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Plasma metabolites of a healthy lifestyle
in relation to mortality and longevity:
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Qi Sun,1,5 Meir J. Stampfer,1,2,5 Francine Grodstein,2,7 Kathryn M. Rexrode,8 JoAnn E. Manson,2,5,6

Raji Balasubramanian,9 Clary B. Clish,10 Miguel A. Martı́nez-González,1,11 Jorge E. Chavarro,1,2,5

Frank B. Hu,1,2,5 and Marta Guasch-Ferré1,12,13,*
CONTEXT AND SIGNIFICANCE

Eating well, staying active, not

smoking, and maintaining a

healthy body weight are well

known to protect against diseases

and early death. However, it is not

clear whether adhering to these

healthy habits affects specific

molecules in the body. In over

13,000 adults, Tessier et al.

demonstrated that adherence to a

healthy lifestyle is associated with

the level of molecules in the

blood, particularly those in the

body’s processing of fats. The

researchers identified a unique

combination of molecules that

explains part of the association

between greater adherence to a

healthy lifestyle and lower risk of

death and higher likelihood of

living longer. The study provides

new biological understanding

about how living healthily is linked

to lower risk of dying early.
SUMMARY

Background: A healthy lifestyle is associated with a lower premature
mortality risk and with longer life expectancy. However, the metabolic
pathways of a healthy lifestyle and how they relate to mortality and
longevity are unclear. We aimed to identify and replicate a healthy life-
style metabolomic signature and examine how it is related to total and
cause-specific mortality risk and longevity.
Methods: In four large cohorts with 13,056 individuals and 28-year
follow-up, we assessed five healthy lifestyle factors, used liquid chro-
matography mass spectrometry to profile plasma metabolites, and
ascertained deaths with death certificates. The unique healthy lifestyle
metabolomic signature was identified using an elastic regression.
Multivariable Cox regressions were used to assess associations of the
signature with mortality and longevity.
Findings:: The identified healthy lifestyle metabolomic signature was
reflective of lipid metabolism pathways. Shorter and more saturated tri-
acylglycerol and diacylglycerol metabolite sets were inversely associ-
ated with the healthy lifestyle score, whereas cholesteryl ester and
phosphatidylcholine plasmalogen sets were positively associated. Par-
ticipants with a higher healthy lifestyle metabolomic signature had a
17% lower risk of all-cause mortality, 19% for cardiovascular disease
mortality, and 17% for cancer mortality and were 25% more likely to
reach longevity. The healthy lifestyle metabolomic signature explained
38% of the association between the self-reported healthy lifestyle score
and total mortality risk and 49% of the association with longevity.
Conclusions: This study identifies a metabolomic signature that mea-
sures adherence to a healthy lifestyle and shows prediction of total
and cause-specific mortality and longevity.
Funding: This work was funded by the NIH, CIHR, AHA, Novo Nordisk
Foundation, and SciLifeLab.
INTRODUCTION

A combination of healthy lifestyle factors including a healthy diet, body mass index

(BMI) within 18.5–24.9 kg/m2, moderate alcohol intake, higher levels of physical ac-

tivity, and never smoking was associated with 55%–71% lower risk of all-cause mor-

tality in prospective cohort studies.1,2 In US populations, adhering to all low-risk
224 Med 5, 224–238, March 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
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lifestyle factors was shown to increase life expectancy by up to 14 years compared to

adhering to none.3 Nonetheless, the precise mechanisms linking lifestyle behaviors

with mortality and longevity are not well understood.

High-throughput metabolite profiling provides a comprehensive picture of individual

metabolic status and reflects the intricate interplay between lifestyle factors and genetic

susceptibility.4 Advances in metabolomic techniques hold promise in providing insights

into underlying biological mechanisms, identifying high-risk individuals, and developing

targeted preventive lifestyle interventions to reduce premature mortality.

Previous studies have suggested that metabolomic signatures may be associated

with body weight,5 diet,6 physical activity,7 alcohol consumption,8,9 and smok-

ing.10,11 Yet, few studies have examined metabolites associated with a composite

healthy lifestyle score.12–15 One systematic review recently examined the literature

on the adherence to a healthy lifestyle, as defined by two or more combined healthy

lifestyle behaviors, and metabolomics in humans (9 studies, n = 34–3,234 partici-

pants, observational and trial designs).16 Although mixed, findings from these

studies generally supported positive associations of polyunsaturated fatty acids

(PUFAs), phosphatidylcholines (PCs), and some amino acids, mainly glutamate,

with a healthy lifestyle and inverse associations of triacylglycerols (TAG), sphingo-

myelins (SMs), and carnitines, among other metabolites.16 However, most studies

only examined diet and physical activity factors, with small sample sizes and limited

sets of metabolites profiled. Thus, a comprehensive understanding of the metabolic

pathways underlying healthy lifestyle behaviors remains to be discovered. By study-

ing several modifiable lifestyle factors simultaneously, a better understanding of the

common biological mechanisms as well as the key differences may be acquired.

In the present study, by leveraging lifestyle, metabolomic, and clinical data from

>13,000 participants in four US adult prospective cohorts (three discovery and

one external replication), we aimed to identify a metabolomic signature of a com-

bined healthy lifestyle score in mid-life and examine its prospective association

with all-cause and cause-specific mortality and longevity over up to 28 years of

follow-up.

RESULTS

Participants’ characteristics

A total of 11,487 participants from the Nurses’ Health Study (NHS), NHSII, and

Health Professionals Follow-up Study (HPFS) were included in our primary analyses

(Figure 1). Participants were predominantly middle-aged (mean age 54.3 G 9.0

years) women (85.8%) of White ethnicity (96.7%) and reported adhering to 1.9 G

1.1 healthy lifestyle factors (Table 1). A total of 1,569 participants from the Women’s

Health Initiative (WHI) study were included in the replication analyses. The WHI par-

ticipants were older, had a higher prevalence of diabetes, hypertension, and hyper-

cholesterolemia, and reported lower adherence to healthy lifestyle factors (mean

1.5 G 1.1) (Table 1). In the NHS/NHSII/HPFS, participants who adhered to 5 out

of 5 healthy lifestyle factors were most likely to be men; they had a lower BMI, higher

alcohol intake, and higher diet quality; they never smoked; and they exercised more

compared to those adhering to fewer factors; they also had a lower prevalence of

diabetes, hypertension, and hypercholesterolemia (Table S1).

Metabolome-wide associations

After adjusting for covariates, 58 metabolites were positively associated and 129 were

inversely associated with the self-reported healthy lifestyle score (Bonferroni-adjusted
Med 5, 224–238, March 8, 2024 225
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Figure 1. Flow diagram

NHS, Nurses’ Health Study I; NHSII, Nurses’ Health Study II; HPFS, Health Professionals Follow-up Study; BMI, body mass index; CVD, cardiovascular

disease.
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p < 0.05). The most strongly positively associated metabolites included C22:6 and

C18:cholesteryl ester (CE) 2, C58:9 triacylglycerol (TAG), C40:9 and C38:6 PCs, several

other CEs, and phospholipid plasmalogens (PCs and phosphatidylethanolamines

[PEs]), and themost strongly inversely associatedwere predominantly TAGswith shorter

chain and higher saturation (namely C52:2, C50:3, C50:2, C50:1) and diacylglycerols

(DAGs; namely C32:1 and C34:1) (Figure 2A; Table S2). Results remained consistent

across age groups (<55 vs. R55 years; Pearson r for beta coefficients = 0.95, r2 =

0.90), sex (womenvs.men;Pearson r for beta coefficients=0.90, r2=0.81), andcase-con-

trol status (case vs. control; Pearson r for beta coefficients = 0.98, r2 = 0.96). Frommetab-

olite setenrichmentanalysis (MSEA), fourmetaboliteclassesweresignificantlyassociated

with the self-reported healthy lifestyle score (false discovery rate p < 0.05; Figure 2B). CE

and PCplasmalogens emerged as themost enrichedmetabolite groups positively asso-

ciated with the healthy lifestyle score, whereas TAGs (%56 carbons and %3 double

bonds) and DAGs were the most enriched metabolite groups inversely associated.

Results from the individual linear regressions without adjusting for potential biolog-

ical intermediates were consistent with the main analysis (Table S3). In the sensitivity

analysis of the self-reported healthy lifestyle score without the alcohol component,

186metabolites were significantly associated with the healthy lifestyle score (Bonfer-

roni-adjusted p < 0.05). Specifically, 55 were positively associated and 131 were

inversely associated. The most strongly associated metabolites consistently

included C22:CE 6, C58:9 TAG, and C18:CE 2 (positive associations) and C52:2,

C50:1, C50:2, and C52:1 TAGs (inverse associations) (Figure S1A; Table S4). The

MSEA showed the same enrichedmetabolite groups associated with the healthy life-

style score with and without the alcohol component, i.e., CE and PC plasmalogens

(positive associations) and TAGs (%56 carbons and %3 double bonds) and DAGs

(inverse associations) (Figure S1B).
226 Med 5, 224–238, March 8, 2024



Table 1. Baseline characteristics of participants

NHS NHSII HPFS Overall WHI

n 6,731 3,121 1,635 11,487 1,569

Age, years 56.8 (6.8) 44.6 (4.5) 62.7 (8.3) 54.3 (9.0) 66.9 (7.1)

Women, n (%) 6,731 (100.0) 3,121 (100.0) 0 (0.0) 9,852 (85.8) 1,569 (100.0)

White, n (%) 6,492 (96.4) 3,036 (97.3) 1,584 (96.9) 11,112 (96.7) 1,244 (79.3)

Fasting at blood collection, n (%) 5,079 (75.5) 2,251 (72.1) 962 (58.8) 8,292 (72.2) 1,569 (100.0)

Multivitamin use, n (%) 4,366 (64.9) 2,390 (76.6) 953 (58.3) 7,709 (67.1) 58 (3.7)

Diabetes, n (%) 222 (3.3) 50 (1.6) 63 (3.9) 335 (2.9) 109 (6.9)

Hypertension, n (%) 1,799 (26.7) 347 (11.1) 452 (27.6) 2,598 (22.6) 384 (24.5)

Hypercholesterolemia, n (%) 1,842 (27.4) 780 (25.0) 591 (36.1) 3,213 (28.0) 159 (10.1)

Hypertensive medication use, n (%) 1,533 (22.8) 244 (7.8) 394 (24.1) 2,171 (18.9) 478 (30.5)

Lipid-lowering medication use, n (%) 163 (2.4) 125 (4.0) 110 (6.7) 398 (3.5) 137 (8.7)

Energy intake, kcal/d 1,777 (469) 1,836 (499) 2,033 (555) 1,830 (498) 1,564 (582)

Healthy lifestyle adherence, 0–5 1.8 (1.1) 2.1 (1.1) 2.2 (1.2) 1.9 (1.1) 1.5 (1.1)

Smoking, n (%)

Never 3,163 (47.0) 2,084 (66.8) 794 (48.6) 6,041 (52.6) 781 (49.8)

Past 2,792 (41.5) 793 (25.4) 777 (47.5) 4,362 (38.0) 613 (39.1)

Current 776 (11.5) 244 (7.8) 64 (3.9) 1,084 (9.4) 175 (11.2)

BMI, kg/m2 25.6 (4.6) 25.9 (5.5) 25.8 (3.3) 25.7 (4.7) 28.5 (6.1)

Moderate to vigorous physical
activity, h/week

2.2 (3.3) 3.0 (3.3) 4.0 (4.7) 2.7 (3.6) 1.9 (3.1)

Alcohol intake, g/day 5.6 (9.1) 3.9 (6.7) 11.5 (14.2) 6.0 (9.7) 4.7 (10.3)

AHEI, score 0–100 47.9 (9.6) 46.4 (9.8) 48.7 (10.3) 47.6 (9.8) 47.1 (9.7)

Values are means (SD) for continuous variables and counts (%) for categorical variables. Alternative healthy eating index (AHEI) without alcohol. NHS, Nurses’

Health Study I; NHSII, Nurses’ Health Study II; HPFS, Health Professionals Follow-up Study; SD, standard deviation; BMI, body mass index.
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As for individual healthy lifestyle factors, 183metabolites were associated with a BMI

between 18.5 and 24.9 kg/m2, 152 with a healthier diet, 80 with low-moderate

alcohol intake, 35 with moderate to vigorous physical activity level, and 85 with

never smoking (all Bonferroni-adjusted p < 0.05; Tables S5, S6, S7, S8, and S9). Me-

tabolites that were most positively associated with a "normal" BMI were CE and PC

plasmalogens, whereas shorter-chain TAGs (%56 carbons and %3 double bonds),

uric acid, DAGs, and valine were inversely associated. Long-chain TAGs, PCs, and

CEs were the metabolites most positively associated with a healthier diet, whereas

myristoleic acid, C7 carnitine, PC and PE plasmalogens, and short-chain TAGs

were inversely associated. Caffeine, 7-dimethyluric, trigonelline, PE, and PC plas-

malogens were the most positively associated with moderate alcohol intake, and

both long- and short-chain TAGs and DAGs were inversely associated. Metabolites

that were most positively associated with moderate to vigorous physical activity

were PCs, PC plasmalogens, lysophosphatidylcholines, and CEs, whereas short-

chain TAGs and DAGs were inversely associated. Proline betaine, biliverdin, C36:4

DAG, C22:CE 5, and long-chain TAGs were the most positively associated with

never smoking, while trigonelline, caffeine, 5-acetylamino-6-amino-3-methyluracil,

and 7-dimethyluric acid were inversely associated.

Healthy lifestyle metabolomic signature

A total of 101 metabolites associated with the self-reported healthy lifestyle score

were selected from the elastic net regression (Figure 3). Selected metabolites

were consistent with those identified from metabolome-wide analysis. For example,

CEs (C22:5, C22:6, C16:0), PCs (C40:9, C38:6), and PC plasmalogens (C34:3, C36:3)

were among the positively associated metabolites, and C18:0 SM, N2,N2-dimethyl-

guanosine, creatine, N4-acetylcytidine, myristoleic acid, uric acid, L-valine, and

shorter-chain saturated TAGs (C51:3, C53:3, C50:3, C52:2, C50:4) were among

the inversely associated ones. These metabolites were also the most consistently
Med 5, 224–238, March 8, 2024 227



Figure 2. Metabolome-wide associations for the healthy lifestyle adherence

(A) Top 40 positive and inverse associations between individual metabolites and healthy lifestyle adherence. Results are from multivariable linear

regressions adjusted for age, fasting status, ethnicity, multivitamin use, diabetes, hypertension, antihypertensive medication use,

hypercholesterolemia, lipid-lowering medication use, total energy intake, study cohorts, original substudies, and the case/control status within the

original substudy. p values are corrected for multiple testing using a Bonferroni adjustment.

(B) Normalized enrichment score of predefined metabolite sets with adherence to a healthy lifestyle. Results are from metabolite set enrichment

analysis (MSEA) based on individual multivariable-adjusted linear regression b coefficients. p values are corrected for multiple testing using a false

discovery rate (FDR) adjustment. b, standardized beta coefficient; CI, confidence interval; CE, cholesteryl esters; PC, phosphatidylcholine; TAG,

triacylglycerols; PE, phosphatidylethanolamine. *p < 0.05.

ll
OPEN ACCESS Clinical and Translational Article
associated with individual healthy lifestyle factors (Figure 3, second column). The

healthy lifestyle metabolomic signature correlated with the self-reported healthy

lifestyle score in both the training (Pearson r = 0.46, r2 = 0.21; p < 0.001) and testing

sets (Pearson r = 0.45, r2 = 0.20; p < 0.001) and across cohorts (NHS: Pearson r =

0.43, r2 = 0.19; NHSII: r = 0.49, r2 = 0.24; HPFS: r = 0.47, r2 = 0.22; all p < 0.001)

(Figures 4A–4C). Individual healthy lifestyle factors correlated with the healthy life-

style metabolomic signature. Having a BMI between 18.5 and 24.9 kg/m2 was the

most strongly correlated (point-biserial r = 0.43, p < 0.001), followed by a healthier

diet (point-biserial r = 0.27; p < 0.001), moderate to vigorous physical activity (point-

biserial r = 0.20; p < 0.001), low-moderate alcohol intake (point-biserial r = 0.14;

p < 0.001), and never smoking (point-biserial r = 0.04; p < 0.001). In multivariable-

adjusted logistic regressions, the healthy lifestyle metabolomic signature was signif-

icantly associated with each individual lifestyle factor, independently of other fac-

tors. The odds ratios per 1-standard deviation (SD) increment in the healthy lifestyle

metabolomic signature and the 95% confidence interval (CI) for the individual life-

style factors were 9.39 (8.40, 10.49; "normal" BMI), 4.20 (3.79, 4.65; healthy diet),

1.89 (1.69, 2.12; moderate alcohol), 1.85 (1.66, 2.05; never smoking), and 1.42

(1.29, 1.56; active living).

Prospective associations with mortality and longevity

Over up to 28 years of follow-up, we documented 4,343 deaths (3,126 in NHS, 155 in

NHSII, and 1,062 in HPFS), including 894 cardiovascular disease (CVD) and 1,108

cancer deaths. As expected, a higher self-reported adherence to a healthy lifestyle

was associated with a lower risk of all-cause mortality (hazard ratio [HR] per 1-SD

increment = 0.86, 95% CI: 0.81, 0.92), CVD mortality (HR per 1-SD increment =

0.79, 95% CI: 0.67, 0.94), and cancer mortality (HR per 1-SD increment = 0.89,
228 Med 5, 224–238, March 8, 2024



Figure 3. Associations between individual metabolites and healthy lifestyle adherence and its components

This heatmap shows the 101 metabolites retained in the healthy lifestyle signature and their weight from regularized elastic net regressions, b

coefficient from multivariable-adjusted linear regression (self-reported healthy lifestyle adherence), and odds ratios (ORs) from multivariable-adjusted

logistic regressions (alcohol, BMI, diet, physical activity, smoking). Results are adjusted for age, fasting status, ethnicity, multivitamin use, diabetes,

hypertension, antihypertensive medication use, hypercholesterolemia, lipid-lowering medication use, total energy intake, study cohorts, original

substudies, and the case/control status within the original substudy. Results for each healthy lifestyle factor are further adjusted for the other healthy

lifestyle factors. p values are corrected for multiple testing using a Bonferroni adjustment. Dark pink indicates a strong positive association and dark

blue a strong negative association. *p < 0.05 and **p < 0.001.
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95% CI: 0.80, 1.00) (Table 2). The healthy lifestyle metabolomic signature was also

associated with lower risk of all-cause mortality (HR per 1-SD increment = 0.83,

95% CI: 0.78, 0.89), CVD mortality (HR per 1-SD increment = 0.81, 95% CI: 0.68,

0.96), and cancer mortality (HR per 1-SD increment = 0.83, 95% CI: 0.74, 0.92) (Ta-

ble 2). The associations with total and cancer mortality, but not CVD mortality, re-

mained significant after further adjustment for self-reported healthy lifestyle score.

In mediation analysis, the healthy lifestyle metabolomic signature attenuated the as-

sociation between the self-reported healthy lifestyle score and all-cause mortality

and explained 38.0% (95% CI: 21.1, 58.4; p < 0.0001) of the association.

Longevity R85 years of age was achieved by 2,616 participants (n = 2,396 deaths

before the age of 85 years). Higher self-reported adherence to a healthy lifestyle

was associated with greater likelihood of achieving longevity (HR per 1-SD
Med 5, 224–238, March 8, 2024 229



Figure 4. Correlation between the healthy lifestyle metabolomic signature and the self-reported

score by cohorts

(A) Correlation in the HPFS.

(B) Correlation in the NHS.

(C) Correlation in the NHSII.

(D) Correlation in the WHI study.

For each of the number of healthy factors (0, 1, 2, 3, 4, 5; x axis), boxplots represent the interquartile

range and median of the corresponding number of factors estimated by the metabolomic signature

(y axis). R is the Pearson correlation coefficient.
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Table 2. Associations of the healthy lifestyle adherence and metabolomic signature with total

and cause-specific mortality and longevity in NHS, NHSII, and HPFS

Healthy lifestyle adherence
per 1-SD increment

Metabolomic signature
per 1-SD increment

HR (95% CI) p HR (95% CI) p

All-cause mortality
n deaths = 4,343/11,487

Model 1 0.84 (0.79, 0.90) <0.001 0.81 (0.76, 0.86) <0.001

Model 2 0.86 (0.80, 0.92) <0.001 0.83 (0.78, 0.89) <0.001

Model 3 0.91 (0.85, 0.98) 0.011 0.86 (0.80, 0.92) <0.001

CVD mortality
n deaths = 894/11,487

Model 1 0.77 (0.65, 0.90) 0.001 0.74 (0.63, 0.88) 0.001

Model 2 0.79 (0.67, 0.94) 0.008 0.81 (0.68, 0.96) 0.015

Model 3 0.83 (0.70, 0.99) 0.04 0.85 (0.71, 1.02) 0.086

Cancer mortality
n deaths = 1,108/11,487

Model 1 0.89 (0.80, 0.99) 0.031 0.82 (0.74, 0.92) <0.001

Model 2 0.89 (0.80, 1.00) 0.047 0.82 (0.74, 0.92) 0.001

Model 3 0.96 (0.85, 1.08) 0.484 0.84 (0.74, 0.95) 0.005

Longevity R85 years
n longevity = 2,616/11,487
n death <85 years = 2,396/11,487

Model 1 1.21 (1.12, 1.30) <0.001 1.29 (1.20, 1.39) <0.001

Model 2 1.17 (1.09, 1.27) <0.001 1.25 (1.16, 1.35) <0.001

Model 3 1.09 (1.00, 1.18) 0.055 1.22 (1.12, 1.32) <0.001

HRs are per 1-SD increment. Model 1 was adjusted for fasting status and stratified by baseline age, study

cohorts, original substudies, and case-control status within the original substudy. Model 2 was further

adjusted for race/ethnicity, multivitamin use, diabetes, hypercholesterolemia, lipid-lowering medication

use, hypertension, antihypertensive medication use, and total caloric intake. Model 3 further included

adjustment for the self-reported healthy lifestyle adherence to examine association independence. SD,

standard deviation; HR, hazard ratio; CI, confidence interval.
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increment = 1.17, 95% CI: 1.09, 1.27). A higher healthy lifestyle metabolomic score

was also associated with a greater likelihood of achieving longevity (HR per 1-SD

increment = 1.25, 95% CI: 1.16, 1.35) and remained after mutual adjustment for

the self-reported healthy lifestyle score (HR per 1-SD increment = 1.22, 95% CI:

1.12, 1.32) (Table 2). The healthy lifestyle metabolomic signature explained 48.6%

(95% CI: 25.4–72.4; p < 0.0001) of the association between the self-reported healthy

lifestyle score and longevity.
External replication

In theWHI cohort, we replicated 213 metabolite associations, of which 34 were posi-

tively associated with the self-reported healthy lifestyle score and 55 were inversely

associated (Bonferroni-adjusted p < 0.05) (Table S10). Highly concordant with the re-

sults we found in the NHS/NHSII/HPFS, PCs (C40:10, C38:6), CEs (namely C22:6,

C20:5, C16:0, and C22:5), and long-chain unsaturated TAGs (C58:9, C56:8) were

the most positively associated with a healthy lifestyle, whereas higher-saturation

and shorter-chain TAGs (including C52:2, C54:1, C54:2, C52:3, C51:3, C52:1, and

C51:1) and DAGs (including C36:1, C34:1, C36:2, and C34:2) were inversely associ-

ated (all Bonferroni-adjusted p < 0.05). The healthy lifestyle metabolomic signature

also correlated with the combined self-reported healthy lifestyle score (Figure 4D;

Pearson r = 0.41, p < 0.001). Results of the associations between the healthy lifestyle

metabolomic signature and all-cause mortality (HR per 1-SD increment = 0.82, 95%
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Table 3. Associations of the healthy lifestyle adherence and metabolomic signature with total

and cause-specific mortality and longevity in WHI

Healthy lifestyle adherence
per 1-SD increment

Metabolomic signature
per 1-SD increment

HR (95% CI) p value HR (95% CI) p value

All-cause mortality
N deaths = 679/1,569

Model 1 0.83 (0.76, 0.90) <0.001 0.79 (0.73, 0.86) <0.001

Model 2 0.85 (0.78, 0.92) <0.001 0.82 (0.76, 0.89) <0.001

Model 3 0.90 (0.82, 0.98) 0.017 0.86 (0.78, 0.94) <0.001

Longevity R85 years
N longevity = 622/1,569
N deaths <85 years = 169/1,569

Model 1 1.39 (1.17, 1.66) <0.001 1.43 (1.22, 1.66) <0.001

Model 2 1.37 (1.14, 1.64) <0.001 1.39 (1.18, 1.62) <0.001

Model 3 1.21 (0.99, 1.48) 0.057 1.29 (1.08, 1.54) 0.004

HRs are per 1-SD increment. Model 1 was stratified by baseline age. Model 2 was further adjusted for

race/ethnicity, multivitamin use, diabetes, hypertension, antihypertensive medication use, and total

caloric intake. Model 3 further included adjustment for the self-reported healthy lifestyle adherence to

examine association independence. SD, standard deviation; HR, hazard ratio; CI, confidence interval.
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CI: 0.76, 0.89) and longevity (HR per 1-SD increment = 1.39, 95%CI: 1.18, 1.62) were

also highly consistent with those observed in the NHS/NHSII/HPFS (Table 3).

DISCUSSION

Based on data from four large US prospective cohorts of 13,056 participants, this

study identifies a metabolomic signature that measures adherence to a healthy life-

style and is among the first studies to show prediction of total and cause-specific

mortality and longevity. The metabolomic signature was mostly reflective of lipid

metabolism pathways involving PC, CE, TAG, and DAG metabolite groups. Among

lifestyle components, the metabolomic signature was most strongly associated with

having a ‘‘normal’’ BMI and a healthy diet. We also identified key metabolites asso-

ciated with each lifestyle component individually. The healthy lifestyle metabolomic

signature’s ability to predict mortality risk and longevity may be useful in comple-

menting traditional questionnaires and personalizing lifestyle-based interventions.

Observational and intervention studies have uncovered metabolites associated with

individual lifestyle factors including BMI,5,17–20 diet quality,21 alcohol intake,8,9 phys-

ical activity,7 and smoking10,11 in adults, but very few examined associations with

these factors combined and covering a broad range of metabolites.12,14,15 In our

study, the healthy lifestyle signature was composed of 101 metabolites (101/243;

41.5% of measured metabolites) selected by elastic net regression; specifically, 58

were positively associated and 129 were inversely associated. It is not surprising

that several plasma metabolites may be useful in assessing lifestyle status given

the important effect of lifestyle behaviors on the metabolism.22 A study that

measured 1,251 serum metabolites in 491 well-phenotyped healthy individuals re-

ported that 48.9% of the metabolite-type enrichment was predicted by diet,

47.5% by clinical data including anthropometrics, and 2% by other lifestyle factors

such as smoking and exercise (relative to full model predictive power).22 This is in

accordance with our findings highlighting the strongest associations of our healthy

lifestyle metabolomic signature with the BMI and diet lifestyle factors.

Our metabolome-wide analyses underpinned pathways associated with a healthy

lifestyle that are highly reflective of lipid metabolism pathways. Indeed, the MSEA
232 Med 5, 224–238, March 8, 2024



ll
OPEN ACCESSClinical and Translational Article
revealed CEs, mainly of PUFAs, and PCs as the most enriched metabolite sets posi-

tively associated with a healthy lifestyle. CEs serve as a mean for the storage and

transportation of cholesterol and other lipids in the blood23 and were shown to be

reflective of dietary fat intake.24 PCs are naturally found in the body but also in foods

such as eggs, fatty fish, and soybeans.25 They are well known for their essential role in

cell membranes and membrane signaling.26 In the lifestyle metabolomic signature,

C36:4 PC-A, C40:9 PC, and C34:3 PC plasmalogen were the most influential metab-

olites that showed positive associations with a healthier lifestyle. C40:9 PC has been

associated with fish intake27 and diet quality.28 In line with our results, this metabo-

lite was most strongly associated with a healthier diet among lifestyle components.

Previous studies reported higher C36:4 PC-A and C34:3 PC plasmalogen with

greater physical activity level,29 lower BMI,30 and higher alcohol consumption,8

which is consistent with our findings showing associations of these metabolites

with meeting the recommendations for physical activity and alcohol intake and

with having a BMI between 18.5 and 24.9 kg/m2. On the other hand, we found

that higher levels of several shorter-chain and saturated TAGs and DAGs were indic-

ative of a poorer lifestyle. Triglyceride-rich lipoproteins are well recognized for their

atherogenic effect,31 and intervention studies support a beneficial role of a healthy

lifestyle in reducing circulating TAGs.32 In the healthy lifestyle metabolomic signa-

ture, C18:0 SM was the most influential metabolite with an inverse association.

Sphingolipids are the most commonly occurring types of lipids present in circulating

low-density lipoprotein and were related to an increased risk of metabolic dis-

eases.33 Palau-Rodriguez et al. reported lower SMs (d18:0/22:0 and d18:0/20:0,

d16:0/22:0) in the high (>10%) compared to the low (<10%) weight loss group

following a 12-month lifestyle intervention (hypocaloric Mediterranean diet and

increased physical activity) in 27 women with obesity.34 Another study found an as-

sociation between higher SM (d18:0/20:0, d16:0/22:0) and higher BMI in a nonalco-

holic fatty liver disease case-subcohort study (n = 356).18 As for diet, Shah et al.

found an association between higher SMs and higher red meat, fish, and chicken

and lower dark green vegetables, fruits, and whole grains in the Coronary Artery

Risk Development in Young Adults (CARDIA) study (n = 2,259 White and Black

adults).35 As corroborated by our results, the inverse association of SM C18:0 with

a healthy lifestyle appears to be driven by a BMI between 18.5 and 24.9 kg/m2, a

healthier diet, and possibly never-smoking status.

Although several lipid species were retained in the signature, other species such as

amino acids and metabolites of the purine metabolism were also significantly asso-

ciated with a healthy lifestyle. In previous studies, lower circulating glycine5,19 and

asparagine5,20,36 and higher tyrosine,5,19,20 valine,5,19 and uric acid5,17,37 have

been commonly associated with higher BMI or obesity. In the current study, and

consistent with previous studies, uric acid and amino acids including glycine, aspar-

agine, tyrosine, and valine were comparably associated with BMI and were selected

in the lifestyle metabolomic signature. Higher circulating glycine, trigonelline,

asparagine, hippurate, and glutamine and lower valine, isoleucine, and leucine

were also observed with lower intakes of red meat, chicken, and diet drinks and

higher intakes of dark green vegetables, fruits, and whole grains in the CARDIA

study.35 In our study, glycine, trigonelline, asparagine, hippuric acid, glutamine,

and valine were retained in the healthy lifestyle signature; however, only asparagine,

hippuric acid, and trigonelline were associated with a healthier diet. Trigonelline, an

alkaloid abundant in coffee beans and found in other plants, is thought to have neu-

roprotective and antidiabetic effects given its antioxidant properties.38 While posi-

tively associated with overall adherence to a healthy lifestyle, healthier diet, and low-

moderate alcohol intake, trigonelline (and caffeine) was also inversely associated
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with never smoking in our study. This may be explained by faster caffeine meta-

bolism and higher coffee intake among smokers compared to nonsmokers.39,40

The impact of health behaviors on premature mortality risk has been well studied. A

healthy lifestyle was associated with 53%–82% estimated lower mortality risk in different

populations worldwide including the US,3,41–43 Japan,44 China,45 Germany,46,47

Denmark,47 Norway,47 and the UK.2 Specifically, in the NHS (1980–2014; n = 78,865)

and HPFS (1986–2014, n = 44,354) cohorts, Li et al. showed that individuals adhering

to 5 healthy lifestyle factors had a lower risk of total mortality (HR = 0.26, 95% CI: 0.22–

0.31) and cause-specificmortality (HR forCVD=0.18, 95%CI: 0.12–0.26; HR for cancer=

0.35, 95% CI: 0.27–45) compared to nonadherents (zero healthy lifestyle factors).3 In the

currentmetabolomic study,we foundanassociationbetween thehealthy lifestylemetab-

olomic signature with lower total and cause-specific mortality. Interestingly, the associa-

tion with lower mortality was stronger for the healthy lifestyle metabolomic signature

compared to that of the self-reported healthy lifestyle score. Indeed, the metabolomic

signature explained 38.0% of the association between the self-reported healthy lifestyle

score andmortality, pointing to unique biological pathways captured bymetabolomics.

Specific lifestyle behaviors including hypercaloric nutrition and sedentariness are known

to alter themetabolism such that itmay accelerate aging.48 Consistent with the literature

and with our mortality results, we found an association of the healthy lifestyle metabolo-

mic signature with longevity, and the signature explained 48.6% of the association be-

tween self-reported healthy lifestyle score and longevity.

Our study contributes new insights to the limited evidence available on metabolites

associated with a combined healthy lifestyle and their associations with mortality risk

and longevity. Our findings were highly reproducible among 4 cohorts including

men and women from across the US with varying lifestyle habits. The signature

was derived using elastic net regularization models with training-test validation

sets and using a leave-one-out approach for the training set to reduce bias and over-

fitting and was replicated in a separate cohort (WHI). Metabolomic profiling was con-

ducted using systematic and rigorous multiplatform liquid chromatography mass

spectrometry methods in all cohorts including the replication dataset. The wide

range of metabolites measured will facilitate future study comparison. Lastly, the

large sample size, long follow-up period, and ascertained deaths support the

robustness of our results.

Overall, our findings suggest that greater adherence to a healthy lifestyle may lead

to alterations in the metabolome that are associated with lower premature mortality

risk and higher likelihood of longevity. We identified a metabolomic signature asso-

ciated with a combined healthy lifestyle in US adults that is strongly reflective of lipid

metabolism pathways. We found that those with a higher multimetabolite score had

a lower risk of total and cause-specific mortality and a greater likelihood of living

longer. These results shed new light on key metabolites and metabolic pathways

associated with lifestyle and hold promising clinical relevance for targeted interven-

tions aimed at reducing the risk of premature mortality and promoting longevity

through metabolic health improvement.

Limitation of the study

Our findings should be interpreted in the context of the study limitations. First, as-

sociation between the self-reported healthy lifestyle score and its metabolomic

signature may be bidirectional given the cross-sectional nature of analyses. Second,

blood was analyzed in case-control endpoint batches, potentially introducing vari-

ability in measurements; nonetheless, we accounted for batch effect in all models
234 Med 5, 224–238, March 8, 2024
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by adjusting or stratifying by endpoints. We also adjusted models for case-control

status, and our stratified analysis showed consistent results in both cases and con-

trols. Third, the results of mediation analyses rely on a causal assumption and may

have been affected by unmeasured confounding factors, such as genetics. Fourth,

this study was conducted among health professionals, who may be healthier than

the general population. Lastly, this study was limited to plasma metabolites of

known identity, potentially biasing findings toward available metabolites and clas-

ses. Future work should include untargeted metabolomic profiling to address this

limitation. Similar studies should be conducted in populations of various ethnicities

and socio-economic statuses. Studies examining the changes in metabolomic pro-

file and its association with mortality and longevity are also warranted.
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21. Li, J., Guasch-Ferré, M., Chung, W., Ruiz-
Canela, M., Toledo, E., Corella, D.,
Bhupathiraju, S.N., Tobias, D.K., Tabung, F.K.,
Hu, J., et al. (2020). The Mediterranean diet,
plasma metabolome, and cardiovascular
disease risk. Eur. Heart J. 41, 2645–2656.
https://doi.org/10.1093/eurheartj/ehaa209.

22. Bar, N., Korem, T., Weissbrod, O., Zeevi, D.,
Rothschild, D., Leviatan, S., Kosower, N., Lotan-
Pompan, M., Weinberger, A., Le Roy, C.I., et al.
(2020). A reference map of potential
determinants for the human serum
metabolome. Nature 588, 135–140. https://doi.
org/10.1038/s41586-020-2896-2.

23. Rader, D.J. (2006). Molecular regulation of HDL
metabolism and function: implications for
novel therapies. J. Clin. Invest. 116, 3090–3100.
https://doi.org/10.1172/JCI30163.

24. Rosqvist, F., Fridén, M., Vessby, J., Rorsman, F.,
Lind, L., and Risérus, U. (2022). Circulating fatty
acids from high-throughput metabolomics
platforms as potential biomarkers of dietary
fatty acids. Clin. Nutr. 41, 2637–2643. https://
doi.org/10.1016/j.clnu.2022.10.005.

25. Wiedeman, A.M., Barr, S.I., Green, T.J., Xu, Z.,
Innis, S.M., and Kitts, D.D. (2018). Dietary
choline intake: current state of knowledge
across the life cycle. Nutrients 10, 1513. https://
doi.org/10.3390/nu10101513.

26. Furse, S., and de Kroon, A.I.P.M. (2015).
Phosphatidylcholine’s functions beyond that of
a membrane brick. Mol. Membr. Biol. 32,
117–119. https://doi.org/10.3109/09687688.
2015.1066894.

27. Mazzilli, K.M., McClain, K.M., Lipworth, L.,
Playdon, M.C., Sampson, J.N., Clish, C.B.,
Gerszten, R.E., Freedman, N.D., and Moore,
S.C. (2020). Identification of 102 Correlations
between Serum Metabolites and Habitual Diet
in a Metabolomics Study of the Prostate, Lung,
Colorectal, and Ovarian Cancer Trial. J. Nutr.
150, 694–703. https://doi.org/10.1093/jn/
nxz300.

28. Bagheri, M., Willett, W., Townsend, M.K., Kraft,
P., Ivey, K.L., Rimm, E.B., Wilson, K.M.,
Costenbader, K.H., Karlson, E.W., Poole, E.M.,
et al. (2020). A lipid-related metabolomic
pattern of diet quality. Am. J. Clin. Nutr. 112,
1613–1630. https://doi.org/10.1093/ajcn/
nqaa242.

29. Ding, M., Zeleznik, O.A., Guasch-Ferré, M., Hu,
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46. Li, K., Hüsing, A., and Kaaks, R. (2014). Lifestyle
risk factors and residual life expectancy at age
40: a German cohort study. BMC Med. 12, 59.
https://doi.org/10.1186/1741-7015-12-59.

47. O’Doherty, M.G., Cairns, K., O’Neill, V.,
Lamrock, F., Jørgensen, T., Brenner, H.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Blood plasma This study N/A

Software and algorithms

R and R Studio R Project for Statistical Computing https://www.r-project.org/

SAS software SAS Institute https://www.sas.com/en_us/home.html

Analytical code Zenodo GitHub https://doi.org/10.5281/zenodo.10359825
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Marta Guasch-Ferré (mguasch@hsph.harvard.edu).
Materials availability

This study did not generate new unique reagents.
Data and code availability

The participants data reported in this study cannot be deposited in a public repos-

itory due to participant confidentiality and privacy concerns. Therefore, data are

available upon written request. According to standard controlled access procedure,

applications to use the NHSI, NHSII and HPFS resources will be reviewed by our

External Collaborators Committee for scientific aims, evaluation of the fit of the

data for the proposed methodology, and verification that the proposed use meets

the guidelines of the Ethics and Governance Framework and of the consent that

was provided by the participants. Further information including the procedures for

obtaining and accessing data from the Nurses’ Health Studies and Health Profes-

sionals’ Follow-up Study is described at https://www.nurseshealthstudy.org/

researchers and https://sites.sph.harvard.edu/hpfs/for-collaborators. To request

access, contact nhsaccess@channing.harvard.edu. All original analytical code has

been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table. Any additional information required to re-

analyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Primary analyses were performed in the NHS, NHSII, and HPFS prospective cohort

studies. The NHS began in 1976 and recruited 121,700 U.S. women registered

nurses aged 30–55 years49; the NHSII was initiated in 1989 and enrolled 116,429

women registered nurses 25–42 years of age49; and the HPFS, established in

1986, recruited 51,525 men health professionals aged 40–75 years.50 The cohorts

have been described in detail.49,50 Blood samples were collected from 32,826

NHS participants between 1989 and 1990, 29,611 NHSII participants between

1996 and 1999, and 18,225 HPFS participants between 1993 and 1995. From these

population samples, 14 nested case-control studies were previously conducted for

metabolomic profiling.

For the current study, the baseline was set as the respective blood draw date for each

participant. Participants with a history of CVD or cancer at baseline, who reported
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implausible energy intakes (men: <800 or >4,200 kcal/d; women: <600 or

>3,500 kcal/d), or with unavailable metabolomics profiling, dietary intakes, alcohol

intake, physical activity, BMI, or smoking were excluded. A total of 11,487 partici-

pants remained in the cross-sectional metabolomic analyses and prospective mor-

tality risk analyses. The study protocol was approved by the institutional review

boards of the Brigham andWomen’s Hospital and Harvard T.H. Chan School of Pub-

lic Health, and those of participating registries as required.

The replication study was performed in a nested case-control study of coronary heart

disease within the WHI. The WHI study was initiated in 1993 and enrolled

161,808 U.S. postmenopausal women aged 50 to 79 years51,52 in an observational

study (WHI-OS) or randomized controlled trials of hormonal therapy (WHI-HT). Par-

ticipants completed baseline socio-demographic, diet, lifestyle, and medical history

questionnaires. Specifically, the nested case-control study included 2,306 partici-

pants with blood collected at enrollment.53 Individuals with a history of CVD, cancer

(excluding non-melanoma skin cancer), without metabolomic profiling, and with

missing dietary intake data or lifestyle questionnaire at baseline (blood draw) were

excluded (n = 737). A total of 1,569 participants were included in the replication an-

alyses. The protocol was approved by the Fred Hutchinson Cancer Research Center

Institutional Review Board, Seattle, WA. Informed consent was obtained from all par-

ticipants. The study flow diagram is represented in Figure 1.
METHOD DETAILS

Blood collection and metabolite profiling

Participants were sent a blood collection kit and arranged to have their blood sam-

ple drawn. Blood was collected in sodium heparin (NHS and NHSII) or EDTA (HPFS)

vacutainers, mailed in an enclosed ice pack via overnight courier and centrifuged

upon arrival at the laboratory.54,55 Plasma was aliquoted and kept in continuously

monitored liquid nitrogen freezers (%�130�C) until analysis. Seventy-two percent

of NHSI/NHSII/HPFS participants provided fasting (R8 h) blood samples.

Plasma metabolomic profiling was performed at the Broad Institute of the MIT and

Harvard (Cambridge, MA, USA) using a liquid chromatography-mass spectrometry

(LC-MS) as described elsewhere.53,56 For amino acids and other polar compounds,

metabolites were extracted using acetonitrile/methanol/formic acid with the internal

standards valine-d8 and phenylalanine-d8; then, separated through hydrophilic

interaction liquid chromatography (HILIC; Atlantis HILIC column, Waters, MA,

USA) and analyzed by positive ionization mode MS (Thermo Fisher Scientific, MA,

USA). For lipids, isopropanol was used for extraction with the internal standard

1,2- didodecanoyl-sn-glycero-3-phosphocholine. Fractions were separated by octyl

high-performance liquid chromatography (HPLC; ACQUITY BEH C8 column; Wa-

ters, MA, USA), and metabolites were analyzed by positive ionization mode MS. Tar-

geted raw metabolites were processed using TraceFinder 3.3 software (Thermo

Fisher Scientific; Waltham, MA), and non-targeted rawmetabolites using Progenesis

QI (Nonlinear Dynamics; Newcastle upon Tyne, UK). Metabolites were identified as

per the Metabolite Standard Initiative (MSI).57 In the WHI, plasma metabolites were

profiled using the same method.53

In total, 404 metabolites of known identity were measured. Metabolites for which

quality control replicates intraclass correlation coefficient was <0.3 (n = 8) and detec-

tion rate was <75% (n = 153) were excluded. The final number of metabolites consid-

ered in the primary analysis was 243. Metabolites predominantly consisted of lipids
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including glycerolipids (28.8%), glycerophospholipids (12.3%), plasmalogens

(10.3%), carnitines (8.2%), cholesterol esters (CE; 4.1%), lysophospholipids (3.3%)

and sphingolipids (1.6%); but also, amines and amino acids (12.3%), nucleosides

and derivatives (4.9%), and other metabolites (14.0%). In theWHI study, 213 of these

metabolites were available for replication analysis. For all cohorts, metabolites with

skewness above or below 2 were log-transformed.58 Within each laboratory analysis

batch, metabolites were standardized to z-scores with a mean of 0 and standard de-

viation of 1. Missing metabolites were imputed using the random forest imputation

method.59

Assessment of lifestyle factors

Adherence to a healthy lifestyle was evaluated based on five self-reported lifestyle

factors: diet, alcohol consumption, physical activity, smoking, and BMI. Diet and

alcohol were assessed using an extensively validated 149-item food frequency ques-

tionnaire.60 Diet quality was evaluated using the Alternative Healthy Eating Index

(AHEI), excluding alcohol. A healthier diet was defined as an AHEI score R60th

percentile of each cohort distribution.3,43 Moderate alcohol consumption was

defined as 5–15 g/d for women and 5–30 g/d for men. Physical activity levels were

assessed using a validated questionnaire.61 A healthy physical activity level was

defined as >30 min/d (3.5 h/week) of moderate or vigorous activities requiring R3

metabolic equivalents of task per hour, including brisk walking (‘‘How much physical

activity do adults need?’’, Centers for Disease Control and Prevention). BMI was

calculated as self-reported weight in kilograms, divided by height in meters; and a

BMI within the ‘‘normal’’ range of 18.5–24.9 kg/m2 (‘‘Obesity: preventing and man-

aging the global epidemic’’, report of a WHO consultation) was considered as

healthy. The average of the two repeated measurements closest to the blood

draw was used for diet, alcohol, physical activity, and BMI. The last measurement re-

corded was carried forward for non-respondents to both questionnaires. Lastly,

never smoking, assessed closest to blood draw, was considered as healthy.

Participants were attributed a score of 1 for each healthy factor that they met and

were otherwise attributed a score of 0. The sum of the five factors was computed

and ranged from 0 to 5, a higher score indicating a higher adherence to a healthier

lifestyle. This widely recognized healthy lifestyle score has been strongly associated

with mortality and life expectancy in previous publications.3,43

Ascertainment of deaths and longevity

Deaths were mostly reported by a family member or through postal authorities in

response to the follow-up questionnaire. The State vital statistics records and the

National Death Index were also searched to identify deaths, with >98% of follow-

up completion reached in the cohorts. The death cause was confirmed by study phy-

sicians’ review of medical records, autopsy reports, or death certificates. The Inter-

national Classification of Diseases, Eighth Revision (ICD-8) in NHS/NHSII and ICD-9

in HPFS, which were the ICD systems used at the time the cohorts began. Longevity

was defined as living to R85 years. This threshold was selected based on the age

distribution of our population and previous studies62–64 also report the use of this

definition.

Assessment of covariates

In NHS/NHSII/HPFS, participants were asked to self-report on race/ethnicity, medi-

cation and multivitamin use, diabetes, hypertension, and hypercholesterolemia dur-

ing follow-up preceding and following the blood draw. The value closest to the

blood draw was used in analyses. In WHI, socio-demographic and medical history
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questionnaires were collected at the same time as the blood draw, during the initial

visit.
QUANTIFICATION AND STATISTICAL ANALYSIS

In NHS/NHSII/HPFS, the associations of individual metabolites (per 1-SD increment)

with the combined self-reported healthy lifestyle score were examined using linear

regressions, and associations with individual lifestyle factors (adhering to the healthy

levels of each factor; yes/no) using logistic regressions. Models were adjusted for

baseline age, fasting status, ethnicity, multivitamin use, diabetes, hypertension,

antihypertensive medication use, hypercholesterolemia, lipid-lowering medication

use, total energy intake, study cohorts, original sub-studies, and the case/control

status within the original sub-study. Models of the associations with individual

healthy lifestyle factors were further adjusted for the other factors. Subgroup ana-

lyses were also conducted by baseline age (< or R55 years), sex (women or men),

and case-control status. Results were corrected for multiple comparison using the

Bonferroni adjustment (p value/243 metabolites).

Based on chemical similarity, individual metabolites were grouped into 19 pre-

defined sets of metabolites (https://doi.org/10.5281/zenodo.10359825, MSEA).

MSEA was used to identify the metabolite sets most strongly positively and inversely

associated with the self-reported healthy lifestyle score. This analysis uses the b co-

efficients obtained from the multivariable-adjusted linear regression of the associa-

tion between individual metabolites and the self-reported healthy lifestyle score to

estimate p-values for each metabolite set using an adaptive multi-level split Monte-

Carlo scheme.65 p-values were corrected for multiple comparison using the

Benjamini-Hochberg FDR adjustment.

The healthy lifestyle metabolomic signature was conducted using elastic net penal-

ized linear regressions. Briefly, this machine learning method regularizes the statis-

tical model by accounting for both the Lasso and Ridge penalties, thereby control-

ling for variance and bias. Training and test sets with a 70-30 split were used to avoid

overfitting of the model; participants were randomized to either group. First, the

elastic net model (alpha = 0.5) was developed in the training set using a 10-fold

cross-validation technique. The lambda that minimized the cross-validation predic-

tion error rate was selected (lambda = 0.021). Second, the metabolomic signature

was computed in the test set by taking the weighted sum of selected metabolites,

with the training set-derived elastic net regression coefficients as the corresponding

weights. Lastly, in the training set, the signature was obtained using a leave-one-out

approach. Correlations between the healthy lifestyle metabolomic signature and the

self-reported healthy lifestyle score were examined using the Pearson correlation co-

efficient (Point-biserial correlation coefficient for individual lifestyle factors) overall,

by training-test sets and by cohorts.

In NHS/NHSII/HPFS, the prospective associations of the healthy lifestyle metabolo-

mic signature with all-cause mortality, cardiovascular and cancer mortality, and with

longevity were assessed using Cox proportional hazard ratio models. In the

longevity analysis, the timescale was censored to surviving to the age of 85 years,

death was used as the event, and participants who were alive and younger than

85 years at the end of the follow-up were right censored. To interpret the results

per one standard deviation unit increment and allow comparison, we standardized

the signature and the self-reported healthy lifestyle scores to Z-scores. Model 1

was adjusted for fasting status (yes or no), and stratified by baseline age, study
e4 Med 5, 224–238.e1–e5, March 8, 2024
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cohorts, original sub-studies, and case-control status within the original sub-study.

Model 2 was further adjusted for race/ethnicity (white or non-white), multivitamin

use (yes or no), diabetes (yes or no), hypercholesterolemia (yes or no), lipid-lowering

medication use (yes or no), hypertension (yes or no), antihypertensive medication

use (yes or no) and total energy intake (continuous). Model 3 was additionally

adjusted for the self-reported healthy lifestyle score (continuous) to examine the in-

dependent association of its metabolomic signature. For each participant, the

follow-up period was calculated from baseline until the last questionnaire returned

(end of follow-up: June 2018 for the NHS/HPFS and June 2019 for the NHSII) or

date of death, whichever came first. Based on the results of the Schoenfeld residuals

test, there was no evidence to suggest a violation of the proportional hazards

assumption in any of the models examined. Additionally, mediation analyses were

conducted to estimate the percentage of the associations between the self-reported

healthy lifestyle score and mortality and longevity, that can be attributed to the

healthy lifestyle metabolomic profile. Mediation proportions and their 95%CI were

calculated using the publicly available % Mediate SAS macro (https://ysph.yale.

edu/cmips/research/software/mediate_340185_284_47911_v2.pdf).

We performed several sensitivity analyses. We ran the main multivariable-adjusted

linear regression models of the associations between individual metabolites and

the healthy lifestyle score, without adjusting for potential biological intermediates

including diabetes, hypertension, hypercholesterolemia, and related medication

use. Also, given the mixed evidence of alcohol consumption on health outcomes,

we ran the main models using the self-reported healthy lifestyle score without the

alcohol component (score ranging from 0 to 4). Furthermore, we replicated the

main analyses in the WHI to validate our findings in an external and independent

cohort.

Analyses were performed using R version 4.1.0. The R package ‘‘missRanger’’ was

used for imputation of metabolites, ‘‘glmnet’’ for elastic net regression, ‘‘survival’’

for Cox proportional-hazards models and ‘‘fgsea’’ for MSEA. Statistical tests were

two-sided and p values <0.05 were considered for significance.
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