool
(in some typed lambda calculus) might be written as f : BoolH → BoolL. This
specification states that the security level of its Boolean input is H (i.e. secret)
and that of its Boolean output is L (i.e. public).

Information-Flow Properties

Information-flow properties establish a formal relation between security policies,
security specifications, and programs that handle sensitive data. An information-
flow property is, given a security policy and a security specification, a predicate
on programs. This predicate defines what it means for programs to be secure.

In this thesis, we are concerned with information-flow properties derived
from noninterference, a concept introduced by Goguen and Meseguer in their

8



I.1. Information-Flow Control

seminal work on security policies and models (Goguen and Meseguer 1982). In
their words, noninterference states that:

One group of users, using a certain set of commands is noninter-
fering with another group of users if what the first group does with
those commands has no effect on what the second group of users
can see.

In the context of information-flow control and this thesis, we rephrase their
definition in a more modern dressing as:

Secret data should not influence what can be observed from the
public outputs of a program.

Formally,

Definition I.1.1 (Noninterference). A program satisfies noninterference if its
public outputs are independent of its secret inputs.

What constitutes a program’s secret inputs and public outputs, and hence
what is the precise statement of noninterference, varies with respect to

• the features of the programming language, and thus what behaviour
programs can exhibit, e.g. general recursion, printing, memory references;

• the security policy and the security specification; and,

• the observational power of the attacker and the permitted amount of
information leakage, i.e. what they can infer from observing the execu-
tion of programs, e.g. leakage from differences among termination and
divergence, timing output events, inspecting the intermediate contents of
memory.

Note that Definition I.1.1 presupposes that the so-called attacker—against
who we wish to secure the system—has security level public. The attacker is
therefore privy to observe the public outputs that programs produce.

To formally prove that a program satisfies noninterference, one usually
considers the public outputs that the program produces in several executions
for distinct secret input values. If varying the secret input does not affect
the public outputs of the program, that is, the public outputs agree on all
executions, then it must be the case that those outputs are truly independent
of the secret inputs, and hence the program is noninterferent.

9



I. Introduction

Enforcement Mechanisms
Enforcement mechanisms ensure that programs comply with their security
specifications. These mechanisms can roughly be divided into two categories,
static and dynamic, according to whether the enforcement happens before the
execution of programs, i.e. at compile time, or during their execution, i.e. at
runtime.

• Dynamic enforcement mechanisms usually consist of runtime monitors
that are executed along the program itself. These monitors halt or modify
the execution of the program if they detect that some flow of information
is about to violate the security policy.

• Static enforcement mechanisms analyse programs at compile time to
determine whether all the flows of information are permitted by a given
security specification (and thus the security policy). Static analyses for
information-flow control appear in several forms. On the traditional
side, a static analyser takes a program as input and outputs whether the
program is secure or not. More modern approaches build the analysis into
the programming language’s type system. In these approaches, security
is equated to well-typedness in the sense that all well-typed programs are
secure.
In this thesis, we exclusively focus on (static) type systems for information-
flow control.

Within these two extremes, there is a broad spectrum of mechanisms that
combine aspects of both static and dynamic enforcement. These are called
hybrid mechanisms.

I.2. Thesis Contributions
This thesis is a compendium of articles. In this section we briefly outline the
contents of each article and state the individual contributions of the author.
Reformatted versions of these articles appear in subsequent chapters of this
thesis.

I.2.1. Pure Information-Flow Control with Effects Made Simple
In this paper we introduce a novel primitive distr to modularly extend type
systems for (effect-free) IFC—e.g. dependency core calculus (DCC) (Abadi
et al. 1999)—with effects in a principled manner. To evidence the modularity

10



I.2. Thesis Contributions

of our approach, we present several extensions of the sealing calculus (SC) by
Shikuma and Igarashi (2008) with effects. These extensions consist of naively
combining SC with a graded monad for effects in the style of Katsumata (2014).
In the resulting system, effects and IFC a priori do not interact: many secure
programs whose effects depend on sensitive data are not expressible. Our key
insight is that adding a primitive, which we call distr, is enough to regain the
expressiveness of state-of-the-art IFC languages with effects.

In this work we showcase this idea by considering three extensions of SC with
different effects, namely printing, (first-order) global store, and a combination
of both. We prove that the languages resulting from these extensions are
secure, i.e. they satisfy suitable versions of noninterference. We further present
a Haskell library as a proof-of-concept implementation. The languages, i.e.
their syntax and operational semantics, and their respective security guarantees
have been mechanized in the proof assistant Agda.

Statement of Contributions This paper was coauthored with Alejandro Russo.
Carlos devised the idea of modularizing languages for effectful information-flow
control (IFC) via the primitive distr. Carlos formalized and mechanized the
calculi presented in the paper. Carlos wrote most of the paper.

This paper is currently unpublished. A version of the manuscript appears as
Chapter A of this thesis.

I.2.2. Information Flow and Effects Via Distributive Laws

In this paper, we present a semantic justification that the primitive distr
(introduced in Chapter A) is in some sense the best solution to extend type
systems for IFC with effects in a modular way. For that purpose, we investigate
semantics of effects, such as side effects, nondeterminism, and printing, and
their interaction with the usual operation of “labelling“ in categories of classified
sets (Kavvos 2019). These well-known models of information flow have been
used to prove noninterference properties for effect-free IFC calculi such as
DCC (see Kavvos (2019)).

In this work we show that computational monads on classified sets are suit-
able to model “indistinguishability” of observable effects, and hence, to encode
information flow properties of effectful programs. That is, for an effect (excep-
tions, for instance) given as a computational monad on the category of sets,
we show that distinct monads on classified sets encode distinct security prop-
erties of effectful programs, e.g. exception-sensitive and exceptions-insensitive
noninterference. We provide extensive evidence of this claim by considering in-
formation-flow monads for the usual effects: side effects, store, nondeterminism,
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exceptions, or divergence.
Information-flow monads for effects and redaction—the semantic counterpart

of labelling—a priori do not interact: it is not valid to eliminate redacted values
to computations. In this work, we show that the validity of this elimination
principle corresponds to a distributive law from redaction to the monad for
effects. We prove, in fact, that once effects and their intended security properties
are specified by a monad on classified sets, then it is a property of redaction
and this monad whether a (necessarily unique) distributive law exists. That is,
either redaction and this monad interact nicely or they do not, and there is
nothing we can do to fix it. Of course, one can choose a different monad, but
this would correspond to considering a different information-flow property for
effectful programs.

Statement of Contributions This paper is the sole work of Carlos.
This paper is currently unpublished. The latest version of the manuscript

appears as Chapter B of this thesis.

I.2.3. Securing Asynchronous Exceptions

In this paper we present MACasync, an extension of the concurrent IFC lan-
guage MAC (Vassena et al. 2018) with asynchronous exceptions. Asynchronous
exceptions—sometimes called interrupts—are a useful language feature that
enables threads to communicate and interact with one another and with the
runtime system. Asynchronous exceptions can be used, for instance, to program
timeouts, speculative execution patterns, and user interrupts. (Marlow et al.
2001) In principle, naively combining asynchronous exceptions with existing
IFC features (e.g. synchronization variables) opens up new possibilities for
information leakage.

In this work, we to show how to incorporate asynchronous exceptions to MAC
in a secure fashion. To that end, we extend MAC with new primitives to i) allow
threads to refer to other threads, ii) send asynchronous exceptions to other
threads, and iii) selectively disable receiving asynchronous exceptions in certain
parts of programs, e.g. in critical zones. We further adapt the operational
semantics of MAC to account for asynchronous exceptions, following the work
by Marlow et al. (2001). Lastly, we prove that MACasync inherits MAC’s
strong security properties, namely progress-sensitive noninterference (Vassena
et al. 2018). The language, i.e. its syntax and operational semantics, and the
security guarantees have been mechanized in the proof assistant Agda (Abel
et al. 2005–).

12



I.2. Thesis Contributions

Statement of Contributions This paper was coauthored with Marco Vassena
and Alejandro Russo. Carlos suggested the idea of studying asynchronous
exceptions in the context of IFC. Carlos devised the calculus and its formal
semantics, and mechanized them along with the security guarantees in Agda.
Carlos wrote the technical sections of the paper.

This paper has been published in the 33rd IEEE Computer Security Foun-
dations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020. A
reformatted version appears as Chapter C of this thesis.

I.2.4. Simple Noninterference by Normalization

In this paper we present a novel proof technique for proving noninterference.
This technique exploits the insight that to reason about information-flow
properties of a programming language it is enough to consider a restricted
(and simple) class of programs. If programs in this class satisfy the property
of interest, and this class represents all programs in a suitable sense, then all
programs satisfy the property.

Based on this idea, in this work we show a new proof of noninterference for
a static information-flow control calculus based on a terminating fragment of
the calculus that formalizes the Haskell information-flow control library Se-
cLib (Russo et al. 2008). The calculus is a simply typed lambda calculus
extended with unit, product, and sum types, and a family of monads for each
security level. The simple class of programs, from which a noninterference
property follows rather directly, is characterized as the normal forms of a stan-
dard equational theory which includes among others β-, η-, and δ-equations for
monadic types.

Specifically, the paper describes in detail i) the class of normal forms, ii) a
procedure, based on normalization by evaluation (NbE), for obtaining normal
forms for arbitrary terms, iii) a proof that normal forms indeed faithfully
represent classes of equivalent terms, and iv) a proof of noninterference based
on analysing the normal forms. The results in this paper have been mechanized
in the proof assistant Agda (Abel et al. 2005–).

Statement of Contributions This paper was coauthored with Nachiappan Val-
liappan. Both Nachiappan and Carlos contributed equally to the formalization,
the Agda mechanization, and the writing of the paper.

This paper has been published in the Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, CCS 2019,
London, United Kingdom, November 11-15, 2019. A reformatted version appears
as Chapter D of this thesis.
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I.2.5. Normalization for Fitch-Style Modal Calculi
In this paper, we present a modular approach to semantic proofs of normal-
ization for Fitch-style modal lambda calculi (Borghuis 1994), which enables
programming with necessity modalities in typed lambda calculi. These calculi
extend the usual notion of typing context with a delimiting operator, denoted
by a lock, and can easily incorporate different modal axioms. These axioms
correspond to programming operations on modal types.

In this work, we leverage the possible-world semantics of Fitch-style calculi to
yield a modular proof of normalization via NbE. We show that NbE models can
be constructed for calculi that incorporate the axioms K, T and 4 of modal logic,
as suitable instantiations of the possible-world semantics. Finally, we showcase
several consequences of normalization for proving meta-theoretic properties of
Fitch-style calculi (Clouston 2018) as well as programming language-oriented
applications such as capability safety (Choudhury and Krishnaswami 2020) and
information flow based on different interpretations of the necessity modality.
The key results in this paper have been mechanized in the proof assistant
Agda (Abel et al. 2005–).

Statement of Contributions This paper was coauthored with Nachiappan
Valliappan and Fabian Ruch. Carlos contributed to the technical content and
writing of the section on applications of normalization to proving meta-theoretic
properties of programming language-oriented applications. Carlos also helped
writing Section 3 of the paper.

This paper has been published in the Proc. ACM Program. Lang. Vol. 6,
ICFP, 2022. A reformatted version appears as Chapter E of this thesis.
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A
Pure Information-Flow Control with
Effects Made Simple

Carlos Tomé Cortiñas and Alejandro Russo

Manuscript

Abstract Information-flow control (IFC) is a promising technology to protect data
confidentiality. The foundational work on the dependency core calculus (DCC) positions
monads as a suitable abstraction for enforcing IFC. Pure functional languages with
effects, like Haskell, can provide IFC as a library (e.g. MAC and LIO), a minor task
compared to implementing compilers for IFC from scratch.
Previous works on IFC as a library introduce ad hoc primitives to type programs whose
effects do not depend on the sensitive data in context. In this work, we start afresh
and ask ourselves: what would we need to extend an effect-free language for IFC with
secure effects? The answer turns out to be elegant and simple. In a pure language
with effects there is a natural place where information flows from sensitive data to
effects need to be restricted, and when effects are tracked in a fine-grained fashion, for
instance, with a graded monad, then a single primitive is enough to allow secure flows!
To support our insight, we present and prove secure several IFC enforcement mechanisms
based on extensions of the sealing calculus (SC) with effects using a graded monad.
Effects that depend on sensitive data are secured through a novel primitive distr.
Our security guarantees are mechanized in the Agda proof assistant. Moreover, we
provide an implementation of these mechanisms as a new Haskell library for IFC.
Our implementation amounts to less than 10 lines of code for the effect-free part and
less than 30 lines for the part with effects. Lastly, we demonstrate that our library is
capable of encoding previous Haskell libraries for static IFC.
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A.1. Introduction

Information-flow control (IFC) (Sabelfeld and Myers 2003; Hedin and Sabelfeld
2012) is a promising technology to protect data confidentiality. Many IFC ap-
proaches are designed to prevent sensitive data from influencing what attackers
can observe from a program’s public behaviour—a security property known
as noninterference (Goguen and Meseguer 1982). IFC mechanisms specify the
sensitivity of data via labels, and then enforce security by controlling that the
flows of information abide by the security policy. In the simplest scenario,
there are two labels (alternatively, security levels or sensitivities) L, for public,
and H, for secret, and the security policy specifies that every flow is allowed
except from H to L—i.e. flows from more to less sensitivity are forbidden. In
static approaches to IFC, the sensitivity of data is known a priori, e.g. by
specifying it using types, and the enforcement statically decides, e.g. during
type checking, whether the program will leak information upon execution. To
maintain confidentiality of data, IFC mechanisms need to protect against two
kinds of potentially malicious flows: 1) explicit flows, when public data directly
depends on secret data; and 2) implicit flows, when the control flow and public
outputs of the program are indirectly influenced by secret data, e.g. due to
branching on a H-labelled Boolean.

In recent years, the use of pure functional languages has been proliferating
for tackling different IFC challenges (e.g. Vassena, Russo, Garg, et al. (2019),
Parker et al. (2019), Polikarpova et al. (2020), and Rajani and Garg (2020)).
From a pragmatic perspective, pure functional languages can provide IFC
security via libraries (Li and S. Zdancewic 2006; Russo et al. 2008; Stefan
et al. 2011), which is less demanding than building compilers from scratch (e.g.
Simonet (2003) and Myers et al. (2006)).

Pure languages are particularly well suited for controlling information flows
because of their abstraction facilities and strong encapsulation of effects. For
instance, the popular dependency core calculus (DCC) (Abadi et al. 1999)
utilizes the abstract type TH A to label pieces of data of type A with sensitivity H
and then the type system ensures that data can only be eliminated into—or flow
to—data of equal or higher sensitivity. DCC’s security guarantees ensure that
programs without effects are secure. A different strand of work aims to provide
security in pure languages with effects by restricting the interplay between
sensitive data and public effects (e.g. LIO (Stefan et al. 2011), MAC (Russo
2015) and HLIO (Buiras et al. 2015)). In a pure language like Haskell, the
only programs that can produce effects and thereby interact with the external
world have to be of type IO A, for some type A. In this light, in order to protect
against implicit flows through effects it is enough to control which programs of
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IO type are safe to execute.
Let us consider the Haskell library MAC as an example. MAC replaces

the IO monad with a custom monad MACl of computations that is indexed by
a type-level label l. The label l has two purposes: (i) akin to DCC, it is an
upper bound on the sensitivity of the information “going into” the monad, as
well as (ii) it is a lower bound on the observers’ effects—restricting information
“leaving” the monad. Concretely, a computation of type MACL Bool cannot
branch on secret values but can perform public and secret effects; in contrast, a
computation of type MACH Bool can branch on secret data but cannot perform
public effects.

However, not everything in the garden is rosy. The label l in the MAC
monad MACl does too many things at once. This leads to situations where
the programmer needs to go through some contortions or use “special purpose”
primitives like join1: MACl Unit⇒ MACl′ Unit (restricted to l′ ⊑ l) (Vassena,
Buiras, et al. 2016). To illustrate this point, we extend the two-point security
policy with two incomparable labels A, for Alice, and B, for Bob, such that
L ⊑ A ⊑ H and L ⊑ B ⊑ H but neither A ⊑ B nor B ⊑ A (the relation ⊑ specifies
the permitted flows). With that in mind, let us consider the following program
in MAC which receives an A-sensitive Bool, i.e. alice_sec : MACA Bool,2 and
prints a string on the A-observable channel ChA:

prog1 : MACA Bool⇒MACA Unit
prog1 alice_sec = alice_sec >>= λb. if b then printChA

"Alice is here!"
else return unit

In the above program, the information flows according to the security policy
(from the A-sensitive value to Alice’s channel)—i.e. the program is secure.
Consider now a different program that combines prog1 with printing on the
channel ChB:

prog2 : MACABool⇒MAC ? Unit
prog2 alice_sec = prog1 alice_sec >>= λ x. printChB

"Hi Bob"

Clearly, prog2 is still secure since the decision to print to Bob’s channel and
what is printed does not depend on the contents of the A-sensitive value alice_sec.
What label then should replace ? in its type? First, the types of the
computations on both sides of the bind (>>=) have to match. By (i) and (ii)
the type of prog1 sec has to be MACA Unit, and by (ii) printChB

"Hi Bob" has to
1The type of join is more general but this simplified form suffices for our purposes.
2To the reader familiar with MAC: our point applies equally if one uses the Labeledl type to

protect sensitive Booleans.
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be of type MACB Unit. There is a type mismatch! Since the label L is a lower
bound of A and B, we can use MAC’s join to fix the program:

prog2 : MACA Bool⇒MACL Unit
prog2 alice_sec = join(prog1 alice_sec) >>= λ x. join(printChB

"Hi Bob")

Now, something unexpected happened. To assign a type to prog2 , which only
mentions labels A and B, we have to resort to another label L. What is worse, in
the type of prog2 only the label A appears and does so in an argument position
which means we know nothing about the program’s possible effects. The design
decision of indexing the monad MAC by a single label, while enabling a simple
implementation of IFC as a library (cf. (Russo 2015)), requires the application
of special purpose primitives (like join) to mitigate over-approximations of how
information flows in and out of computations.

In this work, we take a step back and ask ourselves: what would it take to
allow arbitrary effects in a pure language with an already existing mechanism
for effect-free IFC? The answer turns out to be elegant and simple. We observe
that enforcing IFC in a pure language with effects can be reduced to the single
point—which we will explain below—where effects and sensitive data interact.
Based on this observation, we present a novel IFC mechanism which is arguably
simpler than existing IFC libraries, allows to assign more natural types to
programs; and overcomes the programming contortions discussed above.

To briefly present our idea, let us assume that effect-free IFC is achieved
using a DCC-style abstract type Tl A, and we have at our disposal a more
refined type constructor Eff of effectful programs akin to IO but annotated
with concrete information about observable effects. For example, Eff could be
annotated with the set of channels where the program might print, the set
of exceptions the program might raise, or the set of memory references the
program might modify. Moreover, we assume that the security policy specifies
the sensitivity of each effect.

Consider, for instance, a scenario with two output channels, namely ChL
and ChH, that are assigned sensitivities L and H, respectively. In this scenario,
a program prog3 : TA (Eff{ChB} Unit) is a computation that might print to B’s
channel ChB depending on A-sensitive data. This is where sensitive data and
effects interact! Assuming alice_sec : TA Bool is in scope, prog3 , for instance,
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could have the following implementation:3

prog3 : TA (Eff{ChB} Unit)
prog3 = bind b = alice_sec

in returnA(if b then printChB
"So it was true, huh"

else return unit)

In order to run the effects of the inner computation of type Eff{B} Unit we
have to “extract” it first from the TA value—recall that the language is pure. In
general, extracting anything from TA is prohibited as it would render the IFC
enforcement unsound: in prog3 , the computation of type Eff{ChB} Unit would
become executable, and if the A-sensitive Boolean alice_sec is true, it will
print "So it was true, huh" on Bob’s channel ChB—a flow that violates the
security policy. On the contrary, let us consider a program of a different type,
prog4 : TA (Eff{ChH} Unit). A possible implementation of prog4 could be:

prog4 : TA (Eff{ChH} Unit)
prog4 = bind b = alice_sec

in returnA(if b then printChH
"It is true!"

else printChH
"It is false!")

In this program, the computation, i.e. if b then printChH
"It is true!" else

printChH
"It is false!", is safe to run since it prints A-sensitive data on the

channel ChH—a flow permitted by the security policy. In fact, the underlying
computation of any program of type TA (Eff{ChH} Unit) is definitely safe to run
since the only possible effects it might produce are printing to the channel
ChH, which we know from the type Eff{ChH} Unit, and the decision on what to
print depends on data of at most sensitivity A, which we know from the type
constructor TA. Securing effectful programs then amounts to allowing any
such program prog4 to extract the computation of type Eff{ChH} Unit from TA
and run its effects while forbidding prog3 from doing so. To achieve this, we
introduce a novel primitive distr which systematically permits computations to
be extracted, and hence, executed only when they are known to depend on data
less sensitive than the sensitivity of their observers. With distr we can turn
prog4 into an executable program: distr(prog4 ) : Eff{ChH} Unit. We have reduced
the enforcement of IFC in pure languages with effects to a single primitive;
this gives us modularity, clarity and simplicity in the language design and its
possible implementations.

3bind is DCC’s eliminator for the type Tl.
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To conclude, we provide an alternative implementation of prog2 with a more
natural type using the primitive distr:

prog′
2 : TA Bool⇒ Eff{ChA,ChB} Unit

prog′
2 alice_sec = distr (bind b = alice_sec

in return(if b then printChA
"Alice is here!"

else return unit))
>>= λ x. printChB

"Hi Bob"

Our Contributions In this work, we show that IFC in the context of pure
languages with effects can be achieved through the combination of the following
features: 1. an enforcement for effect-free IFC, 2. a type for tracking observable
effects in a fine-grained fashion, and 3. a primitive distr which selectively permits
to execute effectful computations which depend on sensitive data.

We present our idea through an IFC enforcement mechanism in the form of
a security-type system for programs written in the programming language λ2,
which is a call-by-name variant of the simply-typed λ-calculus (STLC) extended
with recursive functions and Booleans. The security-type system for λ2, which
we dub SC, is an adaptation of the sealing calculus (SC) of Shikuma and Igarashi
(2008), which is more expressive than DCC (cf. (Tse and S. Zdancewic 2004;
Shikuma and Igarashi 2008)). We then extend λ2 in two different directions
by adding printing and global store effects in the form of explicit graded
monadic effects (Katsumata 2014). We name these extensions λPRINT

2 and λ
STORE
2 ,

respectively. Although the orthogonal extensions of SC for printing and global
store readily enforce IFC by not permitting any interaction between labelled
values and effects, we additionally extend SC with our novel primitive distr.
This allows to type check more of those effectful programs that are secure.

Along with informal argumentations as to why our idea yields secure IFC
enforcement mechanisms for the different effects, we prove that programs satisfy
suitable versions of noninterference. To increase confidence, we have mechanized
these proofs in the Agda proof assistant (Abel, Allais, et al. 2005–). Our proofs
are based on the technique of logical relations.

Finally, we realize our idea in the form of a proof-of-concept Haskell library
which we call SCLib. The conciseness of our implementation illustrates the
elegance and simplicity of our insight: less than 10 lines of code for the effect-free
fragment and less than 30 for the part with effects. In order to implement the
effect-free IFC mechanism we also present a novel implementation of SC using
an encoding of contextual information as type-level capabilities. Our library is
at least as expressive as previous work on libraries for IFC in Haskell, which
we evidence by showing implementations of SecLib (Russo et al. 2008), DCC
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(in its presentation by Algehed (2018)) and MAC in terms of SCLib’s interface.
In summary, the technical contributions of this paper are:

• A reformulation of SC a as security-type system, SC, for λ2 (Section A.2)

• Two extensions of λ2 and SC for enforcing IFC in pure languages with ef-
fects via graded monads. As examples, we consider printing (Section A.3.1)
and global store (Section A.3.2) effects

• We present distr, a single primitive that can control the interaction of
sensitive data and effects

• Security guarantees and proofs of noninterference based on logical relations
for all the enforcements (Section A.4)

• A Haskell implementation using a novel encoding of contextual infor-
mation as capabilities together with evidence that SCLib can encode
existing monadic security libraries (Section A.5)

• Mechanized proofs of our security guarantees as Agda code.

A.2. Effect-Free Information-Flow Control
In this section, we briefly recall the sealing calculus (SC) (Shikuma and Igarashi
2008), introduce the programming language on which we wish to enforce IFC,
and explain our adaptation of SC as a security-type system.

The Sealing Calculus SC utilizes an abstract type Sl A for protecting sensitive
data.4 A value of type Sl A is “sealed” at sensitivity l in the sense that it is only
available to observers with sensitivity at least as high as l. Values of type Sl A
are introduced and eliminated using the primitives seall and unseall. SC enforces
IFC by restricting in which contexts a sealed value can be “unsealed”. For
example, the A-sensitive Boolean sec :: SA Bool can only be unsealed in contexts
of at least sensitivity A.

Let us illustrate SC with a program that receives two Booleans with sensitiv-
ities A and B, respectively, and computes their conjunction with sensitivity H
(∧ : Bool× Bool⇒ Bool implements conjunction):

and ′ : SA Bool⇒ SB Bool⇒ SH Bool
and ′ = λ sb1 sb2 . sealH (∧(unsealA sb1 ), (unsealB sb2 ))

4In the original presentation, the authors use the notation [A]l instead.
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In the above program, the term sealH provides the context in which sb1 and sb2
can be unsealed: the term unsealA sb1 , for instance, is only well-typed because
its label A flows to H, which is the highest label.

The Language λ2 is a call-by-name variant of the STLC with Unit and Bool as
the only primitive types. We work directly with intrinsically-typed terms, and
thus we consider that typing derivations Γ ⊢ t : a are terms. The small-step
semantics is specified by a relation t→ t′ on closed terms, i.e. · ⊢ t : a, and we
call values those terms t for which t ̸→. For reference we include the complete
definition in Appendix A.I. Since λ2 is well-understood we omit any further
explanations.

The Security-Type System In Figure A.1 we introduce SC, the security-type
system for programs written in λ2. The syntax is parameterized by a security
policy specified in the form of a lattice structure on the set of labels (L,⊑).
The types reflect those in λ2 and include a new type constructor Sl for each
label l. Typing judgements are of the form π ; Γ ⊢SC t : A where: π is a finite
set of labels drawn from L, i.e. π ⊆ L; Γ is an SC typing context; and A is an
SC type. The component π is analogous to protection contexts from related
work by Tse and S. Zdancewic (2004).

The set of labels π in the typing judgement represents the sensitivities of
all the data on which the program may depend. In order to clarify the role
of π, let us consider a program with a typing derivation indexed by the set
of labels π1 := {H}, π1 ; · ⊢SC p : A. This program may depend on data
labelled at types SL A and SH A by unsealing. If, instead, p is indexed by the
set π2 := {L}, i.e. π2 ; · ⊢SC p : A, then the only terms that the program can
depend on by unsealing are of type SL A. This mechanism ensures that the flows
of information are secure. It is useful to think that the labels that belong to π
act as a kind of type-level key whose “possession” permits access to information
at most as sensitive as the label itself.

The typing rules of the λ2 fragment of SC, i.e. Rules Fun, App and If, are
rather standard: they simply propagate the set of labels π to their premises.
Observe that one has to explicitly unseal sensitive Booleans, i.e. of type Sl Bool,
in order to branch on them using the Rule If. Rules Unseal and Seal are the
most interesting since they enforce that information flows to the appropriate
places. Rule Seal serves a double purpose: from premise to conclusion, it
introduces terms of type Sl A; and, from conclusion to premise, it extends the
set of labels with the label l, i.e. π ∪ {l}. The typing derivation above the
premise can then unseal any term of type Sl′ A such that its label l′ can flow
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Sets of labels π⊆ L
Types A, B ::= Unit | Bool | A⇒B | Sl A

Typing contexts Γ ::= · | Γ, x : A

π ; Γ ⊢SC t : A

Var
(x : A) ∈ Γ

π ; Γ ⊢SC x : A

Fun
π ; Γ, x : A ⊢SC t : B

π ; Γ ⊢SC λ x. t : A⇒B

App
π ; Γ ⊢SC t : A⇒B π ; Γ ⊢SC u : A

π ; Γ ⊢SC app t u : B

Unit

π ; Γ ⊢SC unit : Unit

True

π ; Γ ⊢SC true : Bool

False

π ; Γ ⊢SC false : Bool

If
π ; Γ ⊢SC t : Bool π ; Γ ⊢SC u1 : A π ; Γ ⊢SC u2 : A

π ; Γ ⊢SC ifte t u1 u2 : A

Seal
π ∪ {l} ; Γ ⊢SC t : A

π ; Γ ⊢SC seall t : Sl A

Unseal
π ; Γ ⊢SC t : Sl A ∃l′ ∈ π. l ⊑ l′

π ; Γ ⊢SC unseall t : A

Figure A.1.: Types and intrinsically-typed terms of SC

to l. Rule Unseal allows unsealing a term with type Sl A if the set π in its
conclusion contains at least a label l′ such that l ⊑ l′. Continuing with the
intuition of labels in π as keys, a key l′ ∈ π can be used to unseal terms of type
Sl A exactly when l ⊑ l′.

In order to use SC as a security-type system for λ2 programs, we define a family
of erasure functions from SC types, typing contexts, and terms π ; Γ ⊢SC t : A
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to λ2 types, typing contexts, and programs ϵ(Γ) ⊢ ϵ(t) : ϵ(A):

ϵ(Unit) = Unit ϵ(λ x. t) = λ x. ϵ(t)
ϵ(Bool) = Bool ϵ(app t u) = app ϵ(t) ϵ(u)
ϵ(A⇒B) = ϵ(A)⇒ ϵ(B) ϵ(seall t) = ϵ(t)
ϵ(Sl A) = ϵ(A) ϵ(unseall t) = ϵ(t)

ϵ(·) = ·
ϵ(Γ, x : A) = ϵ(Γ), x : ϵ(A)

To clarify this point further, the noninterference property enforced by an SC
term {L} ; sec : SH Bool ⊢SC t : Bool on its underlying λ2 program sec : Bool ⊢
ϵ(t) : Bool is that for all · ⊢ s1, s2 : Bool both ϵ(t)[s1/sec] and ϵ(t)[s2/sec]
terminate with the same Boolean. In this way, SC types and typing contexts
play the role of security specifications, and SC terms of evidence that the
underlying programs are secure, i.e. they satisfy the security specification.
In contrast with SC, SC terms do not come equipped with an operational
semantics, only their underlying λ2 programs do. However, when convenient we
identify SC terms with their erased λ2 programs. To conclude, we observe that
the security-type system is closed under the operational semantics of λ2:

Lemma A.2.1. Given a term π ; · ⊢SC t : A such that ϵ(t)→ p then there exists
a term π ; · ⊢SC t′ : A such that ϵ(t′) = p.

A.3. Effectful Information-Flow Control
In this section, we present the main contribution of this paper: the observation
that a single primitive distr is enough to enforce IFC in pure languages with
effects. We study two extensions of the programming language and the security-
type system from Section A.2 with printing and global store.

In these extensions, we treat effects explicitly in the style of Haskell’s
IO monad (Jones and Wadler 1993), Moggi’s monadic metalanguage (Moggi
1991), or Katsumata’s explicit subeffecting calculus (EFe) (Katsumata 2014,
Section 5): the only programs that can perform effects are of type EffC a for
some effect annotation C and type a, and sequencing of effects is made explicit
through the primitive bind. Specifically, we consider printing and global store
effects, Sections A.3.1 and A.3.2, respectively, as suitable representatives of the
two kinds of effects that need to be secured:

Printing Effects. Printing on a channel can be observed externally to the
program by the channel’s observers. Observers can infer information
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about the program’s input from what is being printed to the channel. To
secure printing effects one must ensure that the decision to print and what
is being printed only depends on data less sensitive than the channel’s
observers.

Global Store Effects. Reading from the store cannot be observed directly.
However, reading effects need to be secured because what is read may
influence the program’s subsequent behaviour. To secure reading effects
one must ensure that what has been read is tracked as sensitive data.

In contrast to Haskell and the metalanguage, we use a graded monad (Kat-
sumata 2014) whose effect annotation C tracks precisely to which channels
a computation might print and which store locations a computation might
access.

A.3.1. Printing Effects
In Figure A.2 we present the extension of λ2 which allows programs to perform
printing effects. We dub this language λ

PRINT
2 . We assume that the set of

printing channels Ch is fixed a priori, i.e. the channels are statically known.
The set of types is extended with a new type for computations EffC a that is
indexed by a set of channels C ⊆ Ch. A program of type EffC a when executed
might only print to the channels that appear in C and return a result of type a.

Statics The typing rules of the standard monadic operations, return and bind,
are as expected: in Rule Return, the computation does not perform any effects
thus the type is indexed by the empty set of channels; and, in Rule Bind,
the type is indexed by the union of the channels on which the computations
Γ ⊢ t : EffC1 a and Γ ⊢ u : a⇒ EffC2 b might print, that is, C1 ∪ C2. We
include subeffecting—casting from a smaller to a larger set of channels—as
the term subeff in the language, see Rule Subeff. Printing is performed via a
family of primitive operations, printch , one for each available channel ch ∈ Ch
(Rule Print). We assume, for simplicity, that only Boolean values can be
printed. Further, observe that the resulting monadic type is indexed by the
singleton set that only contains the channel on which the printing is performed,
i.e. Eff{ch} Unit.

Dynamics The operational semantics of λPRINT
2 is defined as the combination

of the small-step operational semantics of λ2—see Appendix A.I for more
details—and the small-step operational semantics of computations defined
in Figure A.2. The semantics of effect-free terms, inherited from λ2, t → u,
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Sets of channels C, C1, C2⊆ Ch
Outputs o, o1, o2 ∈ List (Ch× 2)

Types a, b ::= . . . | EffC a
Typing contexts Γ ::= . . .

Γ ⊢ t : a

Return
Γ ⊢ t : a

Γ ⊢ return t : Eff∅ a

Bind
Γ ⊢ t : EffC1a Γ ⊢ u : a⇒ EffC2b

Γ ⊢ bind t u : EffC1∪C2b

Subeff
Γ ⊢ t : EffC1a C1 ⊆ C2

Γ ⊢ subeff t : EffC2 a

Print
Γ ⊢ t : Bool

Γ ⊢ printch t : Eff{ch} Unit

t⇝ u, o with · ⊢ t : EffC a and · ⊢ u : EffC a

Bind
t⇝ t′, o

bind t u⇝ bind t′ u, o

Bind-Subeff
value t

bind (subeff t) u⇝ subeff (bind t u), ϵ

Bind-Ret

bind (return t) u⇝ app u t, ϵ

Subeff
t⇝ t′, o

subeff t⇝ subeff t′, o

Print
t→ t′

printch t⇝ printch t′, ϵ

Print-Val
value b

printch b⇝ return unit, [(ch, b)]

EffectFree
t→ t′

t⇝ t′, ϵ

Figure A.2.: Types, well-typed terms and small-step semantics of λPRINT
2 (omit-

ting the unchanged rules of Appendix A.I)
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treats monadic terms, such as return t, as values even when their subterms
are not values, e.g. return (app (λ x. x) true) ̸→. The semantics of computations
(alternatively, monadic semantics) is of the form t⇝ u, o and is interpreted as
follows: program · ⊢ t : EffC a evaluates in one step to program · ⊢ u : EffC a
and produces output o. The output is a list of pairs of channels and Boolean
values o ∈ List (Ch× 2), and it represents the outputs of the program during
execution.

We now briefly explain the semantics. Rule Bind reduces the left subterm of
bind and executes its effects o. Once the left subterm is a value, i.e. return t,
Bind-Ret applies the rest of the computation u to the underlying value of
type a, i.e. t. Applying the continuation u does not produce effects—recall
that we are in a pure language—thus the step contains the empty output on
the right, i.e. ϵ. Rule Print reduces the argument t of printch t until it is a
value of type Bool, either true or false, and then Rule Print-Val prints the
corresponding Boolean on the output channel ch. The output [(ch, v)] is the
singleton list with only one pair. Observe that these rules make printch t strict
in its argument. Rule EffectFree serves to lift effect-free reductions to the
level of computations. Since by definition effect-free reductions do not produce
effects, the right hand side of the effect contains the empty output ϵ. To
complete the picture, we denote by t ⇝∗ u, o the reflexive-transitive closure
of the monadic reduction relation. To combine effects, we use the monoid
structure on List (Ch× 2).

Two Reduction Relations While it might seem unnecessary to define the
semantics using the combination of a small-step relation of effect-free programs
and a small-step relation of computations, it is a natural form of expressing
the operational semantics of pure languages with effects (Wadler and Thie-
mann 2003). The effect-free relation evaluates programs that cannot perform
effects, whilst the relation for computations evaluates programs which can, and
computes those effects.

To better clarify this point, let us consider the execution on the following
program, which we show in prettified syntax5:

prog5 : Eff{ch1 ,ch2 } Unit
prog5 = if true then

printch1 false else return unit
>>= λ x. printch2 true

The program evaluates as follows: 1. the effect-free semantics reduces the
5When possible we use Haskell-like syntax and leave the term subeff implicit.
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term on the left of the bind, i.e. if true then printch1 false else return unit, to
the value printch1 false (Rule If-True through Bind) and this causes no ef-
fect; 2. the monadic semantics performs the effect, i.e. printing true on ch1 ,
(Rule Print-Val); 3. the rest of the computation λ x. printch2 true is applied to
the resulting value, unit (Rule Bind-Ret); 4. the effect-free semantics reduces
the application (Rule Beta through EffectFree) and finally; 5. the monadic
semantics performs the effects of printch2 true.

To conclude the presentation of λ
PRINT
2 , we enunciate the following lemma

which states that the index C in the type of computations EffC a is a sound
approximation of the set of channels where a program · ⊢ t : EffC a may print,
i.e. t does not produce output in any channel not in C. In the security literature
(e.g. (Volpano et al. 1996)) it is usually called confinement. Let us denote by
o|ch the projection from o to the list consisting of all those pairs whose first
component is the channel ch.

Lemma A.3.1 (Confinement for λ
PRINT
2 ). For any λ

PRINT
2 program of type

· ⊢ p : EffC a, λ
PRINT
2 value · ⊢ v : EffC a, and output o, if p ⇝∗ v, o then

∀ch ∈ Ch. ch ̸∈ C ⇒ o|ch = [].

Security-Type System After having defined the programming language, we
are in position to turn our attention to the extension of SC that enforces IFC
on λ

PRINT
2 . We assume that the security policy specifies the sensitivity of each

printing channel, i.e. the greatest lower bound of the sensitivities of all its
observers, in the form of a function label ∈ Ch→ L. In Figure A.3 we present
the extension of SC that accommodates printing effects. We name it λ

PRINT
SC

hereafter. The types are the same as those in SC with the addition of a new
type constructor EffC of computations. The typing rules for the λ

PRINT
2 fragment

of λPRINT
SC , i.e. Rules Return, Bind, Subeff and Print, simply propagate the set

of labels π to their premises. Observe, again, that one has to explicitly unseal
sensitive Booleans, i.e. of type Sl Bool, to apply the Rule Print. Before detailing
Rule Distr, we extend the family of erasure functions ϵ from λ

PRINT
SC -terms to

λ
PRINT
2 programs in the obvious way: i.e. the type former EffC erases to “itself”

and, analogously to seall and unseall, distr is a no-op.

ϵ(. . . ) = . . . ϵ(. . . ) = . . .
ϵ(EffC A) = EffC ϵ(A) ϵ(distr t) = ϵ(t)

Rule Distr introduces one of the novelties of our work; an enforcement
mechanism that selectively permits to execute the effects of computations that
depend on sensitive data. In λ

PRINT
SC , a term of type Sl (EffC A) describes a
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Sets of channels C, C1, C2⊆ Ch
Sensitivity of channels label∈ Ch→ L

Sets of labels π⊆ L
Types A, B ::= . . . | EffC A

Typing contexts Γ ::= . . .

π ; Γ ⊢SC t : A

Return
π ; Γ ⊢SC t : A

π ; Γ ⊢SC return t : Eff∅ A

Bind
π ; Γ ⊢SC t : EffC1 A π ; Γ ⊢SC u : A⇒ EffC2 B

π ; Γ ⊢SC bind t u : EffC1∪C2 B

Subeff
π ; Γ ⊢SC t : EffC1 A C1 ⊆ C2

π ; Γ ⊢SC subeff t : EffC2 A

Print
π ; Γ ⊢SC t : Bool

π ; Γ ⊢SC printch t : Eff{ch} Unit

Distr
π ; Γ ⊢SC t : Sl (EffC A)

π ; Γ ⊢SC distr t : EffC (Sl A)
(∀ch ∈ C. l ⊑ label(ch))

Figure A.3.: Types and intrinsically-typed terms of λ
PRINT
SC (omitting the un-

changed rules of Figure A.1)
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computation that might only print on the channels in C and what is printed
and the decision to print potentially depends on data of sensitivity l. Then, it is
natural to ask, when it is secure to execute the effects of the inner computation
of type EffC A? Clearly, whenever the sensitivities of the computation’s effects,
i.e. the channels in the set C, are as high as the sensitivity of the data used to
decide to perform the effects, i.e. sensitivity l. The side-condition of the rule
exactly captures this condition: ∀ch ∈ C. l ⊑ label(ch).

To illustrate Distr in action, let us consider the following term in λ
PRINT
SC that

prints Alice’s sensitive input to the H-sensitive channel:

prog6 : SA Bool⇒ Eff{ChH} Unit
prog6 = λ sb. distr (sealA (printChH

(unsealA sb))) >>= λ x. return unit

The primitive distr permits to execute the effects of the computation inside
the term sealA (printChH

(unsealA sb)). The term distr protects the return type
of the computation at the same sensitivity as the premise’s type Sl A. This
requirement is necessary to enforce IFC because the trivial computation that
performs no effects and just returns has access to sensitive data, as exemplified
by the following program:

prog7 : SA Bool⇒ SB Bool⇒ Eff{ChH} (SH Bool)
prog7 =

λ sb1 sb2 . distr (sealH (printChH
(unsealA sb1 )) >>= λ x. return (unsealB sb2 ))

A.3.2. Global Store Effects

We turn our attention to global store effects which combines printing effects
from the previous section with reading from locations in the store. Following
the same steps, in Figure A.4 we present the extension of λ2 (Appendix A.I) in
which programs have access to a global store and can read from and write to
it. We name this language λ

STORE
2 . Our development rests on two assumptions:

(1) the set of locations in the store Loc is fixed during execution, and (2) only
terms of ground type, i.e. Bool and Unit, can be stored. This helps simplify
the presentation of the language and the security-type system, and, as we will
show in the next section, the construction of the logical relation from which
noninterference follows. At the end of this section, however, we briefly discuss
how to lift these assumptions.

λ
STORE
2 extends λ2 with a type of computations EffS a, which is indexed by a

set of store locations S ⊆ Loc, and a type of references Refs r, which is indexed
by store locations s ∈ S. A program of type EffS a when executed might only
write to the references mentioned in the set S and finally return a result of
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type a. A term of type Refs r is a reference in the store s that contains terms
of ground type r. References permit both “printing” effects via writing—like
channels in λ

PRINT
2 —but also reading effects. Note that the annotation S in the

type of computations EffS does not mention the locations on the store from
which the program might read. This asymmetry stems from how the execution
of programs performing these effects interact with their environment: writing
alters the store whilst reading does not.

Statics Typing judgements are of the form Σ, Γ ⊢ t : a where the store
typing Σ determines the shape of the store, i.e. what types it contains and
in what locations. The rest of components are like those in λ2. The typing
rules of the monadic operations return, bind and subeff follow the same pattern
as in λ

PRINT
2 (Figure A.2), thus we do not discuss them any further. The

term refs (Rule Ref) is the runtime representation of references. Reading
and writing is achieved via primitives read and write (Rules Read and Write
respectively). Observe that in Read, the type of the computation Eff∅ r in the
conclusion of the rule is indexed by the empty set of locations, while in Write
is indexed by the singleton set {s}.

Dynamics The operational semantics of the language is defined as in λ
PRINT
2 ;

a combination of the small-step semantics for λ2 that treats effectful primitives
as values, and a small-step semantics for computations. Given a store typing Σ,
a store θ is a function from locations to typed terms according to Σ. Since
the language considers a fixed-size store, we use the notation θ instead of θ(Σ).
The semantics of computations is of the form θ1, t⇝ θ2, u, and is interpreted
as: program Σ, · ⊢ t : EffS a paired with store θ1 evaluates in one step to
program Σ, · ⊢ u : EffS a and store θ2.

We now explain the semantics. Rule Read reduces the argument of read
and it does not modify the store. When the argument is a store location, i.e.
refs, Read-Ref retrieves the term t from the store, i.e. θ(s) = t. The rules for
writing Rules Write and Write-Ref first reduce the left subterm of write u t
to a store location and then write the right subterm t on the store. Different
from λ

PRINT
2 , we permit to write any term on the store, not only values.

To briefly illustrate λ
STORE
2 , consider the following program:

prog8 : Bool⇒ Eff{s′} Unit
prog8 b = if b then (read s >>= λ x. write s′ x) else return unit

Based on the Boolean input, prog8 copies the contents of the store location s
to s′. Observe that the type only mentions the location s′ in its index.
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Store locations s∈ Loc
Sets of s. locations S, S1, S2⊆ Loc

Ground types r ::= Bool | Unit
Types a, b ::= r | a⇒ b | EffS a | Refs r

Typing contexts Γ ::= . . .
Store typings Σ∈ Loc→ Ground types

Σ, Γ ⊢ t : a

Ref
Σ(s) = r

Σ, Γ ⊢ refs : Refs r

Read
Σ, Γ ⊢ t : Refs r

Σ, Γ ⊢ read t : Eff∅ r

Write
Σ, Γ ⊢ t : Refs r Σ, Γ ⊢ u : r

Σ, Γ ⊢ write t u : Eff{s} Unit

Stores θ, θ1, θ2 ∈ (Σ : Store typing)→ (s : Loc)→ Σ , · ⊢ t : Σ(s)

θ1(Σ), t⇝ θ2(Σ), u with Σ, · ⊢ t : EffS a and Σ, · ⊢ u : EffS a

Read
t→ u

θ, read t⇝ θ, read u

Read-Ref
θ(s) = t

θ, read refs ⇝ θ, return t

Write
t→ t′

θ, write t u⇝ θ, write t′ u

Write-Ref
θ2 = θ1[s 7→ t]

θ1, write refs t⇝ θ2, return unit

Figure A.4.: Types, well-typed terms and small-step semantics of λSTORE
2 (omit-

ting the unchanged rules of Appendix A.I and Figure A.2)
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We conclude the explanation of λSTORE
2 with a confinement lemma similar to

that of λPRINT
2 (Lemma A.3.1):

Lemma A.3.2 (Confinement for λ
STORE
2 ). For any λ

STORE
2 program Σ, · ⊢ f :

EffS a, λ
STORE
2 value Σ, · ⊢ v : EffS a, and stores θ2, θ2 : Σ, if θ1, f ⇝∗ θ2, v then

∀s ∈ Loc. s ̸∈ S ⇒ θ1(s) = θ2(s).

Security-Type System Now we explain the IFC enforcement mechanism
λ

STORE
SC (Figure A.5). As in λ

PRINT
SC (Figure A.3) we assume that the security policy

specifies for each store location its sensitivity as a function label ∈ Loc → L.
The typing rules for the monadic primitives are analogous to λ

PRINT
SC thus we

have omitted them. The rule for references is straightforward (Rule Ref). More
interesting is the typing rule for reading from the store (Rule Read). In the
conclusion of the rule, the return type of the computation is the SC type for
sensitive data Sl R. The sensitivity of the location is l, i.e. label(s) = l in the
side-condition of the rule, thus to protect the flow of information is necessary
to wrap also the return type.

The type of read diverges from usual presentations of IFC libraries (e.g.
MAC (Russo 2015) and HLIO (Buiras et al. 2015) with the exception of
SLIO (Rajani and Garg 2020)) in that the result of reading from the store
is wrapped in the type constructor Sl. These libraries incorporate the data
into their monad of computations, which keeps track of the sensitivities of the
observed values.

We conclude the section with a concrete example of λ
STORE
SC that shows

that prog8 is secure with respect to the following specification: label(s) = A,
label(s′) = H and the sensitivity of the Boolean argument is H, i.e. sb : SH Bool:

prog′
8 : SH Bool⇒ Eff{s′} (SH Unit)

prog′
8 sb = distr(sealH(if unsealA sb

then (read s >>= λ x. write s′ (unsealH x))
else return unit))

The above program exemplifies how λ
STORE
SC enforces that flows from the store

to the program and back to the store are secure. Note that ϵ(prog′
8 ) = prog8 .

A.3.3. Other Effects, Combination of Effects

To conclude we note that the previous sections show how to treat, from an IFC
perspective, reading and writing effects in a general sense. With such a devel-
opment, our approach could be used to not only encode secure reading/writing
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Store locations s∈ Loc
Sets of s. locations S, S1, S2⊆ Loc

Sensitivity of loc. label∈ Loc→ L
Sets of labels π⊆ L
Ground types R ::= Bool | Unit

Types A, B ::= R | A⇒B | EffS A | Refs R
Typing contexts Γ ::= . . .

Store typings Σ∈ Loc→ Ground type

π ; Σ, Γ ⊢SC t : A

Ref
Σ(s) = R

π ; Σ, Γ ⊢SC refs : Refs R

Read
π ; Σ, Γ ⊢SC t : Refs R

π ; Σ, Γ ⊢SC read t : Eff∅ (Sl R)
(label(s) = l)

Write
π ; Σ, Γ ⊢SC t : Refs R π ; Σ, Γ ⊢SC u : R

π ; Σ, Γ ⊢SC write t u : Eff{s} Unit

Distr
π ; Σ, Γ ⊢SC t : Sl (EffS A)

π ; Σ, Γ ⊢SC distr t : EffS (Sl A)
(∀s ∈ S. l ⊑ label(s))

Figure A.5.: Types and intrinsically-typed terms of λ
STORE
SC (omitting the un-

changed rules of Figure A.1)
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of references but also effects involving files and network communications. How-
ever, our framework can be adapted to deal with other kinds of effects, e.g.
exceptions, or combinations thereof by selecting what effects the graded monad
has to track, e.g. what exceptions are thrown, and when it it secure to extract
a computation from a sealed value.

A.4. Security Guarantees

In this section, we prove that the IFC mechanisms SC, λPRINT
SC and λ

STORE
SC can

be used to enforce noninterference for the programming languages λ2, λPRINT
2

and λ
STORE
2 presented in Sections A.2, A.3.1 and A.3.2, respectively. Our

noninterference proofs employ the technique of logical relations (LRs). For each
language, we construct a LR parameterized by the sensitivity of the attacker
Atk and the security types of SC. In the effect-free setting, the LR interprets
each SC type A as a binary relation over λ2 programs of the erased type ϵ(A).
The relation captures the idea of indistinguishable programs: if the type is
public enough, e.g. SL Bool and L flows to Atk, then two programs are related
when they evaluate to the same value. Noninterference follows as a corollary of
the so called fundamental theorem of the LR.

In this work we study languages without recursion where all programs
terminate6. It is immediate, however, to extend these languages with recursive
function definitions, which would allow writing nonterminating programs, and
the noninterference proofs to appropriate variants of termination-insensitive
noninterference using step-indexed LRs (A. J. Ahmed 2006)—for example
following Gregersen et al. (2021). We note that, in fact, the security-type
systems for λ

PRINT
2 and λ

STORE
2 extended with recursion enforce a stronger notion

of security, namely progress-insensitive noninterference (PINI). In order to
prove this property the (step-indexed) LRs require nontrivial generalizations
that can deal with partial reduction sequences with observable effects. We
declare this line of research as future work.

Noninterference (NI) states that for any two runs of a program with different
secret inputs its public outputs agree, and thus the attacker cannot infer the
contents of sensitive data. In the effect-free setting, the inputs to a program are
its arguments, and the output is its return value. In the effectful setting, what
we need to consider as inputs and outputs changes: in λ

STORE
2 , for instance, the

store must be considered an additional input to the program.

6This follows straightforwardly using a Tait-style reducibility predicate.
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Definition A.4.1 (NI for λ2). A program sec : Bool ⊢ p : Bool satisfies NI if
for any two terms · ⊢ s1, s2 : Bool, and any two values · ⊢ v1, v2 : Bool, such
that p[s1/sec]→∗ v1 and p[s2/sec]→∗ v2 it is the case that v1 = v2.

In the definition v1 = v2 denotes that v1 and v2 are syntactically equal values.
SC enforces NI:

Theorem A.4.1. Given any SC term {Atk} ; sec : SH Bool ⊢SC t : SAtk Bool
where H ̸⊑ Atk, the erased program sec : Bool ⊢ ϵ(t) : Bool satisfies NI.

In practice, we are concerned that information does not flow from H-protected
data to the attacker with sensitivity Atk. Thus, to show that a program
sec : Bool ⊢ p : Bool does not leak information from H to Atk, it is enough to
find an SC term {Atk} ; sec : SH Bool ⊢SC t : SAtk Bool such that p = ϵ(t).

Logical Relation In order to prove that SC enforces NI (Theorem A.4.1),
we construct a LR parameterized by the attacker’s sensitivity Atk and the
SC types—see Figure A.6. The proof, as we will show, then falls out as a
consequence of the fundamental theorem of the LR.

At each SC type the LR defines what the attacker can observe about pairs
of λ2 programs of erased type—alternatively, the same program with different
secrets. We split the definition depending on whether programs are evaluated,
i.e. they are already values, RAtk

V J−K and RAtk
C J−K, respectively. We briefly

explain these definitions. At SC type Bool, for instance, see RAtk
C JBoolK and

RAtk
V JBoolK, the LR states that if the programs terminate then the attacker can

observe if they return equal values. At higher types, i.e. A⇒B, two functions
are related if whenever they reduce to a value, see RAtk

C JA⇒BK, they map
related inputs RAtk

C JAK(u1, u2) to related outputs RAtk
C JAK(app t1 u1, app t2 u2),

see RAtk
V JA⇒BK. Lastly, at type Sl A, see RAtk

V JSl AK, the LR compares the
sensitivity of the attacker with the label l, and in case it is less sensitive, i.e.
l ⊑ Atk, the programs have to be related at SC type A. If the label l is more
sensitive than the attacker’s label, i.e. l ̸⊑ Atk then the programs do not need
to be related.

Definitions RAtk
V J−K and RAtk

C J−K work on closed terms, however, in order
to prove the fundamental theorem we have to lift them to closed substitutions
and open terms. A substitution assigns to each type a in a typing context Γ a
closed term of that type, i.e. · ⊢ t : a. We denote substitutions by γ and use
γ : · ⊢ Γ to mean that γ is in the set of substitutions over Γ. We define the
LR for substitutions, RAtk

S J−K, by induction on SC typing contexts. At the
empty context · the empty substitutions (ϵ, ϵ) are trivially related—denoted by
⊤. Two nonempty substitutions (γ1, t1) and (γ2, t2) are related whenever they
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RAtk
V J−K ∈ (A : SC type)→ (t1 : · ⊢ ϵ(A))→ (t2 : · ⊢ ϵ(A))→ Set
RAtk

V JUnitK(t1, t2) :⇔ t1 = t2

RAtk
V JBoolK(t1, t2) :⇔ t1 = t2

RAtk
V JA⇒BK(t1, t2) :⇔ ∀(u1, u2 : · ⊢ ϵ(A)).
RAtk

C JAK(u1, u2)⇒ RAtk
C JBK(app t1 u1, app t2 u2)

RAtk
V JSl AK(t1, t2) :⇔ l ⊑ Atk⇒ RAtk

V JAK(t1, t2)

RAtk
C JAK(t1, t2) :⇔ ∀(u1, u2 : · ⊢ ϵ(A)). t1 →∗ u1 ∧ t2 →∗ u2 ⇒ RAtk

V JAK(u1, u2)

RAtk
S J·K(ϵ, ϵ) :⇔ ⊤
RAtk

S JΓ, x : AK((γ1, t1), (γ2, t2)) :⇔ RAtk
C JAK(t1, t2) ∧RAtk

S JΓK(γ1, γ2)

RAtk
T J(Γ, A)K(t1, t2) :⇔ ∀(γ1, γ2 : · ⊢ ϵ(Γ)).
RAtk

S JΓK(γ1, γ2)⇒ RAtk
C JAK(t1[γ1], t2[γ2])

Figure A.6.: Logical relation for λ2-SC

are pointwise related, i.e. RAtk
C JAK(t1, t2) and RAtk

S JΓK(γ1, γ2). The LR for open
terms, written RAtk

T J(Γ, A)K, is indexed by a pair consisting of an SC typing
context Γ and an SC type A. It states that two λ2 terms are related if for any
two related closing substitutions the substituted terms are related at type A.

The fundamental theorem of the LR states that the underlying program of
an SC term is related to itself. Formally:

Theorem A.4.2 (Fundamental Theorem of the LR for λ2-SC). For any attacker
with sensitivity Atk, and SC term {Atk} ; Γ ⊢SC t : A, it is the case that
RAtk

T J(Γ, A)K(ϵ(t), ϵ(t)).

Proof. By induction on the typing derivation.

NI (Theorem A.4.1) follows as a corollary of the fundamental theorem:

Proof. Assume two Boolean secrets · ⊢ s1, s2 : Bool. Since H ̸⊑ Atk, the
secrets are related, i.e. RAtk

C JSH BoolK(s1, s2), and thus the two substitutions
γ1 = {sec 7→ s1} and γ2 = {sec 7→ s2} are related. By the fundamental theorem,
the term ϵ(t) is related to itself, i.e. RAtk

C JSAtk BoolK(ϵ(t)[γ1], ϵ(t)[γ2]). Unfolding
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RAtk
V J. . .K(t1, t2) :⇔ . . .

RAtk
V JEffC AK(t1, t2) :⇔ ∀(u1, u2 : · ⊢ ϵ(A)), o1, o2. t1 ⇝

∗ return(u1), o1

∧ t2 ⇝
∗ return(u2), o2 ⇒ RAtk

C JAK(u1, u2) ∧ o1 =CAtk o2

Figure A.7.: Logical relation for λ
PRINT
2 -λPRINT

SC (omitting the unchanged clauses
of Figure A.6)

the definitions of we obtain that ∀(v1, v2 : · ⊢ Bool). ϵ(t)[γ1]→∗ v1 ∧ ϵ(t)[γ2]→∗

v2 ⇒ v1 = v2. Since ϵ(t)[γ1] and ϵ(t)[γ2] terminate we obtain.

A.4.1. Noninterference for Printing Effects
In order to formalize noninterference for λ

PRINT
2 we look at effectful programs

that might print. For that, we first define indistinguishability of outputs with
respect to a subset of channels:

Definition A.4.2 (Output indistinguishability). Let C ⊆ Ch. Two outputs o1
and o2 are C-indistinguishable, denoted by o1 =C o2, if the two outputs agree
in C, i.e. o1|C = o2|C .

We define NI for λ
PRINT
2 for programs from Bool to EffC Unit, i.e. programs

that depending on a Boolean produce output in an arbitrary set of channels C:

Definition A.4.3 (NI for λ
PRINT
2 ). A program sec : Bool ⊢ p : EffC Unit

satisfies NI with respect to C ′ ⊆ C, if for any two terms · ⊢ s1, s2 : Bool, any
two values · ⊢ v1, v2 : EffC Unit, and any two outputs o1 and o2, such that
p[s1/sec]⇝∗ v1, o1 and p[s2/sec]⇝∗ v2, o2, then o1 =C′ o2.

NI is parameterized by a subset of the channels where the outputs have to agree.
We will instantiate C ′ with the set of channels observable by the attacker.

λ
PRINT
SC can be used to enforce NI on λ

PRINT
2 programs:

Theorem A.4.3. Given any λ
PRINT
SC term {Atk} ; sec : SH Bool ⊢SC t : EffC Unit

where H ̸⊑ Atk the erased program sec : Bool ⊢ ϵ(t) : EffC Unit satisfies NI with
respect to CAtk where CAtk := {ch | ch ∈ C, label(ch) ⊑ Atk}.

Logical Relation The LR for λ
PRINT
2 (Figure A.7) is very similar to that of

λ2 (Figure A.6) so we skip over the commonalities and directly discuss its
definition at the type of computations. The LR relates two computations
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RAtk
V JEffC AK(t1, t2) if whenever they terminate, i.e. t1 ⇝∗ return u1, o1 and

t2 ⇝∗ return u2, o2, the resulting terms are related, i.e. RAtk
C JτK(u1, u2), and the

outputs are indistinguishable by the attacker, i.e. o1 =CAtk o2. The fundamental
theorem of the LR states that erased terms are related to themselves:

Theorem A.4.4 (Fundamental Theorem of the LR for λ
PRINT
2 -λPRINT

SC ). For any
attacker with sensitivity Atk, and λ

PRINT
SC term {Atk} ; Γ ⊢SC t : A, it is the case

that RAtk
T J(Γ, A)K(ϵ(t), ϵ(t)).

Proof. By induction on the typing derivation with use of the Lemma A.3.1.

The proof that λ
PRINT
SC enforces NI (Theorem A.4.3) requires the following

Lemma.

Lemma A.4.1. If p⇝∗ v, o, then there exists a →-value p′ such that p→∗ p′

and p′ ⇝∗ v, o.

NI follows as a corollary of the fundamental theorem.

Proof. Let us assume two secret Booleans · ⊢ s1, s2 : Bool. Since H ̸⊑ Atk,
the secrets are related, i.e. RAtk

C JSH BoolK(s1, s2), and thus the substitutions
γ1 = {sec 7→ s1} and γ2 = {sec 7→ s2} are related. By the fundamental theorem,
the term ϵ(t) is related to itself RAtk

C JEffC UnitK(ϵ(t)[γ1], ϵ(t)[γ2]).
By assumption ϵ(t)[s1/sec] ⇝∗ v1, o1 and ϵ(t)[s2/sec] ⇝∗ v′

2, o2, and by
Lemma A.4.1, there are two intermediate programs t′

1 and t′
2 such that:

ϵ(t)[s1/sec] →∗ t′
1 and t′

1 ⇝
∗ v1, o1; and ϵ(t)[s2/sec] →∗ t′

2 and t′
2 ⇝

∗ v2, o2.
We apply RAtk

C JEffC UnitK(ϵ(t)[s1/sec], ϵ(t)[s2/sec]) to the two effect-free reduc-
tions which gives us that RAtk

V JEffC UnitK(t′
1, t′

2). We apply this to the monadic
reductions and obtain that o1 =CAtk o2.

A.4.2. Noninterference for Global Store Effects
We formalize noninterference for λ

STORE
2 by looking at effectful programs which

receive a store as input and produce a store as output. The contents of the store
are possibly unevaluated λ

STORE
2 programs of ground type (see Figure A.4). In

order to compare stores, we define an indistinguishability relation for programs
of ground type:

RGJ−K : (r : λSTORE
2 ground type)→ (t1 : · ⊢ r)→ (t2 : · ⊢ r)→ Set

RGJrK(t1, t2) :⇔ ∀(v1, v2 : · ⊢ r).t1 →∗ v1 ∧ t2 →∗ v2 ⇒ v1 = v2

In some sense it resembles the LR at Unit and Bool types in Figure A.6.
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RAtk
V J. . .K(t1, t2) :⇔ . . .

RAtk
V JEffC AK(t1, t2) :⇔ ∀(u1, u2 : · ⊢ ϵ(A))(θ1, θ2, θ′

1, θ′
2 : Σ).

θ1 =SAtk θ2 ∧ θ1, t1 ⇝
∗ θ′

1, return u1 ∧ θ2, t2 ⇝
∗ θ′

2, return u2

⇒ RAtk
C JAK(u1, u2) ∧ θ′

1 =SAtk θ′
2

Figure A.8.: Logical relation for λ
STORE
2 -λSTORE

SC (omitting the unchanged clauses
of Figure A.6)

Stores are parameterized by store typings that determine the type of the
contents at each location. Since stores neither grow nor shrink, assumption
(1) (Section A.3.2), we define an indistinguishability relation for stores of the
same store typing. Indistinguishability is parameterized by a subset of the
locations.
Definition A.4.4 (Store indistinguishability). Let S ⊆ Loc. Two stores θ1 and
θ2 of store typing Σ(s) are S-indistinguishable, denoted by θ1 =S θ2, if they
are indistinguishable at each location in S, i.e. ∀s ∈ S. RGJΣ(s)K(θ1(s), θ2(s)).

NI for λ
STORE
2 programs is:

Definition A.4.5 (NI for λ
STORE
2 -λSTORE

SC ). A program Σ, · ⊢ p : EffS Unit
satisfies NI with respect to S′ ⊆ Loc, if for any two stores θ1, θ2 : Σ, any two
values · ⊢ v1, v2 : EffS Unit, and any two stores θ′

1, θ′
2 : Σ, if θ1 =S θ2 and

θ1, p⇝∗ θ′
1, v1 and θ2, p⇝∗ θ′

2, v2 then θ′
1 =S θ′

2.
Again, λSTORE

SC enforces NI on λ
STORE
2 programs:

Theorem A.4.5. Given any λ
STORE
SC term {Atk} ; Σ, · ⊢SC t : EffS Unit the

erased program Σ, · ⊢ ϵ(t) : EffS Unit satisfies NI with respect to SAtk where
SAtk := {s | s ∈ Loc, label(s) ⊑ Atk}.

The LR that we construct to prove NI (Figure A.8) is largely similar to that
of λ

PRINT
2 (Figures A.7 and A.6), with the difference that effectful programs

take as argument and produce as result indistinguishable pairs of stores. NI
follows as a consequence of the fundamental theorem of the LR.

A.5. Implementation
In this section, we present an implementation of SC and λ

PRINT
SC (Sections A.2

and A.3.1) as a Haskell library, which we call SCLib. We omit λ
STORE
SC (Sec-

tion A.3.2) for lack of space. However, its implementation is similar to that
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of λ
PRINT
SC . Furthermore, we demonstrate that existing Haskell libraries for

static IFC can be reimplemented in terms of the interface that SCLib exposes.
The main characteristic of SC is that typing judgements π ; Γ ⊢SC t : A are

indexed by a set of labels π. Onwards, we refer to the left part of the judgement,
i.e. π ; Γ, as the context of the term t. The set of labels plays an important
role in enforcing IFC. However, individual labels are not first-class citizens:
there is no type of labels and, hence, labels can neither be introduced nor
eliminated. Further, some typing rules in SC modify the set of labels in their
context: e.g. the rule for unseall (cf. Figure A.1) augments the set in its premise
with l. When shallowly embedding in Haskell any calculus that manipulates
the context in this fashion, there is a natural problem to overcome: Haskell
does not allow library implementors to have access to a program’s context. For
instance, to embed a linear type system, Bernardy et al. (2017) need to change
the compiler.

To overcome these difficulties, our implementation resorts to a combination
of Haskell’s module system to hide the implementation details’ from users,
and the use of Haskell’s function space, i.e. abstraction and application, to
manage the runtime representation of labels. We hope to convince the reader
that our simple implementation matches the studied enforcement mechanisms,
and that it can shed light on previous work on static IFC in Haskell.

A.5.1. Implementation of SC

When we introduced SC, we mentioned the intuition that labels in π are
some sort of type-level keys whose possession permits access to sealed data.
Our implementation takes this intuition literally: there is a type for keys
whose elements are attached with type-level labels, and the primitive to unseal,
i.e. unseal, is parameterized by a key. The elements of this type are like
capabilities (Dennis and Horn 1983) which need to be explicitly exercised.

Figure A.9 shows the complete implementation of SC in Haskell. Without
loss of generality, we assume the two-point security lattice. As previous work (e.g.
MAC (Russo 2015), HLIO (Buiras et al. 2015), and DCC (Algehed and Russo
2017)) we represent labels as types of kind Label (line 5, and the use of the
GHC extension DataKinds) and encode the “flows to” relation via a typeclass
(lines 7–10). For simplicity we show the encoding of the two-point security
lattice, however, this can be generalized (cf. (Buiras et al. 2015)). In line 12 we
introduce a new datatype Key which is parameterized by a type l of kind Label.
Then, line 14 introduces the type S, which is a wrapper over the function space
between the types Key l and a, i.e. Key l -> a.

We now implement the primitives seal and unseal—Rules Seal and Unseal
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1 module SCLib
2 (Key (), Label (..), FlowsTo (..), S (S), seal, unseal, ...)
3 where
4 -- Enumeration of security labels for the two-point lattice
5 data Label = H | L
6 -- "Flows to" relation as a typeclass
7 class FlowsTo (l :: Label) (l' :: Label)
8 -- Instances
9 instance FlowsTo l l

10 instance FlowsTo L H
11 -- Type-level keys
12 data Key (l :: Label) = Key
13 -- Security type
14 data S l a = S (Key l -> a)
15 -- Sealing
16 seal :: (Key l -> a) -> S l a
17 seal = Seal
18 -- Unsealing
19 unseal :: FlowsTo l' l => Key l -> S l' a -> a
20 unseal k@Key (S f) = f Key

Figure A.9.: Implementation of SC (e.g. for the two-point security lattice)
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from Figure A.1. Rule Seal introduces a sealed value of type S l a from a value
of type a that is typed in a context that has been extended by label l. Our
implementation (lines 16 and 17), however, uses the function space Key l -> a
to mimic the context extension by label l. Intuitively, the value of type Key l
represents a proof that the label l is present in the context, and hence it can
be used to construct the value of type a through unseal, which we explain
next. Rule Unseal permits to eliminate sealed values of type S l a provided
that the context contains a label l' secret enough, i.e. l FlowsTo l'. The
combinator unseal (lines 19–20) allows unsealing terms of type S l a precisely
in case we have a value of type Key l' and the label in its type, i.e. l', flows to
l—see the constraint FlowsTo l' l. In order to enforce IFC, it is important
that the constructors of Key are kept abstract from the user—observe Key ()
in the export list of the module (line 2). Otherwise, anyone could extract the
underlying term of type a from an l-sensitive value secret :: S l a by applying
unseal Key. Similar to Russo et al. (2008), the combinator unseal is strict in
its argument (k@Key) in order to forbid forged keys like undefined :: Key l.
We remark that the noninterference property—recall termination-insensitive
noninterference (TINI) from Definition A.4.1—rules out programs that force
undefined and halt with error.

The implementation discussed so far consists of the trusted computing base
(TCB) of SCLib. From now on, users of the library can derive functionalities
from the library’s interface. For example, programmers can implement the
Functor, Applicative and Monad instances for the type S l a. For instance,

instance Functor (S l) where
fmap f x = seal (\k -> f (unseal k x))

instance Applicative (S l) where
pure x = seal (\k -> x)
f <*> a = seal (\k -> (unseal k f) (unseal k a))

instance Monad (S l) where
return = pure
m >>= f = seal (\k -> unseal k (f (unseal k m)))

Note that the programmer does not need access to the TCB in order to
implement these instances—as opposed to MAC (cf. (Vassena, Buiras, et al.
2016)). This phenomenon, we believe, is a sign of the simplicity and generality
of our implementation.
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A.5.2. Implementation of λPRINT
SC

Figure A.10 shows the implementation of λPRINT
SC which builds on the implemen-

tation of SC (Figure A.9). The datatype Eff wraps IO computations and is
indexed by a type-level set (D. A. Orchard and Petricek 2014) ls of channels
where the computation can write to. For simplicity, we will omit the map label
(Figure A.3) from channels to labels and identify channels with labels so that
the index ls has kind [Label]. This makes the implementation simpler.

In lines 15–18 we implement the return and bind of the graded monad.
returnEff does not produce effects, thus, its type is indexed by the empty set
[] (cf. Figure A.3). bindEff type is indexed by the union of the sets of labels
of the computations (cf. Figure A.3). The implementation of subeffecting is
the identity function (lines 20–21). Printing effects can be performed by the
combinator printEff (lines 26–30). The argument of type SLabel l is a term
level representation of a the type-level label of printing channel.

Lines 34–36 show the implementation of the novel primitive distr. The type-
class constraint FlowsToSet l ls (see the definitions in lines 32) ensures that
l ⊑ l' for every label l' in ls. Its implementation is standard. The implementa-
tion uses the value Key, which pertains to the TCB, to unseal the Eff action, i.e.
unseal Key m; and then it runs its effects, i.e. res <- runEff (unseal Key m);
finally it seals the result at the same label, i.e. return (seal (\k -> res)).

A.5.3. Implementing Existing Libraries for IFC

We conclude this section by showing that we can reimplement some of the exist-
ing libraries in Haskell for IFC. We show implementations of SecLib (Russo
et al. 2008), simplified dependency core calculus (SDCC) (Algehed 2018) (an
alternative presentation of DCC) and a variation of MAC (Russo 2015)7 us-
ing SCLib interface. In some sense the implementations help to explain the
mentioned libraries. Further, this shows that the programmer can choose to
write programs against SCLib’s “low-level” interface; or a more “high-level”
interface, e.g. MAC; or a combination of both. We declare future work to
compare the performance among implementations.

For each library we briefly explain its interface and show its implementation
in terms of SCLib.

SecLib and SDCC SecLib is one of the pioneers of static IFC libraries in
the context of Haskell. Its main feature is a family of security monads Sec

7In our variation the type Labeled is a monad. This is “unsafe” in MAC (cf. (Vassena,
Russo, Buiras, et al. 2018, Section 9.1)).
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1 module SCLib
2 (..., Eff (), FlowsToSet (), pureEff, appEff, returnEff
3 , bindEff, distr, subeff, printEff)
4 where

5 newtype Eff (ls :: [Label]) a = Eff { runEff :: IO a }
6 -- Functor
7 instance Functor (Eff ls) where
8 fmap f (Eff io) = Eff (fmap f io)
9 -- Applicative

10 pureEff :: a -> Eff [] a
11 pureEff = returnEff

12 appEff :: Eff ls1 (a -> b) -> Eff ls2 a -> Eff (Union ls1 ls2) b
13 appEff (Eff ioff) (Eff ioa) = Eff (ioff <*> ioa)
14 -- Graded monad
15 returnEff :: a -> Eff [] a
16 returnEff a = Eff (return a)

17 bindEff :: Eff ls1 a -> (a -> Eff ls2 b) -> Eff (Union ls1 ls2) b
18 bindEff (Eff m) f = Eff (m >>= runEff . f)
19 -- Subeffecting
20 subeff :: Subset ls1 ls2 => Eff ls1 a -> Eff ls2 a
21 subeff (Eff m) = Eff m
22 -- Print
23 data SLabel :: Label -> * where
24 SH :: SLabel H
25 SL :: SLabel L

26 printEff :: (Show a) => SLabel l -> a -> Eff [l] ()
27 printEff l x = Eff (print (header l) >> print x)
28 where header :: SLabel l -> String
29 header SH = "Channel H:"
30 header SL = "Channel L:"
31 -- Distr
32 type family FlowsToSet (l :: Label) (ls :: [Label]) :: Constraint
33 ...

34 distr :: FlowsToSet l ls => S l (Eff ls a) -> Eff ls (S l a)
35 distr m = Eff (do res <- (runEff (unseal Key m))
36 return (seal (\k -> res)))

Figure A.10.: Implementation of λPRINT
SC (omitting the unchanged code of Fig-

ure A.9)
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indexed by labels from the security lattice, each equipped with >>= (bind) and
return. SecLib’s special ingredient is a combinator up that allows coercions
from lower to higher labels in the security monad.

SDCC is an alternative presentation of DCC which favours a simple set
of combinators instead of DCC’s nonstandard bind and protected at relation.
Similar to DCC, SDCC sports a family of monads indexed by security labels.
These support fmap, return and >>= (bind). Further, SDCC implements two
combinators up and com, that allow to relabel in the style of SecLib and
commute terms of monadic type with different labels. SDCC’s interface is
strictly a superset of that of SecLib, thus we directly show the implementation
of the former.

type T l a = S l a

instance Functor (T l) where
...

instance Monad (T l) where
...

up :: FlowsTo l l' => T l a -> T l' a
up lv = seal (\k -> unseal k lv)

com :: T l (T l' a) -> T l' (T l a)
com lv = seal (\k' -> seal (\k -> unseal k' (unseal k lv)))

MAC MAC which we discussed in the introduction, is one of the state-of-the-
art libraries for effectful IFC in Haskell. At its core, MAC defines two types:
Labeled l a for pure sensitive values, and MAC l a for secure computations.
MAC l a is a monad for each label l where the label: 1. protects the data in
context; and 2. restricts the permitted effects. (cf. (Vassena, Russo, Buiras,
et al. 2018)) MAC’s functionality stems from the interaction between Labeled
and MAC through the primitives label and unlabel. In order to label a value
one needs to do so within the MAC l monad: the Labeled l a type does not
export a combinator a -> Labeled l a. Our implementation, however, permits
to do so. Below we show MAC’s implementation in terms of SCLib.

type Labeled l a = S l a

type MAC l a = forall ls. FlowsToSet l ls => Eff ls (S l a)

label :: FlowsTo l l' => a -> MAC l (Labeled l' a)
label a = returnEff (seal (\k -> a))

53



A. Pure Information-Flow Control with Effects Made Simple

unlabel :: FlowsTo l l' => Labeled l a -> MAC l' a
unlabel lv = returnEff lv

join :: FlowsTo l l' => MAC l' a -> MAC l (Labeled l' a)
join m = bindEff m (\x -> seal (\k -> x))

A.6. Related Work

IFC for Effect-Free and Effectful Languages Algehed and Russo (2017) add
effects to their embedding of DCC in Haskell but argue that their approach
only works for those effects that can be implemented within Haskell. Hirsch
and Cecchetti (2021) develop a formal framework based on productors and
type-and-effect systems to characterize secure programs in impure languages
with IFC. They give semantics to traditional security-type systems based on
controlling implicit flows using program counter (PC) labels. In contrast, our
approach considers from starters a pure language, where the type of effectful
computation is separated from that of effect-free programs. Crary et al. (2005)
present a graded monad for IFC that tracks both writes and reads on the store,
while ours tracks only writes. It will be interesting to understand if this two
approaches are equivalent. Devriese and Piessens (2011) add IFC mechanisms
on top of existing monads for effects but don’t consider the effect-free–effectful
interaction.

Modalities for IFC The languages and IFC enforcement mechanisms that we
present are based on the sealing calculus (SC) of Shikuma and Igarashi (2008).
Differently from them, we think of SC terms as evidence that STLC programs
satisfy noninterference. The work by Miyamoto and Igarashi (2004) gives an
informal connection between a classical type system for IFC and a certain modal
logic. Their type system is very different from our enforcement mechanism
in that a typing judgement has two separate variable contexts. Recently, the
work by Abel and Bernardy (2020) presents a unified treatment of modalities in
typed λ-calculi. The authors present a effect-free lambda calculus parameterized
by family of modalities with certain mathematical structure, and show that
many programming language analyses, including IFC, are instantiations of
their framework. In contrast to our work, it is not very clear how one would
implement theirs system in Haskell, since it would require a fine-grained
control over the variables in the context. Kavvos (2019) studies modalities
for IFC in the classified sets model, which they use to prove noninterference
properties for a range of calculi that includes SC.
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Coeffectful Type Systems for IFC A recent line of work suggests using coeffect
type systems to enforce IFC. Petricek et al. (2014) develop a calculus to capture
different granularity demands on contexts, i.e. flat whole-context coeffects (like
implicit parameters (Lewis et al. 2000)) or structural per-variable ones (like
usage or data access patterns). The work by Gaboardi et al. (2016) expands on
that and uses graded monads and comonads to combine effects and coeffects.
The authors describe distributivity laws that are similar to our primitive distr
addresses. The article suggests IFC as an application where the coeffect system
captures the IFC constraints and the effect system gives semantics to effects.
The distributive laws explains how both are combined. However, their work
does not state neither proves a security property for their calculus. Different
from it, our work does not use comonads as the underlying structure for IFC,
and further considers printing and global store effects. Granule is a recent
programming language (D. Orchard et al. 2019) based on graded modal types
that impose usage constraints on the variables.

Logical Relations for Noninterference Both Heintze and Riecke (1998) and
S. A. Zdancewic (2002) use logical relation arguments to prove noninterference
for a simply-typed security lambda calculus. Tse and S. Zdancewic (2004) use
logical relations to prove soundness of a translation from DCC (Abadi et al. 1999)
to system F and obtain noninterference from parametricity. Unfortunately,
their translation is unsound (cf. (Shikuma and Igarashi 2008)). Bowman and A.
Ahmed (2015) fix this by using “open” logical relations show their translation
from DCC to system Fω is sound. Different from the cited work so far, Rajani
and Garg (2020) use logical relations to prove noninterference for a language
with references. Gregersen et al. (2021) extend the use of logical relation to
prove noninterference for languages with impredicative polymorphism. Different
from Rajani and Garg (2020) and Gregersen et al. (2021), we consider first-order
references for simplicity. Otherwise, we would have had to utilize a step-indexed
Kripke-style logical-relations model, which would have introduced technical
complications. These we believe are orthogonal to the main contribution of our
work.

A.7. Conclusions

In this paper, we have demonstrated that to enforce IFC in pure languages
with a single primitive distr suffices to securely control what information flows
from sensitive data to effects. To support our claim, we have presented IFC
enforcement mechanisms for several kinds of effects and proved that they
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satisfy noninterference. Our development rests on the insight that effect-free
IFC for pure languages can already express that a computation will not leak
sensitive data through its effects when executed. Then, a single primitive, distr,
to execute these is enough to extend IFC to effects and retain the security
guarantees. We hope that this work brings a new perspective to IFC research
for pure languages with effects.
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Γ ⊢ t : a

Var
(x : a) ∈ Γ
Γ ⊢ x : a

Fun
Γ, x : a ⊢ t : b

Γ ⊢ λ x. t : a⇒ b

App
Γ ⊢ t : a⇒ b Γ ⊢ u : a

Γ ⊢ app t u : b

Unit

Γ ⊢ unit : Unit

True

Γ ⊢ true : Bool

False

Γ ⊢ false : Bool

If
Γ ⊢ t : Bool Γ ⊢ u1 : a Γ ⊢ u2 : a

Γ ⊢ ifte t u1 u2 : a

t→ u with · ⊢ t : a and · ⊢ u : a

App
t→ t′

app t u→ app t′ u

Beta

app (λ x. t) u→ t[u/x]

If
t→ t′

ifte t u1 u2 → ifte t′ u1 u2

If-True

ifte true u1 u2 → u1

If-False

ifte false u1 u2 → u2
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B
Information Flow and Effects via
Distributive Laws

Carlos Tomé Cortiñas

Manuscript

Abstract Information-flow properties of computer programs have important appli-
cations in security—for preserving confidentiality of data, for instance. Real-world
programs typically perform computational effects while processing confidential data,
and therefore, it is important to have better tools to study information-flow properties
of these programs. To this end, we leverage existing semantic models of information
flow without effects and monads on these for modelling effects and their security
specifications.
In this work, we show that computational monads on categories of classified sets yield
a systematic and modular approach to reasoning about information-flow properties
of programs with general effects. We show that the usual operation of “labelling”,
which is pervasive in type systems and models of information flow, is closely related
to the secure execution of effects, that is, whether it is secure to eliminate labelled
values, i.e. “secrets”, into effectful computations. We show that this “interaction”
property naturally arises as a distributive law of labelling over effects. In fact, we
prove that it is a property of semantic labelling and monads for effects whether such
a (necessarily unique) distributive law exists. This key result is based on abstract
properties of semantic labelling and monads, and whence, it is broadly applicable in
other well-known models of information flow.
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B.1. Introduction
In this paper we are concerned with providing a solid semantic foundation for
studying information-flow properties of higher-order computer programs with
general effects.

Information-flow properties of computer programs have important applica-
tions in language-based security to help protect confidentiality and integrity
aspects of data as it is processed by programs. In programming languages
without effects, e.g. pure functional languages, these information-flow properties
usually concern the extensional input–output behaviour of programs. Confiden-
tiality policies commonly forbid flows of information from secret sources to
public sinks. An information-flow property for enforcing this policy may read
as follows:

Do outputs labelled as public depend in an essential way on
inputs labelled as secret?

Note the emphasis on “in an essential way”: programs can depend on secret
data as far as it does not influence (or leak through) its public outputs.

The information-flow property that public outputs do not depend on secret
inputs is typically formalized using noninterference (Goguen and Meseguer
1982). A program satisfies noninterference if varying its secret (or High) inputs
does not affect its public (or Low) outputs. We refer to L and H as security
levels. Note that noninterference depends on a program together with a security
specification: that is, an assignment of security levels—or labelling—to inputs
and outputs.

Semantically, a program f between Booleans denotes a function f : 2→ 2.
A security specification that labels the inputs of f with secret and its output
with public is written as 2H → 2L. Since the policy disallows flows from H to L,
noninterference for the function f w.r.t. this specification formally states that
for all Booleans b1, b2 ∈ 2, f(b1) = f(b2), that is, the function is constant on
its input. Since the output is a Boolean equality is enough. When f satisfies
noninterference, i.e. it is secure, we write:

f : 2H → 2L

The denotations of security specifications and programs satisfying noninter-
ference properties for these, e.g. like the one above, is well understood: several
semantic models of information flow have been proposed in the past—e.g. Ster-
ling and Harper (2022), Abadi et al. (1999), Kavvos (2019), and Abramsky
and Jagadeesan (2009). In particular, these models explain the operation of
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“labelling” as a family ♦ of modalities indexed by security levels, e.g. ♦H or
♦L acting on semantic types. Common to all these models is the structure
of labelling: namely that of a family of idempotent monads together with
certain monad morphisms that “follow” the permitted flows. In some sense
this structure enforces that flows of information respect the intended policies:
e.g. from types labelled at L to those labelled at H, but not the other way
around. On the practical side, type systems for information flow incorporate
these modalities in the form of (syntactic) labelling of types and terms—see
e.g. Rajani and Garg (2020).

Programs in real-world programming languages typically do not run in
isolation, just as purely input–output processes, but interact in nontrivial ways
with the environment in which they run, e.g. the user or other programs running
in the system or elsewhere. In addition to possibly returning a final value these
programs may have an effect on the “world” by performing effectful operations
which usually cannot be undone, e.g. printing on a channel or modifying the
memory. Information-flow properties for these programs need to take into
account effects since they can be (ab)used to leak information, and, in fact,
these properties are concerned not only with their input–output behaviour but
also with the effectful behaviour of programs. An information-flow property for
effectful programs thus may read as:

Do outputs labelled as public and publicly observable effects de-
pend in an essential way on inputs labelled as secret?

Note that what effects are considered “publicly observable” depends on 1. the
kinds of effects and the information that can be extracted from them, and
2. the amount of information leakage that is deemed reasonable for practical
purposes—see, e.g., Askarov, Hunt, et al. (2008) for the case of nontermination.
We therefore conclude that labelling inputs and outputs alone is not enough
to write the intended security specifications, and thus study information-flow
properties, for these programs.

Moggi (1989) has shown that effectful programs between Booleans denote
functions, and more generally morphisms, g : 2 → T (2), where the type
constructor T in the codomain of g has the structure of a (strong) computational
monad: the monad T describes the possible effects that the program may
perform during its execution. Inspired by Moggi and labelling, we write a
security specification for the program g using an “effect labelling” operation S
on semantic types:

2H → S(2L)
Intuitively, the effect labelling S should at least capture the effects of com-
putations—like monads do—and further describe when the effects of two
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computations are to be considered indistinguishable to public observers. Nonin-
terference for the program g w.r.t. this specification states that for all Booleans
b1, b2 ∈ 2, g(b1) ≃ g(b2): that is, f produces indistinguishable effects and re-
turns equal Booleans, denoted by the symbol ≃, for any two secret inputs.
Indistinguishability is usually an “equivalence” relation weaker than equality
to permit some practical leakage through effects.1

The denotation of security specifications and programs satisfying noninterfer-
ence properties concerning general effects has not been as extensively studied
as for programs without effects. That is, for general effects it is unclear what
structure ought to give meaning to effect labellings, such as S. In this work,
we show that computational monads on models of information flow, concretely
classified sets (Kavvos 2019), correspond semantically to effect labellings.

To study what programs are secure w.r.t. security specifications that use both
value and effect labelling, like for g above, it is necessary to understand how
and when semantic labelling and effect labelling interact. From a theoretical
perspective, understanding this interaction clarifies the scope of information
leakage arising from effects. In type systems for information flow, this interaction
corresponds to elimination principles from labelled types to computations as
specified by effect labellings. In DCC-style type systems (Abadi et al. 1999),
for instance, this elimination takes the following form:

Γ ⊢ t : ♦l(A) Γ, A ⊢ u : S(B) l-protected(S(B))
Γ ⊢ let t u : S(B)

In this paper, we show that nice interactions between labelling and effect
labelling correspond to distributive laws of the former over the latter. We prove
that it is a property of labelling at some label l and the computational monad
for effect labelling whether a (necessarily unique) distributive law exists. For
example, the validity of the above rule depends on the existence of a distributive
law of ♦l over S; and the fact that this law is unique justifies the extension of
DCC’s “protected at” relation, i.e. l-protected, to effect labelling as used above.

B.1.1. Contributions

Contribution 1: Monads as models of effects in information flow. In this
paper we present a novel abstraction to model security specifications and
noninterference properties for general effects. This abstraction, “effect
labellings”, are computational monads but considered not on categories

1In some cases, e.g. nontermination, "equivalence" might not even an equivalence relation—see
Hunt et al. (2023)
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of programs, e.g. the category of sets and functions, but on categories of
information flow. Concretely, we present extensive evidence that shows
that computational monads on the category of classified sets by Kavvos
(2019) are suitable for capturing effects, describing security specifications,
and specifying information-flow properties of effectful programs.

This enables our second and most important contribution.

Contribution 2: Interaction between labelling and monads for effects. Mod-
elling effects and their security specifications by computational monads on
classified sets leads to the question of when and how labelling and these
monads interact. In this paper, we show that this interaction naturally
arises in the form of distributive laws. Further, we show that once effects
have been specified by a computational monad S then it is a property
of labelling at some security level l and S whether such a distributive
law exists, and hence, elimination principles from labelled values at l
to effects as specified by S are secure. In practice this means that once
effects are specified there is a limitation on what effects can depend on
labelled types, and there is not much else that can be done.

Remark B.1.1. This paper is written in the (basic) language of category the-
ory. The motivation is twofold: to reuse the existing theory, which has been
developed in this terms; and, to remain as model independent as possible from
the particularities of classified sets. In fact, Contribution 2 is not specific to
the model of classified sets: it depends solely on 1. using monads for modelling
information flow with effects, and 2. modelling labelling via a family of idempo-
tent monads indexed by labels. Since (2) is a common feature of other known
models of information flow—i.e. Hunt et al. (2023), Sterling and Harper (2022),
Abadi et al. (1999), and Abramsky and Jagadeesan (2009)—the observation in
Contribution 2 is also applicable in those situations.

B.1.2. Outline

The rest of this paper is structured as follows:

• Section B.2 reviews categories of classified sets as models of information
flow.

• Section B.3 recalls the operation of “labelling” on categories of classified
sets, which onwards we call redaction, and its properties in terms of
information flow.
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• Section B.4 shows that computational monads on categories of classified
are suitable abstractions to give semantics to ”effect labellings”, that
is, to encode and reason about information-flow properties of programs
with general effects. This section treats the interaction of computational
monads for effects (on classified sets) and redaction, and proves that, in
fact, when this interaction exists it is necessarily unique and corresponds
to certain distributive law from redaction to effects.

• Section B.5 shows that the effect of divergence and information-flow
properties regarding this effect also fit in the framework as outlined in
Section B.4.

• Section B.6 reviews related work, and

• Section B.7 concludes this paper with some directions for further work.

As a pointer to the reader, Sections B.4 and B.5 contain the main contribu-
tions of the present work, namely, Contributions 1 and 2.

B.2. Preliminaries on Classified Sets
In this section we recall some basic concepts and properties of the category of
classified sets over some security lattice (Kavvos 2019). This category is a more
high-tech variation of the model presented by Abadi et al. (1999) in their work
on dependency analysis and DCC. The reader already familiar with this might
skip the section and jump directly to Section B.3.

Let L = (L,⊑,⊥,∨) be a join semilattice, where ⊑ is the partial order
relation, pronounced “flows to”, ⊥ the least element, and ∨ the binary join.
We think of L as a security lattice in the sense of Denning (1976) and refer to
its elements l ∈ L as security levels.

Definition B.2.1. A classified set A over L (or L-classified set) consists of

(1) a carrier set U(A), and

(2) a family of reflexive binary relations Rl(A) on U(A) indexed by levels
l ∈ L.

A binary relation at level l, i.e. Rl(A), formalizes the view that observers at l
have on values of the carrier set, i.e. A. We call Rl(A) the “indistinguishability”
relation at l, and we say that two elements a1, a2 ∈ U(A) are indistinguishable
at l iff Rl(A)(a1, a2). Note that this Definition imposes no restrictions other
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than reflexivity on the relations, in particular, e.g., Rl(A) need not be an
equivalence relation.

To make things more concrete. Let LH := L ⊑ H be a two-point lattice where
L stands for public and H for secret.

Example B.2.1. The classified sets over LH that correspond to the type of
secret and public Booleans, 2H and 2L, are

U(2H) := 2 U(2L) := 2

RL(2H)(x, y) :⇔ ⊤ RL(2L)(x, y) :⇔ x = y

RH(2H)(x, y) :⇔ x = y RH(2L)(x, y) :⇔ x = y

where 2 := {tt, tt} is a two-point set. Note in the definition of 2H that public
observers, i.e. at level L, are not permitted to make distinctions between the
Booleans tt and tt when regarded as secret. In contrast, all observers are
allowed to distinguish among the public Booleans.

The family of relations R(A) of a classified set A is to be construed as part
of the security specification of a system: an indistinguishability relation Rl(A)
specifies what distinctions between values of type U(A) actually count as
conveying information to observers at level l or above. For example, a program
p : U(A) that in two different executions returns two l-related values a1, a2 ∈
U(A) conveys the same amount of information as a program p′ : U(A) that
always returns, say, a1. This relation should not be confused with what data
“real world” observers can actually observe (and thus distinguish) by observing
programs in the system. Instead it corresponds to the kind of information leaks
that are deemed reasonable—for instance for practical purposes—according to
certain threat model.

For instance,

Example B.2.2. Let A be a classified set over LH. Define a classified
set PartialI(A) by

U(PartialI(A)) := U(A) + 1

Rl(PartialI(A))(x, y) :⇔
{

Rl(A)(x′, y′) x = inl(x′) ∧ y = inl(y′)
⊤ otherwise

If a value of type PartialI(A) is thought of as the result of a computation
that either returns a value of type A or fails, then the family of relations
specifies that computations are permitted to leak (one bit of) information
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through the “termination channel” but none via their final value. For exam-
ple when A is 2L, RL(PartialI(2L))(inl(tt), inr(⋆)) but it is not the case that
RL(PartialI(2L))(inl(tt), inl(tt))

Note that the relation Rl(PartialI(A)) is reflexive and symmetric but not
necessarily transitive. If it is transitive, then it is the everywhere true relation
(i.e. relating any two pairs of elements). In fact the relation Rl(PartialI(A)) is
transitive if and only if the relation Rl(A) is everywhere true.

The type PartialI(A) encodes an information-flow property known as (batch)
termination Insensitive noninterference. Typically type systems for information
flow enforce this property when partiality arises from nontermination in the
underlying programming language— see, e.g., Askarov, Hunt, et al. (2008).

Definition B.2.2. A map f between classified sets A and B (over L) consists
of a function U(f) : U(A)→ U(B) that preserves indistinguishability at every
level, i.e. for all l ∈ L, Rl(B)(f(a1), f(a2)) whenever Rl(A)(a1, a2).

Example B.2.3. The function space 2→ 2 consists of the identity, negation,
and constant functions λx.tt and λx.tt. Of these four functions only the last
two are maps of LH-classified sets 2H → 2L, i.e. the maps between 2H and 2L are
exactly the noninterferent functions; the other two functions, i.e. identity and
negation, are interferent. On the other hand, note that all functions in 2→ 2
are maps of LH-classified sets 2L → 2H. In particular, this means that 2L ̸∼= 2H.

For any security lattice L, classified sets over L and maps between them form
a category CSetL. This category has a rich type structure:

Theorem B.2.1 (cf. Kavvos (2019, Theorem 2)). CSetL is bicartesian closed:
it has all finite products, finite coproducts, and exponentials.

U extends to a “forgetful” functor U : CSetL → Set from classified sets (over
L) to Set which enjoys some nice properties:

Theorem B.2.2 (cf. Kavvos (2019, Theorem 6 and Corollary 3)). U preserves
finite limits and finite colimits.

However,
Remark B.2.1. U does not preserve exponentials.

Proof. Recall that in CSetL, the underlying set of the exponential object of
L-classified sets A and B is defined by U(A ⇒ B) := HomCSetL(A, B)—see
Kavvos (2019, Section 2.2). In the two-point lattice LH, the set U(2H ⇒ 2L)
contains two functions, λx.tt and λx.tt (cf. Example B.2.3), while the set
U(2H)⇒ U(2L) is the same as the set 2⇒ 2 (by definition).
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Classified sets as refinements of sets Intuitively we can think of a classified
set A as a type refinement—in the sense of Melliès and Zeilberger (2015)—of
its carrier set U(A) by a family R(A) of relations indexed by levels.

Example B.2.4. 2H and 2L are type refinements of the set 2.

The morphisms in HomCSetL(A, B) are exactly those functions U(A)→ U(B)
that satisfy the property of preserving indistinguishability relations at all l ∈ L.

In fact,

Theorem B.2.3 (cf. Kavvos (2019, Theorem 3 and Corollary 1)). U is faithful,
i.e. the action of U on morphisms is injective.

Note that, however,
Remark B.2.2. U is not full. Intuitively, not every function in Set preserves
indistinguishability—see Example B.2.3.

For any set X, classified set B, and function f : X → U(B) we can “calculate”
the coarsest family of indistinguishability relations Rl (for l ∈ L) on X for
which there is a (necessarily unique) f ′ ∈ HomCSetL((X, R), B). Analogously,
for a function f : U(B) → X we can calculate the finest family of relations
such that f ′ ∈ HomCSetL(B, (X, R)). This can be succinctly summarized in the
terminology of fibrations (see, e.g., Jacobs (2001)) as:

Theorem B.2.4. U : CSetL → Set is a bifibration.

B.3. Modalities and Information Flow: Redaction
Type systems for information flow typically come equipped with a family of
modalities for labelling pieces of data with security levels. The typing rules
enforce that flows of information occurring in programs are secure. For a
given security level l ∈ L this modality consist of an operation on types ♦l :
Type→ Type, pronounced “redaction at l”, with typing rules for introducing
and eliminating redacted values,

Γ ⊢ t : A

Γ ⊢ return t : ♦l(A)
♦l-Intro

Γ ⊢ t : ♦l(A) Γ, A ⊢ u : B ♦l-protected(B)
Γ ⊢ let t u : B

♦l-Elim

and some computational rules (which we omit for simplicity).
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The introduction principle ♦l-Intro states that any term of type A can be
labelled with any security level l ∈ L. The elimination principle ♦l-Elim says
that redacted terms of type A at level l can be eliminated into any other type B
as long as B is “good enough”. The abstract predicate ♦l-protected(B) in the
premise of this rule captures the concept of a type being good enough.

The following are examples of this (syntactic) phenomena—which is not, in
any way, restricted to information flow:

Example B.3.1.

1. In the seminal work by Abadi et al. (1999) on DCC, redaction at l is
given by the monad Tl and the ♦l-protected predicate by the “protected
at l” relation (see Abadi et al. (1999, Section 3.1) or Kavvos (2019,
Section 6.1)).

2. In Moggi’s Monadic Metalanguage (Moggi 1991) redaction at l is simply
given by the abstract monad T (forgetting the level l) and the predicate
♦l-protected(B) by “B is of the form T (B′)” for some type B′—this
example is also discussed in Kavvos (2019, Section 4.2).

3. A slight generalization of the previous example is Levy’s Call-by-Push-
Value (CbPV) (Levy 2004) where redaction at l is interpreted by the
(abstract) monad T for effects and the predicate ♦l-protected(B) by “B
is a computation type”.

We define (semantic) redaction at l as a monad on the category of classified
sets over L:

Definition B.3.1. Redaction at l ∈ L is a monad ♦l := (♦l, ηl, (−)l) on CSetL
as defined by:

U(♦l(A)) := U(A)

Rl′(♦l(A))(a1, a2) :⇔
{

Rl′(A)(a1, a2) l ⊑ l′

⊤ l ̸⊑ l′

U(ηl
A) := idU(A)

U(f l) := U(f) (for f : A→ ♦l(B))

Proposition B.3.1. For all l ∈ L, ♦l is a monad.

Note that applying the redaction monad at l to a classified set A forces all
elements of the carrier set U(A) to be pairwise indistinguishable at all levels
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that are not above l. These include but is not restricted to those levels that
are strictly below l since the ordering ⊑ is not required to be total. Intuitively,
the monad redacts the information that could be conveyed to observers that
can distinguish unrelated values of type A at security level l .

Example B.3.2. In the two-point lattice LH the classified set ♦H(2L) is the
same as 2H (by definition).

The redaction monad at l, for any l ∈ L, enjoys some nice properties:

Proposition B.3.2.

1. ♦l is strong.

2. ♦l preserves limits.

3. ♦l does not, in general, preserve colimits.

4. ♦l is idempotent: i.e. for all f : ♦l(A)→ ♦l(B), (f ◦ ηl
A)l = f .

Proof.

1. See Kavvos (2019, Section 5.2).

2. The functor ♦l has a left adjoint □l, pronounced “reveal at l” that for a
classified set A forces the relation Rl′(□l(A)) to be the identity relation
(i.e. equality) at all levels l′ ̸⊑ l.

3. See Remark B.3.2 below.

4. Immediate by definition of ♦l, and functoriality and faithfulness of U
(Theorem B.2.3).

It is well-known that an idempotent monad T := (T, η, (−)T ) on a category C
corresponds to a reflective (full) subcategory consisting of those objects A ∈
Obj(C) such that

ηA : A
∼→ T (A) (B.1)

is an isomorphism, i.e. ηA has a left inverse. (Borceux 1994, Vol II, Section 4.2.4)

Remark B.3.1. Note that for any A ∈ Obj(C), the object T (A) is in the
subcategory that corresponds to T , i.e. ηT (A) : T (A) ∼→ T (T (A)).

74



B.3. Modalities and Information Flow: Redaction

Proof. The inverse of ηT (A) : T (A)→ T (T (A)) is given by

(idT (A)))T : T (T (A))→ T (A)

In the context of classified sets,

Lemma B.3.1. A classified set A satisfies (B.1) w.r.t. ♦l if and only if for all
l ̸⊑ l′ the indistinguishability relation at l′ is the everywhere true relation, i.e.
it relates any pair of elements.

This motivates the following definition:

Definition B.3.2. A classified set A is l-protected iff Rl′(A)(a1, a2) for all
a1, a2 ∈ U(A) and l′ ∈ L such that l ̸⊑ l′.

Evidently any map f : A → B between classified sets A and B is a map
f : A→ B when A and B are regarded as l-protected classified sets. Hence, let
us denote by PSetl

L the full subcategory of l-protected classified sets.
In fact—and this is typical of idempotent monads:

Proposition B.3.3. PSetl
L is the category of algebras of ♦l.

The property of being l-protected is closed under some type operations in
CSetL:

Proposition B.3.4. For all classified sets A, B ∈ Obj(CSetL),

1. The type 1 is l-protected.

2. If A and B are l-protected so is A×B.

3. If B is l-protected so is A⇒ B.

These closure properties correspond to type structure in PSetl
L:

Proposition B.3.5. PSetl
L is Cartesian closed.

However, note that the property of being l-protected is not closed under
coproducts in CSetL:
Remark B.3.2. It is not the case that for all l ∈ L and A, B ∈ Obj(PSetl

L), A+B
is l-protected. In the two-point lattice LH the unit type 1 is H-protected—see
Proposition B.3.4.1. Then 2L .= 1 + 1 and ♦H(2L) .= 2H. However 2L ̸∼= 2H—see
Example B.2.3.
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Graded Redaction The family ♦ of redaction monads forms a graded mo-
nad (Katsumata 2014, Section 2.2):

Proposition B.3.6.

1. For any security levels l and l′ such that l ⊑ l′, there is a monad morphism
upl,l′ : ♦l

·−→ ♦l′ given by U(upl,l′

A ) := idU(A).

2. For any security levels l and l′, there is a natural isomorphism µl,l′ :
♦l ◦ ♦l′

∼→ ♦l∨l′ given by U(µl,l′

A ) := idU(A).

3. There is a natural isomorphism Id ∼→ ♦⊥.

and all the necessary diagrams commute.

Part of this corresponds to the following properties of protected sets,

Corollary B.3.1.

1. For any l ⊑ l′, if a classified set A is l′-protected, then A is also l-protected.

2. All classified sets are ⊥-protected.

Remark B.3.3. Remark B.3.1, Proposition B.3.5, and Corollary B.3.1.1 provide
a semantic justification for the “protected at” relation in DCC (Abadi et al.
1999). (Kavvos 2019, see remark below Corollary 3)

B.4. Redaction Meets Computational Effects
Moggi, in a seminal work (Moggi 1991), proposed the use of computational
monads (strong monads) as a unifying framework for giving semantics to
computational effects. These effects include, to name a few, throwing errors,
divergence, nondeterministic operations, or printing. Interestingly, computa-
tional effects are generic in the situation at hand, and thus, in particular it is
sensible to consider them in classified sets.

In the context of classified sets over some lattice L, a computational monad S
on CSetL can be thought of as both describing the computational effects of
programs and specifying what information leaks through effectful behaviours
are permitted to observers depending on their security level. This observation
is key for understanding information flow in the presence of computational
effects, but it is not the whole story.

Recall from Section B.3 the family of redaction monads ♦l on CSetL, which
correspond semantically to labelling in type systems for information flow—see
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Remark B.3.3. Although for any l ∈ L the monad ♦l “lives” in the same
semantic universe as the monad S, they are, in general, independent. In
practice, however, it is often desirable that they interact in some way since a
feature of type systems for information flow is that programs which perform
“secure effects”, i.e. those effect whose information leakage is deemed reasonable,
can depend on redacted information.

A way to understand the interaction of redaction at some level l, i.e. ♦l, and
the monad S is by looking at the (semantic) typing rule ♦l-Elim for eliminating
redacted values instantiated to computations—i.e. maps with codomain S(B)
for S := (S, η, (−)S):

Γ ⊢ t : ♦l(A) Γ, A ⊢ u : S(B) ♦l-protected(S(B))
Γ ⊢ let t u : S(B)

♦l-S-Elim

This typing rule is valid whenever it is secure to eliminate redacted values of
type A at security level l into computations of type S that return values of type
B: the publicly observable behaviour of the computational effects, as specified
by S, and the return value of type B do not leak more information about A
that what it is permitted at l. Crucially, the validity of this typing rule relies on
how the ♦l-protected predicate extends to computations of type S, i.e. values
of type S(A).

The novel observation in this paper is that once computational effects are
specified in classified sets, via a monad S, then the redaction monad at l, i.e.
♦l, and S either interact or do not, and, if they do, then there is a canonical
way to extend the predicate ♦l-protected to computations so that the typing
rule ♦l-S-Elim is validated. In fact, when ♦l and S interact, we extend the
definition of the predicate ♦l-protected with the clause:

♦l-protected(A)
♦l-protected(S(A))

The semantic justification for this definition, and the fact that it is canonical,
comes from the following. Recall that in classified sets the predicate ♦l-protected
is interpreted by the semantic notion of a classified set A being l-protected—see
Definition B.3.2 and Remark B.3.3—and that this further corresponds to A
being an algebra for the monad ♦l, see Proposition B.3.3. Then,

Theorem B.4.1. Let S := (S, η, (−)S) be a monad on CSetL and l a security
level in L.

The functor underlying S lifts to the subcategory of l-protected sets in at most
one way.
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Recall that a lifting of S to PSetl
L is a functor S′ : PSetl

L → PSetl
L such that

the following diagram commutes,

PSetl
L PSetl

L

CSetL CSetL

S′

i i

S

where i : PSetl
L ↪→ CSetL is the inclusion functor from l-protected L-classified

sets to L-classified sets.

Proof. See Marmolejo, Rosebrugh, et al. (2002, Section 3.2) with Proposi-
tion B.3.2.4 in mind.

Intuitively this Theorem says that it is a property of the monad S whether
we can soundly extend the predicate ♦l-protected to computations: either the
property holds or it does not hold. Further, it provides necessary and sufficient
conditions to verify whether the monad S interacts with redaction at l in a
rather straightforward way: that is, exactly when the object part of S restricts
to the subcategory of l-protected sets.

This motivates the following definition:

Definition B.4.1. Let l ∈ L and S := (S, η, (−)S) be a monad on CSetL. The
monad ♦l interacts with the monad S iff the underlying functor of S lifts to
the subcategory of l-protected sets.

It is still necessary, however, to show that for a computational monad S the
typing rule ♦l-S-Elim is not arbitrary and that, in some sense, it is the best we
can do.

B.4.1. Interaction as a Distributive Law

Interaction between redaction at l ∈ L and a computational monad S in the
sense of Definition B.4.1 manifests as the existence of a (necessarily unique)
distributive law of over S. Recall that a distributive law of ♦l over S consists
of a natural transformation

λ : ♦lS
·−→ S♦l

satisfying certain laws w.r.t. return and Kleisli extension of both monads (see
e.g. Marmolejo and Wood (2010, Theorem 8.3)).
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From the perspective of information flow, this natural transformation can
be understood by replacing the typing rule for eliminating redacted values at l
into computations of type S, i.e. ♦l-S-Elim, by the following rule:

Γ ⊢ t : ♦l(S(A))
Γ ⊢ distr t : S(♦l(A))

♦l-S-Distr-Elim

Intuitively this typing rule expresses that computations of type S(A) that may
depend on redacted data at l can be safely “executed” by performing the effects
and finally labelling at l the result of type A. Analogously to ♦l-S-Elim, the
validity of this rule depends on whether information at l is permitted to be
leaked through the effects that the computation S may perform.

Now recall that,

Theorem B.4.2 (cf. Beck (1969, Proposition at p. 122)). Let M and N be
monads on a category C.

Distributive laws of M over N are in one-to-one correspondence with liftings
of N to the category of algebras of M .

Note that it is the monad N that lifts to algebras of M not the other way
around.

Therefore,

Corollary B.4.1. There is at most one distributive law of ♦l over S.

Proof. Combine Theorems B.4.2 and B.4.1.

In light of this, we conclude with an alternative formulation of the interaction
of ♦l and a specification monad S.

Proposition B.4.1. The monads ♦l and S interact iff there is a distributive
law of ♦l over S.

Overall, this connection with distributive laws suggests that our formulation
of interaction between ♦l and specification monads is not ad hoc.
Remark B.4.1. Recall that a distributive law from a monad M to a monad N
corresponds to structure that makes the composite functor, i.e. N ◦M , into a
monad—see Beck (1969, p. 120). In terms of information flow this distributive
law can be understood as the existence of a composite monad that layers a
specification monad for effects on top of redaction at some l ∈ L.

Before proceeding, we note that in the case of classified sets as evinced by
the forgetful functor,
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CSetL

Set
U

(see Section B.2), there is a clear distinction between:

• computational monads on Set, which describe the possible effectful be-
haviours of programs, and

• certain monads on CSetL, which further specify what effectful behaviours
observers are allowed to distinguish depending on their security level.

Therefore it is natural to consider effects as given by computational monads
on the category Set in tandem with their security specifications in the form of
certain monads on CSetL, which we dub specification monads.

The rest of this section is organised in the following way:

• in Section B.4.2 we revisit the theory of computational monads on Set,
and recall monads that are typically used to give semantics to effects;

• in Section B.4.3 we show that specification monads correctly capture
effects and security specifications of these effects based on the effectful
behaviours that observers are permitted to distinguish. To do so, for
each computational monad for effects we construct several specification
monads which encode different security properties.
For each of these specification monads we check whether the condition in
Definition B.4.1 is satisfied. In case it is, by Theorem B.4.1, the typing
rule ♦l-S-Elim is valid for this monad and hence can be used to write
programs whose secure effects depend on redacted information.

B.4.2. Computational Effects and Monads

Effectful behaviours are an important part of everyday programs. These
behaviours arise in multiple forms: from algorithms modifying some global
state to computations interacting with the external world. To capture these
different notions of behaviours Moggi (Moggi 1991) put forward the framework
of computational monads. A computational monad T on a category C consists of
a mapping of objects T : Obj(C)→ Obj(C) so that maps of shape f : A→ T (B)
in C (i.e. with codomain T (B) for some B ∈ Obj(C)) are the what we may
call “computations”: in addition to possibly returning values of type A they
might produce effects as described by T . The monad T comes equipped
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with an operation “return” ηA : A → T (A) that corresponds to the trivial
computation that produces no effects; and a function (−)T : HomC(A, T (B))→
HomC(T (A), T (B)), called Kleisli extensions, to sequence computations by
composition. Lastly, computational monads have an operation strength strA,B :
A × T (B) → T (A × B) to thread values from the context to the effects.
These operations should satisfy some laws: unitality of η w.r.t. sequencing,
associativity of sequencing, and naturality of strength.

The interface for monads T := (T, η, (−)T ) does not say how to actually
perform the concrete effects that the monad describes. For this, each computa-
tional monad comes equipped with operations for effects. (Plotkin and Power
2003)

We now recall some examples of computational monads for effects in Set and
their corresponding operations.

Exceptions A computation raising exceptions from some set E corresponds
semantically to a computational monad Exc := (Exc, η, (−)Exc). The
object map is Exc(A) := A + E; return is the left injection inl : A →
Exc(A); and, sequencing takes a computation f : A → Exc(B) to a
computation fExc : Exc(A)→ Exc(B) such that fExc(inl(v)) = f(v) for
v : Γ→ Exc(A) and fExc(inr(e)) = inr(e) for e : Γ→ E. The operation
raise : E → Exc(0) for throwing exceptions is the right injection.

Global State A computation that while running can modify an underlying
state of type S is modelled by a monad StS := (StS , η, (−)St) where
StS(A) := S ⇒ A × S. The operation return η : A → StS(A) couples
the input value of type A with the input state η := λv.λs.((, a), s);
and, sequencing computations consists of threading the state fSt :=
λm.s.f(fst(m(s)))(snd(m(s))) for f : A → StS(B). Operations for the
state monad are put : S → StS(1) with put := λs1, s2.(⋆, s1) and get :
1→ StS(S) with get := λu, s.(s, s). Note that global state monads model
computations extensionally: a closed computation in the state monad
is equivalent to first reading from the state, and then returning a value
together with a new state.

Nondeterminism Computations that nondeterministically return among sev-
eral values corresponds to a monad NDet := (NDet, η, (−)NDet). The
object map NDet maps a set A to the set of nonempty finite subsets of A,
i.e. NDet(A) := P+(A); returning embeds a value v of type A to the
singleton set {v}; and, sequencing applies the function to every element of
the set and collects its results fNDet := λm.

⋃
v∈mf(v). The operation for

producing effects is choose : 1→ NDet(2) defined by choose := λu.{tt, tt}.
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Interactive Input–Output A computation that interactively asks the user for
input of type I and produces output of type O is modelled by a monad
IOI,O := (IOI,O, η, (−)IO) where IO maps a set A to the set inductively
defined by the following clauses:

v : A

return(v) : IOI,O(A)
o : O k : IOI,O(A)
out(o, k) : IOI,O(A)

k : I ⇒ IOI,O(A)
in(k) : IOI,O(A)

As for all inductive types, a value of IOI,O(A) is to be construed as a
“tree” with two kinds of nodes, which correspond to the constructors in
and out, and a leaf return.
Returning constructs a leaf return(a) of the tree; and sequencing takes
a computation f : A → IOI,O(B) to a computation that traverses the
input tree and applies f to each of its leaves grafting the tree. The
operations for input and output effects are input : 1 → IOI,O(I) and
output : O → IOI,O(1), respectively.

B.4.3. Security and Specification Monads

Computations producing effects are modelled by computational monads on the
category Set. As described in Section B.4.2, computational monads describe
the possible behaviours of programs; how to lift pure values to effect-free
computations; how to sequence the effects of several computations; and what
operations actually perform the effects. However these monads on Set are
unaware of any security constraints of the system, and in particular to what
kinds of distinctions observers are allowed to make depending on their security
level and what information leaks are permissible.

To this end we introduce specification monads: these are strong monads
on CSetL such that, intuitively, when the security information is forgotten
by U one recovers an approximation of the computational monad describing
the effects—see Remark B.4.3 below. Different specification monads model
different information-flow properties for programs with effectful behaviours.
That there are several “reasonable” specification monads that approximate the
same computational effect corresponds to the tension between properties that
capture perfect, but impractical, security, and imperfect, but practical, security.
On the practical side this is related to how restrictive type systems that enforce
particular information-flow properties are, i.e. how many secure programs can
be expressed.

This discussion motivates the following definition:
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Definition B.4.2. A specification monad is a strong monad S := (S, η, (−)S)
on CSetL.

In the rest of this section we construct several specification monads for each
computational effect that was mentioned in Section B.4.2, and discuss how these
monads model different information-flow properties of programs with effects.
Most of the specification monads defined in this section correspond to security
properties that have already been studied in some form or another in the
language-based security literature. For each specification monad S we check for
what security levels in L the monad S satisfies the condition in Definition B.4.1.
For those levels l ∈ L that S indeed satisfies the condition, we directly know
that the typing rule ♦l-S-Elim is valid, and hence, it is secure to eliminate
redacted values at l into effects: the effects produced by the computation do
not leak more information than what it is allowed at level l.

Before we proceed, some remarks.

Remark B.4.2. Recall that each computational effect comes with its own set of
operations for producing effects—see Section B.4.2. Thus, specification monads
for a particular effect should also include these operations.

Remark B.4.3. Intuitively, one may think of specification monads w.r.t. com-
putational monads as liftings of monads from Set to CSetL through U—see,
e.g., Kammar and McDermott (2018, Section 4.3). However, this analogy is
incomplete since U does not preserve exponentials (cf. Remark B.2.1).

Remark B.4.4. Since U is faithful (cf. Theorem B.2.4), to construct a specifi-
cation monad S starting with a computational monad T on Set, it is enough
to provide an object mapping S : Obj(CSetL) → Obj(CSetL) such that
U(S(A)) = T (U(A)), and then prove that ηT and (−)T preserve relatedness at
every level.

Exceptions

Programs that may throw exceptions can (ab)use termination as a channel
to leak information about their input. These programs can either terminate
without exceptions or with an exception code. An information-flow property
for ideal security for these programs, which we may call “exception-sensitivity”,
disallows any leaks from the termination channel. A less ideal, yet practical,
property allows information leaks through exceptional termination. We may
call this “exception-insensitivity”. This property is what type systems for
information flow usually enforce—see e.g. Pottier and Simonet (2003) or Askarov
and Sabelfeld (2009).
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We model these security specifications by specification monads “living”, in
some sense, over Exc—see Section B.4.2. Unsurprisingly redaction at l and the
specification monad corresponding to exception-sensitivity do not interact at
any l ∈ L other than ⊥: throwing exceptions depending on redacted values
leaks information and the monad specifies that this kind of leak is not permitted.
On the other hand, for each level l ∈ L there is a specification monad ExcT I

l

that corresponds to permitting leaks through termination at those levels l′ ̸⊑ l.
Redaction at l and this monad interact provided that leaks are also admitted
by exceptional termination with different exception codes.

In the rest of this section, let E be a set of exceptions.

Exception-sensitive specification monad We define a specification monad
corresponding to exception-sensitivity using analogous type structure to that
of the monad Exc but on CSetL.

Recall that CSetL has finite coproducts cf. Theorem B.2.1. The coproduct
of two classified sets may be explicitly constructed as follows:

Definition B.4.3 (cf. Kavvos (2019, Proposition 4 )). Let A and B be classified
sets, the coproduct of A and B is the classified set A + B defined by

U(A + B) := U(A) + U(B)
Rl(A + B)(inl(a1), inl(a2)) :⇔ Rl(A)(a1, a2)
Rl(A + B)(inr(b1), inr(b2)) :⇔ Rl(B)(b1, b2)

Rl(A + B)(inl(a), inr(b)) :⇔ ⊥

Further, we need a lifting of E to a classified set ∆(E). The type ∆(E)
specifies that all observer can distinguish between all exceptions:

Definition B.4.4 (Discrete (cf. Kavvos (2019, Section 3))). The functor
∆ : Set→ CSetL maps a set X to the classified set

U(∆(X)) := X Rl(∆(X))(x, y) :⇔ x = y

Any function f : X → Y trivially preserves indistinguishability at ∆(X) →
∆(Y ).

The object mapping part of the exception-sensitive specification monad ExcT S

is given by

ExcT S(A) := A + ∆(E)
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Since U preserves coproducts, Theorem B.2.2, and U ◦∆ = Id this object
mapping lives over Exc. Hence by Remark B.4.4 to verify that this forms a
monad it is enough to check that the operations η and (−)Exc of Exc preserve
relatedness at every level—which in fact they do. The operation for throwing
exceptions is analogous to that on Set.

Interaction with ♦l For all l ∈ L such that l ̸= ⊥, redaction at l and ExcT S

do not interact in the sense of Definition B.4.1. Intuitively this should be clear:
the coproduct encodes an observable choice between left and right injections.
Formally this is an instance of Remark B.3.2.

Exception-insensitive specification monad To define a specification monad
corresponding to exception-insensitivity, as discussed in the beginning of this
section, we need an alternative version of “coproducts”.

The family of indistinguishability relations on the coproduct of two classified
sets—see Definition B.4.3—relates two elements iff they belong to the same
injection (and the underlying values are appropriately related). The last
clause in Definition B.4.3 specifies that observers can distinguish between
normal termination, i.e. left injection, and exceptional termination, i.e. right
injection. This causes that the specification monad ExcT S specifies termination-
sensitivity. By weakening the relation on the coproduct, and hence admitting
more elements being related, we obtain a new specification monad for exceptions
that corresponds to (depending on a level l) termination-insensitivity. Formally
this weakening corresponds to the following type constructor on CSetL:

Definition B.4.5. Let A and B be classified sets and l ∈ L, define the classified
set A⊕l B by

U(A⊕l B) := U(A) + U(B)
Rl′(A⊕l B)(inl(a1), inl(a2)) :⇔ Rl(A)(a1, a2)
Rl′(A⊕l B)(inr(b1), inr(b2)) :⇔ Rl(B)(b1, b2)

Rl′(A⊕l B)(inl(a), inr(b)) :⇔ l ̸⊑ l′

This definition amounts to say that at level l′ two values of U(A) + U(B) are
related at A⊕l B if either they are in the same injection (and related) or they
are in different injections and l ̸⊑ l′.

This type constructor supports several useful operations for programming:

Proposition B.4.2. For any l ∈ L, ⊕l is a semicocartesian symmetric
monoidal product. Explicitly, this means that
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1. ⊕l extends to a bifunctor on CSetL.

2. ⊕l is commutative and associative.

3. ⊕l supports injections inllA,B : A→ A⊕l B and inrl
A,BB → A⊕l B (given

by the standard set-theoretic injections on the underlying coproduct).

4. The initial object 0 in CSetL is unital w.r.t. ⊕l (This is equivalent to
B.4.2.3).

Unlike the coproduct, however,

Remark B.4.5. The type constructor ⊕l does not, in general, support copairing.
In the two-point lattice LH, consider the maps t := λx.tt : 1 → 2L and f :=
λx.tt : 1 → 2L. Their copairing [t, f ] maps inl(⋆) to tt and inr(⋆) to tt. The
type 1⊕H 1 relates inl(⋆) and inr(⋆) at L but ¬RL(2L)(tt, tt).

Remark B.4.6. For any security lattice L = (L,⊑,⊥,∨) the types A + B and
A⊕⊥ B are equal (by definition).

To complete the definition of the specification monad we need an exception-
insensitive lifting of E, ∇(E). This type specifies that leaks through distinctions
between exceptions are permitted at all levels l ∈ L. Formally,

Definition B.4.6 (Codiscrete (cf. Kavvos (2019, Section 3))). The functor
∇ : Set→ CSetL maps a set X to the classified set

U(∇(X)) := X Rl(∇(X))(x, y) :⇔ ⊤

Any function f : X → Y trivially preserves indistinguishability at ∇(X) →
∇(Y ).

With these definitions in mind, we define a l-exception-insensitive specification
monad by the following mapping on objects,

ExcT I
l (A) := A⊕l ∇(E)

The type constructor ExcT I
l forms a monad. To see this note that the object

mapping lives over Exc, i.e. U(A⊕l B) .= U(A) + U(B) and U ◦∇ = Id, and the
operations η and (−)Exc of Exc preserve relatedness at every level as specified
by A⊕l ∇(E).
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Interaction with ♦l To understand the interaction between redaction at
some level l and the monad ExcT I

l we notice that being l-protected is closed
under the type constructor ⊕l:

Proposition B.4.3. For all l ∈ L and A, B classified sets over L, if A and B
are l-protected, then A⊕l B is l-protected.

Proof. We show that the identity function idU(A)+U(B) is a map of classified
sets ♦l(A ⊕l B) → A ⊕l B. The interesting case is for a level l ̸⊑ l′ since
Rl′(♦l(A⊕l B))(inl(a), inr(b)) for any a ∈ U(A) and b ∈ U(B). By definition of
⊕l, Rl′(A⊕l B)(inl(a), inr(b)).

In particular this implies that the two monads interact as per Theorem B.4.1.
Intuitively, this says that it is secure to eliminate redacted values at l into com-
putations since exception throwing cannot encode more information that what
it is permitted to leak. We therefore conclude that the typing rule ♦l-S-Elim is
valid for l and ExcT I

l .

Global State

Computations that read and modify the state of the machine (see Section B.4.2)
can abuse side-effecting operations to leak information about their input or
secret parts of the state. For example, a stateful computation may override
some public part of the memory depending on data labelled as secret; this
is the paradigmatic example of an implicit flow (Sabelfeld and Myers 2003,
Section II.C).

Specification monads We define specification monads for stateful compu-
tations over a state represented by a classified set S using analogous type
structure to that of StS , i.e. exponentials and products (see Theorem B.2.1),
but on CSetL:

StS(A) := S ⇒ A× S

This type constructor forms a monad in the same way as the global state monad
on Set (cf. Section B.4.2). Two closed computations, e.g. of type A→ StS(B),
are indistinguishable if they are extensionally indistinguishable: that is, they
map related inputs of type A× S to related outputs of type B × S. Note that,
like the monad on Set, the operations of reading and writing are transparent.
Remark B.4.7. The specification monad StS , for a state S, does not, in general,
“live” over the global state monad StU(S) on Set, i.e. U(StS(A)) .= U(S ⇒
A × S) ̸= U(S) ⇒ U(A) × U(S). Intuitively, the exponential object S ⇒
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A× S := HomCSetL(S, A× S) in classified sets contains only those programs of
type U(S)⇒ U(A)×U(S) that are noninterferent.

Example B.4.1. In the two-point lattice LH, consider the monad St2L×2H . This
type constructor models side-effects over a store that consists of a public and a
secret Boolean. Computations of type 2H → St2L×2H(1) may modify the input
store depending on the secret Boolean. After execution, the secret part of the
store, i.e. of type 2H, may depend on the secret Boolean and both the secret
and public parts of the input store; on the other hand, its public part can only
depend on the public part of the input store.

Remark B.4.8. Type systems for information flow typically use a program
counter (pc) label to keep track of the control-flow and restrict what parts
of the state computations can be modified to prevent implicit flows—see e.g.
S. A. Zdancewic (2002, Section 3.2). In hindsight, this amounts to writing
computations in a monad other than state. For example in the two-point
lattice, a computation that has access to a read-only public Boolean, i.e. of
type 2L, and that computes over a secret store of type Boolean corresponds to
the monad A 7→ 2L ⇒ (2H ⇒ A× 2H) (the 2L-reader monad stacked over the
2H-state monad). There is a monad morphism from this monad to St2L×2H , and
hence, it can be though of as a restricted version of the latter: in this “state
monad”, the put operation only writes to the secret part of the state.

Interaction with ♦l The interaction of the monad ♦l and StS for some
state S depends on whether S is l-protected. To see this, assume S is l-protected;
then for all A ∈ Obj(PSetl

L) it is the case that StS(A) is l-protected. This
follows from Propositions B.3.4.2 and B.3.4.3. We therefore conclude that the
typing rule ♦l-S-Elim is valid for stateful computations, as specified by a state
monad StS , whenever the state S is adequately protected.

Nondeterminism

Programs with nondeterministic choice can leak information by varying the set
of possible outcomes of a computation depending on secret data. If the type
of these possible outcomes is suitably protected, however, then the amount of
information conveyed to observers is limited.
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Specification monads We define a specification monad for nondeterministic
computations by the following mapping on objects:

U(NDet(A)) := P+(U(A))
Rl(NDet(A))(A0, A1) :⇔ (∀a0 ∈ A0.∃a1 ∈ A1 ∧ Rl(A)(a0, a1))

∧ (∀a1 ∈ A1. ∃a0 ∈ A0 ∧ Rl(A)(a1, a0))

This type construct forms a monad: NDet lives over NDet, i.e. U(NDet(A)) .=
P+(U(A)), and the operations η and (−)NDet of NDet (in Set) preserve related-
ness at every level. Note that the relation on this type relates two (nonempty
finite) subsets with elements of type U(A) whenever for all elements in one
subset there is a related element in the other subset, and vice versa.

Example B.4.2. Consider the nondeterministic program:

p : 2→ NDet(2)
p := λb. if b then return({tt}) else return({tt, tt})

where the set-builder notation means nondeterministic choice amongst the given
elements.

In the two-point lattice LH, this program is a map of classified sets 2H →
NDet(2H): observers at level L can not distinguish between the subsets {tt}
and {tt, tt}. On the other hand, this program is not a map of classified
sets 2H → NDet(2L): in one execution the program may return tt, while in
another it may return tt depending on the secret input, and these values can
be distinguished.

Remark B.4.9. This specification monad is an adaptation of the construction in
Sabelfeld and Sands (2001, Section 3.3) to lift partial equivalence relations on
domains, which they use to model indistinguishability, to the various notions of
powerdomains, i.e. Hoare, Smyth, and Plotkin’s. In contrast to powerdomains,
the semantics of nondeterminism in Set, as given by the P+ monad, does not
model failure. For that we would need a different monad such as, e.g., the finite
powerset monad.

Interaction with ♦l The monads ♦l and NDet interact. The proof amounts
to show that for any l-protected classified set A, idP+(U(A)) : ♦l(NDet(A))→
NDet(A).

Proof sketch. Consider the case for a level l′ ∈ L such that l ̸⊑ l′. Recall that
for all a0, a1 ∈ U(A), Rl′(♦l(A))(a0, a1)—see Definition B.3.1. For all nonempty
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finite subsets A0, A1 ∈ P+(U(A)) we have to show that Rl′(NDet(A))(A0, A1),
For this, we show that ∀a0 ∈ A0. ∃a1 ∈ A1 ∧Rl′(A)(a0, a1). The other part of
the conjunct follows a similar argument.

By assumption A1 is nonempty, and thus, for all a0 ∈ A0 there is an element
a1 ∈ A1. By the definition of the relation Rl′(♦l(A)) it is the case that
Rl′(a0, a1), and thus, we obtain.

We conclude that the typing rule ♦l-S-Elim is valid for this specification
monad.

Interactive Input–Output

Programs that interactively consume input and/or produce output can (ab)use
several channels to leak information. To name a couple of these channels: a
program can consume its input any number of times depending on previous
input, which may be secret, or initial secrets; or, a program may encode the
contents of a secret value in the number of times that the program prints
(irrespectively of the actual data that it prints). These forms of leakage
arise by publicly observable differences in the structure, i.e. the “trees” (see
Section B.4.2), that represents IOI,O computations, when executed with distinct
secret inputs. Recently, Silver et al. (2023) explored a similar approach using
interaction trees.

We model several security specifications for interactive programs by means
of specification monads living over IOU(I),U(O), and parameterised by classified
sets for the input and output types, i.e., I and O, respectively. These security
specifications range from ideal security, where no leakage is permitted at all:
only computations that proceed in tight lockstep are deemed indistinguishable
to all observers; to less ideal notions where, for example, it is acceptable that
indistinguishable computations consume inputs a different number of times, or
produce a different number of outputs (for example, when certain observers do
not have access to particular output channels). On the extreme side there is a
security specification that permits any two computations to differ in all inputs
and outputs. Unsurprisingly, redaction at l only interacts with the monad
corresponding to this last specification.

Let I, O ∈ Obj(CSetL) in the rest of this section.

Specification monads for ideal security We define a specification monad
that relates two computations only when they consume and produce output in
synchrony with each other. This models a threat model where both producing
output and consuming input, seen as a “side-effect”, is publicly observable (e.g.
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using side-channel attacks), and hence, these differences may leak information
about the secret inputs.

This specification monad is defined by the mapping on objects,

U(IOS
I,O(A)) := IOU(I),U(O)(U(A))

together with the following family of relations,

Definition B.4.7. Let l ∈ L, we define an inductive relation Rl(IOI,O(A)) on
IOU(I),U(O)(U(A))) by the following rules:

Return
Rl(A)(a1, a2)

Rl(IOS
I,O(A))(return(a1), return(a2))

Out
Rl(O)(o1, o2) Rl(IOS

I,O(A))(k1, k2)
Rl(IOS

I,O(A))(out(o1, k1), out(o2, k2))

In
∀i1, i2 ∈ U(I). Rl(I)(i1, i2)⇒ Rl(IOS

I,O(A))(k1(i1), k2(i2))
Rl(IOS

I,O(A))(in(k1), in(k2))

We briefly explain these inductive rules. At level l ∈ L, rule Return relates
two leaves, whenever the values they contain are likewise related; rule Out
relates two computations that produce outputs, if the outputs themselves are
related and the rest of the computations are also related; lastly, rule In relates
two computations that depend on inputs of type U(I), whenever supplying
related inputs at type I yields related computations. This type constructor forms
a monad on CSetL: the operations η and (−)IO yield maps of the appropriate
type in classified sets. Note that this monad lives directly IOU(I),U(O).

Example B.4.3. Consider the computational monad IO2,2, that is, for inter-
active programs that receive inputs of unit type and produce outputs of type 2,
and the program

p : 2→ IO2,2(2)
p := λb. if b then in(λu′.return(tt)) else return(tt)

In the two-point lattice LH, this function is not a map of classified sets
2H → IOS

1,2L(2L). Depending on the (secret) input b the program p either
reads one or zero times and this difference constitutes a forbidden leak, i.e.
¬RL(IOS

1,2L(2L))(p(tt), p(tt)).
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Interaction with ♦l The monads ♦l and IOS
I,O do not interact. In the

two-point lattice LH, consider the type IOS
1,1(1), and recall that 1 is H-protected

(Proposition B.3.4.1). Then, RL(♦H(IOS
1,1(1)))(out(return(⋆)), return(⋆)), how-

ever, it is not the case that these computations are also related at type IOS
1,1(1),

i.e. ¬RL(IOS
1,1(1))(out(return(⋆)), return(⋆)).

Other specification monads The security property encoded by the specifi-
cation monads as constructed in the previous section can be weakened along
the input and output axes to permit certain degree of leakage from differences
in the structure of computations. In particular, these “weaker” specification
monads allow leaks by relating computations that may differ on the inputs and
outputs they produce.

We define several specification monads whose mapping on objects is given,
as above, by the following:

U(IOI,O(A)) := IOU(I),U(O)(U(A))

The family of relations of these monads is based on the family above, i.e. in
Definition B.4.7, except that we modify some clauses according to what part of
the security specification we wish to weaken:

1. To allow leakage through the input channel, that is, to permit compu-
tations that differ in the number of consumed inputs, we replace the
clause In by the following four rules:

∀i ∈ U(I). Rl(IOI,O(A))(k(i), out(o, k′))
Rl(IOI,O(A))(in(k), out(o, k′))

∀i ∈ U(I). Rl(IOI,O(A))(k(i), return(a))
Rl(IOI,O(A))(in(k), return(a))

∀i ∈ U(I). Rl(IOI,O(A))(out(o, k′), k(i))
Rl(IOI,O(A))(out(o, k′), in(k))

∀i ∈ U(I). Rl(IOI,O(A))(return(a), k(i))
Rl(IOI,O(A))(return(a), in(k))

At a level l ∈ L, this family of relations relates any two computations
that synchronize when they produce outputs, see rule Out, and/or return
values (rule Return), but not on consuming inputs. This type constructor
forms a monad on CSetL.
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Interaction with ♦l The monads ♦l and IOI,O do not interact: the
counterexample in Section B.4.3 still applies.

2. To permit leakage through the output channel, we replace the clause Out
in Definition B.4.7 by:

Rl(IOI,O(A))(in(k), k′)
Rl(IOI,O(A))(in(k), out(o, k′))

Rl(IOI,O(A))(k, return(a))
Rl(IOI,O(A))(out(o, k), return(a))

Rl(IOI,O(A))(k′, in(k))
Rl(IOI,O(A))(out(o, k′), in(k))

Rl(IOI,O(A))(return(a), k)
Rl(IOI,O(A))(return(a), out(o, k))

At level l ∈ L, this family of relations relates two computations if when-
ever they demand inputs and/or return values they do so in a lockstep
fashion (see clauses In and Return, respectively. These computations
can, however, produce different number of outputs and these need not to
be related. This type constructor again forms a monad on CSetL.

Interaction with ♦l The monads ♦l and IOI,O do not interact. In
the two-point lattice, take two closed computations, in(λu.return(⋆)) and
return(⋆), at type IO1,1(1). These computations are not related at level
L, however, they are related at L when considered at type ♦H(IO1,1(1)).

3. To allow leakage both through the input and output axes, combine the
clauses in 1 and 2. At level l ∈ L, the family of relations relates any two
computations as long as in the end they return related values at l.

Interaction with ♦l The monads ♦l and IOI,O, as defined by this
relation, interact.

Proof sketch. Note that for any l ∈ L, if Rl(A) is the everywhere true
relation, i.e. for all a1, a2 ∈ U(A), Rl(A)(a0, a1), then Rl(IOI,O(A) is also
everywhere true. Consider the case l′ ̸⊑ l, where the relation Rl′(A) is
everywhere true—see Definition B.3.1. Therefore, Rl′(IOI,O(A) is also
everywhere true.

Hence, we conclude that the typing rule ♦l-S-Elim is valid for this monad:
the effects of consuming input and/or producing output depending on
does not leak more information than what is permitted.
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Remark B.4.10. Note that the specification monads we have defined for inter-
active input–output computations can immediately be abstracted into a family
specification monads over IOU(I),U(O) indexed by pairs of levels li, lo ∈ L, where
these levels represent the security boundaries on which leakage through the
input and/or output channels is allowed.

B.5. Nontermination
A study of information flow with effects would not be complete if it did not
include a treatment of divergence. Information-flow properties of nonterminat-
ing programs are typically modelled in categories of (pre)domains and suitable
relations, see e.g. Abadi et al. (1999) or Hunt et al. (2023). However, in this
work we take a more ergonomic approach by using Capretta (2005) delay
monad on the category of sets.2 This has the advantage of fitting in the same
framework as the other effects studied in Section B.4.2, namely, categories of
classified sets.

Recall the definition of the delay monad: Capretta (2005, Definition 3.1)

Definition B.5.1. Let X be a set, we define the coinductive type D(X),
pronounced delay, by the following rules:3

x : X

now(x) : D(X)
==============

xs : D(X)

later(xs) : D(X)
===============

This type constructor forms a computational monad on Set. The operation
η : X → D(X) returns a value via the constructor now; and, sequencing
takes a computation f : X → D(Y ) to a computation fD : D(X) → D(Y )
that applies the function f to an element D(X) whenever this is defined,
i.e. it consists of a finite number of constructors later followed by now(x)
for some x : X. The operation for producing effects, that is, divergence, is
never := later(never) : 1 → D(0). This closed program is an example of a
definition by coinduction.

B.5.1. Security and Specification Monads
Programs that may fail to terminate can (ab)use the so-called termination
channel to leak information about their secret input. An information-flow prop-
erty for ideal security, usually known as termination-sensitive noninterference,

2This further aligns with the fact that we work within a constructive/type theoretic metathe-
ory.

3Double lines signify coinductive rules, and single lines inductive rules.
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forbids information leakage through this channel. On the other hand, a more
liberal property, namely termination-insensitive noninterference, does allow
information leaks arising from this channel. The latter is what type systems for
information flow usually encode. In the presence of divergence together with
other effects, e.g. such as printing for example, this property is inadequate—see
Askarov, Hunt, et al. (2008).

We model these properties using specification monads “living” over the delay
monad.

Termination-sensitive specification monad We define a specification monad
corresponding to termination-Sensitivity by the mapping on objects,

DS(A) := D(U(A))

together with the following family of relations,

Definition B.5.2. Let l ∈ L, we define a relation Rl(DI(A)) on the set D(U(A))
by the following rules:

Now
Rl(A)(x, y)

Rl(DS(A))(now(x), now(y))

Later
Rl(DS(A))(xs, ys)

Rl(DS(A))(later(xs), later(ys))
=============================

Later-Now
Rl(DS(A))(xs, now(y))

Rl(DS(A))(later(xs), now(y))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Now-Later
Rl(DS(A))(now(x), ys)

Rl(DS(A))(now(x), later(ys))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Note that this definition uses a mix of inductive and coinductive rules.
The relation Rl(DI(A)) relates two elements of type D(U(A)) if they are

either both undefined, i.e. equal to never, or both defined with a possibly
different number of “steps”, and their underlying values are further related by
Rl(A). As expected, this type constructor forms a monad on CSetL.
Remark B.5.1. This relation (at some l ∈ L) is usually known as weak bisimi-
larity, see, e.g., Chapman et al. (2019, Section 3).

Interaction with ♦l The monads ♦l and DS do not interact. In the two-point
lattice LH, consider the type DS(1). and recall that the type 1 is H-protected—
see Proposition B.3.4.1. Then the programs never := later(never) and now(⋆)
are related at type ♦H(DS(1)) at level L, that is, RL(♦H(DS(1)))(never, now(⋆)),
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however, these programs are not related at type DS(1) and at level L, that is,
¬RL(DS(1))(never, now(⋆)).

We therefore conclude that the typing rule ♦l-S-Elim for this monad is not
valid.

Termination-insensitive specification monad To define a specification monad
that corresponds to termination-Insensitivity, we use the same mapping on
objects as above,

DI(A) := D(U(A))

together with the family of relations:

Definition B.5.3. Let l ∈ L, we define a coinductive relation Rl(DI(A)) on
the set D(U(A)) by replacing Later-Now and Now-Later by the following
rules:

Rl(DI(A))(xs, now(y))

Rl(DI(A))(later(xs), now(y))
===========================

Rl(DI(A))(now(x), ys)

Rl(DI(A))(now(x), later(ys))
============================

At level l, this relation relates two values of type D(U(A)) if either one of
them is undefined, i.e. equal to never, or both are defined and, regardless of
the number of steps, their underlying values are related by Rl(A). This type
constructor forms a monad on CSetL.
Remark B.5.2. In the two-point lattice, the relation at level L at type DI(2L),
i.e. RL(DI(2L), is reflexive and symmetric but crucially not transitive. The lack
of transitivity is what permits it to relate, e.g., never and any other value of
type D(2) without trivializing the relation.

Example B.5.1. Consider the program λb. if b then never else now(⋆), which
depending on the input Boolean diverges or just returns unit. In the two the
two-point lattice LH this program is a map of classified sets 2H → DI(1) since
RL(DI(1))(never, now(⋆)).

Interaction with ♦l The monads ♦l and DI interact:

Proof sketch. Let A be a L-classified set. First note that for all l ∈ L, the
relation Rl(DI(A)) is everywhere true whenever the relation Rl(A) is.

Consider two levels l ̸⊑ l′ ∈ L. Then, by definition (Definition B.3.1), the
relation Rl′(A) is everywhere true, and thus, so is Rl′(DI(A)).

We hence conclude that the typing rule ♦l-S-Elim is valid for this monad.
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B.6. Related Work

Kavvos (2019) presents a family of models of information flow for higher-order
programs without effects, modelled as set-theoretic functions. These models,
i.e., categories of classified sets, are the starting point of our study. In contrast
to Kavvos, we are concerned with information-flow properties for programs with
general effects. We give semantics to effects, and their security specifications
using computational monads in these categories.

Kavvos’ work was partly inspired by Abadi et al.’s models of information
flow for higher-order programs with divergence (Abadi et al. 1999), where
programs are modelled by domain-theoretic continuous functions. In these
models, based on suitable families of relations and relation preserving functions,
they construct two so-called “lifting” monads that correspond to termination-
sensitive and termination-insensitive security specifications—see Abadi et al.
(1999, Sections 3.2 and 5). This can be seen as an instance of our work in
the case of divergence. Further, they notice the natural isomorphism that
distributes redaction at any level over the termination-insensitive lifting monad.
In this sense, our work is a vast generalization of this observation to other
effects. In addition we make precise this observation and study under what
conditions, for any effect given by a monad, this kind of interaction exists.

Hunt et al. (2023) present similar but more refined models to those of Abadi
et al. (1999). These models restrict the family of relations to those that
arise as the generalized kernel of some continuous function into a “domain of
observations”. This formalizes the intuitive idea that some domain elements
contain qualitatively better information than others, based on their degree of
definedness. Having a handle on this, they show how to generalize termination-
insensitive properties to domains with nontrivial depth (i.e. not only flat
domains). However, their construction leaves the realm of these restricted
relations, and thus, is not clear yet what is the appropriate universe of types on
which it forms a monad, if any. Nonetheless, they apply their construction to
the case of nondeterminism given by using Plotkin’s powerdomain on the lifted
Booleans and obtain a sensible security specification for programs. However,
they do not consider how this construction interacts with redaction. In contrast,
we consider nondeterminism in Set, other kinds of effects, and how these might
interact with redaction.

Sabelfeld and Sands (2001) study information flow for nondeterministic and
possibly divergent first-order programs—represented as continuous functions
from states to powerdomains of states. They consider several variations of
powerdomains for giving semantics to nondeterministic programs—i.e. Hoare,
Smyth, and Plotkin’s—and study the security properties obtained by (relation-
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ally) lifting partial equivalence relations from the set of states. The specification
monad for nondeterminism that we define is based on their approach. In con-
trast to their work, we are interested in information flow for higher-order
programs, and consider effects in general.

Common to all these models, and hence ours, is that they follow what we
may call a relational approach to information flow. The origin of this approach
can be traced back to Landauer and Redmond (1993).

Sterling and Harper (2022) propose a different approach using models of in-
formation flow based on presheaves of domains instead of relations. They focus
concretely on models for higher-order programs with only termination-insensi-
tivity divergence: their lifting monad is automatically termination-insensitive.
They show that redaction (at any level) interacts with this monad, and realize
this in a calculus, that resembles CbPV and DCC, by a primitive to “declassify”
the termination channel. This primitive, which is syntactically similar to the
typing rule ♦l-S-Distr-Elim, declassifies the termination behaviour of programs
according to the security level of each observer. In contrast, distributive laws
as presented here treat monads for effects and redaction in a uniform fashion.

Abramsky and Jagadeesan (2009) present yet another different kind of models
of information flow based on an extension of game semantics in the style of
AJM (Abramsky, Malacaria, et al. 1994). In contrast to this paper, their models
concern higher-order programs without effects.

The works we already mentioned have, like ours, a very semantic flavour; we
now move to discuss models of information flow that are not to be thought
of as just giving semantics, in the broad sense of meaning, to programs, but
as tools for proving security properties for information-flow type systems and
calculi.

Tse and S. Zdancewic (2004) attempted to prove noninterference for DCC
by a (sound and complete) translation to System F. Their motivation is an
apparent connection between the relational models of Abadi et al. (1999) and
Reynolds (1983) relational semantics for parametricity in System F. Sadly, it
turned out that their translation was not fully abstract (Shikuma and Igarashi
2008), and thus, parametricity of System F did not imply noninterference
of DCC. Bowman and Ahmed (2015) later resolved this issue by modifying
the translation. The connection between parametricity and information flow
has been further explored by Algehed and Bernardy (2019). In contrast to
the present work, the relation between parametricity and information-flow
properties has only been studied in the context of languages without effects.
It does not seem a trivial task to extend this connection to languages with
computational effects—although parametricity for the latter has been studied,
e.g., by Møgelberg and Simpson (2007).
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The pioneering work by Heintze and Riecke (1998) used a logical relations
model constructed on top of a denotational semantics to prove noninterference
for the SLam calculus, which is a higher-order language with divergence. They
mention that their approach borrows ideas directly from the work by Reynolds
on parametricity (Reynolds 1983). More recently, Gregersen et al. (2021)
present a (mechanized) logical relations model for proving noninterference for
a realistic language with many complicated and impressive features, such as
recursive and (impredicative) polymorphic types, or higher-order state. Unlike
the present work, these models aim to be used to give proofs of noninterference
for the concrete languages they study, but not with providing a general semantic
explanation of the mixture of effects, labelling, and information flow.

Modalities for information flow are a recurring example in the literature on
coeffect systems, and hence, it deserves some discussion.

Gaboardi et al. (2016) present a calculus for mixing effects and coeffects via
distributive laws. They show that the combination of information flow and
nondeterminism forms an instance of their calculus via the construction of
categories of information flow based on families of sets indexed by a security
lattice. Similar to our work, they model effects by monads. However, they did
not recognise that monads on categories of information flow encode security
properties for effectful programs. Further, they did not observe that it is a
property of redaction and monads for effects whether there exists a distributive
law. These are key contributions of the present work.

Abel and Bernardy (2020) present a coeffect calculus together with a relational
semantics inspired by parametricity and classified sets. Their calculus and
semantics gives a unified view on modalities and subsumes previous work in
the area. In contrast to our work, they do not consider computational effects
and how these might interact with redaction as a coeffect.

Lago, Gavazzo, and Levy (2017) introduce a semantic framework that unifies
several well-known theories of program equivalence for higher-order languages
with effects. In their framework, effects are modelled by certain monads on
the category of sets and “effect observations” by relators over these monads.
Recently, Lago and Gavazzo (2022) extended this work to account for coeffects
via the novel concept of corelators. They propose sufficient conditions under
which a corelator and a relator interact nicely, namely that the former distributes
over the latter. In contrast to the present paper, the focus of the aforementioned
line of work is the semantics of calculi for program equivalence. This semantics
requires that relations form a congruence over the constructs of programs,
which, in particular, means that these need to be transitive. As previously
discussed, transitivity is not desired, neither necessary, in the encoding of
security properties that permit certain degree of leakage, e.g. termination-
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insensitivity. Therefore, it is not clear how to encode certain security properties
in their setting. This requires further investigation.

In recent work, Hirsch and Cecchetti (2021) present an axiomatic framework
for, among other things, proving noninterference properties for languages with
effects. Their key insight is that noninterference for an effectful language
follows from noninterference for a pure language together with an appropriate
translation from the former to the latter. This translation requires that effects
are encodable in the pure language by a family of type constructors, which
they model after effectors (Tate 2013). Their translation resembles that of
monadic translations of type-and-effect systems (Wadler and Thiemann 2003).
Further, they utilize this framework to formalize the folklore that pc labels serve
as a lower bound on effects. Our work can be understood as substantiating
Hirsch and Cecchetti’s axiomatic framework: a category of classified sets forms
a model of their pure language, and monads on such categories give semantics
to type constructors for effects. In this sense, their approach could be classified
as axiomatic while ours is denotational. In contrast to their work, ours gives a
proper semantic justification to the existence of nice interactions of labelling
and monads for effects in the form of (necessarily unique) distributive laws of
redaction over these monads.

B.7. Conclusions and Further Work

In this paper, we have shown that monads on models of information flow,
particularly on categories of classified sets, are suitable abstractions for encod-
ing information-flow properties, and security specifications, of programs with
general effects. Moreover, we have shown that soundly extending the usual
elimination principles for “labelling”, which pervasively appears in type systems
and semantic models of information flow, to these effects corresponds to the
existence of a distributive law from the redaction monad at some security level
and the monad for effects. In fact, we have demonstrated, that whenever this
distributive law exists it is necessarily unique, and thus, we can affirm, that
once effects, and their security specifications are given by a monad, then it
is a property of redaction and this monad whether it is secure to eliminate
redacted values to computations producing effects. This novel observation is
not particular to the model of classified sets but it is broadly applicable in other
well-known models of information flow, since it depends on abstract properties
of labelling and monads. We hope that this novel perspective brings a renewed
interest on denotational models for security, information flow, and effects.

Before concluding, we discuss some possible venues for further work:
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Categories of Domains In this work, we have confined our effects to monads on
categories of classified sets, which are based on programs as set theoretic
functions. Typically, denotational semantics of programs—á la Scott—
are given in categories of domains (dcpo, ω-cpo, e.g.). Categories of
information flow which take these as a basis already exists (e.g. Hunt et al.
(2023), but only few effects (i.e. nontermination and nondeterminism)
have been studied, and not from the perspective in this work. It would
be interesting to do so.

Other Effects We have shown that the classical effects of Moggi (with exception
of continuations) can be recasted as monads on categories of classified sets.
In this regard we have scratched only the surface. A further work would
be to tackle combinations of these effects and other effects. Moreover, it
has been show that the appropriate semantic framework for higher-order
store (Levy 2002) or name generation (Pitts and Stark 1993) as an effect
are monads on functor categories. It would be interesting to extend the
theory to information-flow properties of programs in these models.

Models of Effects In this paper, we have presented specification monads as
strong monads on categories of classified sets. Since Moggi first proposed
to used monads for modelling effects (Moggi 1989), an extensive literature
has been developed looking for other structures; for example, graded
monads (Katsumata 2014), parameterised monads (Atkey 2009) or effec-
tors (Tate 2013). It would be interesting to 1. use these structures on
categories of information flow to model “refined” notions of effects, and
their refined security specifications, and 2. to further develop the theory
of interaction between redaction and these structures.

Semantic Proofs of Information-Flow Properties We have presented a frame-
work for modular reasoning about information-flow properties of programs
with general effects. In its current form it is mainly a semantic tool. How-
ever, it would be interesting to use the theory here developed to establish
these properties for type systems for information flow with effects.
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Abstract Language-based information-flow control (IFC) techniques often rely on
special purpose, ad hoc primitives to address different covert channels that originate
in the runtime system, beyond the scope of language constructs. Since these piecemeal
solutions may not compose securely, there is a need for a unified mechanism to control
covert channels. As a first step towards this goal, we argue for the design of a general
interface that allows programs to safely interact with the runtime system and the
available computing resources. To coordinate the communication between programs
and the runtime system, we propose the use of asynchronous exceptions (interrupts),
which, to the best of our knowledge, have not been considered before in the context
of IFC languages. Since asynchronous exceptions can be raised at any point during
execution—often due to the occurrence of an external event—threads must temporarily
mask them out when manipulating locks and shared data structures to avoid deadlocks
and, therefore, breaking program invariants. Crucially, the naive combination of
asynchronous exceptions with existing features of IFC languages (e.g. concurrency and
synchronization variables) may open up new possibilities of information leakage. In this
paper, we present MACasync, a concurrent, statically enforced IFC language that, as
a novelty, features asynchronous exceptions. We show how asynchronous exceptions
easily enable (out of the box) useful programming patterns like speculative execution
and some degree of resource management. We prove that programs in MACasync
satisfy progress-sensitive noninterference and mechanize our formal claims in the Agda
proof assistant.
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C.1. Introduction

Information-flow control (IFC) (Sabelfeld and Myers 2003) is a promising ap-
proach for preserving confidentiality of data. It tracks how data of different
sensitivity levels (e.g. public or sensitive) flows within a program, and raises
alarms when confidentiality might be at stake. This technology has been previ-
ously used to secure operating systems (e.g. Zeldovich et al. 2006; Vandebogart
et al. 2007), web browsers (e.g. Stefan, Yang, et al. 2014; Yip et al. 2009), and
several programming languages (e.g. Hedin, Birgisson, et al. 2014; Myers et al.
2006; Russo, Claessen, et al. 2008).

Most language-based approaches for IFC reason about constructions found
in programs (e.g. variables, branches, and data structures), while often ignoring
aspects of runtime systems which might create covert channels (e.g. (Buiras
and Russo 2013; Mathias V. Pedersen and Askarov 2017; Vassena, Soeller,
et al. 2019)) capable of producing leaks, e.g. through caches, parallelism,
resource usage, etc. To deal with this problem, researchers have proposed
security-aware runtime system designs (Vassena, Soeller, et al. 2019; Mathias
Vorreiter Pedersen and Askarov 2019). However, building runtime systems
is a major endeavour and these proposals have yet to be implemented. A
more lightweight approach to securing runtime systems relies on special-purpose
language constructs that coordinate the execution of programs with different
components of the runtime—e.g. the garbage collector (Mathias V. Pedersen
and Askarov 2017), the scheduler (Russo and Sabelfeld 2006), timeouts (Russo
and Sabelfeld 2009), lazy evaluation (Vassena, Breitner, et al. 2017) and
caches (Ferraiuolo et al. 2018).1 While a step in the right direction, designing
ad hoc constructs every time that some coordination with the runtime system
is needed feels rather unsatisfactory—an observation that has also been made
outside the security arena (Li, Marlow, et al. 2007; Sivaramakrishnan et al.
2016; Flatt and Findler 2004). In fact, implementing hooks in an existing
runtime system requires specific knowledge of its internals and considerable
expertise. Even worse, the composition of piecemeal security solutions may
weaken or even break the security guarantees of the runtime system as a whole.
These issues suggest the need for a unified mechanism to close covert channels
in the runtime system. As a first step towards this goal, we believe that runtime
systems should expose a general IFC-aware interface that allow IFC languages
to systematically control and secure components of the runtime system. How
should programs coordinate with the runtime system through this interface?

In the 70s, Unix-like operating systems conceived signals as a limited form

1In this last case, we are abusing the term runtime to denote “the rest of the system.”
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of inter process communication (IPC).2 Signals are no more than asynchronous
notifications sent to processes in order to notify them of the occurrence of
events, where the origin of signals is either the kernel or other processes.
Furthermore, when receiving a signal, process execution can be interrupted
during any nonatomic instruction—and if the process has previously registered
a signal handler, then that routine gets executed. If we think of the kernel
as “the runtime” and of processes as our “programs”, signals are exactly the
mechanism needed to implement the interface that we need! In fact, and
generally speaking, the idea of OS-signals have been already internalized by
programming languages in the form of asynchronous exceptions.

Asynchronous exceptions are raised as a result of external events and can
occur at any point of the program. As a result, they are considered so difficult
to master that many languages (e.g. Python (Freund and M. P. Mitchell 2002)
and Java (Oracle 2020)) either restrict or completely forbid programmers from
using them. The main reason is that interrupting a program at any point
might break, for instance, a datastructure invariant or result in holding a lock
indefinitely—and it is not that clear how to get out of such situation.

Despite not being widely adopted in its full expressive power, asynchronous
exceptions enable very useful programming patterns: speculative execution (i.e.
a thread can spawn a child thread and later decide that it does not need the
result and kill it), timeouts, and resource management.

Our Contributions

In this work, we present MACasync, a Haskell IFC library that extends
the concurrent version of MAC (Russo 2015; Vassena, Russo, et al. 2018) with
asynchronous exception. We formally prove progress-sensitive noninterference
(PSNI) (Hedin and Sabelfeld 2012) for MACasync and provide mechanized
proofs in Agda (Abel et al. 2005–) of all our claims as supplementary material to
this work. We believe that the extension presented in this paper and its formal
security guarantees extend to other Haskell IFC libraries (e.g. LIO (Stefan,
Russo, J. C. Mitchell, et al. 2011)).

The semantics for asynchronous exceptions in MACasync is inspired by how
asynchronous exception are modelled in Haskell (Marlow et al. 2001)—where
a mechanism of masking/unmasking marks regions of code where asynchronous
exceptions can be safely raised. However, allowing untrusted code to mask ex-
ceptions arbitrarily poses other security risks. For example, a rouge thread could
abuse the masking mechanism to exhaust all available computing resources

2https://standards.ieee.org/content/ieee-standards/en/standard/1003_1-2017.html
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and starve other threads in the system without the risk of being terminated.
To avoid that, we propose a fine-grained (selective) masking/unmasking mech-
anism instead of the traditional all-or-nothing approaches, which disable all
asynchronous exceptions inside handlers (Reppy 1990; Gabriel and McCarthy
1984). Furthermore, in contrast with Marlow et al. 2001, our design forbids
raising multiple exceptions at the same time, which, we believe, can too easily
disrupt programs in unpredictable ways. While an exception is raised, our
language does not raise incoming exceptions, which are, instead, stored in a
queue of pending exceptions and raised only when the current one has been
handled.

From the security perspective, asynchronous exceptions follow the no write-
down security check for IFC: when throwing an asynchronous exception, the
security level of the source thread should flow to the security level of the
recipient. The caveats are, however, in the formalization of masking/unmasking
mechanisms and the noninterference proof. For example, it is important for
security that asynchronous exception are deterministically inserted into the
queue of pending exceptions. We utilize term erasure as the proof technique
and leverage double-step erasure to deal with the complexity of our semantics
(i.e. concurrency, synchronization variables and asynchronous exceptions), like
in previous existing work (e.g. (Vassena, Russo, et al. 2018; Vassena, Buiras,
et al. 2016; Vassena and Russo 2016)).

In summary, our list of contributions includes:

• An extension to MAC, called MACasync, to handle IFC-aware asyn-
chronous exceptions in the presence of concurrency.

• Formal semantics, enforcement, and progress-insensitive noninterference
guarantees for MACasync.

• Mechanized proofs of all our claims in approximately 3,000 lines of Agda.3

• We showcase MACasync and the new programming patterns enabled
by asynchronous exceptions with two examples, in which we implement
secure versions of (i) a speculative execution combinator, and (ii) a
load-balancing controller for sensitive worker threads, respectively.

To the best of our knowledge, this work is the first account for asynchronous
exceptions in concurrent IFC-systems. The rest of the paper is organized as
follows. In Section C.2, we revisit MAC’s API. Section C.3 presents MACasync
by example. In Section C.4, we extend MAC’s semantics to track asynchronous

3Available at https://bitbucket.org/carlostome/mac-async.
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-- Abstract types
data Labeled l τ
data MAC l τ

-- Monadic structure for computations
instance Monad (MAC l)

-- Core operations
label :: lL ⊑ lH ⇒ τ → MAC lL (Labeled lH τ)
unlabel :: lL ⊑ lH ⇒ Labeled lL τ → MAC lH τ

Figure C.1.: Core API for MAC

exceptions. In Section C.5, we introduce asynchronous exceptions and the
masking/unmasking mechanisms. Section C.6 presents our security guarantees.
Section C.7 describes related work and Section C.8 concludes.

C.2. The MAC Information-Flow Control Library
To help readers get familiar with the MAC IFC library (Russo 2015), we give
a brief overview of its API and programming model.

Security Lattice The information flow policies enforced by MAC are specified
by a security lattice (Denning 1976), which defines a partial order between
security levels (labels). These labels represent the sensitivity of program inputs
and outputs and the order between them dictates which flows of information are
allowed in a program. For example, the classic two-point lattice L = ({L, H},⊑)
classifies data as either public (L) or secret (H) and only prohibits sending
secret inputs into public outputs, i.e. H ̸⊑ L. In MAC, the security lattice is
embedded in Haskell using standard features of the type system (Russo 2015).
In particular, each security label is represented by an abstract datatype and
valid flows of information (the ⊑ relation between labels) are encoded using
typeclass constructs—see Figure C.1.

Security Types MAC enforces security statically by means of special types
annotated with security labels. The abstract type Labeled l τ associates label l
with data of type τ . For example, pwd :: Labeled H String is a secret string and
score :: Labeled L Int is a public integer. The abstract type MAC l τ represents
a side-effectful computation that manipulates data labelled with l and whose
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result has type τ . MAC provides a monadic interface to help programmers
write secure code. The basic primitives of the interface are return and bind
(written as the infix operator >>=). Primitive return :: τ → MAC l τ creates a
computation that simply returns a value of type τ without causing side-effects.
Primitive (>>=) :: MAC l τ1 → (τ1 → MAC l τ2) → MAC l τ2 chains two
computations (at the same security level l) together, in a sequence. Specifically,
program m >>= f takes the result obtained by executing m and binds it to
function f , which produces the rest of the computation. Our examples use
do-notation, Haskell syntactic sugar for monadic computations. For instance,
we write do x ← m; return (x + 1) for the program m >>= λx → return (x + 1),
which increments by one the result returned by m.

Flows of Information In order to enforce information flow policies, MAC
regulates the interaction between MAC computations and Labeled data. Com-
putations cannot write and read labelled data directly, but must use special
functions label and unlabel (Figure C.1). These functions create and read
labelled data as long as these operations comply with specific security rules,
known as no write-down and no read-up (Bell and LaPadula 1996). Intuitively,
function label writes some data into a fresh, lH-labelled value as long as the
decision to do so depends on less sensitive data, i.e. the computation is labelled
with lL such that lL ⊑ lH. (To help readers, we use subscripts in metavariables
lL and lH to indicate that lL ⊑ lH). Dually, function unlabel allows lH-labelled
computations to read data from lower security levels, i.e. data labelled with lL
such that lL ⊑ lH. In the type signatures of these functions, the precondition
lL ⊑ lH is a typeclass constraint, which must be statically satisfied when
type checking programs. As a result, programs that attempt to leak secret
data, e.g. via implicit flows, are ill-typed and rejected by the compiler. In
particular, programs cannot branch on secret H-labelled data directly, but must
use unlabel first to extract its content. Once unlabelled, secret data can only
be manipulated within a computation labelled with H thanks to the type of
unlabel and bind. Then, trying to use function label to create public L-labelled
data triggers a type error that represents a violation of the no write-down
rule. Specifically, an attempt to create public data from within a secret context
generates an unsatisfiable type constraint H ⊑ L, arising from the use of label.

MAC incorporates other kinds of resources (e.g. references and network
sockets) in a similar way. Resources are encapsulated in labelled resources
handlers and the API exposed to labelled computations is designed so that the
read and write side-effects of each operation respect the no read-up and no
write-down rules.
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fork :: lL ⊑ lH ⇒ MAC lH ()→ MAC lL ()
data MVar l τ
newMVar :: lL ⊑ lH ⇒ τ → MAC lL (MVar lH τ)
putMVar :: MVar l τ → τ → MAC l ()
takeMVar :: MVar l τ → MAC l τ

Figure C.2.: Concurrent API for MAC

Concurrency Extending IFC languages with concurrency is a delicate task
because threads provide attackers with new means to leak data. For example,
the possibility of executing computations concurrently magnifies the bandwidth
of the termination covert channel (Stefan, Russo, Buiras, et al. 2012). This
channel enables brute force attacks in which threads try to guess the secret and
enter into a loop to suppress public outputs if they succeed. Even worse, the
combination of concurrency and shared resources can introduce subtle internal-
timing channels (Smith and Volpano 1998). This covert channel is exploited by
attacks that influence the (public) outcome of data races with secret data (Buiras
and Russo 2013; Stefan, Russo, Buiras, et al. 2012). To support concurrency
securely, MAC: (i) decouples computations that manipulate secret data from
computations that can generate public outputs, and (ii) prevents threads
(labelled computations) from affecting data races between threads at lower
security levels. Primitive fork (Figure C.2) allows a lL-labelled computation to
fork a thread at a higher security level, i.e. labelled with lH such that lL ⊑ lH.
Intuitively, forking constitutes a write operation and thus the type of fork
enforces the no write-down rule. MAC does not implements threads directly,
but relies on Haskell green (lightweight user-level) threads. These threads
are managed by the GHC runtime system running a round-robin scheduler,
which is compatible with the security guarantees of MAC (Vassena and Russo
2016; Vassena, Russo, et al. 2018).

Synchronization Variables MAC supports shared mutable state in the form
of synchronization variables, following the style of Concurrent Haskell (Jones,
Gordon, et al. 1996). The abstract type MVar l τ (Figure C.2) represents a
synchronization variable that can be either empty or full with a value of type
τ at security level l. Threads can create and atomically access synchroniza-
tion variables with functions newMVar , putMVar and takeMVar . Function
newMVar creates a synchronization variable initially full with the given value.
(Like label and fork, function newMVar performs a write side-effect, thus its
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type signature has a similar security check). Functions putMVar and takeMVar
allow threads to write and read shared variables synchronously. In particular,
these functions block threads trying to read or write variables in the wrong
“state”. For example, function putMVar writes a value into an empty variable
and blocks the thread if the variable is full. Dually, function takeMVar empties
a full variable and returns its content and blocks the caller otherwise. No-
tice that putMVar and takeMVar perform both read and write side-effects:
they must always read the variable to determine whether the caller should be
blocked. Then, the no read-up and no write-down security rules imply that
these functions are secure only when they operate within the same security
level, i.e. both the variable and the computation are labelled with l (Russo
2015).

C.3. MACasync by Example

Asynchronous exceptions enable useful programming patterns that, to our
knowledge, cannot be coded securely in any existing IFC language. We illustrate
some of these idioms in MACasync, which extends MAC with three new
primitives throwTo, mask (unmask), and catch. These primitives allow threads
to (1) send signals to threads at higher security levels by throwing exceptions
asynchronously, (2) suppress (enable) exceptions in specific regions of code,
and (3) react to exceptions by running their corresponding exception handler,
respectively.

Example C.3.1 (Speculative execution). Imagine two implementations of the
same algorithm whose performance depends on the input. Instead of settling for
one, we could run both concurrently and just return the output of the first that
finishes. At that point the thread computing the other algorithm may be killed
since its result is no longer necessary. We can implement such a combinator for
speculative execution in MACasync using asynchronous exceptions. First, we
declare Kill :: Exception as a new exception, and define kill t, a function that
sends exception Kill asynchronously to the thread identified by t.4

1 data Exception = Kill | ...
2 kill t = throwTo t Kill

Then, we define the combinator speculate, which receives two computations c1
and c2 to run speculatively.

4In MACasync, primitive fork returns the identifier of the child thread to the parent.
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3 speculate :: MAC l a → MAC l a → MAC l a
4 speculate c1 c2 = do
5 m ← newEmptyMVar
6 t1 ← fork (c1 >>= putMVar m)
7 t2 ← fork (c2 >>= putMVar m)
8 r ← takeMVar m
9 kill t1; kill t2

10 return r

The combinator creates an empty synchronization variable m (line 5) and forks
two threads (6–7), which run computations c1 and c2 concurrently and then
write the result to m. When the combinator reads variable m (8), it blocks
until either thread terminates and fills it with the result. When this happens,
the combinator resumes, kills the children threads (one may still be running)
(9), and returns the result (10).

Example C.3.2 (Thread pool). This example presents the code of a controller
thread that maintains a pool of worker threads to perform computations on
a stream of incoming (sensitive) inputs. In this scheme, the controller thread
manages the worker threads in the pool by reacting to asynchronous exceptions
sent by other (public and secret) threads in the system. For example, when some
secret input becomes available, a thread can send an exception InputH secret
to the controller thread, which extracts the secret data and forwards it to the
first available worker thread to process it. Similarly, when the thread pool is
no longer needed, it can be deallocated by sending the exception Kill to the
controller, which then kills each worker thread in the pool. In the same way,
the controller could be programmed to react to specific exceptions and carry
out even more tasks (e.g. dynamically resizing the thread pool).

To set up this scheme, a thread calls function initTP (Figure C.3) to initialize
the thread pool and start the controller thread. Function initTP n f allocates
an empty synchronization variable m (line 6), forks a pool of n worker threads
executing function f (line 7), collects their identifiers ts, and passes it to the
controller thread (line 8). As new input becomes available, the controller writes
it to the shared variable m, which is then read by one of the workers and its
content processed via function f (line 11). To avoid getting killed in the middle of
a computation, worker threads mask exception Kill while processing data, thus
ensuring that they always complete on-going computations without aborting
prematurely. It may seem erroneous to mask also instruction takeMVar : can
this cause a worker thread to block indefinitely waiting for new input? No, in
Concurrent Haskell, and MACasync, operations that can block indefinitely
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1 type Data = ...

2 data Exception = Kill | Inputl (Labeled l Data) | ...
3 type Size = Int
4 initTP :: Size → (Data → MAC H ())→ MAC L (TId H)
5 initTP n f = do
6 m ← newEmptyMVar
7 ts ← forM [1 . . n ] (λ → fork (worker f m))
8 fork (controller ts m)
9 worker :: (Data → MAC H ())→ MVar H Data → MAC H ()

10 worker f m = do
11 mask [Kill ] (takeMVar m >>= f )
12 worker f m
13 controller :: [TId H]→ MVar H Data → MAC H ()
14 controller ts m =
15 let wait = newEmptyMVar >>= takeMVar in
16 catch wait
17 [ (InputH secret,
18 mask [InputH, Kill ]
19 (do s← unlabel secret
20 putMVar m s
21 unmask [InputH, Kill ] (controller ts m)))
22 , (Kill,
23 mask [InputH, Kill ] (forM ts kill)) ]

Figure C.3.: Thread pool example

(like takeMVar) are interruptible, i.e. they can receive and raise asynchronous
exceptions even in masked blocks (Marlow et al. 2001).

Function controller ts m implements a controller thread for the thread pool
ts sharing variable m. As long as it receives no exception, the controller
thread simply waits on an always-empty synchronization variable via wait
(line 15). When the thread receives an exception, it resumes and executes the
corresponding code in the list of exception handlers. In particular, when new
secret input becomes available (InputH secret), it opens the secret (line 19) and
writes it to variable m (line 20), so that the worker threads can process it.
Notice that if variable m is full at this point, then some previous input is still
waiting to be processed (all workers threads are busy) and the controller just
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waits on the variable. As soon as a worker thread completes, it empties the
variable containing the pending input, and the controller resumes by writing
the variable; then it continues to wait for further exceptions. To avoid dropping
any input, the controller thread masks exceptions Kill and InputH (line 18)
while processing requests. For example, if exceptions were not properly masked
in that block of code, the controller could receive an exception, e.g. Kill, which
would terminate the thread while trying to feed the last input received to the
workers. Once done, the controller unmasks the exceptions again (line 21) and
continues to wait for new input. After receiving and eventually raising the
exception Kill, the controller thread propagates it to all the workers in the pool
(line 23) and then terminates. Also in this case, the controller thread masks the
other exceptions, which could otherwise prematurely terminate the controller
and leave some of the worker threads alive.

The example, however, has a catch! Primitive putMVar may also block the
controller indefinitely like takeMVar , and thus may likewise be interrupted and
raise an exception, even if that exception is masked. As a result, the controller
thread could also be interrupted on line 20 and drop the current input. To fix
the program, we introduce the combinator retry killed m ss, which repeatedly
attempts to fill variable m with the inputs pending in list ss while handling
other exceptions.

24 retry :: Bool → [TId H]→ MVar H Data
25 → [Data ]→ MAC H ()
26 retry killed ts m [ ] =
27 if killed then forM ts kill; exit else return ()
28 retry killed m (s : ss) =
29 catch (putMVar m s)
30 [ (InputH secret,
31 do s′ ← unlabel secret
32 if killed
33 then retry killed ts m (s : ss)
34 else retry killed ts m ((s : ss) + [s′ ])
35 , (Kill, retry True ts m (s : ss)) ]

If further inputs are received while executing retry, the function appends them
to list ss to avoid dropping them, and thus ensuring that they will eventually be
delivered to the workers. If the controller receives exception Kill while retrying,
the Boolean flag killed is switched on and further inputs are discarded. In this
case, when all the inputs received before Kill are dispatched, the controller
kills the worker threads and terminates with exit (line 27)—the function retry
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assumes exceptions Input H and Kill are masked so this operation will not be
interrupted. In conclusion, to repair the code of controller , we simply replace
putMVar m s (line 20) with retry False ts m [s ].

Even though relatively simple, these examples cannot be coded in IFC
languages without support for asynchronous communication like MAC. In
these languages, synchronous primitives (e.g. MVar) must be restricted to
operate within a single security level for security reasons, as explained in
Section C.2 and Vassena, Russo, et al. (2018). For instance, if only synchronous
communication was available, then the controller thread from our second
example could not receive commands from public (L-labelled) threads.5

C.4. Formal Semantics

C.4.1. Core of MACasync

From a security perspective, the interaction between synchronization vari-
ables, asynchronous exceptions, and exception masking is a delicate matter.
MACasync implements these primitives on top of those provided by Con-
current Haskell, whose runtime is not designed with security in mind. For
example, the fact that a thread may be able to resume another by sending
an asynchronous exception (Marlow et al. 2001) (as explained in the second
example above) may introduce subtle internal timing covert channels that
weaken the security guarantees of MAC. To rule that out, we extend the small-
step semantics of MAC from Vassena, Russo, et al. (2018) with asynchronous
exceptions and perform a rigorous, comprehensive security analysis of the whole
language.

The core of MACasync is the standard call-by-name λ-calculus with Boolean
and unit type (Figure C.4). We specify the side-effect free semantics of the
core λ-calculus (e.g. function abstraction, application) as a small-step reduction
relation, t1 ⇝ t2, which denotes that term t1 reduces in one step to t2. These
reduction rules are standard and we completely omit them in this presentation.

Types: τ ::= () | Bool | τ1 → τ2
Values: v ::= () | True | False | λx.t
Terms: t ::= t1 t2 | if t then t1 else t2 | v

Figure C.4.: Core syntax

5In MAC, a public thread could technically communicate asynchronously with a secret
thread by updating a secret, mutable reference. However, these labelled references would
inevitably introduce serious data races and thus do not represent a viable alternative.
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The defining feature of MACasync is the security monad MAC , which
encapsulates computations that may produce side-effects. Figure C.5 specifies
the syntax and part of the semantics for the side-effectful constructs of the
language. The small-step relation t1 −→ t2 denotes a single sequential step
that brings term t1 of type MAC l τ to t2.

Rule (Unlabel1) reduces term unlabel t1 to unlabel t2 by evaluating the
argument through a pure semantics step t1 ⇝ t2. When the argument is
evaluated, rule (Unlabel2) extracts the content of the labelled value and
returns it in the security monad.

Types: τ ::= · · · | MAC l τ | Labeled l τ
Values: v ::= · · · | Labeled t | return t
Terms: t ::= · · · | label t | unlabel t | t1 >>= t2

(Unlabel1)
t1 ⇝ t2

unlabel t1 −−−→ unlabel t2

(Unlabel2)
unlabel (Labeled t) −−−→ return t

Figure C.5.: Syntax and semantics of MACasync (excerpts)

C.4.2. Synchronization Variables

Figure C.6 extends MACasync with synchronization variables. The store Σ is
partitioned by label into separate memory segments S , each consisting of a list
of memory cells c, which can be either full with a term (L t M) or empty (⊗). A
value MVar l n denotes a synchronization variable that refers to the n-th cell of
the l-labelled memory segment in the store.6

In rule (New), primitive newMVar l t allocates a new memory cell containing
term t in the l-labelled segment of the store, at fresh address n = |Σ(l)|,
i.e. Σ[(l, n) 7→ L t M], and returns the corresponding synchronization variable
MVar l n. Term putMVar l t1 t2 writes term t2 into the empty cell pointed by
the synchronization variable t1. To do that, rule (Put1) starts evaluating the
variable t1 through a pure semantics step t1 ⇝ t ′

1. When the variable is fully
evaluated, e.g. MVar l n, rule (Put2) takes over and writes the given term t in
the cell identified by (l, n), i.e. Σ[(l, n) 7→ L t M]. Notice that the term steps only
if the cell in the store Σ is initially empty, i.e. (l, n) 7→ ⊗ ∈ Σ. If the cell is full,

6Some terms in the calculus carry a label annotation that is inferred from its type. For
example, the label l in MVar l n comes from its type MVar l τ .
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Store: Σ ∈ Label → Memory
Memory: S ::= [ ] | c : S
Cell: c ::=⊗ | L t M
Addresses: n ∈ N
Types: τ ::= · · · | MVar l τ
Values: v ::= · · · | MVar l n
Terms: t ::= · · · | newMVar l t | takeMVar t

| putMVar t1 t2

(New)
n = |Σ(l)|

Σ, newMVar l t −−−→ Σ[(l, n) 7→ L t M], return (MVar l n)

(Put1)
t1 ⇝ t ′

1
Σ, putMVar t1 t2 −−−→ Σ, putMVar t ′

1 t2

(Put2)
(l, n) 7→ ⊗ ∈ Σ Σ′ = Σ[(l, n) 7→ L t M]

Σ, putMVar (MVar l n) t −−−→ Σ′, return ()

Figure C.6.: Syntax and semantics for synchronization variables

the term cannot be reduced by any other rule of the semantics and gets stuck,
capturing the intended blocking behaviour of synchronization variables. We
omit the rules for takeMVar , which follow a similar pattern (Vassena, Russo,
et al. 2018).

C.4.3. Concurrency

Unlike previous concurrent incarnations of MAC, threads in MACasync can
communicate with each other by sending signals in the form of asynchronous
exceptions. To enable this form of communication, the runtime system assigns
a unique thread identifier to each thread of the system. Thread identifiers
are opaque to avoid leaking secret data through the number of threads in the
system, and labelled to prevent sensitive threads from sending exceptions to
threads at lower security levels. MACasync incorporates thread identifiers
with values TId l n of the new primitive type TId l, whose label l represents
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the static security level of the thread identified by n. Thread identifiers are
also unforgeable and only generated automatically by the runtime system each
time a new thread is forked.

fork :: lL ⊑ lH ⇒ MAC lH ()→ MAC lL (TId lH)

Figure C.7 extends the sequential calculus of MACasync with concurrency
primitives. To simplify our security analysis, term fork l t is annotated with the
security label l of thread t of type MAC l (). Similarly to Vassena, Russo, et al.
(2018), we decorate the sequential reduction relation from above with events,
which inform the top-level scheduler of the execution of sequential commands
that have global effects. For example, event forkl(t) indicates that thread t
at security level l has been forked and event step denotes an uninteresting
(silent) sequential step. Later, we extend the category of events to keep track
of asynchronous exceptions as well. Sequential steps are also parameterized by
a thread id map ϕ, which represents a source of fresh thread identifiers for each
security level. The use of this map is exemplified by rule (Fork). Whenever a
new thread is forked, e.g. fork l t, we use the label annotation l to generate a
fresh identifier n = ϕ(l), which is then returned in the monad wrapped in the
constructor of thread identifiers, i.e. TId l n.

Events: e ::= step | forkl(t)
Thread Id: n ∈ N
Thread Id Map ϕ ∈ Label → Thread Id
Types: τ ::= · · · | TId l
Values: v ::= · · · | TId l n
Terms: t ::= · · · | fork l t

(Fork)
n = ϕ(l)

Σ, fork l t forkl(t)−−−−−→ϕ Σ, return (TId l n)

Figure C.7.: Syntax and semantics of fork

Figure C.8 introduces the top-level semantics relation that formalizes how
concurrent configurations evolve. Concurrent configurations are pairs ⟨Σ, Θ⟩
consisting of the concurrent store Σ and a map of thread pools Θ. The thread
pool map Θ maps each label of the lattice to the list of threads Ts at that
security level, currently in the system. Each rule of the concurrent semantics
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Configuration: C ::= ⟨Σ, Θ⟩
Thread Pool Map: Θ ∈ Label → Thread Pool
Thread Pool: Ts ::= [ ] | (th, Ts)
Thread State: th ::= t

(Seq)

ϕ = nextId(Θ) Σ1, t1
step−−−→ϕ Σ2, t2

l, n ⊢ ⟨Σ1, Θ[(l, n) 7→ t1]⟩ ↪→ ⟨Σ2, Θ[(l, n) 7→ t2]⟩

(Fork)
ϕ = nextId(Θ1)

n′ = ϕ(l′) Θ2 = Θ1[(l, n) 7→ t2] Σ, t1
forkl′ (t)−−−−−→ϕ Σ, t2

l, n ⊢ ⟨Σ, Θ1[(l, n) 7→ t1]⟩ ↪→ ⟨Σ, Θ2[(l′, n′) 7→ t]⟩

Figure C.8.: Syntax and semantics of concurrent MACasync

constructs the source of fresh thread identifiers ϕ from the thread pool map Θ
of the initial configuration by means of the function nextId(Θ) = λl.|Θ(l)|.

A concurrent step l, n ⊢ c1 ↪→ c2 indicates that configuration c1 steps to c2,
while running the thread identified (l, n), i.e. the n-th thread of the l-labelled
thread pool. The particular scheduler used to determine which thread runs
at every step is not very relevant for our discussion, therefore we omit it in
our semantics. It suffices to say that the security guarantees of MACasync
carry over for a wide range of deterministic schedulers (Vassena, Russo, et al.
2018) (as witnessed by our mechanized proofs) and include the Round Robin
scheduler adopted in Concurrent Haskell. The concurrent rules rely on
sequential events to determine which step to take. For example, rule (Seq)
extracts the running thread from the thread pool, i.e. Θ[(l, n) 7→ t1], which
steps silently, i.e. generating event step, and thus the rule only reinserts the
thread term in the thread pool, i.e. Θ[(l, n) 7→ t2]. In contrast, event forkl′(t)
in rule (Fork) indicates that the running thread has forked, therefore the rule
reinserts the parent thread in the pool, i.e. Θ2 = Θ1[(l, n) 7→ t2], and also adds
its child at the corresponding security level l′ and fresh index n′ = ϕ(l′), i.e.
Θ2[(l′, n′) 7→ t].
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C.5. Asynchronous Exceptions
MACasync supports sending and handling asynchronous exceptions by means
of two new primitives throwTo and catch, see Figure C.9. Primitive throwTo t ξ
raises the exception ξ of abstract type χ asynchronously in the thread with
identifier t. Intuitively, this operation constitutes a write effect, therefore
MACasync restricts its API according to the no write-down rule to enforce
security. To this end, the API ensures that the security label of the receiver
thread (lH) is at least as sensitive as the label of the sender (lL) through the type
constraint lL ⊑ lH. Once delivered and raised, asynchronous exceptions behave
like synchronous exceptions. They disrupt the execution of the receiving thread
in the usual way, with the exception bubbling up in the code of the thread
and, if uncaught, eventually crashing it. Threads can recover from exceptions
by wrapping regions of code in a catch block. The same mechanism, allows
threads to react to asynchronous signals by handling exceptions appropriately.
Primitive catch t hs takes as a parameter a computation t and a list containing
pairs of exceptions and handlers. Then, if an exception ξ is raised during the
execution of t, the handler corresponding to the first exception matching ξ in
the list hs, if there is one, gets executed.

throwTo :: lL ⊑ lH ⇒ TId lH → χ→ MAC lL ()
catch :: MAC l τ → [(χ, MAC l τ)]→ MAC l τ

Figure C.9.: MACasync API for asynchronous exceptions

Figure C.10 extends the calculus with value raise ξ, which indicates that the
computation is in an exceptional state, and a new event throwl(ξ, n), which
instructs the runtime to deliver exception ξ to the thread identified by (l, n). To
model how asynchronous exceptions propagate precisely, we add new rules both
to the sequential and concurrent semantics. Rule (ThrowTo1) evaluates the
thread identifier in term throwTo t1 ξ, which reduces to throwTo t2 ξ through
the pure step t1 ⇝ t2. (For simplicity, our model assumes that exceptions
are already evaluated in terms, thus the rules do not need to reduce them).
When the thread identifier is fully evaluated, i.e. it is of the form TId l n, rule
(ThrowTo2) generates event throwl(ξ, n) and returns unit. The rule reflects
the nonblocking behaviour of throwTo, which always succeeds as soon as the
thread identifier is evaluated and regardless of the state of the receiving thread.
This design decision has important security implications that we discuss further
in Section C.5.3. Rule (Catch1) executes the computation t1 in term catch t1 hs.
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If during the execution of t1 the computation receives some exception ξ, and
the exception propagates up to the exception handler, then the term reduces to
catch (raise ξ) hs and rules (Catchξ1) and (Catchξ2) determine whether the
exception gets handled or not. In these rules, function first(hs, ξ) searches for
a handler corresponding to exception ξ in the list hs. To do so, the function
traverses the list of exception-handler pairs hs left-to-right until it finds a pair
whose left component is equal to exception ξ. If a handler for that exception
is in the list, i.e. h = first(hs, ξ), then (Catchξ1) passes control to it. If no
handler matches the exception, i.e. ∅ = first(hs, ξ), then rule (Catchξ2) simply
propagates the exception.

Exceptions: ξ
Events: e ::= · · · | throwl(ξ, n)
Values: v ::= · · · | raise ξ
Handlers: hs ::= [ ] | (ξ, t) : hs
Terms: t ::= · · · | throwTo t ξ | catch t hs

(ThrowTo1)
t1 ⇝ t2

Σ, throwTo t1 ξ
step−−−→ϕ Σ, throwTo t2 ξ

(ThrowTo2)

Σ, throwTo (TId l n) ξ
throwl(ξ,n)−−−−−−−→ϕ Σ, return ()

(Catch1)
Σ1, t1

e−→ϕ Σ2, t2

Σ1, catch t1 hs e−→ϕ Σ2, catch t2 hs

(Catchξ1)
h = first(hs, ξ)

Σ, catch (raise ξ) hs step−−−→ϕ Σ, h

(Catchξ2)
∅ = first(hs, ξ)

Σ, catch (raise ξ) hs step−−−→ϕ Σ, raise ξ

Figure C.10.: Syntax and semantics for asynchronous exceptions
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C.5.1. Masking Exceptions
Asynchronous exceptions are typically sent in response to external events such
as user interrupts and exceeding resource limits. These exceptions can disrupt
threads unpredictably, at any moment during their execution, and end up
breaking code invariants and leaving shared data structures in an inconsistent
state. For example, an incoming exception may crash a thread inside a critical
section and cause it to hold a lock indefinitely, without the possibility of cleaning
up. Therefore, writing robust code in the presence of asynchronous exceptions
requires a mechanism to temporarily suppress exceptions in critical sections
that must not be interrupted. Inspired by Marlow et al. (2001), MACasync
sports two scoped combinators, mask and unamsk, to disable and enable specific
exceptions in a given code region, respectively.7

mask :: χ→ MAC l τ → MAC l τ
unmask :: χ→ MAC l τ → MAC l τ

Intuitively, primitive mask ξ t runs computation t with exceptions ξ disabled.
If such an exception is received during the execution of t, the exception is
not dropped, but stored in a buffer of pending exceptions ξs and raised once
the execution goes past the mask instruction. Term unmask ξ t works the
other way around and enables exceptions ξ while executing t. In general,
whether an exception received by a thread should be raised immediately or tem-
porarily suppressed depends on the masking context of the thread. Intuitively,
the masking context at each execution point depends on the (nested) mask
and unmask instructions crossed up to that point. For instance, if program
unmask ξ (mask ξ′ t) receives exception ξ while executing t, and if ξ ̸≡ ξ′ and
t does not contain any mask ξ instruction, then the exception gets raised, i.e.
unmask ξ (mask ξ′ (· · · raise ξ · · · )).

Figure C.11 presents the sequential semantics of mask and unmask. The
masking context M is a map from exceptions to Booleans, representing a
bit vector that indicates which exceptions can be raised in the reduction
steps. To keep track of exceptions, the sequential relation carries the list of
pending exceptions ξs, on the left, and the list of remaining exceptions ξ′

s on
the right of the arrow. Further, the arrow is annotated with the masking
context of the thread (M ). Rules (Mask) and (Unmask) modify the masking
context accordingly via functions mask(M , ξ) = λξ′.ξ ≡ ξ′ ∨ M (ξ′) and
unmask(M , ξ) (analogous). In particular, the rules reduce term mask ξ t

7Even though these primitives take only a single exception as an argument, they are equivalent
to the multi-exception variants used in Section C.3, i.e. mask [ξ1, ξ2 ] t behaves exactly
like mask ξ1 (mask ξ2 t).
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Mask: M ∈ χ→ Bool
Terms: t ::= · · · | mask ξ t | unmask ξ t
Exception list: ξs ::= [ ] | (ξ : ξs)

(Mask)
M2 = mask(M1, ξ) Σ1, t1, ξs

e−→(ϕ,M2) Σ2, t2 ξ′
s

Σ1, mask ξ t1, ξs
e−→(ϕ,M1) Σ2, mask ξ t2, ξ′

s

(Unmask)
M2 = unmask(M1, ξ) Σ1, t1, ξs

e−→(ϕ,M2) Σ2, t2, ξ′
s

Σ1, unmask ξ t1, ξs
e−→(ϕ,M1) Σ2, unmask ξ t2, ξ′

s

(Mask1)

Σ, mask ξ (return t), ξs
step−−−→(ϕ,M) Σ, return t, ξs

(Maskξ)

Σ, mask ξ (raise ξ′), ξs
step−−−→(ϕ,M) Σ, raise ξ′, ξs

Figure C.11.: Syntax and semantics of mask (unmask is similar)

(respectively unmask ξ t) by executing term t with modified mask M2 obtained
from disabling (enabling) exception ξ in the current mask M1, i.e. M2 =
mask(M1, ξ) (M2 = unmask(M1, ξ)). When a nested, masked computation has
completed, either successfully (return t) or not (raise ξ′), rules (Mask1) and
(Maskξ) simply propagate the result.

The masking context M and the list of pending exceptions ξs determine
whether any exception in the list should be raised or not. To reflect that, we need
to adapt the semantics rules for most constructs of the calculus. Figure C.12
shows the modifications for the monadic bind (>>=). (The rules for the other
constructs are modified in a similar way, we refer the reader to the Agda
mechanization for details).

First, we define function unmaskedξ′
s
(M , ξs), which extracts from the list of

pending exceptions ξs the first exception ξ that is unmasked in M , i.e. such
that ¬ M (ξ), The function walks down the list recursively and accumulates
the exceptions ξ that are masked in M , i.e. such that M (ξ), in the list ξ′

s,
which is then returned together with the rest of the list ξs, when an unmasked
exception is found. If all the exceptions in the list are masked, the function
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(Bind-Raise)
unmasked[ ](M , ξs) = (ξ, ξ′

s)

Σ, return t1 >>= t2, ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

(Bind2)
unmasked[ ](M , ξs) = ∅

Σ, return t1 >>= t2, ξs
step−−−→(ϕ,M) Σ, t2 t1, ξs

(Bindξ)

Σ, raise ξ >>= t, ξs
step−−−→(ϕ,M) Σ, raise ξ, ξs

Figure C.12.: Masking semantics of bind (>>=)

simply returns ∅.

unmaskedξ′
s
(M , ξs) =

∅ if ξs = [ ]
(ξ, ξ′

s + ξ′′
s ) if ξs = ξ : ξ′′

s and ¬ M (ξ)
unmasked(ξ′

s+[ξ ])(M , ξ′′
s ) if ξs = ξ : ξ′′

s and M (ξ)

In the elimination rules of the semantics, we apply function unmasked[ ](M , ξs)
to determine whether a pending exception should be raised. For example, if all
exceptions are masked, i.e. unmasked[ ](M , ξs) = ∅, then rule (Bind2) steps as
usual. In contrast, if an unmasked exception is pending, i.e. unmasked[ ](M , ξs) =
(ξ, ξ′

s), rule (Bind-Raise) raises it, i.e. raise ξ, and the thread steps with buffer
ξ′

s where exception ξ has been removed.
Once raised, exceptions propagate unconditionally via rule (Bindξ), i.e. no

further exceptions are raised until the current one is handled.

C.5.2. Concurrency and Synchronization Variables
The modifications needed for supporting asynchronous exceptions in the con-
current semantics are minimal. Figure C.14 extends the thread state th with
the list of pending exceptions ξs and the initial masking context M . When
a thread forks, the child thread inherits the masking context of the parent
thread and runs with an initially empty list of exceptions. New rule (Throw)
processes event throwl′(ξ, n′) by delivering exception ξ to the thread (t, ξ′

s, M ′)
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(Take1)
(l, n) 7→ L t M ∈ Σ unmasked[ ](M , ξs) = ∅ Σ′ = Σ[(l, n) 7→ ⊗]

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ′, return t, ξs

(Take-Raise-Unmasked)
(l, n) 7→ c ∈ Σ unmasked[ ](M , ξs) = (ξ, ξ′

s)

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

(Take-Raise-Masked)
(l, n) 7→ ⊗ ∈ Σ unmasked[ ](M , ξs) = ∅ ξs = ξ : ξ′

s

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

Figure C.13.: Synchronization variables and exceptions

Thread: th ::= (t, ξs, M )

(Throw)

ϕ = nextId(Θ1) Σ, t1, ξs
throwl′ (ξ,n′)−−−−−−−−→(ϕ,M) Σ, t2, ξs

Θ2 = Θ1[(l, n) 7→ (t2, ξs, M )] (l′, n′) 7→ (t, ξ′
s, M ′) ∈ Θ2

l, n ⊢ ⟨Σ, Θ1[(l, n) 7→ (t1, ξs, M )]⟩ ↪→ ⟨Σ, Θ2[(l′, n′) 7→ (t, ξ′
s + [ξ ], M ′)]⟩

Figure C.14.: Extended concurrent semantics for asynchronous exceptions

identified by (l′, n′). Since exceptions are processed in the same order as they
are delivered, the rule inserts ξ at the end of the buffer ξ′

s, i.e. ξ′
s + [ξ ].

Next, we introduce new rules that capture precisely the interaction between
synchronization variables and asynchronous exceptions. As we explained be-
fore, Concurrent Haskell by design allows specific blocking operations to be
interrupted by asynchronous exceptions, even if they are masked (Marlow et al.
2001). Therefore, our semantics resumes threads stuck on synchronization
variables if any exception is pending. The rules in Figure C.13 formalize this
requirement for primitive takeMVar , the rules for putMVar are symmetric.
Rule (Take1) covers the case where no unmasked exception is pending, i.e.
unmasked[ ](M , ξs) = ∅, and the thread can step because the variable is full, i.e.
(l, n) 7→ L t M ∈ Σ, and thus the rule returns its content t and empties the vari-
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able, i.e. Σ[(l, n) 7→ ⊗]. On the other hand, in rule (Take-Raise-Unmasked),
an unmasked exception is pending, i.e. unmasked[ ](M , ξs) = (ξ, ξ′

s), thus, re-
gardless of the variable being full or empty, i.e. (l, n) 7→ c ∈ Σ, the rule aborts
the computation and raises the exception ξ without modifying the store. Lastly,
in rule (Take-Raise-Masked), the variable is empty, i.e. (l, n) 7→ ⊗ ∈ Σ,
and the thread should block and get stuck. However, an exception ξ is pending
in the buffer ξs, i.e. ξs = ξ : ξ′

s, therefore—regardless of the masking context
M—the thread is resumed by raising exception ξ. In the rule, the condition
unmasked[ ](M , ξs) = ∅ reveals that the pending exception that gets raised is
masked and ensures that the semantics is deterministic. Without this premise,
a thread with both unmasked and masked exceptions pending in its buffer could
either step via rule (Take-Raise-Unmasked) and raise the first unmasked
exception, or via rule (Take-Raise-Masked) and raise the first masked excep-
tion. The condition above removes the nondeterminism: if both masked and
unmasked exceptions are pending, the first unmasked exception is raised via
rule (Take-Raise-Unmasked).

C.5.3. Design Choices and Security

In this part we motivate some of the design choices that are key to the security
guarantees of MACasync and that, we believe, can help programmers to write
code that is more robust to asynchronous exceptions.

API of throwTo The type of throwTo (Figure C.9) restricts how threads are
permitted to communicate asynchronously with each other to enforce security.
Imagine an unrestricted version of throwTo called throwToleaky, which—in
clear violation of the no write-down security rule—allows secret threads to
send exceptions to public threads. If MACasync exposed this leaky primitive,
then an attacker could exploit it to leak secret data to a public thread through
classic implicit flows attacks:

do tidL ← forkL (do catch loop [(ξ, printL 1)])
← forkH (do s← unlabel secret

if s then throwToleaky tidL ξ
else return ())

The code above forks two threads, a public thread that waits for an asynchronous
exception in a loop, and a secret thread that branches on secret data and sends
an exception to the public thread in one branch. Since the secret thread sends
an exception to the public thread only when the secret is true, the attacker
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can easily learn its value by simply monitoring the public output of the public
thread, which prints 1 only when an exception is raised. MACasync rejects
such attacks by statically enforcing the no write-down rule in the API of
throwTo, which would make the code above ill-typed.

Asynchronous throwTo In MACasync, primitive throwTo is itself an asyn-
chronous operation. As rule (ThrowTo2) in Figure C.10 shows, primitive
throwTo always returns immediately, without waiting for the receiver thread to
raise the exception. This design choice follows a previous line of work on asyn-
chronous exceptions for Haskell Marlow et al. 2001, where the authors argue
that the asynchronous semantics is easier to implement. Maybe surprisingly, the
current implementation of Concurrent Haskell with asynchronous exception
in the GHC runtime provides only a synchronous version of throwTo.8 Would
MACasync be secure with a synchronous primitive throwTosync? No, unfor-
tunately the possibility of two threads synchronizing by throwing exceptions
opens a new covert channel. Consider the following example, where throwTosync

has synchronous semantics, i.e. throwTosync blocks the sender thread until the
exception is raised in the receiver thread.

do tidH ← forkH (do s← unlabel secret
if s then mask ξ loop else loop)

no_ops
throwTosync tidH ξ
printL 0

In the code above, the main public thread forks a secret thread, which branches
on secret data and in one branch enters the masked block mask ξ loop. After
waiting for a sufficient amount of time through no_ops, the public thread sends
exception ξ synchronously to the secret thread. If the secret thread is looping
in the masked block, the exception ξ will never be raised, causing the public
thread to block forever on throwTosync and thus suppressing the final public
output printL 0. Then, the attacker can learn the value of the secret by simply
observing (the lack of) the output 0 on the public channel.

As discussed in Section C.2 for MVar , synchronous communication primitives
perform both read and write side-effects, therefore throwTosync cannot operate
securely between threads at different security levels. Even though Concurrent
Haskell provides only the equivalent of throwTosync, we can still derive
a secure asynchronous implementation for throwTo by internally forking an

8https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Exception.htm
l#v:throwTo
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isolated thread that calls the unsafe throwTosync, i.e. we define throwTo t ξ as
fork (throwTosync t ξ ≫ return ()).

Reliable Exception Delivery In MACasync, threads store the received excep-
tions in the buffer where they remain until raised. Importantly, the exceptions
are raised following the order in which they have been delivered, thus enabling
threads to react to signals in the same order as they arise. Even though multi-
ple exceptions can be pending in the buffer, our semantics ensures that new
exceptions are not raised while the thread is in an exceptional state. This choice
eliminates, by design, the risk of multiple simultaneous exceptions disrupting
critical code in unpredictable ways. Once handled via the matching exception
handler, the code resumes normal execution and any other pending exception
may be raised. This ensures that all remaining exceptions, if not masked, will
eventually be raised.

C.5.4. Relation to MAC

MACasync extends MAC with asynchronous exceptions (Vassena, Russo, et al.
2018). MAC features exception-handling primitives and classic exceptions, but
these operate within individual threads and are intended to signal and recover
from exceptional conditions arising only internally, due to the current state of
the computation. Asynchronous exceptions are more expressive than regular
exceptions. In addition to signaling (external) exceptional conditions, they
enable a flexible signal-based communication mechanism. In MAC, threads
can communicate with each other only synchronously and indirectly, through
synchronization variables. Though possible, this communication mechanism
is too cumbersome to use as it would require programmers to establish an
appropriate communication protocol and change their code heavily, for example
to ensure that all threads that need communicating share the same synchro-
nization variable. Even worse, communication in this style is limited between
threads at the same security level. In contrast, threads in MACasync can
communicate directly, by sending exceptions to the identifier of the intended
receiver thread, and also to threads at a different, more sensitive security level.
MACasync leverages the mechanization of MAC in its security proofs. Mod-
elling the semantics of asynchronous exceptions presented in this paper required
substantial changes to the existing artifact. These changes include extending
the syntax and semantics of the previous model with our new primitives, as
well as carefully adapting the existing semantics rules to capture the semantics
of interruptible exceptions.
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t t ′

εlA(t) εlA(t ′)

εlA εlA

Figure C.15.: Single-step simulation

C.6. Security Guarantees

This section shows that MACasync satisfies progress-sensitive noninterference
(PSNI). We begin by describing our proof technique based on term erasure.
Then, we present two lemmas that are key to the progress-sensitive guarantees
of the calculus and sketch the noninterference proof. We refer the interested
reader to the Agda mechanization for detailed proofs.

C.6.1. Term Erasure

Term erasure is a widely used technique to prove noninterference properties of
information-flow control (IFC) languages (e.g. (Li and Zdancewic 2010; Stefan,
Russo, J. C. Mitchell, et al. 2011; Stefan, Russo, Buiras, et al. 2012; Heule et al.
2015; Buiras, Vytiniotis, et al. 2015; Vassena and Russo 2016; Vassena, Russo,
et al. 2018)). The technique takes its name from the erasure function, which
removes secret data syntactically from program terms. To this end, the erasure
function, written εlA(t), rewrites the subterms of t above the attacker’s security
level lA to special term •, which only reduces to itself. Once this function
is defined, the technique relies on establishing a core property, a simulation
between the execution of terms (and later configurations as well) and their
erased counterpart. The simulation diagram in Figure C.15 illustrates this
property for pure terms. The diagram shows that erasing the confidential
parts of term t and then reducing the erased term εlA(t) along the orange path
leads to the same term εlA(t ′) obtained along the blue path by first stepping
from term t to term t ′ and then applying erasure, i.e. the diagram commutes.
Intuitively, if term t leaked while stepping to t ′, then some data above security
level lA would remain in the erased term εlA(t ′), but it would be erased along
the other path, in which t is first erased and then reduced, and thus the diagram
would not commute.
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C.6.2. Erasure Function

We define the erasure function for terms in Figure C.16. Since the sensitivity of
many terms is determined by their type, the definition of the erasure function
is type driven, i.e. we write εlA(t :: τ) for the erasure of term t of type τ .
(We omit the type of the term when it is irrelevant). Ground values are
unaffected by the erasure function, e.g. εlA(()) = (), and most terms are erased
homomorphically, e.g. εlA(t1 t2) = εlA(t1) εlA(t2). The content of secret labelled
values is removed, i.e. εlA(Labeled t::Labeled l t) = Labeled • if l ̸⊑ lA, or erased
homomorphically otherwise, i.e. εlA(Labeled t :: Labeled l t) = Labeled εlA(t : τ)
if l ⊑ lA. Notice that terms of type MAC l τ (e.g. mask, unmask) are also
erased homomorphically, despite the fact that the computation may be sensitive,
i.e. even if l ̸⊑ lA. (The special erasure for primitive throwTo is explained
below). Should not erasure rewrite these constructs to • ? Intuitively, these
terms represent a description of a sensitive computation, which cannot leak
data until it is inserted in a sequential configuration and executed. Since these
terms can only execute when fetched from a thread pool, it is then sufficient to
erase thread pools appropriately.

We define the erasure function for configurations, stores, thread pools, and
thread states in Figure C.17. Configurations are erased component-wise, i.e.
εlA(⟨Σ, Θ⟩) = ⟨εlA(Σ), εlA(Θ)⟩. Thread pools Θ containing secret threads are
entirely removed by the erasure function, i.e. εlA(Θ)(l) = • if l ̸⊑ lA, while those
containing thread pools are erased homomorphically, i.e. εlA(Θ)(l) = εlA(Θ(l))
if l ⊑ lA, where εlA([ ]) = [ ] and εlA(th, Ts) = (εlA(th), εlA(Ts)). (The
erasure function for memory stores and segments is similar). When some
secret thread gets scheduled from an erased thread pool •, a dummy thread
(•, [ ], λ .False) runs instead and simply loops. However, rewriting secret thread
pools to • can disrupt operations involving thread identifiers. For example, an
erased public thread using primitive throwTo to communicate with a secret
thread gets stuck, since rule (Throw) would try to deliver an exception into
thread pool •. To recover from this situation, we apply the two-step erasure
technique (Vassena and Russo 2016). This technique rewrites problematic
terms, e.g. throwTo, to special, •-annotated erased terms added to the calculus,
i.e. throwTo•. The semantics of these new terms is then defined precisely to
re-establish the core simulation property fundamental for security (Figure C.15).
For example, term throwTo• t ξ reduces just like throwTo in rules (ThrowTo1)
and (ThrowTo2), thus respecting the simulation property of the sequential
semantics. However, instead of generating a regular event throwlH(ξ, n), which
would get the concurrent configuration stuck in rule (Throw), it generates a
new event throw•lH(ξ). Similarly, this event is handled by a new rule of the
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εlA(()) = ()
εlA(t1 t2) = εlA(t1) εlA(t2)
εlA(Labeled t :: Labeled l t)

=
{

Labeled εlA(t) if lH ⊑ lA

Labeled • otherwise
εlA(mask ξ t) = mask ξ εlA(t)
εlA(unmask ξ t) = unmask ξ εlA(t)
εlA(throwTo (t :: TId lH) ξ :: MAC lL ())

=
{

throwTo εlA(t) ξ if lH ⊑ lA

throwTo• εlA(t) ξ otherwise

Figure C.16.: Erasure of terms (excerpts)

concurrent semantics, which simply drops the exception (no thread labelled
lH ̸⊑ lA can receive it), thus completing the simulation diagram of the
concurrent step (Throw).

C.6.3. Progress-Sensitive Noninterference

The proof of progress-sensitive noninterference (PSNI) builds on two key prop-
erties of the concurrent relation: deterministic reduction and erased simulation.

Lemma C.6.1 (Deterministic Reduction). If c1 ↪→ c2 and c1 ↪→ c3, then
c2 ≡ c3.

The symbol ≡ above denotes syntactic equality up to α-renaming, in our
mechanized proofs we use De Bruijn indexes and syntactic equality. Determin-
ism of the concurrent semantics is important for security, because it eliminates
scheduler refinement attacks (Russo and Sabelfeld 2006).

The second lemma that we prove relates the reduction step of a thread in the
concurrent semantics with the corresponding erased thread. If the security level
l of the thread is below the level of the attacker, i.e. l ⊑ lA, then we construct
a simulation diagram similar to that of Figure C.15, but for concurrent steps.
Instead, if the security level of the thread is not observable by the attacker, i.e.
l ̸⊑ lA, then the configurations before and after the step are indistinguishable to
the attacker. This indistinguishability relation is called lA-equivalence, written
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εlA(⟨Σ, Θ⟩) = ⟨εlA(Σ), εlA(Θ)⟩

εlA(Σ)(l) =
{

εlA(S) if l ⊑ lA and S = Σ(l)
• otherwise

εlA(Θ)(l) =
{

εlA(Ts) if l ⊑ lA and Ts = Θ(l)
• otherwise

εlA((t, ξs, M )) = (εlA(t), ξs, M )

Figure C.17.: Erasure of configurations (excerpts)

c1 ≈lA c2, and defined as the kernel of the erasure function (Figure C.17), i.e.
εlA(c1) ≡ εlA(c2).

Lemma C.6.2 (Erased Simulation). Given a concurrent reduction step l, n ⊢
c1 ↪→ c′

1 then

• l, n ⊢ εlA(c1) ↪→ εlA(c′
1), if l ⊑ lA, or

• c1 ≈lA c′
1, if l ̸⊑ lA

Using Lemmas C.6.1 and C.6.2, we prove PSNI, where symbol ↪→∗ denotes
the transitive reflexive closure of ↪→ as usual.

Theorem C.6.1 (Progress-Sensitive Noninterference). Given two well-typed
concurrent configurations c1 and c2, such that c1 ≈lA c2, and a reduction step
l, n ⊢ c1 ↪→ c′

1, then there exists a configuration c′
2 such that c′

1 ≈lA c′
2 and

c2 ↪→∗ c′
2.

Proof. By cases on l ⊑ lA.
If l ⊑ lA then in the configuration c2 there is an lA-equivalent thread identified

by (l, n). Before that thread runs, however, there can be a finite number of high
threads in c2 scheduled before (l, n). After the high threads run, i.e. c2 ↪→∗ c′′

2 ,
for some configuration c′′

2 , the low thread is scheduled again, i.e. l, n ⊢ c′′
2 ↪→ c′

2,
for some other configuration c′

2. From Lemma C.6.2 (erased simulation) applied
to the first set of steps, we obtain c2 ≈lA c′′

2 (all these steps involve threads
above the attacker’s level) and then c1 ≈lA c′′

2 follows by transitivity of the
lA-equivalence relation. Then, we apply Lemma C.6.2 again and conclude that
l, n ⊢ εlA(c′′

2) ↪→ εlA(c′
2), since l ⊑ lA as well as l, n ⊢ εlA(c1) ↪→ εlA(c′

1).
By definition of lA-equivalence, we derive εlA(c1) ≡ εlA(c′′

2 ) from c1 ≈lA c′′
2 and
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from Lemma C.6.1 (deterministic reduction) we conclude that εlA(c′
1) ≡ εlA(c′

2),
i.e. c′

1 ≈lA c′
2.

If l ̸⊑ lA, then we apply Lemma C.6.2 and obtain c1 ≈lA c′
1, thus c′

1 ≈lA c′
2

for c′
2 = c2 by reflexivity and transitivity of lA-equivalence.

C.7. Related Work

Asynchronous Exceptions Mechanisms Asynchronous exceptions and signals
allow developers to implement key functionalities of real world systems (e.g.
speculative computation, timeouts, user interrupts, and enforcing resources
bounds) robustly (Marlow et al. 2001; Marlow 2017). Surprisingly, support
for asynchronous exceptions in concurrent programming languages differ con-
siderably. For example, Java has deprecated fully asynchronous methods to
stop, suspend, and resume threads because they can too easily break programs
invariants without hope of recovery (Oracle 2020). Similarly, the interaction
between synchronous exceptions and signals makes it hard to write robust
signal handlers in Python (Freund and M. P. Mitchell 2002). Lacking robust
asynchronous primitives, several programming languages and operating systems
(e.g. Java, Modula3, and POSIX-compliant OS’s) rely on semi-asynchronous
communication as a workaround. With this approach, a thread sends a signal to
another by setting special flags that must be polled periodically by the receiver.
Even though programming in this model is less convenient, we believe that
the principles proposed in this paper could be adapted for semi-asynchronous
communication. The Standard ML of New Jersey (SML/NJ) features asyn-
chronous signaling mechanisms based on first-class continuations (Reppy 1990).
When a thread receives a signal, control is passed to the corresponding handler
together with the interrupted state of the thread as a continuation. Then, the
handler may decide to resume the execution of the interrupted thread or pass
control to another thread. Erlang implements a special kind of asynchronous
signaling. Threads can monitor each other through bidirectional links, which
propagate the exit code of a thread to the other (Armstrong 2003). Multi-
core OCaml support asynchronous exceptions through algebraic effects and
effects handlers (Dolan et al. 2017). Syme et al. (2011) extend F# with an
asynchronous modality that changes the semantics of control-flow operators
to use continuations, thus sparing programmers from writing asynchronous
code in continuation-passing style. Bierman et al. (2012) port this approach
to C# and additionally formalize it with a direct operational semantics and
prove type-safety. Inoue et al. (2018) provide interruptible executions in Scala
for context-aware (reactive) programming via an embedded domain specific
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language based on workflows. Concurrent Haskell supports asynchronous
exceptions with scoped (un)masking combinators (Marlow et al. 2001) and
MACasync relies on them to provide secure API to untrusted code.

Semantics of Asynchronous Exceptions Jones, Reid, et al. (1999) present a
semantics framework for reasoning about the correctness of compiler optimiza-
tions in the presence of (imprecise) exceptions for Haskell. Their framework
can capture asynchronous exceptions as well, but it is based on denotational
semantics and thus not suitable for reasoning about covert channels. Marlow
et al. (2001) were the first to develop an operational semantics for asynchro-
nous exceptions, which inspired ours and which we have extended to model
fine-grained exception handlers. Their semantics is based on evaluation con-
texts (Felleisen and Hieb 1992), while ours is small-step to leverage the existing
formalization and mechanization of MAC (Vassena, Russo, et al. 2018; Vassena
and Russo 2016; Vassena, Breitner, et al. 2017). Hutton and Wright (2007)
study an operational semantics for interrupts in the context of a basic terminat-
ing language without concurrency and I/O. Their goal is exploratory: they want
to formally justify the source level semantics with respect to its compilation to
a low-level language. Harrison et al. (2008) identify asynchronous exceptions
as a computational effect and formalize them in a modular monadic model.

Covert Channels and Countermeasures Several runtime system features
create subtle covert channels that weaken and sometimes completely break
the security guarantees of IFC languages. When memory is shared between
computations at different security levels, garbage collection cycles leak infor-
mation via timing, even across network connections (Mathias V. Pedersen
and Askarov 2017). To close this channel, memory should be partitioned by
security level and each memory partition should be managed by an independent
timing-sensitive garbage collector (see the garbage collector implemented in Zee
for an example (Mathias Vorreiter Pedersen and Askarov 2019)). Lazy evalua-
tion introduces a software level cache in the runtime system which creates an
internal timing channel in concurrent Haskell IFC libraries (Buiras and Russo
2013). To close this channel, Vassena, Breitner, et al. (2017) design a runtime
system primitive that restricts sharing between threads at different security
levels. The same primitive can close the lazy covert channel in MACasync.
General purpose runtime system automatically balance computing resources
(CPU time, memory and cores) between running threads to achieve fairness,
but, by doing so on multicore systems, they also internalize many external
timing covert channels (Vassena, Soeller, et al. 2019). LIOPAR is a runtime
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system design that recovers security in multicore systems by making resource
management hierarchical and explicit at the programming language level. Even
though in LIOPAR parent threads send asynchronous signals to kill children and
reclaim computing resources, LIOPAR does not support fine-grained exception
handlers and masking primitives. Language-based predictive mitigation is a
general technique to bound the leakage of timing channels (e.g. arising due
to hardware caches) in programs (Zhang et al. 2012). Thibault and Askarov
(2017) optimize this technique for a sequential programming language with
asynchronous I/O, but their approach does not consider concurrency and asyn-
chronous exceptions. Interruptible enclaves have been the target of several
interrupt-based attacks (Bulck et al. 2017; He et al. 2018; Bulck et al. 2018)
and Busi et al. (2020) propose full abstraction (Abadi 1999) as the desirable
security criterion for extending processor with interruptible enclaves securely.
Our security criterion (PSNIe) is simpler to prove and aligns with the expected
security guarantees of MACasync. Intuitively, Busi et al. (2020) prove a more
complex criterion because it ensures that the extended processor has no more
vulnerabilities than the original, but that does not imply that neither processor
satisfies some specific security property.

Secure Runtime Systems and Abstractions Systems that by design run
untrusted programs (e.g. mobile code and plugins) must place adequate security
mechanisms to impede buggy or malicious code from exhausting all available
computing resources. KaffeOS is an extension of the Java runtime system that
isolates processes and manage their computing resources (memory and CPU
time) to prevent abuse (Back and Hsieh 2005). When a process exceeds its
resource budget, KaffeOS kills it and reclaims its resources without affecting the
integrity of the system. Cinder is an operating system for mobile devices that
provides reserves and taps abstractions for storing and distributing energy (Roy
et al. 2011). Using these abstractions, applications can delegate and subdivide
their energy quota while maintaining energy isolation. Yang and Mazières (2014)
extend GHC runtime systems with resource containers, an abstraction that
enforce dynamic space limits according to an allocator-pays semantics. None
of these systems enforce information flow policies except for Cinder, but we
believe that secure API for asynchronous exceptions like those of MACasync
could represent a basic building block to enforce them reliably.

Zee is an IFC language for implementing secure (timing-sensitive) runtime
systems (Mathias Vorreiter Pedersen and Askarov 2019). The lack of asyn-
chronous exceptions in Zee complicates the implementation of certain runtime
system components, but we believe that Zee could support them by applying
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the insights from this work. An interesting line of work aims at exposing safe
high-level API to allow users to reprogram features of the runtime systems, e.g.
concurrency primitives (Li, Marlow, et al. 2007), multicore schedulers (Sivara-
makrishnan et al. 2016), and kill-safe abstractions (Flatt and Findler 2004).
We believe that the primitives designed to remove covert channels in GHC and
other runtime systems discussed above could be implemented following this
approach.

C.8. Conclusions and Future Work
This work presents the first IFC language that support asynchronous excep-
tions securely. Embedded in Haskell, the IFC library MACasync provides
primitives for fine-grained masking and unmasking of asynchronous exceptions,
which enable useful programming patterns, that we showcased with two ex-
amples. We have formalized MACasync in 3,000 lines of Agda and proved
progress-sensitive noninterference.

As future work, we plan to use MACasync to reason about the delivery
of OS signals to threads. Specially, we will explore OS signals dedicated to
alert about exhaustion of resources that cannot be easily partitioned (e.g. the
battery in an IoT board). This scenario will demand the OS—which can be
thought as just another thread—to send signals from higher to lower levels in
the security lattice, thus opening up an information leakage channel which, we
believe, needs to be mitigated.

Another direction for future work consists on using MACasync to build
realistic systems. For instance, we expect MACasync to be able to provide an
IFC-aware interface for GHC to control CPU usage by leveraging on previous
work (Li, Marlow, et al. 2007; Sivaramakrishnan et al. 2016). Moreover, building
realistic systems often involves mutually distrusts principals, where we expect
privileges (Stefan, Russo, Mazières, et al. 2011; Waye et al. 2015) to restrict
untrusted code from abusing our selective mask mechanism.
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Abstract Information-flow control (IFC) languages ensure programs preserve the
confidentiality of sensitive data. Noninterference, the desired security property of
such languages, states that public outputs of programs must not depend on sensitive
inputs. In this paper, we show that noninterference can be proved using normalization.
Unlike arbitrary terms, normal forms of programs are well-principled and obey useful
syntactic properties—hence enabling a simpler proof of noninterference. Since our
proof is syntax-directed, it offers an appealing alternative to traditional semantic based
techniques to prove noninterference.
In particular, we prove noninterference for a static IFC calculus, based on Haskell’s
SecLib library, using normalization. Our proof follows by straightforward induction
on the structure of normal forms. We implement normalization using normalization by
evaluation and prove that the generated normal forms preserve semantics. Our results
have been verified in the Agda proof assistant.
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D.1. Introduction

D.1. Introduction
Information-flow control (IFC) is a security mechanism which guarantees confi-
dentiality of sensitive data by controlling how information is allowed to flow
in a program. The guarantee that programs secured by an IFC system do
not leak sensitive data is often proved using a property called noninterference.
Noninterference ensures that an observer authorized to view the output of a
program (pessimistically called the attacker) cannot infer any sensitive data
handled by it. For example, suppose that the type IntH denotes a secret integer
and BoolL denotes a public Boolean. Now consider a program f with the
following type:

f : IntH → BoolL

For this program, noninterference ensures that f outputs the same Boolean for
any given integer.

To prove noninterference, we must show that the public output of a program
is not affected by varying the secret input. This has been achieved using many
techniques including term erasure based on dynamic operational semantics (Li
and Zdancewic 2010; Russo et al. 2008; Stefan et al. 2011; Vassena and Russo
2016), denotational semantics (Abadi et al. 1999; Kavvos 2019), and parametri-
city (Tse and Zdancewic 2004; Bowman and Ahmed 2015; Algehed 2018). In
this paper, we show that noninterference can also be proved by normalizing
programs using the static or residualising semantics (Lindley 2005) of the
language.

If a program returns the same output for any given input, it must be the
case that it does not depend on the input to compute the output. Thus proving
noninterference for a program which receives a secret input and produces a
public output, amounts to showing that the program behaves like a constant
program. For example, proving noninterference for the program f consists of
showing that it is equivalent to either λ x . true or λ x . false; it is immediately
apparent that these functions do not depend on the secret input x. But how
can we prove this for any arbitrary definition of f ?

The program f may have been defined as the simple function λ x .(not false)
or perhaps the more complex function λ x . ((λ y .snd (x , y)) true). Observe,
however, that both these programs can be normalized to the equivalent function
λ x . true. In general, although terms in the language may be arbitrarily
complex, their normal forms (such as λ x . true) are not. They are simpler, thus
well-suited for showing noninterference.

The key idea in this paper is to normalize terms, and prove noninterference by
simple structural induction on their normal forms. To illustrate this, we prove
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D. Simple Noninterference by Normalization

noninterference for a static IFC calculus, which we shall call λSEC, based on
Haskell’s SecLib library by Russo et al. We present the typing rules and static
semantics for λSEC by extending Moggi’s computational metalanguage (Moggi
1991) (Section D.2). We identify normal forms of λSEC, and establish syntactic
properties about a normal form’s dependency on its input (Section D.3). Using
these properties, we show that the normal forms of program f are λ x . true or
λ x . false—as expected (Section D.4).

To prove noninterference for all terms using normal forms, we implement
normalization for λSEC using normalization by evaluation (NbE) (Berger and
Schwichtenberg 1991) and prove that it preserves the static semantics (Sec-
tion D.5). Using normalization, we prove noninterference for program f and
further generalize this proof to all terms in λSEC (Section D.6)—including, for
example, a program which operates on both secret and public values such as
BoolL × BoolH → BoolL × BoolH. Finally, we conclude by discussing related
work and future directions (Section D.7).

Unlike earlier proofs, our proof shows that noninterference is an inherent
property of the normal forms of λSEC. Since the proof is primarily type and
syntax-directed, it provides an appealing alternative to typical semantics based
proof techniques. All the main theorems in this paper have been mechanized
in the proof assistant Agda.1

D.2. The λSEC Calculus

In this section we present λSEC, a static IFC calculus that we shall use as the
basis for our proof of noninterference. It models the pure and terminating
fragment of the IFC library SecLib2 for Haskell, and is an extension of
the calculus developed by Russo et al. (2008) with sum types. SecLib is a
lightweight implementation of static IFC which allows programmers to incor-
porate untrusted third-party code into their applications while ensuring that
it does not leak sensitive data. Below, we recall the public interface (API) of
SecLib:

data S (l :: Lattice) a
return :: a → S l a
(≫=) :: S l a → (a → S l b) → S l b
up :: lL ⊑ lH ⇒ S lL a → S lH a

1https://github.com/carlostome/ni-nbe
2https://hackage.haskell.org/package/seclib

156

https://hackage.haskell.org/package/seclib


D.2. The λSEC Calculus

Similar to other static IFC libraries in Haskell such as LIO (Stefan et al.
2011) or MAC (Vassena, Russo, et al. 2018), SecLib’s security guarantees
rely on exposing the API to the programmer while hiding the underlying
implementation. Programs written against the API and the safe parts of the
language (Terei et al. 2012) are guaranteed to be secure-by-construction; the
library enforces security statically through types. As an example, suppose that
we have the two-point security lattice (see (Denning 1976)) {L, H} where the only
disallowed flow is from secret (H) to public (L), denoted H ̸⊑ L. The following
program written using the SecLib API is well-typed and—intuitively—secure:

example :: S L Bool → S H Bool
example p = up (p ≫= λ b → return (not b))

The function example negates the Bool that it receives as input and upgrades
its security level from public to secret. On the other hand, had the program
tried to downgrade the secret input to public—clearly violating the policy of the
security lattice—the typechecker would have rejected the program as ill-typed.

The Calculus λSEC is a simply typed λ-calculus (STLC) with a base (uninter-
preted) type, unit type, product and sum types, and a security monad type
for every security level in a set of labels (denoted by Label). The set of labels
may be a lattice, but our development only requires it to be a preorder on the
relation ⊑. Throughout the rest of this paper, we use the labels lL and lH and
refer to them as public and secret, although they represent levels in an arbitrary
security lattice such that lH ̸⊑ lL. Figure D.1 defines the syntax of terms, types
and contexts of λSEC.

In addition to the standard introduction and elimination constructs for unit,
products and sums in STLC, λSEC uses the constructs return, let and up for the
security monad S l τ , which mirrors S from SecLib. Note that our presentation
favours let, as in Moggi (1989), over the Haskell bind (≫=), although both
presentations are equivalent—i.e. t ≫= λ x .u can be encoded as let x = t in u.

The typing rules for return and let, shown in Figure D.2, ensure that compu-
tations over labelled values in the security monad S l τ do not leak sensitive
data. The construct return allows the programmer to tag a value of type τ with
security label l; and bind enforces that sequences of computations over labelled
values stay at the same security level.

Further, the calculus models the up combinator in SecLib as the construct
up. Its purpose is to relabel computations to higher security levels. The rule
Up, shown in Figure D.2, statically enforces that information can only flow
from lL to lH in agreement with the security policy lL ⊑ lH. The rest of the
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Label l , lH , lL
Context Γ ∆ Σ ::= ∅ | Γ , x : τ

Type τ τ1 τ2 ::= τ1 ⇒ τ2 | ι | ()
| τ1 + τ2 | τ1 × τ2
| S l τ

Term t s u ::= x | λ x . t | t s | ()
| < t , s > | fst t | snd t
| left t | right t
| case t (left x1 → s) (right x2 → u)
| return t | let x = t in u | up t

Figure D.1.: The λSEC calculus

Γ ⊢ t : τ

Return
Γ ⊢ t : τ

Γ ⊢ return t : S l τ

Up
Γ ⊢ t : S lL τ lL ⊑ lH

Γ ⊢ up t : S lH τ

Let
Γ ⊢ t : S l τ1 Γ , x : τ1 ⊢ s : S l τ2

Γ ⊢ let x = t in s : S l τ2

Figure D.2.: Type system of λSEC (excerpts)

typing rules for λSEC are standard (Pierce 2002), and thus omitted here. For a
full account we refer the reader to our Agda formalization.

For completeness, the function example from earlier can be encoded in the
λSEC calculus as follows:3

example = λ s .up (let b = s in return (not b))

Static Semantics The static semantics of λSEC is defined as a set of equations
relating terms of the same type typed under the same environment. The equa-
tions characterize pairs of λSEC terms that are equivalent based on β-reduction,

3In λSEC, the type Bool is encoded as () + () with false = left () and true = right ().
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D.2. The λSEC Calculus

η-expansion and other monadic operations. We present the equations for return
and let constructs of the monadic type S (à la Moggi (1991)) in Figure D.3,
and further extend this with equations for the up primitive in Figure D.4. The
remaining equations—including β and η rules for other types, and permutation
rules for commuting case conversions—are fairly standard (Lindley 2005; Abel
and Sattler 2019), and can be found in the Agda formalization. As customary,
we use the notation t1 [x/t2] for capture-avoiding substitution of the term t2
for variable x in term t1.

Γ ⊢ t1 ≈ t2 : τ

β-S
Γ ⊢ t1 : τ Γ , x : τ ⊢ t2 : S l τ

Γ ⊢ let x = (return t1) in t2 ≈ t2 [x/t1] : S l τ

η-S
Γ ⊢ t : S l τ

Γ ⊢ t ≈ let x = t in (return x) : S l τ

γ-S
Γ ⊢ t1 : S l τ1 Γ , x : τ1 ⊢ t2 : S l τ2 Γ , x : τ1 , y : τ2 ⊢ t3 : S l τ3

Γ ⊢ let x = (let y = t1 in t2) in t3 ≈ let y = t1 in (let x = t2 in t3) : S l τ3

Figure D.3.: Static semantics of λSEC (return and let)

The up primitive induces equations regarding its interaction with itself and
other constructs in the security monad. In Figure D.4, we make the auxiliary
condition of up and the label of return explicit using subscripts for better clarity.
These equations can be understood as follows:

• Rule δ1-S. applying up over let is equivalent to distributing it over the
subterms of let.

• Rule δ2-S. applying up on an term labelled as return t is equivalent to
relabelling t with the final label.

• Rule δtrans-S. applying up twice is equivalent to applying it once using
the transitivity of the relation ⊑.

• Rule δrefl-S. applying up using the reflexive relation l ⊑ l is equivalent
to not applying it.
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D. Simple Noninterference by Normalization

Γ ⊢ t1 ≈ t2 : τ

δ1-S
Γ ⊢ t : S lL τ1 Γ , x : τ1 ⊢ u : S lL τ2 p : lL ⊑ lH

Γ ⊢ upp (let x = t in u) ≈ let x = (upp t) in (upp u) : S lH τ

δ2-S
Γ ⊢ t : τ p : lL ⊑ lH

Γ ⊢ upp (returnL t) ≈ returnH t : S lH τ

δtrans-S
Γ ⊢ t : S lL τ p : lL ⊑ lM q : lM ⊑ lH r = trans-⊑ p q

Γ ⊢ upq (upp t) ≈ upr t : S lH τ

δrefl-S
Γ ⊢ t : S l τ p : l ⊑ l

Γ ⊢ upp t ≈ t : S l τ

Figure D.4.: Static semantics of λSEC (up)

D.3. Normal Forms of λSEC

As discussed in Section D.1, our proof of noninterference utilizes syntactic
properties of normal forms, and hence relies on normalizing terms in the
language. Normal forms are a restricted subset of terms in the λSEC calculus
which intuitively corresponds to terms that cannot be normalized further. The
syntax of normal forms is defined using two well-typed interdependent syntactic
categories: neutral forms as Γ ⊢ne t : τ (Figure D.5) and normal forms as
Γ ⊢nf t : τ (Figure D.6). Neutral forms are a special case of normal forms
which depend entirely on the typing context (e.g. a variable).

Since the definition of neutral and normal forms are merely a syntactic
restriction over terms, they can be embedded back into terms of λSEC using a
quotation function ⌜ n ⌝. This embedding can be implemented for neutrals and
normal forms by simply mapping them to their term counterparts.

Neutral Forms The neutral forms are terms which are characterized by a
property called neutrality, which is stated as follows:

Property D.3.1 (Neutrality). For a given neutral form of type Γ ⊢ne τ ,
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Γ ⊢ne t : τ

Var
x : τ ∈ Γ

Γ ⊢ne x : τ

App
Γ ⊢ne t : τ1 ⇒ τ2 Γ ⊢nf s : τ1

Γ ⊢ne t s : τ2

Fst
Γ ⊢ne t : τ1 × τ2

Γ ⊢ne fst t : τ1

Snd
Γ ⊢ne t : τ1 × τ2

Γ ⊢ne snd t : τ2

Figure D.5.: Neutral forms

neutrality states that the type τ must occur as a subformula of a type in the
context Γ.

For instance, given a neutral form Γ ⊢ne n : Bool, neutrality states that the
type Bool must occur as a subformula of some type in the typing context Γ.
An example of such a context is Γ = [x : () ⇒ Bool , y : S lH ι]. The notion
of a subformula, originally defined for logical propositional formulas in proof
theory (Troelstra and Schwichtenberg 2000), can also be defined for types as
follows:

Definition D.3.1 (Subformula). For some types τ , τ1 and τ2; a subformula of
a type is defined as:

• τ is a subformula of τ

• τ is a subformula of τ1 ⊗ τ2 if τ is a subformula of τ1 or τ is a subformula
of τ2, where ⊗ denotes the binary type operators × , + and ⇒.

The type Bool occurs as a subformula in the typing context [()⇒ Bool , S lH ι]
since the type Bool is a subformula of the type () ⇒ Bool. Note, however,
that the type ι does not occur as a subformula in this context since ι is not a
subformula of the type S lH ι by the above definition.

Normal Forms Intuitively, normal forms of type Γ ⊢nf τ are characterized as
terms of type Γ ⊢ τ that cannot be reduced further using the static semantics.
Precisely, a normal form is a term obtained by systematically applying the
equations defined by the relation ≈ in a specific order to a given term. We
leave the exact order of applying the equations unspecified since we only
require that there exists a normal form for every term—we prove this later in
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Γ ⊢nf t : τ

Unit

Γ ⊢nf () : ()

Lam
Γ , x : τ1 ⊢nf t : τ2

Γ ⊢nf λ x . t : τ1 ⇒ τ2

Base
Γ ⊢ne t : ι

Γ ⊢nf t : ι

Ret
Γ ⊢nf t : τ

Γ ⊢nf return t : S l τ

LetUp
lL ⊑ lH Γ ⊢ne t : S lL τ1 Γ , x : τ1 ⊢nf s : S lH τ2

Γ ⊢nf let↑ x = t in s : S lH τ2

Left
Γ ⊢nf t : τ1

Γ ⊢nf left t : τ1 + τ2

Right
Γ ⊢nf t : τ2

Γ ⊢nf right t : τ1 + τ2

Case
Γ ⊢ne t : τ1 + τ2 Γ , x1 : τ1 ⊢nf t1 : τ Γ , x2 : τ2 ⊢nf t2 : τ

Γ ⊢nf case t (left x1 → t1) (right x2 → t2) : τ

Figure D.6.: Normal forms
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Section D.5. The normal forms in Figure D.6 extend the β-short η-long forms
in simply-typed λ-calculus (STLC) (Balat et al. 2004; Abel and Sattler 2019)
with return and let↑. Note that, unlike neutrals, arbitrary normal forms do not
obey neutrality since they may also construct values which do not occur in the
context. For example, the normal form left () (which denotes the value false)
of type ∅ ⊢nf Bool constructs a value of the type Bool in the empty context ∅.

The reader may have noticed that the let↑ construct in normal forms does
not directly resemble a term, and hence it is not immediately obvious how it
should be quoted. Normal forms constructed by let↑ can be quoted by first
applying up to the quotation of the neutral and then using let. The reason let↑
represents both let and up in the normal forms is to prevent reducibility of the
normal forms. Had we added up separately to normal forms, then this may
trigger further reductions. For example, the term up (return ()) can be reduced
further to the term return (). Disallowing up-terms directly in normal forms
removes the possibility of this reduction in normal forms. Similarly, adding up
to neutral forms is also equally worse since it breaks neutrality.

The syntactic characterization of neutral and normal forms provides us with
useful properties in the proof of noninterference. For example, there cannot
exist a neutral of type ∅ ⊢ne τ for any type τ . By neutrality, if such a neutral
form exists, then τ must be a subformula of the empty context ∅, but this is
impossible! Similarly, the η-long form of normal forms guarantee that a normal
form of a function type must begin with either a λ or case—hence reducing
the number of possible cases in our proof. In the next section, we utilize these
properties to show that the program f (from earlier) behaves as a constant.

D.4. Normal Forms and Noninterference

The program f : IntH → BoolL from Section D.1 can be generalized in λSEC as
a term4 ∅ ⊢ f : S lH τ ⇒ S lL Bool marking the secret input and public output
through the security monad. Noninterference for this term—which Russo et al.
(2008) refer to as a “noninterference-like” property for λSEC—states that given
two levels lL (public) and lH (secret) such that the flow of information from
secret to public is disallowed as lH ̸⊑ lL; for any two possibly different secrets
s1 and s2, applying f to s1 is equivalent to applying it to s2. In other words, it
states that varying the secret input must not interfere with the public output.

As explained before, for ∅ ⊢ f : S lH τ ⇒ S lL Bool to satisfy noninterference,
it must be equivalent to the constant function whose body is return true or

4
λSEC does not have polymorphic types, in this case τ represents an arbitrary but concrete
type, for instance unit ().
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return false independent of the input. For an arbitrary program f it is not
possible to conclude so just from case analysis—as programs may be fairly
complex—however, for normal forms of the same type it is possible. In the
Lemma below, we materialize this intuition:

Lemma D.4.1 (Normal forms of f are constant). For any normal form ∅ ⊢nf
f : S lH τ ⇒ S lL Bool, either f ≡ λ x .(return true) or f ≡ λ x .(return false)

Note that the equality relation ≡ denotes syntactic (or propositional) equality,
which means that the normal forms on both sides must be syntactically identical.
The proof follows by direct case analysis on the normal forms of type ∅ ⊢nf
f : S lH τ ⇒ S lL Bool:

Proof of Lemma D.4.1. Upon closer inspection of the normal forms of λSEC (Fig-
ure D.6), the reader may notice that at function type ∅ ⊢nf S lH τ ⇒ S lL Bool
there exists only two possibilities: a case or a λ construct. The former, can
be easily dismissed by neutrality because it requires the scrutinee—a neutral
form of sum type τ1 + τ2—to appear in the empty context. In the latter
case, the λ construct extends typing context of the body with the type of the
argument, and thus refines the normal form to have the shape λ x . where
∅ , x : S lH τ ⊢nf : S lL Bool.

Considering the normal forms of type ∅ , x : S lH τ ⊢nf S lL Bool, we realize
that there are only three possible candidates: the case construct again, the
monadic return or let. As before, case is discharged because it requires the
scrutinee of sum type to occur in the context ∅ , x : S lH τ . Analogously, the
monadic let with a neutral term of type S lL τ , expects this type to occur in
the same context—but it does not, since S lL τ is not a subformula of S lH τ .
The remaining case, return, can be further refined, where the only possibilities
leave us with λ x .(return true) or λ x .(return false).

In order to show that noninterference holds for arbitrary programs of type ∅ ⊢
f : S lH τ ⇒ S lL Bool using this lemma, we must link the behaviour of a program
with that of its normal form. In the next section we develop the necessary
normalization machinery and later complete the proof of noninterference in
Section D.6.

D.5. From λSEC to Normal Forms
The goal of this section is to implement a normalization algorithm that bridges
the gap between terms and their normal forms. For this purpose, we employ
Normalization by Evaluation (NbE).
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Normalization based on rewriting techniques (Pierce 2002) perform syntactic
transformations of a term to produce a normal form. NbE, on the other hand,
normalizes a term by evaluating it in a host language, and then extracting a
normal form from the (semantic) value in the host language. Evaluation of
a term is implemented by an interpreter function eval, and the extraction of
normal forms, called reification, is implemented by an inverse function reify.
Normalization is implemented as a function from terms to normal forms by
composing these functions:

norm : (Γ ⊢ τ) → (Γ ⊢nf τ)
norm t = reify (eval t)

The function eval and reify have the following types in the host language:

eval : (Γ ⊢ τ) → (J Γ K → J τ K)
reify : (J Γ K → J τ K) → (Γ ⊢nf τ)

In these types, the function J K interprets types and contexts in λSEC as types
in the host language. That is, the type J τ K denotes the interpretation of the
(λSEC) type τ in the host language, and similarly for J Γ K. On the other hand,
the function J Γ K → J τ K—a function between the interpretations in the host
language—denotes the interpretation of the term Γ ⊢ τ .

The advantages of using NbE over a rewrite system are two-fold: first, it
serves as an actual implementation of the normalization algorithm; second, and
most importantly, when implemented in a proof system like Agda, it makes
normalization amenable to formal reasoning. For example, since Agda ensures
that all functions are total, we are assured that a normal form must exist for
every term in λSEC. Similarly, we also get a proof that normalization terminates
for free since Agda ensures that all functions are terminating.

We implement the functions eval and reify for terms in λSEC using Agda as the
host language. Note that, however, the implementation of our algorithm—and
NbE in general—is not specific to Agda. It may also be implemented in other
programming languages such as Haskell (Danvy et al. 2001) or Standard
ML (Balat et al. 2004).

In the remainder of this section, we will denote the typing derivations Γ ⊢nf τ
and Γ ⊢ne τ as Nf τ and Ne τ respectively. We leave the context Γ implicit to
avoid the clutter caused by contexts and their weakenings (Altenkirch et al.
1995; McBride 2018). Similarly, we will represent variables of type τ ∈ Γ as
Var τ , leaving Γ implicit. Although we use de Bruijn indices in the actual
implementation of variables, we will continue to use named variables here to
ease presentation. We encourage the curious reader to see the formalization in
Agda for further details.
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D.5.1. NbE for Simple Types
To begin with, we implement evaluation and reification for the types ι, (), ×
and ⇒. The implementation for sums is more technical, and hence deferred to
Appendix D.I. Note that the implementation of NbE for simple types is entirely
standard (Altenkirch et al. 1995; Balat et al. 2004). Their interpretation as
Agda types is defined as follows:

J ι K = Nf ι
J () K = ⊤
J τ1 × τ2 K = J τ1 K × J τ2 K
J τ1 ⇒ τ2 K = J τ1 K → J τ2 K

The types (), × and ⇒ are simply interpreted as their counterparts in Agda.
For the base type ι, however, we cannot provide a counterpart in Agda since
we do not know anything about this type. Instead, since the type ι is not
constructed or eliminated by any specific construct in λSEC, we simply require a
normal form as an evidence for producing a value of type ι—and thus interpret
it as Nf ι.

Typing contexts map variables to types, and hence their interpretation is
an execution environment (or equivalently, a semantic substitution) defined
like-wise:

J ∅ K = ∅
J Γ , x : τ1 K = J Γ K [ Var τ1 7→ J τ1 K ]

For example, a value γ which inhabits the interpretation J Γ K denotes the
execution environment for evaluating a term typed in the context Γ.

Given these definitions, evaluation is implemented as a straightforward
interpreter function:

eval x γ = lookup x γ
eval () γ = tt
eval (fst t) γ = π1 (eval t γ)
eval (snd t) γ = π2 (eval t γ)
eval (< t1 , t2 >) γ = (eval t1 γ , eval t2 γ)
eval (λ x . t) γ = λ v → eval t (γ [x 7→ v])
eval (t s) γ = (eval t γ) (eval s γ)

Note that γ is an execution environment for the term’s context; lookup, π1 and
π2 are Agda functions; and tt is the constructor of the unit type ⊤. For the
case of λ x . t, evaluation is expected to return an equivalent semantic function.
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We compute the body of this function by evaluating the body term t using
the substitution γ extended with a mapping which assigns the value v to the
variable x—denoted γ [x 7→ v].

Reification, on the other hand, is implemented using two helper functions
reflect and reifyVal. The function reflect converts neutral forms to semantic
values, while the dual function reifyVal converts semantic values to normal
forms. These functions are implemented as follows:

reifyVal : J τ K → Nf τ
reifyVal {ι} n = n
reifyVal {()} tt = ()
reifyVal {τ1 × τ2} p =

< reifyVal {τ1} (π1 p) , reifyVal {τ2} (π1 p) >
reifyVal {τ1 ⇒ τ2} f =

λ x . reifyVal {τ2} (f (reflect {τ1} x)) | fresh x

reflect : Ne τ → J τ K
reflect {ι} n = n
reflect {()} n = tt
reflect {τ1 × τ2} n =

(reflect {τ1} (fst n) , reflect {τ2} (snd n))
reflect {τ1 ⇒ τ2} n =

λ v → reflect {τ2} (n (reifyVal {τ1} v))

Note that the argument inside the braces { } denotes an implicit parameter,
which is the type of the corresponding neutral/value argument of reflect/reifyVal
here.

Reflection is implemented by performing a type-directed translation of neutral
forms to semantic values by induction on types. The interpretation of types,
defined earlier, guides our implementation. For example, reflection of a neutral
with a function type must produce a function value since the type ⇒ is
interpreted as an Agda function. For this purpose, we are given the argument
value in the semantics and it remains to construct a function body of the
appropriate type. We produce the body of this function by recursively reflecting
a neutral application of the function and (the reification of) the argument value.
The function reifyVal is also implemented in a similar fashion by induction on
types.

To implement reification, recollect that the argument to reify is a function
that results from partially applying the eval function with a term. If the term
has type Γ ⊢ τ , then the argument, say f , must have the type J Γ K → J τ K.
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Thus, to apply f , we need an execution environment of the type J Γ K. This
environment can be generated by simply reflecting the variables in the context
as follows:

genEnv : (Γ : Ctx) → J Γ K
genEnv ∅ = ∅
genEnv (Γ , x : τ) = genEnv Γ [ x 7→ reflect x ]

Finally, we can now implement reify as follows:

reify {Γ} f = let γ = genEnv Γ in reifyVal (f γ)

We generate an environment γ to apply the semantic function f , and then
convert the resulting semantic value to a normal form by applying reifyVal.

D.5.2. NbE for the Security Monad

To interpret a type S l τ , we need a semantic counterpart in the host language
which is also a monad. Suppose that we define such a monad as an inductive
data type T parameterized by a label l and some type a (which would be
J τ K in this case). Evidently this monad must allow the implementation of the
semantic counterparts of the terms return, let and up in λSEC as follows:

return : a → T l a
bind : T l a → (a → T l b) → T l b
up : (lL ⊑ lH) → T lL a → T lH a

To satisfy this specification, we define the data type T in Agda with the
following constructors:

Return
x : a

return x : T l a

BindN
p : lL ⊑ lH n : Ne S lL τ f : Var τ → T lH a

bindNe p n f : T lH a

The constructor return returns a semantic value in the monad, while bindNe
registers a binding of a neutral to monadic value. These constructors are the
semantic equivalent of return and let↑ in the normal forms, respectively. The
constructor bindNe is more general than the required function bind in order to
allow the definition of up, which is defined by induction as follows:

up p (return v) =
return v
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up p (bindNe q n f ) =
bindNe (trans q p) n (λ x → up p (f x))

To understand this implementation, suppose that p : lM ⊑ lH for some labels lM
and lH. A monadic value of type T lM a which is constructed by a return can
be simply relabelled to T lH a since return can be used to construct a monadic
value on any label. For the case of bindNe q n f , we have that q : lL ⊑ lM and
n : Ne S lL τ1, hence lL ⊑ lH by transitivity, and we may simply use bindNe
to register n and recursively apply up on the continuation f to produce the
desired result of type T lH a.

Using the type T in the host language, we may now interpret the monad in
λSEC as follows:

J S l τ K = T l J τ K

Having mirrored the monadic primitives in λSEC using semantic counterparts,
evaluation is rather simple:

eval (return t) γ = return (eval t γ)
eval (up p t) γ = up p (eval t γ)
eval (let x = t in s) γ =

bind (eval t γ) (λ v → eval s (γ [x 7→ v]))

For implementing reflection, we can use bindNe to register a neutral binding
and recursively reflect the given variable:

reflect {S l τ } n =
bindNe refl n (λ x → return (reflect {τ } x))

Since we do not need to increase the sensitivity of the neutral to bind it here,
we simply provide the “reflexive flow” refl : l ⊑ l.

The function reifyVal, on the other hand, is rather straightforward since the
constructors of T are essentially semantic counterparts of the normal forms,
and can hence be translated to it:

reifyVal {S l τ } (return v) =
return (reifyVal {τ } v)

reifyVal {S l τ } (bindNe {p} n f ) =
let↑ {p} x = n in reifyVal {τ } (f x)
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D.5.3. Preservation of Semantics

To prove that normalization preserves static semantics of λSEC, we must show
that the normal form of term is equivalent to the term. Since normal forms and
terms belong to different syntactic categories, we must first quote normal forms
to state this relationship using the term equivalence relation≈. This property,
called consistency of normal forms, is stated as follows:

Theorem D.5.1 (Consistency of normal forms). For any term Γ ⊢ t : τ we
have that Γ ⊢ t ≈ ⌜ norm t ⌝ : τ

An attempt to prove consistency by induction on the terms or types fails
quickly since the induction principle alone is not strong enough to prove this
theorem. To solve this issue we must establish a notion of equivalence between
a term and its interpretation using logical relations (Plotkin 1980). Using
these relations, we can prove that evaluation is consistent by showing that it is
related to applying a substitution in the syntax. Following this, we can also
prove the consistency of reification by showing that reifying a value related
to a term, yields a normal form which is equivalent to the term when quoted.
The consistency of evaluation and reification yields the proof of consistency for
normal forms.

This proof follows the style of the consistency proof of NbE for STLC using
Kripke logical relations by Coquand (1993). As is the case for sums, NbE for
the security monad uses an inductively defined data type to implement the
semantic monad. Hence, we are able to leverage the proof techniques used to
prove the consistency of NbE for sums (Valliappan and Russo 2019) to prove
the same for the security monad. We skip the details of the proof here, but
encourage the curious reader to see the Agda mechanization of this theorem.

D.6. Noninterference for λSEC

After developing the necessary machinery to normalize terms in the calculus,
we are ready to state and prove noninterference for λSEC. First, we complete
the proof of noninterference for the program f from Section D.4.

D.6.1. Special Case of Noninterference

Theorem D.6.1 (Noninterference for f ). Given security levels lL and lH such
that lH ̸⊑ lL and a function ∅ ⊢ f : S lH τ ⇒ S lL Bool then ∀ s1 s2 : S lH τ .
f s1 ≈ f s2
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The proof of Theorem D.6.1 relies upon two key ingredients: Lemma D.4.1
(Section D.4), which characterizes the shape of the normal forms of f ; and
consistency of normal forms, Theorem D.5.1 (Section D.5.3), which links the
semantics of f with that of its normal forms.

Proof of Theorem D.6.1. To show that a function ∅ ⊢ f : S lH τ ⇒ S lL Bool
is equivalent when applied to two different secret inputs s1 and s2, first, we
instantiate Lemma D.4.1 with the normal form of f , denoted by norm f . In
this manner, we obtain that the normal forms of f are exactly the constant
function that returns true or false wrapped in the return. In the former case,
by correctness of normalization we have that f ≈ ⌜ norm f ⌝ ≈ λ x . return true.
By β-reduction and congruence of term-level function application, we have that
∀ t. (λ x . return true) t ≈ return true. Therefore, f s1 ≈ f s2. The case when
norm f ≡ λ x . return false follows a similar argument.

The noninterference property proven above characterizes what it means for a
concrete class of programs, i.e. those of type ∅ ⊢ f : S lH τ ⇒ S lL Bool, to be
secure: the attacker cannot even learn one bit of the secret from using program
f . Albeit interesting, this property does not scale to more complex programs;
for instance if the function f was typed in a non empty context the proof of the
above lemma would not hold. The rest of this section is dedicated to generalize
and prove noninterference from the program f to arbitrary programs written in
λSEC. As will become clear, normal forms of λSEC play a crucial role towards
proving noninterference.

D.6.2. General Noninterference Theorem
In order to discuss general noninterference for λSEC, we must first specify
what are the secret (lH) inputs of a program and its public (lL) output with
respect to an attacker at level lL. The attacker can only learn information of a
program by running it with different secret inputs and then observing its public
output. Because the attacker can only observe outputs at their security level,
we restrict the security condition to only consider programs where outputs are
fully observable, i.e. transparent and ground, to the attacker.

Definition D.6.1 (Transparent type).

• () is transparent at any level l.

• ι is transparent at any level l.

• τ1 ⇒ τ2 is transparent at l iff τ2 is transparent at l.
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• τ1 + τ2 is transparent at l iff τ1 and τ2 are transparent at l.

• τ1 × τ2 is transparent at l iff τ1 and τ2 are transparent at l.

• S l ′ τ is transparent at l iff l ′ ⊑ l and τ is transparent at l.

Definition D.6.2 (Ground type).

• () is ground.

• ι is ground.

• τ1 + τ2 is ground iff τ1 and τ2 are ground.

• τ1 × τ2 is ground iff τ1 and τ2 are ground.

• S l τ is ground iff τ is ground.

A type τ is transparent at security level lL if the type does not include the
security monad type over a higher security level lH. A ground type, on the other
hand, is a first order type, i.e. a type that does not contain a function type.
These simplifying restrictions over the output type of a program allow us to
state a generic noninterference property over terms and perform induction on
the normal forms.

These restrictions do not hinder the generality of our security condition:
a program producing a partially public output, for instance of product type
S lL Bool × S lH Bool, can be transformed to produce a fully public output by
applying the snd projection. We return to this example later at the end of the
section. Also note that previous work on proving noninterference for static
IFC languages (Abadi et al. 1999; Miyamoto and Igarashi 2004) impose similar
restrictions.

Departing from the traditional view of programs as closed terms, i.e. terms
without free variables, in the λSEC calculus we consider all terms for which
a typing derivation exists. This includes terms that contain free variables—
unknowns—typed by the context, which we identify as the program inputs.
Note that open terms are more general since they can always be closed as a
function by abstracting over the free variables.

Now, we state what it means for a context to be secret at level l. These
definitions, dubbed l-sensitivity, force the types appearing in the context to be
at least as sensitive as l.

Definition D.6.3 (Context sensitivity).
A context Γ is l-sensitive if and only if for all types τ ∈ Γ, τ is l-sensitive. A

type τ is l-sensitive, on the other hand, if and only if:
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• τ is the function type τ1 ⇒ τ2 and τ2 is l-sensitive.

• τ is the product type τ1 × τ2 and τ1 and τ2 are l-sensitive.

• τ is the monadic type S l ′ τ1 and l ⊑ l ′.
Next, we define substitutions5, which lay at the core of β-reduction rules in

the λSEC calculus. Substitutions map free variables in a term to other terms
possibly typed in a different context.

Substitution σ ::= σ∅ | σ [x 7→ t]

Γ ⊢sub σ : ∆

(121)
Γ ⊢sub σ : ∆ Γ ⊢ t : τ

Γ ⊢sub σ [ x 7→ t ] : ∆ , x : τ

(122)

Γ ⊢sub σ∅ : ∅

Figure D.7.: Substitutions for λSEC

A substitution is either empty, σ∅, or is the substitution σ extended with a
new mapping from the variable x : τ to term t. We denote t [ σ ] the application
of substitution σ to term t. Its definition is standard by induction on the term
structure, thus we omit it here and refer the reader to the Agda formalization.

Substitutions, in general, provide a mix of terms of secret and public type to
fill the variables in the context Γ of a program. However, for noninterference
we need to fix the public part of the substitution and allow the secret part
to vary. We do so by splitting a substitution σ into the composition of a
public substitution, Γ ⊢sub σlL : ∆, that fixes the public inputs, and a secret
substitution ∆ ⊢sub σlH : Σ, that restricts ∆ to be lH-sensitive. The composition
of both, denoted Γ ⊢sub (σlL ; σlH) : Σ, maps variables in context Γ to terms
typed in Σ: first, σlL maps variables from Γ to terms in ∆, subsequently, σlH
maps variables in ∆ to terms typed in Σ. Below, we state lL-equivalence of
substitutions:
Definition D.6.4 (Low equivalence of substitutions).

Two substitutions σ1 and σ2 are lL-equivalent , written σ1 ≈lL σ2, if and
only if for all lH such that lH ̸⊑ lL, there exists a public substitution σlL , and
two secret substitutions σ1

lH and σ2
lH , such that σ1 ≡ σlL ; σ1

lH and σ2 ≡ σlL ; σ2
lH

5In Section D.2 we purposely left capture-avoiding substitutions underspecified, we amend
that here.
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Informally, noninterference for λSEC states that applying two low equivalent
substitutions to an arbitrary term whose type is ground and transparent yields
two equivalent programs. As previously explained, intuitively a program satisfies
such property if it is equivalent to a constant program: i.e. a program where the
output does not depend on the input—in this case the variables in the typing
context. As in Section D.4, instead of defining and proving this on arbitrary
terms, we achieve this using normal forms.

Constant Terms and Normal Forms We prove the noninterference theorem
by showing that terms of a type at level lL, typed in a lH-sensitive context, must
be constant. We achieve this in turn by showing that the normal forms of such
terms are constant. Below, we state when a term is constant:

Definition D.6.5 (Constant term).
A term Γ ⊢ t : τ is said to be constant if, for any two substitutions σ1 and

σ2, we have that t [ σ1 ] ≈ t [ σ2 ].

Similarly, we must define what it means for a normal form to be constant.
However, we cannot state this for normal forms directly using substitutions
since the result of applying a substitution to a normal form may not be a normal
form. For example, the result of substituting the variable x in the normal form
x : ι⇒ ι , y : ι ⊢nf x y : ι by the identity function is not a normal form—and
cannot be derived syntactically as a normal form using ⊢nf . Instead, we lean
on the shape of the context to state the property.

If a normal form Γ ⊢nf n : τ is constant, then there must exist a syntactically
identical derivation ∅ ⊢nf n′ : τ such that n ≡ n′. However, since n and n′

are typed in different contexts, Γ and ∅, it is not possible to compare them
for syntactic equality. We solve this problem by renaming the normal form
n′ to add as many variables as mentioned in context Γ. The signature of the
renaming function is the following:

ren : {Γ ⩽ ∆} → (Γ ⊢nf τ) → (∆ ⊢nf τ)

The relation ⩽ between contexts Γ and ∆ indicates that the variables appearing
in ∆ are at least those present in Γ. This relation, called weakening, is defined
as follows:

• ∅ ⩽ ∅

• If Γ ⩽ ∆, then Γ ⩽ ∆ , x : τ

• If Γ ⩽ ∆, then Γ , x : τ ⩽ ∆ , x : τ
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The function ren can be defined by simple induction on the derivation of the
normal forms. Note that terms can also be renamed in the same fashion.

Definition D.6.6 (Constant normal form). A normal form Γ ⊢nf n : τ is
constant if there exists a normal form ∅ ⊢nf n′ : τ such that ren (n′) ≡ n.

Further, we need a lemma showing that if a term is constant, then so is its
normal form.

Lemma D.6.1 (Constant plumbing lemma). If the normal form n of a term
Γ ⊢ t : τ is constant, then so is t.

The proof follows by induction on the normal forms:

Proof of Lemma D.6.1. If n is constant, then there must exist a normal form
∅ ⊢nf n′ : τ such that ren (n′) ≡ n. Let the quotation of this normal form
⌜ n′ ⌝ be some term ∅ ⊢ t ′ : τ . Recall from earlier that terms can also be
renamed, hence we have ren (t ′) ≈ ren (⌜ n′ ⌝) by correctness of n′. Since it
can be shown that ren (⌜ n′ ⌝) ≡ ⌜ ren (n′) ⌝, we have that ren (⌜ n′ ⌝) ≡ ⌜ n ⌝,
and by correctness of n, we also have ren (t ′) ≈ t — (1).

A substitution σ maps free variables in a term to terms. The empty substi-
tution, denoted σ∅, is the unique substitution, such that ∆ ⊢ t ′ [ σ∅ ] : τ for
any ∆. That is, applying the empty substitution simply renames the term. We
can show that t ′ [ σ∅ ] ≡ ren (t ′), and hence, by (1), we have t ′ [ σ∅ ] ≈ t — (2).
Since σ∅ renames a term typed in the empty context, we can show that for any
substitution σ, we have (t ′ [ σ∅ ]) [ σ ] ≈ t ′ [ σ∅ ]. Because σ∅ is also unique,
for any two substitutions σ1 and σ2, we have (t ′ [ σ∅ ]) [ σ1 ] ≈ (t ′ [ σ∅ ]) [ σ2 ]
by transitivity of ≈ . As a result, from (2), we achieve the desired result,
t [ σ1 ] ≈ t [ σ2 ], therefore t must be constant.

The key insight of our noninterference proof is reflected in the following
lemma which shows how normal forms of λSEC typed in a sensitive context
are either constant or the flow between the security level of the context and
the output type is permitted. Below we include the proof to showcase how it
follows by straightforward induction on the shape of the normal forms.

Lemma D.6.2 (Normal forms do not leak). Given a normal form Γ ⊢nf n : τ ,
where the context Γ is li-sensitive, and τ is a ground and transparent type at
level lo, then either n is constant or li ⊑ lo.

Proof. By induction on the structure of the normal form n. Note that λ and
case normal forms need not be considered since the preconditions ensure that
τ cannot be a function type (dismisses λ), and Γ cannot contain a variable of a
sum type (dismisses case).
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• Case 1 (Γ ⊢nf () : ()). The normal form () is constant.

• Case 2 (Γ ⊢nf n : ι). In this case, we are given the neutral n by the [Base]
rule in Figure D.6. It can be shown by induction that for all neutrals of
type Γ ⊢ne τ , if Γ is li-sensitive and τ is transparent at lo, then li ⊑ lo.
Hence, n gives us that li ⊑ lo.

• Case 3 (Γ ⊢nf return n : S l τ). By applying the induction hypothesis
on the normal form n, we have that n is either constant or li ⊑ lo. In
the latter case, we are done since we already have li ⊑ lo. In the former
case, there exists a normal form n′ such that ren (n′) ≡ n. By congruence
of the relation ≡, we get that return (ren (n′)) ≡ return n. Note that the
function ren is defined as ren (return n′) ≡ return (ren n′), and hence by
transitivity of ≡, we have that
ren (return (n′)) ≡ return n. Thus, the normal form return n is also
constant.

• Case 4 (Γ ⊢nf let↑ x = n in m : S l2 τ2). For this case, we have a neutral
Γ ⊢ne n : S l1 τ1 such that l1 ⊑ l2, by the [LetUp] rule in Figure D.6.
Similar to case 2, we have that li ⊑ l1 from the neutral n. Hence, li ⊑ l2
by transitivity of the relation ⊑. Additionally, since S l2 τ is transparent
at lo, it must be the case that l2 ⊑ lo by definition of transparency.
Therefore, once again by transitivity, we have li ⊑ lo.

• Case 5 (Γ ⊢nf left n : τ1 + τ2). Similar to return.

• Case 6 (Γ ⊢nf right n : τ1 + τ2). Similar to return.

The last step to noninterference is an ancillary lemma which shows that
terms typed in lH-sensitive contexts are constant:

Lemma D.6.3. Given a term Γ ⊢ t : τ , where the context Γ is lH-sensitive,
and τ is a ground type transparent at lL. If lH ̸⊑ lL, then t is constant.

The proof follows from Lemmas D.6.2 and D.6.1.
Finally, we are ready to formally state and prove the noninterference property

for programs written in λSEC, which effectively demonstrates that programs do
not leak sensitive information. The proof follows from the previous lemmas,
which characterize the behaviour of programs by the syntactic properties of
their normal forms.
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Theorem D.6.2 (Noninterference for λSEC). Given security levels lL and lH
such that lH ̸⊑ lL; an attacker at level lL; two lL-equivalent substitutions σ1 and
σ2 such that σ1 ≈lL σ2; and a type τ that is ground and transparent at lL; then
for any term Γ ⊢ t : τ we have that t [ σ1 ] ≈ t [ σ2 ].

Proof of Theorem D.6.2. Low equivalence of substitutions σ1 ≈lL σ2 gives that
σ1 = σlL ; σ1

lH and σ2 = σlL ; σ2
lH . After applying the public substitution

σlL to the term Γ ⊢ t : τ , we are left with a term typed in a lH-sensitive
context ∆, ∆ ⊢ t [ σlL ] : τ . By Lemma D.6.3, t [ σlL ] is constant which
means that (t [ σlL ]) [ σ1

lH ] ≈ (t [ σlL ]) [ σ2
lH ]. By readjusting substitutions

using composition we obtain t ([ σlL ; σ1
lH ]) ≈ t ([ σlL ; σ2

lH ]), which yields
t [ σ1 ] ≈ t [ σ2 ].

D.6.3. Follow-up Example

To conclude this section, we briefly show how to instantiate the theorem of nonin-
terference for λSEC for programs of type ∅ ⊢ t : S lL Bool × S lH Bool⇒ S lL Bool
× S lH Bool, which are the recurring example for explaining noninterference in
the literature (Russo et al. 2008; Bowman and Ahmed 2015). Adapted to the
notion of noninterference based on substitutions, the corollary we aim to prove
is the following:

Corollary D.6.1 (Noninterference for t). Given security levels lL and lH such
that lH ̸⊑ lL and a program x : S lL Bool × S lH Bool ⊢ t : S lL Bool × S lH Bool
then ∀ p : S lL Bool , s1 s2 : S lH Bool. we have that t [ x 7→ (p , s1) ] ≈
t [ x 7→ (p , s2) ].

Because the main noninterference theorem requires the output to be fully
observable by the attacker, we transform t to the desired shape by applying
the snd projection. This is justified because the first component of the output
is protected at level lH, which the attacker cannot observe. Below we prove
noninterference for x : S lL Bool × S lH Bool ⊢ snd t : S lH Bool:

Proof of Corollary D.6.1. To apply Theorem D.6.2 we have to show that both
substitutions are low equivalent, [ x 7→ (p , s1) ] ≈lL [ x 7→ (p , s2) ] The
key idea is that the substitution [ x 7→ (p , s1) ] can be decomposed into a
public substitution σlL ≡ [ x 7→ (p , y) ] and two different secret substitutions
where each replaces the variable y by a different secret, σ1

lH ≡ [ y 7→ s1 ] and
σ2

lH ≡ [ y 7→ s2 ]. Now, the proof follows directly from Theorem D.6.2.
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D.7. Conclusions and Future Work

In this paper we have presented a novel proof of noninterference for the λSEC

calculus (based on Haskell’s IFC library SecLib) using normalization. The
simplicity of the proof relies upon the normal forms of the calculus, which as
opposed to arbitrary terms, are well-principled. To obtain normal forms from
terms, we have implemented normalization using normalization by evaluation
(NbE), and shown that normal forms obey useful syntactic properties such as
neutrality and βη-long form. Most of the auxiliary lemmas and definitions
towards proving noninterference build on these properties. Because normal
forms are well-principled, many cases of the proofs follow directly by structural
induction.

An important difference between our work and previous proofs based on term
erasure is that our proof utilizes the static semantics of the language instead of
the dynamic semantics. Specifically, our proof of noninterference is not tied
to any particular evaluation strategy, such as call-by-name or call-by-value,
assuming the strategy is adequate with respect to the static semantics.

Perhaps the closest to our line of work is the proof of noninterference by
Miyamoto and Igarashi (2004) for a modal lambda calculus using normalization.
The main novelty of our proof is that it works for standard extensions of the
simply typed lambda calculus and does not change the typing rules of the
underlying calculus (as presented and implemented by Russo et al. (2008)).
This makes our proof technique applicable even in the presence of other useful
normalization-preserving extensions of STLC. For example, it should be possible
to extend our proof for λSEC further with exceptions and other computational
effects (à la Moggi (1989)) since our security monad is already an instance of
this. Moreover, our proof relies on syntactic properties of normal forms in an
open typing context since normalization is based on the static semantics of the
language.

In this work we have only considered a calculus which models terminating
computations. This opens up a question of whether our proof technique is
applicable to languages which support general recursion, where computations
need not necessarily terminate. The extensibility of this technique to recursion
relies directly upon the choice of static semantics for normalizing recursion.
For example, it may be possible to extend the proof for λSEC with a fixpoint
combinator by treating it as an uninterpreted constant during normalization.
That is, it may be sufficient to normalize the body of the function by ignoring
the recursive application, because if the body does not leak a secret, then its
recursive call must not either. Since complete normalization is not strictly
needed for our purposes, we believe that our technique can also be extended to
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general recursion.
Our NbE implementation for λSEC extends NbE for Moggi’s computational

metalanguage (Filinski 2001; Lindley 2005) with a family of monads param-
eterized by a preordered set of labels. This resembles the parameterization
of monads by effects specified by a preordered monoid, also known as graded
monads (Wadler and Thiemann 2003; Orchard and Petricek 2014), and thus
indicates the extensibility of our NbE algorithm to calculi with graded monads.
It would be interesting to see if our proof technique can be used to prove
noninterference for static enforcement of IFC using graded monads.

Using static semantics means that our work lays a foundation for static
analysis of noninterference-like security properties. This opens up a plethora
of exciting opportunities for future work. For example, one possibility would
be to use type-directed partial evaluation (Danvy 1998) to simplify programs
and inspect the resulting programs to verify if they violate security properties.
Another arena would be the extension of our proof to more expressive IFC
calculi such as dependency core calculus (DCC) or MAC (Vassena, Russo, et al.
2018). The main challenge here would be to identify the appropriate static
semantics of the language, as they may not always have been designed with
one in mind.
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Appendices
D.I. NbE for Sums

It is tempting to interpret sums component-wise like products and functions as:
J τ1 + τ2 K = J τ1 K ⊎ J τ2 K. However, this interpretation makes it impossible
to implement reflection faithfully: should the reflection of a variable x : τ1 + τ2
be a semantic value of type J τ1 K (left injection) or J τ2 K (right injection)? We
cannot make this decision since the value which substitutes x may be either
of these cases. The standard solution to this issue is to interpret sums using
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decision trees (Abel and Sattler 2019). A decision tree allows us to defer this
decision until more information is available about the injection of the actual
value.

As in the previous case for the monadic type T , a decision tree can be defined
as an inductive data type D parameterized by some type interpretation a with
the following constructors:

Leaf
x : a

leaf x : D a

Branch
n : Ne (τ1 + τ2) f : Var τ1 → D a g : Var τ2 → D a

branch n f g : D a

The leaf constructor constructs a leaf of the tree from a semantic value, while
the branch constructor constructs a tree which represents a suspended decision
over the value of a sum type. The branch constructor is the semantic equivalent
of case in normal forms.

Decision trees allow us to model semantic sum values, and hence allow the
interpretation of the sum type as follows:

J τ1 + τ2 K = D (J τ1 K ⊎ J τ2 K)

We interpret a sum type (in λSEC) as a decision tree which contains a value of
the sum type (in Agda).

As an example, the term false of type Bool, implemented as left (), will be
interpreted as a decision tree leaf (inj1 tt) of type D J Bool K since we know the
exact injection. The Agda constructor inj1 denotes the left injection in Agda,
and inj2 the right injection. For a variable x of type Bool, however, we cannot
interpret it as a leaf since we don’t know the actual injection that may substitute
it. Instead, it is interpreted as a decision tree by branching over the possible
values as branch x (λ → leaf (inj1 tt)) (λ → leaf (inj2 tt))6—which
intuitively represents the following tree:

x : Bool

false true

In light of this interpretation of sums, the implementation of evaluation
for injections is straightforward since we only need to wrap the appropriate
injection inside a leaf:

eval (left t) γ = leaf (inj1 (eval t γ))
eval (right t) γ = leaf (inj2 (eval t γ))

6We ignore the argument (as λ ) here since it has the uninteresting type ()
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For evaluating case however, we must first implement a decision procedure since
case is used to make a choice over sums.

To make a decision over a tree of type D J τ K, we need a function
mkDec : D J τ K → J τ K. It can be implemented by induction on the
type τ using monadic functions fmap and join on trees, which can in turn be
implemented by straightforward structural induction on the tree. Additionally,
we will also need a function which converts a decision over normal forms to a
normal form: convert : D (Nf τ) → Nf τ . The implementation of this function
is made possible by the fact that branch resembles case in normal forms, and
can hence be translated to it. We skip the implementation of these functions
here, but encourage the reader to see the Agda implementation.

Using these definitions, we can now complete evaluation as follows:

eval (case t (left x1 → t1) (right x2 → t2)) γ =
mkDec (fmap match (eval t γ))
where

match : (J τ1 K ⊎ J τ2 K) → J τ K
match (inj1 v) = eval t1 (γ [x1 7→ v])
match (inj2 v) = eval t2 (γ [x2 7→ v])

We first evaluate the term t of type τ1 + τ2 to obtain a tree of type D (J τ1 K ⊎
J τ2 K). Then, we map the function match which eliminates the sum inside the
decision tree to J τ K, to produce a tree of type D J τ K. Finally, we run the
decision procedure mkDec on the resulting decision tree to produce the desired
value of type J τ K.

Reflection for a neutral of a sum type can now be implemented using branch
as follows:

reflect {τ1 + τ2} n =
branch n

(leaf (λ x1 → inj1 (reflect {τ1} x1)))
(leaf (λ x2 → inj2 (reflect {τ2} x2)))

As discussed earlier, we construct the decision tree for neutral n using branch.
The subtrees represent all possible semantic values of n and are constructed by
reflecting the variables x1 and x2.

The function reifyVal, on the other hand, is implemented similar to evaluation
by eliminating the sum value inside the decision tree into normal forms as
follows:

reifyVal {τ1 + τ2} tr = convert (fmap matchNf tr)
where
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matchNf : (J τ1 K + J τ2 K) → Nf (τ1 + τ2)
matchNf (inj1 x) = left (reifyVal {τ1} x)
matchNf (inj2 y) = right (reifyVal {τ2} y)

With this function, we have completed the implementation of NbE for sums.
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Abstract Fitch-style modal lambda calculi enable programming with necessity mo-
dalities in a typed lambda calculus by extending the typing context with a delimiting
operator that is denoted by a lock. The addition of locks simplifies the formulation
of typing rules for calculi that incorporate different modal axioms, but each variant
demands different, tedious and seemingly ad hoc syntactic lemmas to prove normaliza-
tion. In this work, we take a semantic approach to normalization, called normalization
by evaluation (NbE), by leveraging the possible-world semantics of Fitch-style calculi
to yield a more modular approach to normalization. We show that NbE models can
be constructed for calculi that incorporate the K, T and 4 axioms of modal logic, as
suitable instantiations of the possible-world semantics. In addition to existing results
that handle β-equivalence, our normalization result also considers η-equivalence for
these calculi. Our key results have been mechanized in the proof assistant Agda.
Finally, we showcase several consequences of normalization for proving meta-theoretic
properties of Fitch-style calculi as well as programming-language applications based
on different interpretations of the necessity modality.
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E.1. Introduction
In type systems, a modality can be broadly construed as a unary type constructor
with certain properties. Type systems with modalities have found a wide range
of applications in programming languages to specify properties of a program in
its type. In this work, we study typed lambda calculi equipped with a necessity
modality (denoted by □) formulated in the so-called Fitch style.

The necessity modality originates from modal logic, where the most basic
intuitionistic modal logic IK (for “intuitionistic” and “Kripke”) extends intui-
tionistic propositional logic with a unary connective □, the necessitation rule (if
· ⊢ A then Γ ⊢ □A) and the K axiom (□(A⇒B)⇒□A⇒□B). With the addi-
tion of further modal axioms T (□A⇒A) and 4 (□A⇒□□A) to IK, we obtain
richer logics IT (adding axiom T), IK4 (adding axiom 4), and IS4 (adding both
T and 4). Type systems with necessity modalities based on IK and IS4 have
found applications in partial evaluation and staged computation (Davies and
Pfenning 1996; Davies and Pfenning 2001), information-flow control (Miyamoto
and Igarashi 2004), and recovering purity in an effectful language (Choudhury
and Krishnaswami 2020). While type systems based on IT and IK4 do not
seem to have any prior known programming applications, they are nevertheless
interesting as objects of study that extend IK towards IS4.

Fitch-style modal lambda calculi (Borghuis 1994; Clouston 2018; Martini
and Masini 1996) feature necessity modalities in a typed lambda calculus by
extending the typing context with a delimiting “lock” operator (denoted by
µ). In this paper, we consider the family of Fitch-style modal lambda calculi
that correspond to the logics IK, IT, IK4, and IS4. These calculi extend the
simply-typed lambda calculus (STLC) with a type constructor □, along with
introduction and elimination rules for □ types formulated using the µ operator.
For instance, the calculus λIK, which corresponds to the logic IK, extends STLC
with Rules □-Intro and λIK/□-Elim, as summarized in Figure E.1. The rules
for λ-abstraction and function application are formulated in the usual way—but
note the modified variable rule Var!

The equivalence of terms in STLC is extended by Fitch-style calculi with the
following rules for □ types, where the former states the β- (or computational)
equivalence, and the latter states a type-directed η- (or extensional) equivalence.

□-β
unbox (box t) ∼ t

□-η
Γ ⊢ t : □A

t ∼ box (unbox t)

We are interested in the problem of normalizing terms with respect to these
equivalences. Traditionally, terms in a calculus are normalized by rewriting
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Ty A ::= . . . | □A Ctx Γ ::= · | Γ, x : A | Γ,µ

Var

Γ, x : A, Γ′ ⊢ x : A
µ /∈ Γ′

□-Intro
Γ,µ ⊢ t : A

Γ ⊢ box t : □A

λIK/□-Elim
Γ ⊢ t : □A

Γ,µ, Γ′ ⊢ unboxλIK t : A
µ /∈ Γ′

Figure E.1.: Typing rules for λIK (omitting λ-abstraction and application)

them using rewrite rules formulated from these equivalences, and a term is said
to be in normal form when it cannot be rewritten further. For example, we
may formulate a rewrite rule unbox (box t)→ t by orienting the □-β equivalence
from left to right. This naive approach to formulating a rewrite rule, however,
is insufficient for the □-η rule since normalizing with a rewrite rule t →
box (unbox t) (for Γ ⊢ t : □A) does not terminate as it can be applied infinitely
many times. It is presumably for this reason that existing normalization
results (Clouston 2018) for some of these calculi only consider β-equivalence.

While it may be possible to carefully formulate a more complex set of rewrite
rules that take the context of application into consideration to guarantee
termination (as done, for example, by Jay and Ghani (1995) for function and
product types), the situation is further complicated for Fitch-style calculi by the
fact that we must repeat such syntactic rewriting arguments separately for each
calculus under consideration. The calculi λIT, λIK4, and λIS4 differ from λIK
only in the □-elimination rule, as summarized in Figure E.2. In spite of having
identical syntax and term equivalences, each calculus demands different, tedious
and seemingly ad hoc syntactic renaming lemmas (Clouston 2018, Lemmas 4.1
and 5.1) to prove normalization.

In this paper, we take a semantic approach to normalization, called normal-
ization by evaluation (NbE) (Berger and Schwichtenberg 1991). NbE bypasses
rewriting entirely, and instead normalizes terms by evaluating them in a suitable
semantic model and then reifying values in the model as normal forms. For
Fitch-style calculi, NbE can be developed by leveraging their possible-world
semantics. To this end, we identify the parameters of the possible-world se-
mantics for the calculi under consideration, and show that NbE models can
be constructed by instantiating those parameters. The NbE approach exploits
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λIT/□-Elim
Γ ⊢ t : □A

Γ, Γ′ ⊢ unboxλIT t : A
#µ(Γ′) ⩽ 1

λIK4/□-Elim
Γ ⊢ t : □A

Γ,µ, Γ′ ⊢ unboxλIK4 t : A

λIS4/□-Elim
Γ ⊢ t : □A

Γ, Γ′ ⊢ unboxλIS4 t : A

Figure E.2.: □-elimination rules for λIT, λIK4, and λIS4

the semantic overlap of the Fitch-style calculi in the possible-world semantics
and isolates their differences to a specific parameter that determines the modal
fragment, thus enabling the reuse of the evaluation machinery and many lemmas
proved in the process.

In Section E.2, we begin by providing a brief overview of the main idea
underlying this paper. We discuss the uniform interpretation of types for four
Fitch-style calculi (λIK, λIT, λIK4 and λIS4) in possible-world models and outline
how NbE models can be constructed as instances. The reification mechanism
that enables NbE is performed alike for all four calculi. In Section E.3, we
construct an NbE model for λIK that yields a correct normalization algorithm,
and then show how NbE models can also be constructed for λIS4, and for λIT
and λIK4 by slightly varying the instantiation. The calculi λIK and λIS4 and
their normalization algorithms have been implemented and verified correct (Val-
liappan, Ruch, and Tomé Cortiñas 2022a) in the proof assistant Agda (Abel,
Allais, et al. 2005–2021).

NbE models and proofs of normalization in general have several useful
consequences for term calculi. In Section E.4, we show how NbE models and
the accompanying normalization algorithm can be used to prove meta-theoretic
properties of Fitch-style calculi including completeness, decidability, and some
standard results in modal logic in a constructive manner. In Section E.5,
we discuss applications of our development to specific interpretations of the
necessity modality in programming languages, and show (but do not mechanize)
how application-specific properties that typically require semantic intervention
can be proved syntactically. We show that properties similar to capability safety,
noninterference, and binding-time correctness can be proved syntactically using
normal forms of terms.

191



E. Normalization for Fitch-Style Modal Calculi

E.2. Main Idea

The main idea underlying this paper is that normalization can be achieved in a
modular fashion for Fitch-style calculi by constructing NbE models as instances
of their possible-world semantics. In this section, we observe that Fitch-style
calculi can be interpreted in the possible-world semantics for intuitionistic
modal logic with a minor refinement that accommodates the µ operator, and
give a brief overview of how we construct NbE models as instances.

Possible-World Semantics The possible-world semantics for intuitionistic
modal logic (Božić and Došen 1984) is parameterized by a frame F and a
valuation Vι. A frame F is a triple (W, Ri, Rm) that consists of a type W of
worlds along with two binary accessibility relations Ri (for “intuitionistic”)
and Rm (for “modal”) on worlds that are required to satisfy certain conditions.
An element w : W can be thought of as a representation of the “knowledge
state” about some “possible world” at a certain point in time. Then, w Ri w′

represents an increase in knowledge from w to w′, and w Rm v represents a
possible passage from w to v. A valuation Vι, on the other hand, is a family
of types Vι,w indexed by w : W along with functions wkι,w,w′ : Vι,w → Vι,w′

whenever w Ri w′. An element p : Vι,w can be thought of as “evidence” for
(the knowledge of) the truth of the atomic proposition ι at the world w. The
requirement for functions wkι,w,w′ enforces that the knowledge of the truth
of ι at w is preserved as time moves on to w′, and is neither forgotten nor
contradicted by any new evidence learned at w′. There are no such requirements
on a valuation Vι with respect to the modal accessibility relation Rm.

Given a frame (W, Ri, Rm) and a valuation Vι, we interpret (object) types A in
any Fitch-style calculus as families of (meta) types JAKw indexed by worlds w :
W , following the work by Fischer-Servi (1981), Ewald (1986), Plotkin and
Stirling (1986), and Simpson (1994) as below:

Jι Kw = Vι,w

JA⇒BKw = ∀w′. w Ri w′ → JAKw′ → JBKw′

J□A Kw = ∀w′. w Ri w′ → ∀v. w′ Rm v → JAKv

The nonmodal type formers are interpreted as in the Kripke semantics
for intuitionistic propositional logic: the base type ι is interpreted using the
valuation Vι, and function types A⇒B at w : W are interpreted as families of
functions JAKw′ → JBKw′ indexed by w′ : W such that w Ri w′. Recall that the
generalization to families is necessary for the interpretation of function types
to be sound.
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As for the interpretation of modal types, at w : W the types □A are
interpreted by families of elements JAKv indexed by those v : W that are
accessible from w via some w′ : W such that w Ri w′ and w′ Rm v. In other
words, □A is true at a world w if A is necessarily true in “the future”, whichever
concrete possibility this may turn out to be. We remark that the interpretation
of □A as ∀v. w Rm v → JAKv, as in classical modal logic without the first
quantifier ∀w′. w Ri w′, requires additional conditions (Božić and Došen 1984;
Simpson 1994) on frames that (some of) the NbE models we construct do not
satisfy.

In order to extend the possible-world semantics of intuitionistic modal logic
to Fitch-style calculi, we must also provide an interpretation of contexts and
the µ operator, which is unique to the Fitch style, in particular:

J· Kw = ⊤
JΓ, AKw = JΓKw × JAKw

JΓ,µKw =
∑

u JΓKu × u Rm w

The empty context · and the context extension Γ, A of a context Γ with a
type A are interpreted as in the Kripke semantics for STLC by the terminal
family and the Cartesian product of the families JΓK and JAK, respectively.
While the interpretation of types □A can be understood as a statement about
the future, the interpretation of contexts Γ,µ can be understood as a dual
statement about the past: Γ,µ is true at a world w if Γ is true at some world u
for which w is a possibility, i.e. u Rm w.

With the interpretation of contexts Γ and types A as (W, Ri)-indexed fam-
ilies JΓK and JAK at hand, the interpretation of terms t : Γ ⊢ A, also known
as evaluation, in a possible-world model is given by a function J−K : Γ ⊢ A→
(∀w. JΓKw → JAKw) as follows. Clouston (2018) shows that the interpretation
of STLC in Cartesian closed categories (CCCs) extends to an interpretation of
Fitch-style calculi in any CCCequipped with an adjunction by interpreting □
and µ by the right and left adjoint as well as box and unbox using the right
and left adjuncts, respectively. The key idea here is that, correspondingly, the
interpretation of terms in the nonmodal fragment of Fitch-style calculi using
the familiar CCCstructure on (W, Ri)-indexed families extends to the modal
fragment: the interpretation of □ in a possible-world model has a left adjoint
that is denoted by our interpretation of µ. In summary, the possible-world
interpretation of Fitch-style calculi can be given by instantiation of Clouston’s
generic interpretation in CCCsequipped with an adjunction.

Constructing NbE Models as Instances To construct an NbE model for Fitch-
style calculi, we must construct a possible-world model with a function quote :
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(∀w. JΓKw → JAKw)→ Γ ⊢NF A that inverts the denotation (∀w. JΓKw → JAKw)
of a term to a derivation Γ ⊢NF A in normal form. The normal forms for the
modal fragment of λIK are defined below, where Γ ⊢NE A denotes a special case
of normal forms known as neutral elements.

Nf/□-Intro
Γ,µ ⊢NF t : A

Γ ⊢NF box t : □A

λIK/Ne/□-Elim
Γ ⊢NE t : □A

Γ,µ, Γ′ ⊢NE unboxλIK t : A
µ /∈ Γ′

The normal forms for λIT, λIK4, and λIS4 are defined similarly by varying the
elimination rule as in their term typing rules in Figure E.2.

Following the work on NbE for STLC with possible-world1 models (Coquand
2002), we instantiate the parameters that define possible-world models for Fitch-
style calculi as follows: we pick contexts for W , order-preserving embeddings
(sometimes called “weakenings”, defined in the next section) Γ ⩽ Γ′ for Γ Ri Γ′,
and neutral derivations Γ ⊢NE ι as the valuation Vι,Γ. It remains for us to
instantiate the parameter Rm and show that this model supports the quote
function.

The instantiation of the modal parameter Rm in the possible-world semantics
varies for each calculus and captures the difference between them. Recall that
the syntaxes of the four calculi only differ in their elimination rules for □ types.
When viewed through the lens of the possible-world semantics, this difference
can be generalized as follows:

□-Elim
∆ ⊢ t : □A

Γ ⊢ unbox t : A
(∆ ◁ Γ)

We generalize the relationship between the context in the premise and the
context in the conclusion using a generic modal accessibility relation ◁ between
contexts. When viewed as a candidate for instantiating the Rm relation, this
rule states that if □A is derivable in some past world ∆, then we may derive A in
the current world Γ. The various □-elimination rules for Fitch-style calculi can
be viewed as instances of this generalized rule, where we define ◁ in accordance
with □-elimination rule of the calculus under consideration. For example, for
λIK, we observe that the context of the premise in Rule λIK/□-Elim is Γ and
that of the conclusion is Γ,µ, Γ′ such that µ ̸∈ Γ′, and thus define ∆ ◁λIK Γ as
∃∆′.µ ̸∈ ∆′ ∧ Γ = ∆,µ, ∆′. Similarly, we define ∆ ◁λIS4 Γ as ∃∆′. Γ = ∆, ∆′

for λIS4, and follow this recipe for λIT and λIK4. Accordingly, we instantiate the
1also called “Kripke” or “Kripke-style”
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Rm parameter in the NbE model with the corresponding definition of ◁ in the
calculus under consideration.

A key component of implementing the quote function in NbE models is
reification, which is implemented by a family of functions reifyA : ∀Γ. JAKΓ →
Γ ⊢NF A indexed by a type A. While its implementation for the simply-typed
fragment follows the standard, for the modal fragment we are required to give
an implementation of reify□A : ∀Γ. J□AKΓ → Γ ⊢NF □A. To reify a value of
J□AKΓ, we first observe that J□AKΓ = ∀Γ′. Γ ⩽ Γ′ → ∀∆. Γ′ ◁ ∆ → JAK∆
by definition of J−K and the instantiations of Ri with ⩽ and Rm with ◁. By
picking Γ for Γ′ and Γ,µ for ∆, we get JAKΓ,µ since ⩽ is reflexive and it can
be shown that Γ ◁ Γ,µ holds for the calculi under consideration. By reifying
the value JAKΓ,µ recursively, we get a normal form Γ,µ ⊢NF n : A, which can
be used to construct the desired normal form Γ ⊢NF box n : □A using the
rule Nf/□-Intro.

E.3. Possible-World Semantics and NbE

In this section, we elaborate on the previous section by defining possible-world
models and showing that Fitch-style calculi can be interpreted soundly in these
models. Following this, we outline the details of constructing NbE models as
instances. We begin with the calculus λIK, and then show how the same results
can be achieved for the other calculi.

Before discussing a concrete calculus, we present some of their commonalities.

Types, Contexts and Order-Preserving Embeddings The grammar of types
and typing contexts for Fitch-style is the following.

Ty A ::= ι | A⇒B | □A Ctx Γ ::= · | Γ, A | Γ,µ

Types are generated by an uninterpreted base type ι, function types A⇒B,
and modal types □A, and typing contexts are “snoc” lists of types and locks.

We define the relation of order-preserving embeddings (OPE) on typing
contexts in Figure E.3. An OPE Γ ⩽ Γ′ embeds the context Γ into another
context Γ′ while preserving the order of types and the order and number of
locks in Γ.
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base : · ⩽ ·
o : Γ ⩽ Γ′

drop o : Γ ⩽ Γ′, A

o : Γ ⩽ Γ′

keep o : Γ, A ⩽ Γ′, A

o : Γ ⩽ Γ′

keepµ o : Γ,µ ⩽ Γ′,µ

Figure E.3.: Order-preserving embeddings

E.3.1. The Calculus λIK

Terms, Substitutions and Equational Theory

To define the intrinsically-typed syntax and equational theory of λIK, we first
define a modal accessibility relation on contexts ∆ ◁λIK Γ, which expresses that
context Γ extends ∆,µ to the right without adding locks. Note that ∆ ◁λIK Γ
exactly when ∃∆′.µ ̸∈ ∆′ ∧ Γ = ∆,µ, ∆′.

nil : Γ ◁λIK Γ,µ
e : ∆ ◁λIK Γ

var e : ∆ ◁λIK Γ, A

Figure E.4.: Modal accessibility relation on contexts (λIK)

Figure E.5 presents the intrinsically-typed syntax of λIK. We will use both
Γ ⊢ t : A and t : Γ ⊢ A to say that t denotes an (intrinsically-typed) term of
type A in context Γ, and similarly for substitutions, which will be defined below.
Instead of named variables as in Figure E.1, variables are defined using De Bruijn
indices in a separate judgement Γ ⊢VAR A . The introduction and elimination
rules for function types are like those in STLC, and the introduction rule for
the type □A is similar to that of Figure E.1. The elimination rule λIK/□-Elim
is defined using the modal accessibility relation ∆ ◁λIK Γ which relates the
contexts in the premise and the conclusion, respectively. This relation replaces
the side condition (µ ̸∈ Γ′) in Figure E.1 and other □-elimination rules in
Sections E.1 and E.2. Note that formulating the rule for the term unboxλIK

with e : ∆ ◁λIK Γ as a second premise is in sharp contrast to Clouston (2018,
Fig. 1) where the relation is not mentioned in the term but formulated as the
side condition Γ = ∆,µ, Γ′ for some lock-free Γ′.

A term Γ ⊢ t : A can be weakened, which is a special case of renaming, with an
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Var-Zero
Γ, A ⊢VAR zero : A

Var-Succ
Γ ⊢VAR v : A

Γ, B ⊢VAR succ v : A

Var
Γ ⊢VAR v : A

Γ ⊢ var v : A

⇒-Intro
Γ, A ⊢ t : B

Γ ⊢ λ t : A⇒B

⇒-Elim
Γ ⊢ t : A⇒B Γ ⊢ u : A

Γ ⊢ app t u : B

□-Intro
Γ,µ ⊢ t : A

Γ ⊢ box t : □A

λIK/□-Elim
∆ ⊢ t : □A e : ∆ ◁λIK Γ

Γ ⊢ unboxλIK t e : A

Figure E.5.: Intrinsically-typed terms of λIK

OPE (see Figure E.3) using a function wk : Γ ⩽ Γ′ → Γ ⊢ A→ Γ′ ⊢ A. Given
an OPE o : Γ ⩽ Γ′, renaming the term using wk yields a term Γ′ ⊢ wk o t : A in
the weaker context Γ′. The unit element for wk is the identity OPE id⩽ : Γ ⩽ Γ,
i.e. wk id⩽ t = t. Renaming arises naturally when evaluating terms and in
specifying the equational theory (e.g. in the η rule of function type).

Γ ⊢S empty : ·
Γ ⊢S s : ∆ Γ ⊢ t : A

Γ ⊢S ext s t : ∆, A

Θ ⊢S s : ∆ e : Θ ◁λIK Γ
Γ ⊢S extµ s e : ∆,µ

Figure E.6.: Substitutions for λIK

Substitutions for λIK are inductively defined in Figure E.6. A judgement Γ ⊢S

s : ∆ denotes a substitution for a context ∆ in the context Γ. Applying a
substitution to a term ∆ ⊢ t : A, i.e. subst s t : Γ ⊢ A, yields a term in the
context Γ. The substitution ids : Γ ⊢S Γ denotes the identity substitution,
which exists for all Γ. As usual, it can be shown that terms are closed under the
application of a substitution, and that it preserves the identity, i.e. subst ids t = t.
Substitutions are also closed under renaming and this operation preserves the
identity as well.

The equational theory for λIK, omitting congruence rules, is specified in
Figure E.7. As discussed earlier, λIK extends the usual rules in STLC (Rules⇒-β
and ⇒-η) with rules for the □ type (Rules □-β and □-η). The function factor :
∆ ◁λIK Γ→ ∆,µ ⩽ Γ, in Rule □-β, maps an element of the modal accessibility
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relation e : ∆ ◁λIK Γ to an OPE ∆,µ ⩽ Γ. This is possible because the
context Γ does not have any lock to the right of ∆,µ.

⇒-β
Γ, A ⊢ t : B Γ ⊢ u : A

Γ ⊢ app (λ t) u ∼ subst (ext ids u) t

⇒-η
Γ ⊢ t : A⇒B

Γ ⊢ t ∼ λ (app (wk (drop id⩽) t) (var zero))

□-β
∆,µ ⊢ t : A e : ∆ ◁λIK Γ

Γ ⊢ unboxλIK (box t) e ∼ wk (factor e) t

□-η
Γ ⊢ t : □A

Γ ⊢ t ∼ box (unboxλIK t nil)

Figure E.7.: Equational theory for λIK

Possible-World Semantics

A possible-world model is defined using the notion of a possible-world frame as
below. We work in a constructive type-theoretic metalanguage, and denote the
universe of types in this language by Type.

Definition E.3.1 (Possible-world frame). A frame F is given by a triple (W, Ri

, Rm) consisting of a type W : Type and two relations Ri and Rm: W ×W →
Type on W such that the following conditions are satisfied:

• Ri is reflexive and transitive

• if w Rm v and v Ri v′ then there exists some w′ : W such that w Ri

w′ and w′ Rm v′; this factorization condition can be pictured as an
implication Rm ; Ri ⊆ Ri ; Rm or diagrammatically as follows:

w′ v′

w v

Rm

Ri

Rm

Ri

(note that neither w′ nor the proofs of relatedness are required to be
unique, nor will they all be in the frames that we will consider)
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Definition E.3.2 (Possible-world model). A possible-world model M is given
by a tuple (F, V ) consisting of a frame F (see Definition E.3.1) and a W -indexed
family Vι : W → Type (called the valuation of the base type) such that
∀w, w′. w Ri w′ → Vι,w → Vι,w′ .

We have omitted coherence conditions from these Definitions for readability.
Those conditions stem from the proof relevance of the relations and predicates
involved. They will be satisfied by the models we will construct, and will also
be given below for completeness.

The types and typing contexts in λIK are interpreted in a possible-world
model via the interpretation functions J−K defined in Section E.2. To evaluate
terms, we must first prove the following monotonicity lemma. This lemma is
well-known as a requirement to give a sound interpretation of the function type
in an arbitrary possible-world model, and can be thought of as the semantic
generalization of renaming in terms.

Lemma E.3.1 (Monotonicity). In every possible-world model M, for every
type A and worlds w and w′, we have a function wkA : w Ri w′ → JAKw →
JAKw′ . And similarly, for every context Γ, a function wkΓ : w Ri w′ → JΓKw →
JΓKw′.

We evaluate terms in λIK in a possible-world model as follows.

J−K : Γ ⊢ A→ (∀w. JΓKw → JAKw)
Jvar v K γ = lookup v γ
Jλ t K γ = λi. λa. JtK (wk i γ, a)
Japp t u K γ = (JtK γ) id⩽ (JuK γ)
Jbox t K γ = λi. λm. JtK (wk i γ, m)
JunboxλIK t eK γ = JtK δ id⩽m

where (δ, m) = trimλIK γ e

The evaluation of terms in the simply-typed fragment is standard, and
resembles the evaluator of STLC. Variables are interpreted by a lookup function
that projects values from an environment, and λ-abstraction and application
are evaluated using their semantic counterparts. To evaluate λ-abstraction,
we must construct a semantic function ∀w′. w Ri w′ → JAKw′ → JBKw′ using
the given term Γ, A ⊢ t : B and environment γ : JΓKw. We achieve this by
recursively evaluating t in an environment that extends γ appropriately using
the semantic arguments i : w Ri w′ and a : JAKw′ . We use the monotonicity
lemma to “transport” JΓKw to JΓKw′ , and construct an environment of type
JΓKw′ × JAKw′ for recursively evaluating t, which produces the desired result
of type JBKw′ . Application is evaluated by simply recursively evaluating the
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applied terms and applying them in the semantics with a value id⩽ : w Ri w,
which is available since Ri is reflexive.

In the modal fragment, to evaluate the term Γ ⊢ box t : □A with γ : JΓKw, we
must construct a function of type ∀w′. w Ri w′ → ∀v. w′ Rm v → JAKv. Using
the semantic arguments i : w Ri w′ and m : w′ Rm v, we recursively evaluate
the term Γ,µ ⊢ t : A in the extended environment (wk i γ, m) : JΓ,µKv, since
JΓ,µKv =

∑
w′ JΓKw′ × w′ Rm v. On the other hand, the term Γ ⊢ unboxλIK t e :

A with e : ∆ ◁λIK Γ and ∆ ⊢ t : □A, for some ∆, must be evaluated with
an environment γ : JΓKw. To recursively evaluate the term ∆ ⊢ t : □A, we
must first discard the part of the environment γ that substitutes the types in
the extension of ∆,µ. This is achieved using the function trimλIK : JΓKw →
∆ ◁λIK Γ→ J∆,µKw that projects γ to produce an environment δ : J∆Kv′ and
a value m : v′ Rm w. We evaluate t with δ and apply the resulting function
of type ∀v. v Ri v′ → ∀w. v′ Rm w → JAKw to id⩽ and m to return the desired
result.

We state the soundness of λIK with respect to the possible-world semantics
before we instantiate it with the NbE model that we will construct in the next sec-
tion. We note that the soundness proof relies on the possible-world models to sat-
isfy coherence conditions that we have omitted from Definitions E.3.1 and E.3.2
but that will be satisfied by the NbE models. Specifically, W and Ri together
with the transitivity and reflexivity proofs transi and refli for Ri need to form
a category W , i.e. transi needs to be associative and refli needs to be a unit for
transi; the proofs of the factorization condition need to satisfy the functoriality
laws factori m (refli v) = refli w, factorm m (refli v) = m, factori m (transi i j) =
transi (factori m i) (factori m′ j) and factorm m (transi i j) = factorm m′ j where
m′ := factorm m i : w′ Rm v′ denotes the modal accessibility proof produced
by the first factorization of m : w Rm v and i : v Ri v′; and Vι together with
the monotonicity proof wkι needs to form a functor on the category W , i.e.
wkι (refli w) needs to be equal to the identity function on Vι,w and wkι (transi i j)
needs to be equal to the composite wkι j ◦ wkι i.

Theorem E.3.1. Let M be any possible-world model (see Definition E.3.2).
If two terms t and u : Γ ⊢ A of λIK are equivalent (see Figure E.7) then the
functions JtK and JuK : ∀w. JΓKw → JAKw as determined by M are equal.

Proof. LetM be a possible-world model with underlying frame F = (W, Ri, Rm

). Denote the category whose objects are worlds w : W and whose morphisms
are proofs i : w Ri w′ by C. The frame F can be seen as determining an
adjunction µ ⊣ □ on the category of presheaves indexed by the category C,
which is moreover well-known to be Cartesian closed. The interpretation J−K
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can then be seen as factoring through the categorical semantics described in
Clouston (2018, Section 2.3), of which the category of presheaves over C is an
instance by virtue of its Cartesian closure and equipment with an adjunction. We
can therefore conclude by applying Clouston (2018, Theorem 2.8 (Categorical
Soundness) and remark below that).

NbE Model

The normal forms of terms in λIK are defined along with neutral elements
in a mutually recursive fashion by the judgements Γ ⊢NF A and Γ ⊢NE A,
respectively, in Figure E.8. Intuitively, a normal form may be thought of as a
value, and a neutral element may be thought of as a “stuck” computation. We
extend the standard definition of normal forms and neutral elements in STLC
with Rules Nf/□-Intro and λIK/Ne/□-Elim.

Ne/Var
Γ ⊢VAR v : A

Γ ⊢NE var v : A

Nf/Up
Γ ⊢NE n : ι

Γ ⊢NF up n : ι

Nf/⇒-Intro
Γ, A ⊢NF n : B

Γ ⊢NF λ n : A⇒B

Ne/⇒-Elim
Γ ⊢NE n : A⇒B Γ ⊢NF m : A

Γ ⊢NE app n m : B

Nf/□-Intro
Γ,µ ⊢NF n : A

Γ ⊢NF box n : □A

λIK/Ne/□-Elim
∆ ⊢NE n : □A e : ∆ ◁λIK Γ

Γ ⊢NE unboxλIK n e : A

Figure E.8.: Normal forms and neutral elements in λIK

Recall that an NbE model for a given calculus C is a particular kind of
modelM that comes equipped with a function quote :M(JΓK, JAK)→ Γ ⊢NF A
satisfying t ∼ quote JtK for all terms t : Γ ⊢ A where J−K denotes the generic
evaluation function for C.

Using the relations defined in Figures E.3 and E.4, we construct an NbE
model for λIK by instantiating the parameters that define a possible-world model
as follows.

• Worlds as contexts: W = Ctx

• Relation Ri as order-preserving embeddings: Γ Ri Γ′ = Γ ⩽ Γ′
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• Relation Rm as extensions of a “locked” context: ∆ Rm Γ = ∆ ◁λIK Γ

• Valuation Vι as neutral elements: Vι,Γ = Γ ⊢NE ι

The condition that the valuation must satisfy wkA : Γ ⩽ Γ′ → Γ ⊢NE A →
Γ′ ⊢NE A, for all types A, can be shown by induction on the neutral term Γ ⊢NE A.
To show that this model is indeed a possible-world model, it remains for us to
show that the frame conditions are satisfied.

The first frame condition states that OPEs must be reflexive and transitive,
which can be shown by structural induction on the context and definition of
OPEs, respectively. The second frame condition states that given ∆ ◁λIK Γ
and Γ ⩽ Γ′ there is a ∆′ : Ctx such that ∆ ⩽ ∆′ and ∆′ ◁λIK Γ′,

∆′ Γ′

∆ Γ

◁λIK

⩽

◁λIK

⩽

which can be shown by constructing a function by simultaneous recursion on
OPEs and the modal accessibility relation.

Observe that the instantiation of the monotonicity lemma in the NbE model
states that we have the functions wkA : Γ ⩽ Γ′ → JAKΓ → JAKΓ′ and wk∆ :
Γ ⩽ Γ′ → J∆KΓ → J∆KΓ′ , which allow denotations of types and contexts to be
renamed with respect to an OPE.

To implement the function quote, we first implement reification and reflection,
using two functions reifyA : JAKΓ → Γ ⊢NF A and reflectA : Γ ⊢NE A → JAKΓ,
respectively. Reification converts a semantic value to a normal form, while
reflection converts a neutral element to a semantic value. They are implemented
as follows by induction on the index type A.

reifyA,Γ : JAKΓ → Γ ⊢NF A

reifyι,Γ n = up n

reifyA⇒B,Γ f = λ (reifyB,(Γ,A)(f (drop id⩽) freshA,Γ))
reify□A,Γ b = box (reifyA,(Γ,µ)(b id⩽ nil))

reflectA,Γ : Γ ⊢NE A→ JAKΓ
reflectι,Γ n = n
reflectA⇒B,Γ n = λ(o : Γ ⩽ Γ′). λa. reflectB,Γ(app (wkA⇒B o n) (reifyA,Γ′ a))
reflect□A,Γ n = λ(o : Γ ⩽ Γ′). λ(e : Γ′ ◁λIK ∆). reflectA,∆(unboxλIK (wk□A o n) e)
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For the function type, we recursively reify the body of the λ-abstraction by
applying the given semantic function f with suitable arguments, which are an
OPE drop id⩽ : Γ ⩽ Γ, A and a value freshA,Γ = reflectA,(Γ,A) (var zero) : JAKΓ,A,
which is the De Bruijn index equivalent of a fresh variable. Reflection, on the
other hand, recursively reflects the application of a neutral Γ ⊢NE n : A⇒ B
to the reification of the semantic argument a : JAKΓ′ for an OPE o : Γ ⩽ Γ′.
Similarly, for the □ type, we recursively reify the body of box by applying the
given semantic function b : ∀Γ. Γ ⩽ Γ′ → ∀∆. Γ′ ◁λIK ∆ → JAK∆ to suitable
arguments id⩽ : Γ ⩽ Γ and the empty context extension nil : Γ ◁λIK Γ,µ.
Reflection also follows a similar pursuit by reflecting the application of the
neutral Γ ⊢NE n : □A to the eliminator unbox.

Equipped with reification, we implement quote (as seen below), by applying
the given denotation of a term, a function f : ∀∆. JΓK∆ → JAK∆, to the
identity environment freshEnvΓ : JΓKΓ, and then reifying the resulting value.
The construction of the value freshEnvΓ is the De Bruijn index equivalent of
generating an environment with fresh variables.

quote : (∀∆. JΓK∆ → JAK∆)→ Γ ⊢NF A
quote f = reifyA,Γ (f freshEnvΓ)

freshEnvΓ : JΓKΓ
freshEnv· = ()
freshEnvΓ,A = (wk (drop id⩽) freshEnvΓ, freshA,Γ)
freshEnvΓ,µ = (freshEnvΓ, nil )

To prove that the function quote is indeed a retraction of evaluation, we
follow the usual logical relations approach. As seen in Figure E.9, we define
a relation LA indexed by a type A that relates a term Γ ⊢ t : A to its
denotation a : JAKΓ as LA t a. From a proof of LA t a, it can be shown that
t ∼ reifyA a. This relation is extended to contexts as L∆, for some context ∆,
which relates a substitution Γ ⊢ s : ∆ to its denotation δ : J∆KΓ as L∆ s δ.

For the logical relations, we then prove the so-called fundamental theorem.

Proposition E.3.1 (Fundamental theorem). Given a term ∆ ⊢ t : A, a substi-
tution Γ ⊢S s : ∆ and a value δ : J∆KΓ, if L∆,Γ s δ then LA,Γ (subst s t) (JtK δ).

We conclude this section by stating the normalization theorem for λIK.
Proposition E.3.1 entails that LA,∆ (subst ids t) (JtK freshEnv∆) for any term t,

if we pick s as the identity substitution ids : ∆ ⊢S ∆, and δ as freshEnv∆ : J∆K∆,
since they can be shown to be related as L∆,∆ ids freshEnv∆. From this it follows
that subst ids t ∼ reifyA (JtK freshEnv∆), and further that t ∼ quote JtK from
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LA,Γ : Γ ⊢ A→ JAKΓ → Type
Lι,Γ t n = t ∼ quote n
LA⇒B,Γ t f = ∀Γ′, o : Γ ⩽ Γ′, u, a. LA,Γ′ u a→ LB,Γ′ (app (wk o t) u) (f o a)
L□A,Γ t b = ∀Γ′, o : Γ ⩽ Γ′, e : Γ′ ◁λIK ∆. LA,∆ (unboxλIK (wk o t) e) (b o e)

L∆,Γ : Γ ⊢S ∆→ J∆KΓ → Type
L·,Γ empty () = ⊤
L(∆,A),Γ (ext s t) (δ, a) = L∆,Γ s δ × LA,Γ t a

L(∆,µ),Γ (extµ s (e : Θ ◁λIK Γ)) (δ, e) = L∆,Θ s δ

Figure E.9.: Logical relations for λIK

the definition of quote and the fact that subst ids t = t. As a result, the
composite norm = quote ◦ J−K is adequate, i.e. norm t = norm t′ implies t ∼ t′.

The soundness of λIK with respect to possible-world models (see Theo-
rem E.3.1) directly entails quote JtK = quote JuK : Γ ⊢NF A for all terms t,
u : Γ ⊢ A such that Γ ⊢ t ∼ u : A, which means that norm = quote ◦ J−K is
complete. Note that this terminology might be slightly confusing because it is
the soundness of J−K that implies the completeness of norm.

Theorem E.3.2. Let M denote the possible-world model over the frame given
by the relations Γ ⩽ Γ′ and ∆ ◁λIK Γ and the valuation Vι,Γ = Γ ⊢NE ι.

There is a function quote : M(JΓK, JAK) → Γ ⊢NF A such that the compos-
ite norm = quote ◦ J−K : Γ ⊢ A→ Γ ⊢NF A from terms to normal forms of λIK
is complete and adequate.

E.3.2. Extending to the Calculus λIS4

Terms, Substitutions and Equational Theory

To define the intrinsically-typed syntax of λIS4, we first define the modal
accessibility relation on contexts in Figure E.10.

nil : Γ ◁λIS4 Γ
e : ∆ ◁λIS4 Γ

var e : ∆ ◁λIS4 Γ, A

e : ∆ ◁λIS4 Γ
lock e : ∆ ◁λIS4 Γ,µ

Figure E.10.: Modal accessibility relation on contexts (λIS4)
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If ∆ ◁λIS4 Γ then Γ is an extension of ∆ with as many locks as needed. Note
that, in contrast to λIK, the modal accessibility relation is both reflexive and
transitive. This corresponds to the conditions on the accessibility relation for
the logic IS4.

Figure E.11 presents the changes of λIK that yield λIS4. The terms are the
same as λIK with the exception of Rule λIK/□-Elim which now includes the
modal accessibility relation for λIS4. Similarly, the substitution rule for contexts
with locks now refers to ◁λIS4 .

λIS4/□-Elim
∆ ⊢ t : □A e : ∆ ◁λIS4 Γ

Γ ⊢ unboxλIS4 t e : A

Θ ⊢ s : ∆ e : Θ ◁λIS4 Γ
Γ ⊢S extµ s e : ∆,µ

Figure E.11.: Intrinsically-typed terms and substitutions of λIS4 (omitting the
unchanged rules of Figure E.5)

Figure E.12 presents the equational theory of the modal fragment of λIS4.
This is a slightly modified version of λIK (cf. Figure E.7) that accommodates
the changes to the rule λIS4/□-Elim. Unlike before, Rule □-β now performs a
substitution to modify the term ∆,µ ⊢ t : A to a term of type Γ ⊢ A. Note that
the result of such a substitution need not yield the same term since substitution
may change the context extension of some subterm.

□-β
∆,µ ⊢ t : A e : ∆ ◁λIS4 Γ

Γ ⊢ unboxλIS4 (box t) e ∼ subst (extµ ids e) t

□-η
Γ ⊢ t : □A

Γ ⊢ t ∼ box (unboxλIS4 t (lock nil))

Figure E.12.: Equational theory for λIS4 (omitting the unchanged rules of Fig-
ure E.7)
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Possible-World Semantics

Giving possible-world semantics for λIS4 requires an additional frame condition
on the relation Rm: it must be reflexive and transitive. Evaluation proceeds as
before, where we use a function trimλIS4 : ∀w. JΓKw → ∆ ◁λIS4 Γ→ J∆,µKw to
manipulate the environment for evaluating unboxλIS4 t e, as seen below.

JunboxλIS4 t eK γ = JtK δ id⩽m
where (δ, m) = trimλIS4 γ e

The additional frame requirements ensures that the function trimλIS4 can be
implemented. For example, consider implementing the case of trimλIS4 for some
argument of type JΓKw and the extension nil : Γ ◁λIS4 Γ that adds zero locks.
The desired result is of type JΓ,µKw, which is defined as

∑
v JΓKv × v Rm w.

We construct such a result using the argument of JΓKw by picking v as w itself,
and using the reflexivity of Rm to construct a value of type w Rm w. Similarly,
the transitivity of Rm is required when the context extension adds more than
one lock.

Analogously to Theorem E.3.1, we state the soundness of λIS4 with respect
to reflexive and transitive possible-world models before we instantiate it with
the NbE model that we will construct in the next section. In addition to
the coherence conditions stated before Theorem E.3.1 the soundness proof
for λIS4 relies on coherence conditions involving the additional proofs reflm
and transm that a reflexive and transitive modal accessibility relation Rm must
come equipped with. Specifically, transm also needs to be associative, reflm
also needs to be a unit for transm, and the proofs of the factorization condition
also need to satisfy the functoriality laws in the modal accessibility argument,
i.e. factori (reflm w) i = i, factorm (reflm w) i = reflm w′, factori (transm n m) i =
factori n i′ and factorm (transm n m) i = transm (factorm n i′) (factorm m i) where
i′ := factori m i : w Ri w′.
Proposition E.3.2. Let C be a Cartesian closed category equipped with a
comonad □ that has a left adjoint µ ⊣ □, then equivalent terms t and u : Γ ⊢ A
denote equal morphisms in C.

Proof. This is a version of Clouston (2018, Theorem 4.8) for λIS4 where the side
condition of Rule λIS4/□-Elim appears as an argument to the term former unbox
and hence idempotency is not imposed on the comonad □.

Theorem E.3.3. Let M be a possible-world model (see Definition E.3.2) such
that the modal accessibility relation Rm is reflexive and transitive. If two terms t
and u : Γ ⊢ A of λIS4 are equivalent (see Figure E.12) then the functions JtK
and JuK : ∀w. JΓKw → JAKw as determined by M are equal.
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Proof. The right adjoint determined by a reflexive and transitive frame has a
comonad structure so that we can conclude by applying Proposition E.3.2.

NbE Model

The normal forms of λIS4 are defined as before, except for the following rule
replacing the neutral rule λIK/Ne/□-Elim.

λIS4/Ne/□-Elim
∆ ⊢NE n : □A e : ∆ ◁λIS4 Γ

Γ ⊢NE unboxλIS4 n e : A

The NbE model construction also proceeds in the same way, where we now
pick the relation Rm as arbitrary extensions of a context: ∆ Rm Γ = ∆ ◁λIS4 Γ.
The modal fragment for reify and reflect are now implemented as follows:

reify□A,Γ b = box (reifyA,(Γ,µ) (b id⩽ (lock nil)))
reflect□A,Γ n = λ(o : Γ ⩽ Γ′). λ(e : Γ′ ◁λIS4 ∆). reflectA,∆ (unbox (wk o n) e)

Theorem E.3.4. Let M denote the possible-world model over the reflexive
and transitive frame given by the relations Γ ⩽ Γ′ and ∆ ◁λIS4 Γ and the
valuation Vι,Γ = Γ ⊢NE ι.

There is a function quote : M(JΓK, JAK) → Γ ⊢NF A such that the compos-
ite norm = quote ◦ J−K : Γ ⊢ A→ Γ ⊢NF A from terms to normal forms of λIS4
is complete and adequate.

The proof of this Theorem requires us to identify terms by extending the
equational theory of λIS4 with an additional rule. To understand the need for
it, consider unboxing a term Γ ⊢ t : □A into an extended context Γ, B in λIS4.
We may first weaken t as Γ, B ⊢ wk (drop id⩽) t : □A and then apply unbox
as Γ, B ⊢ unbox (wk (drop id⩽) t) nil : A. However, we may also apply unbox
on t as Γ, B ⊢ unbox t (var nil) : A. This weakens the term “explicitly” in the
sense that the weakening with B is recorded in the term by the proof var nil
of the modal accessibility relation Γ ◁λIS4 Γ, B. The two ways of unboxing
Γ ⊢ t : □A into the extended context Γ, B result in two terms with the same
denotation in the possible-world semantics but distinct typing derivations. We
wish the two typing derivations unbox t (var nil) and unbox (wk (drop id⩽) t) nil
to be identified. For this reason, we extend the equational theory of λIS4 with
the rule unbox t (transm e e′) ∼ unbox (wk (toOPEe) t) e′ for any lock-free exten-
sion e, which can be converted to a sequence of drops using the function toOPE.
Explicit weakening can also be avoided by, instead of extending the equational
theory, changing the definition of the modal accessibility relation such that
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∆ ◁λIS4 Γ holds only if Γ = ∆ or Γ = ∆,µ, Γ′ for some Γ′. Note that the modal
accessibility relation for λIK, where the issue of explicit weakening does not
occur, satisfies this property.

E.3.3. Extending to the Calculi λIT and λIK4

The NbE model construction for λIT and λIK4 follows a similar pursuit as λIS4.
We define suitable modal accessibility relations ◁λIT and ◁λIK4 as extensions
that allow the addition of at most one µ, and at least one lock µ, respectively.
To give possible-world semantics, we require an additional frame condition that
the relation Rm be reflexive for λIT and transitive for λIK4. For evaluation, we
use a function trimλIT : JΓKw → ∆ ◁λIT Γ → J∆,µKw for λIT, and similarly
trimλIK4 for λIK4. The modification to the neutral rule λIK/Ne/□-Elim is
achieved as before in λIS4 using the corresponding modal accessibility relations.
Unsurprisingly, reification and reflection can also be implemented, thus yielding
normalization functions for both λIT and λIK4.

E.4. Completeness, Decidability and Logical Applications

In this section we record some immediate consequences of the model construc-
tions we presented in the previous section.

Completeness of the Equational Theory As a corollary of the adequacy of an
NbE model N , i.e. Γ ⊢ t ∼ u : A whenever JtK = JuK : N (JΓK, JAK), we obtain
completeness of the equational theory with respect to the class of models that
the respective NbE model belongs to. Given the NbE models constructed in
Sections E.3.1 and E.3.2 this means that the equational theories of λIK and λIS4
(cf. Figure E.7) are (sound and) complete with respect to the class of Cartesian
closed categories equipped with an adjunction and a right-adjoint comonad,
respectively.

Theorem E.4.1. Let t, u : Γ ⊢ A be two terms of λIK. If for all Cartesian
closed categories M equipped with an adjunction it is the case that JtK = JuK :
M(JΓK, JAK) then Γ ⊢ t ∼ u : A.

Proof. Let M0 be the model we constructed in Section E.3.1. Since M0
is a Cartesian closed category equipped with an adjunction, by assumption
we have JtKM0 = JuKM0 . And lastly, since M0 is an NbE model, we have
Γ ⊢ t ∼ quote JtKM0 = quote JuKM0 ∼ u : A.
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Note that this statement corresponds to Clouston (2018, Theorem 3.2) but
there it is obtained via a term model construction and for the term model to
be equipped with an adjunction the calculus needs to be first extended with an
internalization of the operation µ on contexts as an operation ♦ on types.

Theorem E.4.2. Let t, u : Γ ⊢ A be two terms of λIS4. If for all Cartesian
closed categories M equipped with a right-adjoint comonad it is the case that
JtK = JuK :M(JΓK, JAK) then Γ ⊢ t ∼ u : A.

Proof. As for Theorem E.4.1.

This statement corresponds to Clouston (2018, Section 4.4) but there it is
proved for an equational theory that identifies terms up to differences in the
accessibility proofs and with respect to the class of models where the comonad
is idempotent, to which the model of Section E.3.2 does not belong.

Completeness of the Deductive Theory Using the quotation function of an
NbE model N , i.e. quote : N (JΓK, JAK) → Γ ⊢ A, we obtain completeness of
the deductive theory with respect to the class of models that the respective
NbE model belongs to. Given the NbE models constructed in Sections E.3.1
and E.3.2 this means that the deductive theories of λIK and λIS4 (cf. Figures E.5
and E.2) are (sound and) complete with respect to the class of possible-world
models with an arbitrary frame and a reflexive–transitive frame, respectively.

Theorem E.4.3. Let Γ : Ctx be a context and A : Ty a type. If for all
possible-world models M it is the case that M(JΓK, JAK) is inhabited then there
is a term t : Γ ⊢ A of λIK.

Proof. Let M0 be the model we constructed in Section E.3.1. Since M0 is a
possible-world model, by assumption we have a morphism p : M0(JΓK, JAK).
And lastly, since M0 is an NbE model, we have the term quote p : Γ ⊢ A.

Theorem E.4.4. Let Γ : Ctx be a context and A : Ty a type. If for all
possible-world models M with a reflexive–transitive frame it is the case that
M(JΓK, JAK) is inhabited then there is a term t : Γ ⊢ A of λIS4.

Proof. As for Theorem E.4.3.

Note that the proofs of Theorems E.4.3 and E.4.4 are constructive.
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Decidability of the Equational Theory As a corollary of the completeness
and adequacy of an NbE model N , i.e. Γ ⊢ t ∼ u : A if and only if JtK = JuK :
N (JΓK, JAK), we obtain decidability of the equational theory from decidability
of the equality of normal forms n, m : Γ ⊢NF A. Given the NbE models
constructed in Sections E.3.1 and E.3.2 this means that the equational theories
of λIK and λIS4 (cf. Figure E.7) are decidable.

To show that any of the following decision problems P (x) is decidable we
give a constructive proof of the proposition ∀x. P (x) ∨ ¬P (x). Such a proof
can be understood as the construction of an algorithm d that takes as input
an x and produces as output a Boolean d(x), alongside a correctness proof that
d(x) is true if and only if P (x) holds.

Theorem E.4.5. For any two terms t, u : Γ ⊢ A of λIK the problem whether
t ∼ u is decidable.

Proof. We first observe that for any two normal forms n, m : Γ ⊢NF A of λIK
the problem whether n = m is decidable by proving ∀n, m. n = m ∨ n ̸= m
constructively. All the cases of an simultaneous induction on n, m : Γ ⊢NF A
are immediate.

Let N be the NbE model we constructed in Section E.3.1. Completeness and
adequacy of N imply that we have t ∼ u if and only if norm t = norm u for
the function norm : Γ ⊢ A→ Γ ⊢NF A, t 7→ quote JtK. Now, t ∼ u is decidable
because norm t = norm u is decidable by the observation we started with.

Theorem E.4.6. For any two terms t, u : Γ ⊢ A of λIS4 the problem whether
t ∼ u is decidable.

Proof. As for Theorem E.4.5.

Denecessitation The last of the consequences of the NbE model constructions
we record is of a less generic flavour than the other three, namely it is an
application of normal forms to a basic proof-theoretic result in modal logic.

Using invariance of truth in possible-world models under bisimulation2 it
can be shown that □A is a valid formula of IK (or IS4) if and only if A is.
A completeness theorem then implies the same for provability of □A and A.
The statement for proofs in λIK (and λIS4) can also be shown by inspection of
normal forms as follows.

2Invariance of truth under bisimulation says that if w and v are two bisimilar worlds in two
possible-world models M0 and M1, respectively, then for all formulas A it is the case that
JAKw holds in M0 if and only if JAKv does in M1.
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Firstly, we note that while deduction is not closed under arbitrary context
extensions (including locks) it is closed under extensions (including locks) on
the left:

Lemma E.4.1 (cf. Clouston (2018, Lemma A.1)). Let ∆, Γ : Ctx be arbitrary
contexts, both possibly containing locks, and A : Ty an arbitrary type. There
is an operation Γ ⊢ A → ∆, Γ ⊢ A on terms of λIK (and λIS4), where ∆, Γ
denotes context concatenation.

Proof. By recursion on terms.

And, secondly, we note that also a converse of this Lemma holds by inspection
of normal forms:

Lemma E.4.2. Let ∆, Γ : Ctx be arbitrary contexts, both possibly containing
locks, A : Ty an arbitrary type and t : ∆, Γ ⊢ A a term of λIK (or λIS4) in the
concatenated context ∆, Γ that does not mention any variables from ∆, then
there is a term t′ : Γ ⊢ A of λIK (or λIS4, respectively).

Proof. Since normalization (see Theorems E.3.2 and E.3.4) does not introduce
new free variables it suffices to prove the statement for terms in normal form.
We do so by induction on normal forms n : ∆, Γ ⊢NF A (see Figure E.8).
The only nonimmediate step is for n of the form unbox n′ e for some neutral
element n′ : ∆′ ⊢NE □A and ∆′ ◁ ∆ ⩽ ∆, Γ. But in that case the induction
hypothesis says that we have a neutral element n′′ : · ⊢NE □A, which is
impossible.

Note that some form of normalization seems to be needed in the proof
of Lemma E.4.2. More specifically, the “strengthening” of a term of the
form unbox t e from the context ·,µ, · to the empty context · cannot possibly
result in a term of the form unbox t′ e′ because there is no context Γ such that
Γ ◁ · in λIK. As an example, consider the term unbox (box (λ x. x)) nil, which
needs to be strengthened to λ x. x.

With these two Lemmas at hand we are ready to prove denecessitation
through normalization:

Theorem E.4.7. Let A : Ty be an arbitrary type. There is a term t : · ⊢ A
of λIK (or λIS4) if and only if there is a term u : · ⊢ □A of λIK (or λIS4,
respectively), where · : Ctx denotes the empty context.

Proof. From a term t : · ⊢ A we can construct a term t′ : ·,µ ⊢ A using
Lemma E.4.1 and thus the term u = box t′ : · ⊢ □A.
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In the other direction, from a term u : · ⊢ □A we obtain a normal form u′ =
norm u : · ⊢NF □A using Theorems E.3.2 and E.3.4. By inspection of normal
forms (see Figure E.8) we know that u′ must be of the form box v for some
normal form v : ·,µ ⊢NF A, from which we obtain a term t : · ⊢ A using
Lemma E.4.2 since the context ·,µ does not declare any variables that could
have been mentioned in v.

This concludes this section on some consequences of the model constructions
presented in this paper. Note that the consequences we recorded are completely
independent of the concrete model construction. To wit, the two completeness
theorems follow from the mere existence of an NbE model, and the decidability
and denecessitation theorems follow from the mere existence of a normalization
function.

E.5. Programming-Language Applications

In this section, we discuss some implications of normalization for Fitch-style
calculi for specific interpretations of the necessity modality in the context of
programming languages. In particular, we show how normalization can be
used to prove properties about program calculi by leveraging the shape of
normal forms of terms. We extend the term calculi presented earlier with
application-specific primitives, ensure that the extended calculi are in fact
normalizing, and then use this result to prove properties such as capability
safety, noninterference, and binding-time correctness. Note that we do not
mechanize these results in Agda and do not prove these properties in their
full generality, but only illustrate special cases. Although possible, proving
the general properties requires further technical development that obscures the
main idea underlying the use of normal forms for simplifying these proofs.

E.5.1. Capability Safety

Choudhury and Krishnaswami (2020) present a modal type system based on
IS4 for a programming language with implicit effects in the style of ML (Milner
et al. 1990) and the computational lambda calculus (Moggi 1989). In this
language, programs need access to capabilities to perform effects. For instance,
a primitive for printing a string requires a capability as an argument in addition
to the string to be printed. Crucially, capabilities cannot be introduced within
the language, and must be obtained either from the global context (called
ambient capabilities) or as a function argument.
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Let us denote the type of capabilities by Cap. Passing a printing capability c to
a function of type Cap⇒Unit in a language that uses capabilities to print yields
a program that either 1. does not print, 2. prints using only the capability c, or
3. prints using ambient capabilities (and possibly c). A program that at most
uses the capabilities that it is passed explicitly, as in the cases 1 and 2, is said
to be capability safe. To identify such programs, Choudhury and Krishnaswami
(2020) introduce a comonadic modality □ to capture capability safety. Their
type system is loosely based on the dual-context calculus for IS4 (Pfenning and
Davies 2001; Kavvos 2020). A term of type □A is enforced to be capability
safe by making the introduction rule for □ “brutally” remove all capabilities
from the typing context. As a result, programs with the type □(Cap⇒ Unit)
are denied ambient capabilities and thus guaranteed to behave like the cases 1
and 2.

Choudhury and Krishnaswami (2020) characterize capability safety precisely
using their capability space model. A capability space (X, wX) is a set X and
a weight relation wX that assigns sets of capabilities to every member in X.
In this model, they define a comonad that restricts the underlying set of a
capability space to those elements that are only related to the empty set of
capabilities. This comonad has a left adjoint that replaces the weight relation
of a capability space by the relation that relates every element to the empty set
of capabilities. This adjunction suggests that capability spaces are a model of
λIS4 and we may thus use λIS4 to write programs that support reasoning about
capability safety.

In this section, we present a calculus λIS4+MoggiCap that extends λIS4 with a
capability type and a monad for printing effects. We extend the normalization
algorithm for λIS4 to λIS4+MoggiCap and show that the resulting normal forms
can be used to prove a kind of capability safety. In contrast to the language
presented by Choudhury and Krishnaswami (2020), λIS4+MoggiCap models
a language where effects are explicit in the type of a term. Languages with
explicit effects, such as Haskell (Augustsson et al. 1990) (with the IO monad)
or PureScript (Freeman 2013) (with the Effect monad), can also benefit
from a mechanism for capability safety, and we begin with an example in a
hypothetical extension of PureScript to illustrate this.

Example in PureScript Let us consider web development in PureScript.
A web application may consist of a mashup of several components, e.g. social
media, news feed, or chat, provided by untrusted sources. A component is a
function of type

type Component = Element -> Effect Unit
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that takes as a parameter the DOM element where the component will be
rendered. For the correct functioning of the web application, it is important that
components do not interfere with each other in malicious ways. For example, a
malicious component (of Bob) could illegitimately overwrite a DOM element
(of Alice):

evilBob :: Component
evilBob e = do w <- window

doc <- document w
aliceE <- getElementById "alice.app" doc
setTextContent "Alice has been hacked!" aliceE

The issue here is that Bob has unrestricted access to the function window ::
Effect Window, and is able to obtain the DOM using document :: Window ->
Effect DOM and overwrite an element that belongs to Alice. Capabilities can
be leveraged to restrict the access to window. We can achieve this by extending
PureScript with a type WindowCap, a type constructor Box that works simi-
larly to Choudhury and Krishnaswami’s □, and replacing the function window
with a function window' :: WindowCap -> Effect Window that requires an
additional capability argument. By making WindowCap an ambient capability
that is available globally, all existing programs retain their unrestricted access
to retrieve a window as before. The difference now, however, is that we can
selectively restrict some programs and limit their access to WindowCap using
Box. We can define a variant of the type Component as:

type Component' = Box (Element -> Effect Unit)

By requiring Bob to write a component of the type Component', we are
ensured that Bob cannot overwrite an element that belongs to Alice. This is
because the Box type constructor used to define Component' disallows access to
all ambient capabilities (including WindowCap), and thus restricts Bob to only
using the given Element argument. In particular, the program evilBob cannot
be reproduced with the type Component' since the substitute function window'
requires a capability that is neither available as an argument nor as an ambient
capability.

Extension with a Capability and a Monad We extend λIS4 with a monad for
printing based on Moggi’s monadic metalanguage (Moggi 1991). We introduce
a type T A that denotes a monadic computation that can print before returning
a value of type A, a type Cap for capabilities, and a type String for strings.
Figure E.13 summarizes the terms that correspond to this extension. The term
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Ty A, B ::= . . . | T A | Cap | String | Unit Ctx Γ ::= . . .

T-Intro
Γ ⊢ t : A

Γ ⊢ return t : T A

T-Elim
Γ ⊢ t : T A Γ, A ⊢ u : T B

Γ ⊢ let t u : T B

Unit-Intro
Γ ⊢ unit : Unit

String-Lit

Γ ⊢ strs : String
s ∈ String

T-Print
Γ ⊢ c : Cap Γ ⊢ s : String

Γ ⊢ print c s : T Unit

Figure E.13.: Types, contexts and terms of λIS4+MoggiCap (omitting the un-
changed rules of Figures E.5 and E.11)

construct print is used for printing. The equational theory of λIS4+MoggiCap and
the corresponding normal forms are summarized in Figure E.14 and Figure E.15,
respectively.

To extend the NbE model of λIS4 with an interpretation for the monad, we
use the standard techniques used for normalizing computational effects (Ahman
and Staton 2013; Filinski 2001). The interpretation of the other primitive types
also follows a standard pursuit (Valliappan, Russo, et al. 2021): we interpret
Cap by neutrals of type Cap and String by the disjoint union of String and
neutrals of type String. The difference in their interpretation is caused by the
fact that there is no introduction form for the type Cap.

Proving Capability Safety Programs that lack access to capabilities are
necessarily capability safe. We say that a program Γ ⊢ p : A is trivially capability
safe if there is a program · ⊢ p′ : A such that Γ ⊢ p ∼ leftConcatΓ p′ : A, where
leftConcatΓ : ∀∆, A. ∆ ⊢ A → Γ, ∆ ⊢ A can be defined similarly to the
operation given by Lemma E.4.1 for λIS4.

First, we prove an auxiliary Lemma about normal forms with a capability in
context.

Lemma E.5.1. For any context Γ, type A and normal form c : Cap,µ, Γ ⊢NF

n : A there is a normal form ·,µ, Γ ⊢NF n′ : A such that n = leftConcatc:Cap n′.

Proof. We prove the statement for both normal forms and neutral elements
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T-β
Γ ⊢ t : A Γ, A ⊢ u : T B

Γ ⊢ let (return t) u ∼ subst (ext ids t) u

T-η
Γ ⊢ t : T A

Γ ⊢ t ∼ let t (return (var zero))

T-γ
Γ ⊢ t1 : A Γ, A ⊢ t2 : T B Γ, B ⊢ t3 : T C

Γ ⊢ let (let t1 t2) t3 ∼ let t1 (let t2 (wk (keep (drop id⩽)) t3))

Figure E.14.: Equational theory for λIS4+MoggiCap (omitting the unchanged
rules of Figures E.7 and E.12)

by mutual induction. The only nonimmediate case is when the neutral is
of the form c : Cap,µ, Γ ⊢NE unbox n e : A for some n : ∆ ⊢NE □A and
e : ∆ ◁λIS4 c : Cap,µ, Γ. We observe that there are no neutral elements of
type □A in context c : Cap and that hence ∆ must contain the leftmost lock in
c : Cap,µ, Γ. Thus, this case also holds by induction hypothesis.

Now, we observe that all terms c : Cap ⊢ t : □A are trivially capability safe.
By normalization, we have that c : Cap ⊢ t ∼ norm t : □A. Given the definition
of normal forms of λIS4+MoggiCap, norm t must be box n for some normal
form c : Cap,µ ⊢NF n : A. By Lemma E.5.1, there is a normal form µ ⊢NF n′ : A
such that n = leftConcat·,Cap n′. Since the operation leftConcat commutes with
box, i.e. leftConcat·,Cap (box n′) = box (leftConcat·,Cap n′), we also have that
t ∼ box n = leftConcat·,Cap (box n′). As a result, t must be trivially capability
safe.

A consequence of this observation is that any term c : Cap ⊢ t : □(T Unit) is
trivially capability safe. This means that t does not print since it could not
possibly do so without a capability. Going further, we can also observe that
t ∼ box (return unit) : □(T Unit), since the only normal form of type T Unit in
the empty context is · ⊢NF return unit : T Unit. Note that this argument (and
the one above) readily adapts to a vector of capabilities c⃗ in context as opposed
to a single capability c.

E.5.2. Information-Flow Control

Information-flow control (IFC) (Sabelfeld and Myers 2003) is a technique used
to protect the confidentiality of data in a program by tracking the flow of
information within the program.
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Nf/T-Intro
Γ ⊢NF m : A

Γ ⊢NF return m : T A

Nf/T-Elim
Γ ⊢NE n : T A Γ, A ⊢NF m : T B

Γ ⊢NF let n m : T B

Nf/Unit-Intro
Γ ⊢NF unit : Unit

Nf/Up-Cap
Γ ⊢NE n : Cap

Γ ⊢NF up n : Cap

Nf/Up-String
Γ ⊢NE n : String

Γ ⊢NF up n : String

Nf/String-Lit

Γ ⊢NF strs : String
s ∈ String

Nf/T-Print
Γ ⊢NF c : Cap Γ ⊢NF s : String Γ, Unit ⊢NF m : T A

Γ ⊢NF let (print c s) m : T A

Figure E.15.: Normal forms of λIS4+MoggiCap (omitting the unchanged normal
forms of λIS4)

In type-based static IFC (e.g. Abadi et al. 1999; Shikuma and Igarashi
2008; Russo et al. 2008) types are used to associate values with confidentiality
levels such as secret or public. The type system ensures that secret inputs do
not interfere with public outputs, enforcing a security policy that is typically
formalized as a kind of noninterference property (Goguen and Meseguer 1982).

Noninterference is proved by reasoning about the semantic behaviour of a
program. Tomé Cortiñas and Valliappan (2019) present a proof technique that
uses normalization for showing noninterference for a static IFC calculus based
on Moggi’s monadic metalanguage (Moggi 1991). This technique exploits the
insight that normal forms represent equivalence classes of terms identified by
their semantics, and thus reasoning about normal forms of terms (as opposed
to terms themselves) vastly reduces the set of programs that we must take into
consideration. Having developed normalization for Fitch-style calculi, we can
leverage this technique to prove noninterference.

In this section, we extend λIK with Booleans (denoted λIK+Bool), extend the
NbE model of λIK to λIK+Bool, and illustrate the technique of Tomé Cortiñas
and Valliappan on λIK+Bool for proving noninterference. We interpret the
type □A as a secret of type A, and other types as public.
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Extension with Booleans Noninterference can be better appreciated in the
presence of a type whose values are distinguishable by an external observer. To
this extent, we extend λIK with a type Bool and corresponding introduction
and elimination forms—as described in Figure E.16.

Ty A, B ::= . . . | Bool Ctx Γ ::= . . .

Bool-Intro-true
Γ ⊢ true : Bool

Bool-Intro-false
Γ ⊢ false : Bool

Bool-Elim
Γ ⊢ b : Bool Γ, Γ′ ⊢ t1 : A Γ, Γ′ ⊢ t2 : A

Γ, Γ′ ⊢ ifte b t1 t2 : A

Figure E.16.: Types, contexts and intrinsically-typed terms of λIK+Bool (omit-
ting the unchanged rules of Figure E.5)

We modify the usual elimination rule for Bool by allowing the context of the
conclusion ifte b t1 t2 and branches t1 and t2 in the rule Bool-Elim to extend the
context of the scrutinee b. This modification (following Clouston (2018, Fig. 2))
enables the following commuting conversion, which is required to ensure that
terms can be fully normalized and normal forms enjoy the subformula property:

∆ ⊢ b : Bool ∆, ∆′ ⊢ t1 : □A ∆, ∆′ ⊢ t2 : □A e : ∆, ∆′ ◁ Γ
Γ ⊢ unbox (ifte b t1 t2) e ∼ ifte b (unbox t1 e) (unbox t2 e)

A commuting conversion is required as usual for every other elimination rule,
including the rule ⇒-Elim. These are however standard and thus omitted here.

We extend the equational theory of λIK to λIK+Bool by adding the usual
rules ifte true t1 t2 ∼ t1, ifte false t1 t2 ∼ t2, and t ∼ ifte t true false for terms t of
type Bool. The normal forms of λIK+Bool include those of λIK in addition to
the following.

Nf/Bool-Intro-true
Γ ⊢NF true : Bool

Nf/Bool-Intro-false
Γ ⊢NF false : Bool

Nf/Bool-Elim
Γ ⊢NE n : Bool Γ, Γ′ ⊢NF m1 : A Γ, Γ′ ⊢NF m2 : A

Γ, Γ′ ⊢NF ifte n m1 m2 : A
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Observe that a neutral of type Bool is not immediately in normal form, and
must be expanded as ifte n true false. This is unlike neutrals of the type ι, which
are in normal form by Rule Nf/Up.

To extend the NbE model of λIK with Booleans, we leverage the interpreta-
tion of sum types used by Abel and Sattler (2019), who attribute their idea
to Altenkirch and Uustalu (2004). This interpretation readily supports com-
muting conversions, and a minor refinement that reflects the change to the
rule Bool-Elim yields a reifiable interpretation for Booleans in λIK+Bool.

Proving Noninterference A program · ⊢ f : □A⇒ Bool is noninterferent if it
is the case that · ⊢ app f s1 ∼ app f s2 : Bool for any two secrets · ⊢ s1, s2 : □A.
By instantiating A to Bool, we can show that any program · ⊢ f : □Bool⇒Bool
is noninterferent and thus cannot leak a secret Boolean argument. In λIK+Bool,
the type system ensures that data of type □A type can only influence (or
flow to) data of type □B, thus all programs of type □Bool⇒ Bool must be
noninterferent. To show this, we analyse the possible normal forms of f and
observe that they must be equivalent to a constant function, such as λ x. true
or λ x. false, which evidently does not use its input argument x and is thus
noninterferent.

In detail, normal forms of type □Bool⇒Bool must have the shape λ x. m, for
some normal form ·,□Bool ⊢NF m : Bool. If m is either true or false, then λ x. m
must be a constant function and we are done. Otherwise, it must be some
normal form ·,□Bool ⊢NF ifte n m1 m2 : Bool with a neutral n : Bool either in
context · or in context ·,□Bool. Such a neutral could either be of shape unbox n′

or app n′′ m′ for some neutrals n′ and n′′. However, this is impossible, since the
context of the neutral unbox n′ must contain a lock, and neither the context ·
nor the context ·,□Bool do. The existence of n′′ can also be similarly dismissed
by appealing to the definition of neutrals.

Discussion Observe that not all Fitch-style calculi are well-suited for inter-
preting the type □A as a secret, because noninterference might not hold. In
λIS4, the term λ x. unbox x : □A⇒ A (axiom T) is well-typed but leaks the
secret x, thus breaking noninterference. The validity of the interpretation of
□A as a secret depends on the calculus under consideration and the axioms it
exhibits.

E.5.3. Partial Evaluation
Davies and Pfenning (1996) and Davies and Pfenning (2001) present a modal
type system for staged computation based on IS4. In their system, the type □A
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represents code of type A that is to be executed at a later stage, and the
axioms of IS4 correspond to operations that manipulate code. The axiom K :
□(A⇒B)⇒ (□A⇒□B) corresponds to substituting code in code, T : □A⇒A
to evaluating code, and 4 : □A⇒ □□A to further delaying the execution of
code to a subsequent stage. A desired property of this type system is that code
must only depend on code, and thus the term λ x : A. box x must be ill-typed.

Although λIS4 exhibits the desired properties of a type system for staging, its
equational theory in Figure E.12 does not reflect the semantics of staged com-
putation. For example, the result of normalizing the term box (2∗unbox (box 3))
in λIS4 extended with natural number literals and multiplication is box 6. While
the result expected from reducing it in accordance with Davies and Pfenning’s
operational semantics is box (2 ∗ 3). The equational theory of Fitch-style calculi
in general do not take into account the occurrence of a term (such as the
literal 3) under box, while this is crucial for Davies and Pfenning’s semantics.
We return to this discussion at the end of this section.

If we restrict our attention to a special case of staged computation in partial
evaluation (Jones et al. 1993), however, the semantics of Fitch-style calculi are
better suited. In the context of partial evaluation, the type □A represents a
dynamic computation of type A that must be executed at runtime, and other
types represent static computations. Static and dynamic are also known as
binding-time annotations, and they are used by a partial evaluator to evaluate
all static computations.

In the term box (2 ∗ unbox (box 3)), we consider the literal 3 to be annotated
as dynamic since it occurs under box. The construct unbox strips this anno-
tation and brings it back to static. The multiplication of static subterms 2
and unbox (box 3) is however considered annotated dynamic since it itself occurs
under box. As a result, a partial evaluator that respects these annotations
does not perform the multiplication and specializes the term to box (2 ∗ 3)—
which matches the result of evaluating with Davies and Pfenning’s staging
semantics. Observe that the same partial evaluator would specialize the expres-
sion 2 ∗ unbox (box 3) to 6 since the multiplication does not occur under box
and is thus considered to be annotated static.

The goal of a partial evaluator is to optimize runtime execution of a program
by eagerly evaluating as many static computations as possible and yielding
an optimal dynamic program. The term box 6 is more optimized than the
term box (2∗3) since the evidently static multiplication has also been evaluated.
Normalization in a Fitch-style calculus yields the former result, and the gain
in optimality can be seen as a form of binding-time improvement (Jones et al.
1993) that is performed automatically during normalization.

In this section, we extend λIK with natural number literals and multiplication
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(denoted λIK+Nat), and extend the NbE model of λIK to λIK+Nat. We use
λIK as the base calculus since the other axioms are not needed in the context
of partial evaluation (Davies and Pfenning 1996; Davies and Pfenning 2001).
The resulting normalization function yields an optimal partial evaluator for
λIK+Nat. In partial evaluation, as with staging in general, we desire that
a term λ x : N. box x be disallowed, since a runtime execution of a dynamic
computation must not have a static dependency. While this term is already
ill-typed in λIK+Nat, we prove a kind of binding-time correctness property for
λIK+Nat that implies that no term equivalent to λ x : N. box x can exist.

Extension with Natural Number Literals and Multiplication We extend λIK
with a type N, a construct lift for including natural number literals, and an
operation ∗ for multiplying terms of type N—as described in Figure E.17.

Ty A, B ::= . . . | N Ctx Γ ::= . . .

N-Lift

Γ ⊢ lift k : N
k ∈ N

N-Mul
Γ ⊢ t1 : N Γ ⊢ t2 : N

Γ ⊢ t1 ∗ t2 : N

Figure E.17.: Types, contexts, intrinsically-typed terms of λIK+Nat (omitting
the unchanged rules of Figure E.5)

We extend the equational theory of λIK with some rules such as lift k1∗lift k2 ∼
lift (k1 ∗ k2) (for natural numbers k1 and k2), lift 0 ∗ t ∼ lift 0, t ∼ lift 1 ∗ t,
t ∗ lift k ∼ lift k ∗ t, etc. The normal forms of λIK+Nat include those of λIK in
addition to the following.

Nf/N1

Γ ⊢NF lift 0 : N

Nf/N2

Γ ⊢NE n1 : N . . . Γ ⊢NE nj : N
Γ ⊢NF lift k ∗ n1 ∗ · · · ∗ nj : N

k ∈ N \ {0}

The normal form lift k ∗ n1 ∗ · · · ∗ nj denotes a multiplication of a nonzero
literal with a sequence of neutrals of type N, which can possibly be empty.
The term box (2 ∗ unbox (box 3)) from earlier can be represented in λIK+Nat as
box (lift 2 ∗ unbox (box (lift 3))), and its normal form as box (lift 6). To extend
the NbE model for λIK to natural number literals and multiplication, we use
the interpretation presented by Valliappan, Russo, et al. (2021) for normalizing
arithmetic expressions. Omitting the rule lift 0 ∗ t ∼ lift 0, this interpretation
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also resembles the one constructed systematically in the framework of Yallop
et al. (2018) for commutative monoids.

Proving Binding-Time Correctness Binding-time correctness for a term · ⊢
f : N⇒ □N can be stated similar to noninterference: it must be the case
that · ⊢ app f u1 ∼ app f u2 : □N for any two arguments · ⊢ u1, u2 : N.
The satisfaction of this property implies that no well-typed term equivalent
to λ x : N. box x exists, since applying it to different arguments would yield
different results. As before with noninterference, we can prove this property
by case analysis on the possible normal forms of f . A normal form of f is
either of the form λ x. box (lift 0) or λ x. box (lift k ∗n1 ∗ · · · ∗nj) for some natural
number k and neutrals n1,. . . , nj of type N in context ·, N,µ. In the former
case, we are done immediately since λ x. box (lift 0) is a constant function that
evidently satisfies the desired criterion. In the latter case, we observe by
induction that no such neutrals ni exist, and hence f must be equivalent to
the function λ x. box (lift k), which is also constant.

As a part of binding-time correctness, we may also desire that nonconstant
terms □A⇒A like λ x : □A. unbox x be disallowed since a static computation
must not have a dynamic dependency. This can also be shown by following an
argument similar to the proof of noninterference in Section E.5.2.

Discussion The operational semantics for staged computation is given by
Davies and Pfenning via translation to a dual-context calculus for IS4, where
evaluation under the introduction rule box for □ is disallowed. While it is
possible to implement a normalization function for λIS4 that does not normalize
under box, this then misses certain reductions that are enabled by the translation.
For instance, the term box (2 ∗ unbox (box 3)) is already in normal form if we
simply disallow normalization under box, while the translation ensures the
reduction of unbox (box 3) by reducing the term to box (2 ∗ 3). This mismatch,
in addition to the lack of a model for their system, makes the applicability of
Fitch-style calculi for staged computation unclear.

E.6. Related and Further Work

Fitch-Style Calculi Fitch-style modal type systems (Borghuis 1994; Martini
and Masini 1996) adapt the proof methods of Fitch-style natural deduction
systems for modal logic. In a Fitch-style natural deduction system, to eliminate
a formula □A, we open a so-called strict subordinate proof and apply an
“import” rule to produce a formula A. Fitch-style lambda calculi achieve a
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similar effect, for example in λIK, by adding a µ to the context. To introduce a
formula □A, on the other hand, we close a strict subordinate proof, and apply
an “export” rule to a formula A—which corresponds to removing a µ from the
context. In the possible-world reading, adding a µ corresponds to travelling to
a future world, and removing it corresponds to returning to the original world.

The Fitch-style calculus λIK was presented for the logic IK by Borghuis (1994)
and Martini and Masini (1996), and later investigated further by Clouston
(2018). Clouston showed that µ can be interpreted as the left adjoint of □, and
proves a completeness result for a term calculus that extends λIK with a type
former ♦ that internalizes µ. The extended term calculus is, however, somewhat
unsatisfactory since the normal forms do not enjoy the subformula property.
Normalization was also considered by Clouston, but only with Rule □-β and
not Rule □-η. The normalization result presented here considers both rules,
and the corresponding completeness result achieved using the NbE model does
not require the extension of λIK with ♦. The decidability result that follows
for the complete equational theory of λIK also appears to have been an open
problem prior to our work.

For the logic IS4, there appear to be several possible formulations of a
Fitch-style calculus, where the difference has to do with the definition of the
rule λIS4/□-Elim. One possibility is to define unbox by explicitly recording the
context extension as a part of the term former. Davies and Pfenning (1996)
and Davies and Pfenning (2001) present such a system where they annotate the
term former unbox as unboxn to denote the number of µs. Another possibility
is to define unbox without any explicit annotations, thus leaving it ambiguous
and to be inferred from a specific typing derivation. Such a system is presented
by Clouston (2018), and also discussed by Davies and Pfenning. In either
formulation terms of type □A⇒A (axiom T) and □A⇒□□A (axiom 4) that
satisfy the comonad laws are derivable. As a result, both formulations exhibit
the logical equivalence □□A⇔ □A. The primary difference lies in whether this
logical equivalence can also be shown to be an isomorphism, i.e. whether the
semantics of the modality□ is a comonad which is also idempotent. In Clouston’s
categorical semantics the modality □ is interpreted by an idempotent comonad.
The λIS4 calculus presented here falls under the former category, where we
record the extension explicitly using a premise instead of an annotation.

Gratzer, Sterling, et al. (2019) present yet another possibility that refor-
mulates the system for IS4 in Clouston (2018). They further extend it with
dependent types, and also prove a normalization result using NbE with respect
to an equational theory that includes both Rule □-β and Rule □-η. Although
their approach is semantic in the sense of using NbE, their semantic domain
has a very syntactic flavour (Gratzer, Sterling, et al. 2019, Section 3.2) that
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obscures the elegant possible-world interpretation. For example, it is unclear as
to how their NbE algorithm can be adapted to minor variations in the syntax
such as in λIK, λIK4 and λIT—a solution to which is at the very core of our
pursuit. This difference also has to do with the fact that they are interested
in NbE for type-checking (also called “untyped” or “defunctionalized” NbE),
while we are interested in NbE for well-typed terms (and thus “typed” NbE),
which is better suited for studying the underlying models. Furthermore, we
also avoid several complications that arise in accommodating dependent types
in a Fitch-style calculus, which is the main goal of their work.

Davies and Pfenning present their calculus for IS4 using a stack of contexts,
which they call “Kripke-style”, as opposed to the single Fitch-style context
with a first-class delimiting operator µ. The elimination rule unboxn for □ in
the Kripke-style calculus for IS4 is indexed by an arbitrary natural number n
specifying the number of stack frames the rule adds to the context stack of
its premise. This index n corresponds to the modal accessibility premise of
the Fitch-style unbox rule presented in Figure E.11. As in the Fitch-style
presentation, Kripke-style calculi corresponding to the other logics IK, IT
and IK4 can be recovered by restricting the natural numbers n for which the
unboxn rule is available. Hu and Pientka (2022) present a normalization by
evaluation proof for the Kripke-style calculi for all four logics IK, IT, IK4,
and IS4. Their solution has a syntactic flavour similar to Gratzer, Sterling, et al.
(2019) and also does not leverage the possible-world semantics. Furthermore,
their proof is given for a single parametric system that encompasses the modal
logics of interest, which need not be possible when we consider further modal
axioms such as R : A⇒□A.

Possible-World Semantics for Fitch-Style Calculi Given that Fitch-style
natural deduction for modal logic has itself been motivated by possible-world
semantics, it is only natural that Fitch-style calculi can also be given possible-
world semantics. It appears to be roughly understood that the µ operator
models some notion of a past world, but this has not been—to the best of
our knowledge—made precise with a concrete definition that is supported
by a soundness and completeness result. As noted earlier, this requires a
minor refinement of the frame conditions that define possible-world models for
intuitionistic modal logic given by Božić and Došen (1984).

Dual-Context Calculi Dual-context calculi (Pfenning and Davies 2001; Davies
and Pfenning 1996; Davies and Pfenning 2001; Kavvos 2020) provide an alter-
native approach to programming with the necessity modality using judgements
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of the form ∆; Γ ⊢ A where ∆ is thought of as the modal context and Γ as the
usual (or “local”) one. As opposed to a “direct” eliminator as in Fitch-style
calculi, dual-context calculi feature a pattern-matching eliminator formulated
as a let-construct. The let-construct allows a type □A to be eliminated into
an arbitrary type C, which induces an array of commuting conversions in the
equational theory to attain normal forms that obey the subformula property.
Furthermore, the inclusion of an η-law for the □ type former complicates the
ability to produce a unique normal form. Normalization (and, more specifi-
cally, NbE) for a pattern-matching eliminator—while certainly achievable—is a
much more tedious endeavour, as evident from the work on normalizing sum
types (Altenkirch, Dybjer, et al. 2001; Lindley 2007; Abel and Sattler 2019),
which suffer from a similar problem. Presumably for this reason, none of the
existing normalization results for dual-context calculi consider the η-law. The
possible-world semantics of dual-context calculi is also less apparent, and it is
unclear how NbE models can be constructed as instances of that semantics.

Multimodal Type Theory (MTT) Gratzer, Kavvos, et al. (2020) present a
multimodal dependent type theory that for every choice of mode theory yields
a dependent type theory with multiple interacting modalities. In contrast to
Fitch-style calculi, their system features a variable rule that controls the use
of variables of modal type in context. Further, the elimination rule for modal
types is formulated in the style of the let-construct for dual-context calculi.
In a recent result, Gratzer (2021) proves normalization for multimodal type
theory. In spite of the generality of multimodal type theory, it is worth noting
that the normalization problem for Fitch-style calculi, when considering the
full equational theory, is not a special case of normalization for multimodal
type theory.

Further Modal Axioms The possible-world semantics and NbE models pre-
sented here only consider the logics IK, IT, IK4 and IS4. We wonder if it would
be possible to extend the ideas presented here to further modal axioms such
as R : A⇒ □A and GL : □(□A⇒ A)⇒ □A, especially considering that the
calculi may differ in more than just the elimination rule for the □ type.

Data Availability Statement

The Agda mechanization (Valliappan, Ruch, and Tomé Cortiñas 2022a) of
the calculi λIK and λIS4 and their normalization algorithms are available in the
Zenodo repository.

225



E. Normalization for Fitch-Style Modal Calculi

Acknowledgements
We would like to thank Andreas Abel, Thierry Coquand, and Graham Leigh
for their feedback on earlier versions of this work. We would also like to thank
the anonymous referees of both the paper and the artifact for their valuable
comments and helpful suggestions.

This work is supported by the SSF under the projects Octopi (Ref. RIT17-
0023R) and WebSec (Ref. RIT17-0011).

Bibliography
Abadi, Martín et al. (1999). “A Core Calculus of Dependency”. In: POPL ’99,

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, TX, USA, January 20-22, 1999.
Ed. by Andrew W. Appel and Alex Aiken. ACM, pp. 147–160. doi: 10.1145
/292540.292555. url: https://doi.org/10.1145/292540.292555 (cit. on
p. 217).

[SW Rel.] Abel, Andreas, Guillaume Allais, et al., Agda 2 version 2.6.2.1, 2005–
2021. Chalmers University of Technology and Gothenburg University. url:
https://wiki.portal.chalmers.se/agda/pmwiki.php (cit. on p. 191).

Abel, Andreas and Christian Sattler (2019). “Normalization by Evaluation for
Call-By-Push-Value and Polarized Lambda Calculus”. In: Proceedings of the
21st International Symposium on Principles and Practice of Programming
Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed. by Ekaterina
Komendantskaya. ACM, 3:1–3:12. doi: 10.1145/3354166.3354168. url:
https://doi.org/10.1145/3354166.3354168 (cit. on pp. 219, 225).

Ahman, Danel and Sam Staton (2013). “Normalization by Evaluation and
Algebraic Effects”. In: Proceedings of the Twenty-ninth Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2013, New
Orleans, LA, USA, June 23-25, 2013. Ed. by Dexter Kozen and Michael W.
Mislove. Vol. 298. Electronic Notes in Theoretical Computer Science. Elsevier,
pp. 51–69. doi: 10.1016/j.entcs.2013.09.007. url: https://doi.org/1
0.1016/j.entcs.2013.09.007 (cit. on p. 215).

Altenkirch, Thorsten, Peter Dybjer, et al. (2001). “Normalization by Evalua-
tion for Typed Lambda Calculus with Coproducts”. In: 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA,
June 16-19, 2001, Proceedings. IEEE Computer Society, pp. 303–310. doi:
10.1109/LICS.2001.932506. url: https://doi.org/10.1109/LICS.2001
.932506 (cit. on p. 225).

226

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1016/j.entcs.2013.09.007
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506


Bibliography

Altenkirch, Thorsten and Tarmo Uustalu (2004). “Normalization by Evaluation
for lambda-2”. In: Functional and Logic Programming, 7th International
Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings. Ed. by
Yukiyoshi Kameyama and Peter J. Stuckey. Vol. 2998. Lecture Notes in
Computer Science. Springer, pp. 260–275. doi: 10.1007/978-3-540-247
54-8\_19. url: https://doi.org/10.1007/978-3-540-24754-8%5C_19
(cit. on p. 219).

[SW] Augustsson, Lennart et al., Haskell 1990. url: https://www.haskell
.org/ (cit. on p. 213).

Berger, Ulrich and Helmut Schwichtenberg (1991). “An Inverse of the Evaluation
Functional for Typed lambda-calculus”. In: Proceedings of the Sixth Annual
Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The
Netherlands, July 15-18, 1991. IEEE Computer Society, pp. 203–211. doi:
10.1109/LICS.1991.151645. url: https://doi.org/10.1109/LICS.1991
.151645 (cit. on p. 190).

Borghuis, Valentijn Anton Johan (1994). Coming to terms with modal logic. On
the interpretation of modalities in typed λ-calculus, Dissertation, Technische
Universiteit Eindhoven, Eindhoven, 1994. Technische Universiteit Eindhoven,
Eindhoven, pp. x+219 (cit. on pp. 189, 222, 223).

Božić, Milan and Kosta Došen (1984). “Models for normal intuitionistic modal
logics”. In: Studia Logica 43.3, pp. 217–245. issn: 0039-3215. doi: 10.10
07/BF02429840. url: https://doi.org/10.1007/BF02429840 (cit. on
pp. 192, 193, 224).

Choudhury, Vikraman and Neel Krishnaswami (2020). “Recovering purity with
comonads and capabilities”. In: Proc. ACM Program. Lang. 4.ICFP, 111:1–
111:28. doi: 10.1145/3408993. url: https://doi.org/10.1145/3408993
(cit. on pp. 189, 212–214).

Clouston, Ranald (2018). “Fitch-Style Modal Lambda Calculi”. In: Founda-
tions of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. Ed. by Christel Baier and Ugo Dal Lago.
Vol. 10803. Lecture Notes in Computer Science. Springer, pp. 258–275. doi:
10.1007/978-3-319-89366-2\_14. url: https://doi.org/10.1007/978-
3-319-89366-2%5C_14 (cit. on pp. 189, 190, 193, 196, 201, 206, 209, 211,
218, 223).

Coquand, Catarina (2002). “A Formalised Proof of the Soundness and Complete-
ness of a Simply Typed Lambda-Calculus with Explicit Substitutions”. In:

227

https://doi.org/10.1007/978-3-540-24754-8\_19
https://doi.org/10.1007/978-3-540-24754-8\_19
https://doi.org/10.1007/978-3-540-24754-8%5C_19
https://www.haskell.org/
https://www.haskell.org/
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BF02429840
https://doi.org/10.1007/BF02429840
https://doi.org/10.1007/BF02429840
https://doi.org/10.1145/3408993
https://doi.org/10.1145/3408993
https://doi.org/10.1007/978-3-319-89366-2\_14
https://doi.org/10.1007/978-3-319-89366-2%5C_14
https://doi.org/10.1007/978-3-319-89366-2%5C_14


E. Normalization for Fitch-Style Modal Calculi

High. Order Symb. Comput. 15.1, pp. 57–90. doi: 10.1023/A:1019964114625.
url: https://doi.org/10.1023/A:1019964114625 (cit. on p. 194).

Davies, Rowan and Frank Pfenning (1996). “A Modal Analysis of Staged Com-
putation”. In: Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Pre-
sented at the Symposium, St. Petersburg Beach, Florida, USA, January
21-24, 1996. Ed. by Hans-Juergen Boehm and Guy L. Steele Jr. ACM Press,
pp. 258–270. doi: 10.1145/237721.237788. url: https://doi.org/10.11
45/237721.237788 (cit. on pp. 189, 219, 221, 223, 224).

– (2001). “A modal analysis of staged computation”. In: J. ACM 48.3, pp. 555–
604. doi: 10.1145/382780.382785. url: https://doi.org/10.1145/3827
80.382785 (cit. on pp. 189, 219–224).

Ewald, W. B. (1986). “Intuitionistic Tense and Modal Logic”. In: J. Symb. Log.
51.1, pp. 166–179. doi: 10.2307/2273953. url: https://doi.org/10.2307
/2273953 (cit. on p. 192).

Filinski, Andrzej (2001). “Normalization by Evaluation for the Computational
Lambda-Calculus”. In: Typed Lambda Calculi and Applications, 5th Interna-
tional Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings.
Ed. by Samson Abramsky. Vol. 2044. Lecture Notes in Computer Science.
Springer, pp. 151–165. doi: 10.1007/3-540-45413-6\_15. url: https://d
oi.org/10.1007/3-540-45413-6%5C_15 (cit. on p. 215).

Fischer-Servi, Gisèle (1981). “Semantics for a class of intuitionistic modal
calculi”. In: Italian studies in the philosophy of science. Vol. 47. Boston Stud.
Philos. Sci. Reidel, Dordrecht-Boston, Mass., pp. 59–72 (cit. on p. 192).

[SW] Freeman, Phil, PureScript 2013. url: https://www.purescript.org/
(cit. on p. 213).

Goguen, Joseph A. and José Meseguer (1982). “Security Policies and Security
Models”. In: 1982 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, April 26-28, 1982. IEEE Computer Society, pp. 11–20. doi: 10.1109
/SP.1982.10014. url: https://doi.org/10.1109/SP.1982.10014 (cit. on
p. 217).

Gratzer, Daniel (2021). “Normalization for multimodal type theory”. In: CoRR
abs/2106.01414. arXiv: 2106.01414. url: https://arxiv.org/abs/2106.0
1414 (cit. on p. 225).

Gratzer, Daniel, G. A. Kavvos, et al. (2020). “Multimodal Dependent Type
Theory”. In: LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020. Ed. by Holger
Hermanns et al. ACM, pp. 492–506. doi: 10.1145/3373718.3394736. url:
https://doi.org/10.1145/3373718.3394736 (cit. on p. 225).

228

https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.2307/2273953
https://doi.org/10.2307/2273953
https://doi.org/10.2307/2273953
https://doi.org/10.1007/3-540-45413-6\_15
https://doi.org/10.1007/3-540-45413-6%5C_15
https://doi.org/10.1007/3-540-45413-6%5C_15
https://www.purescript.org/
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://arxiv.org/abs/2106.01414
https://arxiv.org/abs/2106.01414
https://arxiv.org/abs/2106.01414
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736


Bibliography

Gratzer, Daniel, Jonathan Sterling, et al. (2019). “Implementing a modal
dependent type theory”. In: Proc. ACM Program. Lang. 3.ICFP, 107:1–
107:29. doi: 10.1145/3341711. url: https://doi.org/10.1145/3341711
(cit. on pp. 223, 224).

Hu, Jason Z. S. and Brigitte Pientka (2022). “An Investigation of Kripke-style
Modal Type Theories”. In: CoRR abs/2206.07823. arXiv: 2206.07823. url:
https://arxiv.org/abs/2206.07823 (cit. on p. 224).

Jay, C. Barry and Neil Ghani (1995). “The Virtues of Eta-Expansion”. In: J.
Funct. Program. 5.2, pp. 135–154. doi: 10.1017/S0956796800001301. url:
https://doi.org/10.1017/S0956796800001301 (cit. on p. 190).

Jones, Neil D. et al. (1993). Partial evaluation and automatic program generation.
Prentice Hall international series in computer science. Prentice Hall. isbn:
978-0-13-020249-9 (cit. on p. 220).

Kavvos, G. A. (2020). “Dual-Context Calculi for Modal Logic”. In: Log. Methods
Comput. Sci. 16.3. doi: 10.23638/LMCS-16(3:10)2020. url: https://lmc
s.episciences.org/6722 (cit. on pp. 213, 224).

Lindley, Sam (2007). “Extensional Rewriting with Sums”. In: Typed Lambda
Calculi and Applications, 8th International Conference, TLCA 2007, Paris,
France, June 26-28, 2007, Proceedings. Ed. by Simona Ronchi Della Rocca.
Vol. 4583. Lecture Notes in Computer Science. Springer, pp. 255–271. doi:
10.1007/978-3-540-73228-0\_19. url: https://doi.org/10.1007/978-
3-540-73228-0%5C_19 (cit. on p. 225).

Martini, Simone and Andrea Masini (1996). “A computational interpretation
of modal proofs”. In: Proof theory of modal logic (Hamburg, 1993). Vol. 2.
Appl. Log. Ser. Kluwer Acad. Publ., Dordrecht, pp. 213–241. doi: 10.1007
/978-94-017-2798-3\_12. url: https://doi.org/10.1007/978-94-017-
2798-3_12 (cit. on pp. 189, 222, 223).

Milner, Robin et al. (1990). Definition of standard ML. MIT Press. isbn:
978-0-262-63132-7 (cit. on p. 212).

Miyamoto, Kenji and Atsushi Igarashi (2004). “A modal foundation for secure
information flow”. In: In Proceedings of IEEE Foundations of Computer
Security (FCS), pp. 187–203 (cit. on p. 189).

Moggi, Eugenio (1989). “Computational Lambda-Calculus and Monads”. In:
Proceedings of the Fourth Annual Symposium on Logic in Computer Science
(LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer
Society, pp. 14–23. doi: 10.1109/LICS.1989.39155. url: https://doi.or
g/10.1109/LICS.1989.39155 (cit. on p. 212).

– (1991). “Notions of Computation and Monads”. In: Inf. Comput. 93.1, pp. 55–
92. doi: 10.1016/0890-5401(91)90052-4. url: https://doi.org/10.101
6/0890-5401(91)90052-4 (cit. on pp. 214, 217).

229

https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://arxiv.org/abs/2206.07823
https://arxiv.org/abs/2206.07823
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.23638/LMCS-16(3:10)2020
https://lmcs.episciences.org/6722
https://lmcs.episciences.org/6722
https://doi.org/10.1007/978-3-540-73228-0\_19
https://doi.org/10.1007/978-3-540-73228-0%5C_19
https://doi.org/10.1007/978-3-540-73228-0%5C_19
https://doi.org/10.1007/978-94-017-2798-3\_12
https://doi.org/10.1007/978-94-017-2798-3\_12
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4


E. Normalization for Fitch-Style Modal Calculi

Pfenning, Frank and Rowan Davies (2001). “A judgmental reconstruction
of modal logic”. In: Math. Struct. Comput. Sci. 11.4, pp. 511–540. doi:
10.1017/S0960129501003322. url: https://doi.org/10.1017/S0960129
501003322 (cit. on pp. 213, 224).

Plotkin, Gordon D. and Colin Stirling (1986). “A Framework for Intuitionistic
Modal Logics”. In: Proceedings of the 1st Conference on Theoretical Aspects
of Reasoning about Knowledge, Monterey, CA, USA, March 1986. Ed. by
Joseph Y. Halpern. Morgan Kaufmann, pp. 399–406 (cit. on p. 192).

Russo, Alejandro et al. (2008). “A library for light-weight information-flow
security in haskell”. In: Proceedings of the 1st ACM SIGPLAN Symposium
on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008. Ed.
by Andy Gill. ACM, pp. 13–24. doi: 10.1145/1411286.1411289. url:
https://doi.org/10.1145/1411286.1411289 (cit. on p. 217).

Sabelfeld, Andrei and Andrew C. Myers (2003). “Language-based information-
flow security”. In: IEEE J. Sel. Areas Commun. 21.1, pp. 5–19. doi: 10.1109
/JSAC.2002.806121. url: https://doi.org/10.1109/JSAC.2002.806121
(cit. on p. 216).

Shikuma, Naokata and Atsushi Igarashi (2008). “Proving Noninterference by
a Fully Complete Translation to the Simply Typed Lambda-Calculus”. In:
Log. Methods Comput. Sci. 4.3. doi: 10.2168/LMCS-4(3:10)2008. url:
https://doi.org/10.2168/LMCS-4(3:10)2008 (cit. on p. 217).

Simpson, Alex K. (1994). “The proof theory and semantics of intuitionistic
modal logic”. PhD thesis. University of Edinburgh, UK. url: https://hdl
.handle.net/1842/407 (cit. on pp. 192, 193).

Tomé Cortiñas, Carlos and Nachiappan Valliappan (2019). “Simple Nonin-
terference by Normalization”. In: Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, CCS 2019,
London, United Kingdom, November 11-15, 2019. Ed. by Piotr Mardziel
and Niki Vazou. ACM, pp. 61–72. doi: 10.1145/3338504.3357342. url:
https://doi.org/10.1145/3338504.3357342 (cit. on p. 217).

[SW Rel.] Valliappan, Nachiappan, Fabian Ruch, and Carlos Tomé Cortiñas,
Artifact for “Normalization for Fitch-Style Modal Calculi” version 1.1.0, Aug.
2022. doi: 10.5281/zenodo.6957191, url: https://doi.org/10.5281/z
enodo.6957191 (cit. on pp. 191, 225).

Valliappan, Nachiappan, Fabian Ruch, and Carlos Tomé Cortiñas (2022b).
“Normalization for fitch-style modal calculi”. In: Proc. ACM Program. Lang.
6.ICFP, pp. 772–798. doi: 10.1145/3547649. url: https://doi.org/10.1
145/3547649 (cit. on p. 187).

Valliappan, Nachiappan, Alejandro Russo, et al. (2021). “Practical normalization
by evaluation for EDSLs”. In: Haskell 2021: Proceedings of the 14th ACM

230

https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://hdl.handle.net/1842/407
https://hdl.handle.net/1842/407
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.5281/zenodo.6957191
https://doi.org/10.5281/zenodo.6957191
https://doi.org/10.5281/zenodo.6957191
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649


Bibliography

SIGPLAN International Symposium on Haskell, Virtual Event, Korea, August
26-27, 2021. Ed. by Jurriaan Hage. ACM, pp. 56–70. doi: 10.1145/34718
74.3472983. url: https://doi.org/10.1145/3471874.3472983 (cit. on
pp. 215, 221).

Yallop, Jeremy et al. (2018). “Partially-static data as free extension of algebras”.
In: Proc. ACM Program. Lang. 2.ICFP, 100:1–100:30. doi: 10.1145/3236795.
url: https://doi.org/10.1145/3236795 (cit. on p. 222).

231

https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3471874.3472983
https://doi.org/10.1145/3236795
https://doi.org/10.1145/3236795

	Abstract
	Acknowledgements
	Overview
	Introduction
	Information-Flow Control
	Thesis Contributions
	Pure InformationFlow Control with Effects Made Simple
	Information Flow and Effects Via Distributive Laws
	Securing Asynchronous Exceptions
	Simple Noninterference by Normalization
	Normalization for FitchStyle Modal Calculi

	Bibliography


	Papers
	Pure Information-Flow Control with Effects Made Simple
	Introduction
	Effect-Free Information-Flow Control
	Effectful Information-Flow Control
	Printing Effects
	Global Store Effects
	Other Effects, Combination of Effects

	Security Guarantees
	Noninterference for Printing Effects
	Noninterference for Global Store Effects

	Implementation
	Implementation of SC
	Implementation of SCPrint
	Implementing Existing Libraries for IFC

	Related Work
	Conclusions
	Acknowledgements
	Bibliography
	Appendices
	The Language STLCRec


	Information Flow and Effects via Distributive Laws
	Introduction
	Contributions
	Outline

	Preliminaries on Classified Sets
	Modalities and Information Flow: Redaction
	Redaction Meets Computational Effects
	Interaction as a Distributive Law
	Computational Effects and Monads
	Security and Specification Monads

	Nontermination
	Security and Specification Monads

	Related Work
	Conclusions and Further Work
	Acknowledgements
	Bibliography

	Securing Asynchronous Exceptions
	Introduction
	The MAC Information-Flow Control Library
	MACAsync by Example
	Formal Semantics
	Core of MACAsync
	Synchronization Variables
	Concurrency

	Asynchronous Exceptions
	Masking Exceptions
	Concurrency and Synchronization Variables
	Design Choices and Security
	Relation to MAC

	Security Guarantees
	Term Erasure
	Erasure Function
	Progress-Sensitive Noninterference

	Related Work
	Conclusions and Future Work
	Acknowledgements
	Bibliography

	Simple Noninterference by Normalization
	Introduction
	The 5�sec Calculus
	Normal Forms of 5�sec
	Normal Forms and Noninterference
	From 5�sec to Normal Forms
	NbE for Simple Types
	NbE for the Security Monad
	Preservation of Semantics

	Noninterference for 5�sec
	Special Case of Noninterference
	General Noninterference Theorem
	Follow-up Example

	Conclusions and Future Work
	Acknowledgements
	Bibliography
	Appendices
	NbE for Sums


	Normalization for Fitch-Style Modal Calculi
	Introduction
	Main Idea
	Possible-World Semantics and NbE
	The Calculus IKC
	Extending to the Calculus IS4C
	Extending to the Calculi ITC and IK4C

	Completeness, Decidability and Logical Applications
	Programming-Language Applications
	Capability Safety
	Information-Flow Control
	Partial Evaluation

	Related and Further Work
	Data Availability Statement
	Acknowledgements
	Bibliography



