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ABSTRACT

We report the lowest recorded levels of 1/f noise for graphene-based devices, at the level of SV=V2 ¼ SI=I2 ¼ 4:4� 10�16 (1/Hz), measured at
f ¼ 10Hz (SV=V2 ¼ SI=I2 < 10�16 1/Hz for f > 100Hz) in large-area epitaxial graphene on silicon carbide (epigraphene) Hall sensors. This
performance is made possible through the combination of high material quality, low contact resistance achieved by edge contact fabrication
process, homogeneous doping, and stable passivation of the graphene layer. Our study explores the nature of 1/f noise as a function of carrier
density and device geometry and includes data from Hall sensors with device area range spanning over six orders of magnitude, with character-
istic device length ranging from L¼ 1lm to 1mm. In optimized graphene Hall sensors, we demonstrate arrays to be a viable route to improve
further the magnetic field detection: a simple parallel connection of two devices displays record-high magnetic field sensitivity at room temper-
ature, with minimum detectable magnetic field levels down to Bmin ¼ 9.5 nT/�Hz. The remarkable low levels of 1/f noise observed in
epigraphene devices hold immense capacity for the design and fabrication of scalable epigraphene-based sensors with exceptional performance.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0185890

Two-dimensional (2D) materials have tremendous potential for a
variety of sensing applications because faint stimuli (e.g., light, mag-
netic field, and chemical environment) can readily produce large
changes in their electrical resistance. In particular, for graphene, its
high carrier mobility, thermal conductivity, saturation velocity, and the
ability to tune carrier density make this 2D material ideally suited for
the implementation of sensors with resistive readout schemes in elec-
tronics,1,2 chemical,3 radiation,4,5 and biological6 applications. For
practical sensors, however, the high sensitivity must be complemented
with low-noise, to achieve signal-to-noise ratios (SNR) higher than
unity. At low frequencies (DC), 1/f noise (also known as flicker noise,
pink noise, or drift) is the main bottleneck to achieve high SNR.1,7–9

Flicker noise, characterized by a spectral density S fð Þ � 1=f c (where f
represents frequency and c � 1), is ubiquitous in many physical
processes. For solid state devices including graphene, when a device
is biased, the excess current noise can be written as fluctuations in
electrical current: dI / q dNð Þlþ qNðdlÞ, where q is the charge of

an electron, N is the number of charge carriers, and l is the mobility.
Thus, contribution to the noise could arise from fluctuations in number
of charge carriers N10–12 and/or fluctuation in mobility l:13–15 Specific
to graphene, under theoretical conditions, it is possible to approach
vanishing noise when graphene carrier density approaches zero (Dirac
point), provided that, at effectively zero carrier concentration, the
mobility of holes is similar to the mobility of electrons.12,16–21 This is in
general only possible at low temperatures, where suppressed thermal
fluctuations enable approaching a zero-carrier density scenario. In
practice, for graphene devices operating at room temperature, various
approaches have been explored to reduce the contribution of 1/f noise,
such as electron irradiation,22 passivation with high-k dielectrics,11,16

and low k dielectrics.2 Yet, noise mitigation strategies are actively
sought for graphene devices to optimize their performance.

To study noise in our devices, we have minimized all possible
material-, device-, and instrumental-related noise sources. Since epi-
taxial growth of graphene involves annealing the SiC substrates at very
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high temperatures, T> 1800 �C, crystal imperfections, vacancies, and
thus, charge traps are considerably reduced.5,23–26 Also, we have metic-
ulously optimized the epitaxial growth parameters to obtain high-
quality graphene on SiC resulting in an impressive reduction of bilayer
(BL) graphene domains to a coverage<0.1% of the surface.27,28 Our
device fabrication incorporates an edge contact approach that consis-
tently achieves contact resistance values below 50 X�lm.29 Finally, to
characterize noise, we employ a digital cross correlation spectrum ana-
lyzer to effectively eliminate instrumental noise.30

Figure 1(a) shows the Raman spectrum of optimized epigraphene
on Si face (0001), as well as the SiC substrate. In epigraphene, the
Raman spectrum contains information about both the graphene and
interfacial carbon buffer layer. The buffer layer is characterized by a
broad Raman band centered at approximately at 1355 cm�1, which
makes it hard to distinguish it from the (disorder) D peak
(1360 cm�1).31 However, the absence of D0 � 1620 cm�1, D þ D0

� 2950 cm�1 (due to disorder), and the prominent 2D and 2D0 peaks
suggest that the epigraphene layer is essentially defect-free.32,33 Also
visible in the spectrum is the DþD00 (also referred to as G�) at
� 2500 cm�1, which is identified purely for single layer graphene and
disappears for increasing layer numbers.33 To complement Raman
studies, Fig. 1(b) shows the atomic force microscopy (AFM) topogra-
phy image of epigraphene over a region of size 20� 20lm2. The sur-
face is typically characterized by the presence of step edges with
heights comparable to the unit cell height of 4H-SiC (	1nm).34

Additionally, the phase-contrast AFM scan image Fig. 1(c) enables to
distinguish monolayer (ML) from bilayer (BL) graphene domains; the
light blue contrast represents very sparse BL domains, which are found
mainly in regions with deep terrace formation during the growth pro-
cess. In general, the surface study of our optimized material reveals
that epigraphene has a regular surface morphology without gaps, and
that growth of BL graphene domains is heavily suppressed. These

characteristics result in a general reduction of the resistance anisotropy
of the material and enable scalable patterning of the devices on the
surface.

Figure 2 shows a representative transmission mode optical image
of the Hall sensor devices patterned on epigraphene, having character-
istic lengths of 1lm and 1mm. In the micrograph, metallic contacts
appear black, while dark (light) shades of gray indicate the presence
(absence) of epigraphene.27 To achieve low contact resistance to epi-
graphene, we employed a specially designed tri-layer resist recipe,
which creates edge contact between metal and graphene.29 For these
devices, contacts are formed by depositing a 5 nm thick titanium, fol-
lowed by 100nm Au as capping layer, using electron-beam evapora-
tion. To explore the influence of device geometry on 1/f noise, we
fabricated square-shaped devices with widths (w) of 1, 10, 100, and
1000lm. Such wide range in device geometry is achievable due to
large scale production of high-quality epigraphene as well as the scal-
able edge contact fabrication process.

To explore 1=f noise in epigraphene at different doping
levels, we have utilized three strategies: chemical and electrostatic
gating, molecular doping [F4TCNQ—2,3,5,6-tetrafluoro-
tetracyanoquinodimethan and PMMA—poly(methyl-methacrylate)],35

and polymer passivation (120nm-thick PMMA layer). The latter serves
as a control approach to benchmark the noise performance of the devi-
ces. First, we describe gated devices using a solid electrolyte imple-
mented with lithium triflate (CF3SO3Li) diluted in a polyethylene glycol
matrix in combination with a co-planar graphene electrode as gate.
This approach allows gating epigraphene across Dirac point without
degrading its mobility due to the absence of chemical interaction.
Figure 3(a) shows a comparison of the resistance and noise power spec-
tral density (PSD) (at f ¼ 10Hz) as a function of carrier density in a
graphene Hall bar device. Each data point in noise PSD is a 30min
long measurement with minimum 100 spectral averages. The results

FIG. 1. (a) Raman spectrum of epigraphene
(Epi-G) grown on 4H-SiC substrate (black) com-
pared to the 4H-SiC substrate (red). (b) AFM
height map of 20� 20 lm2 area over a
7� 7 mm2 epigraphene sample. The inset in (b)
is the line profile of the height map, indicating
the step height (	 1 nm) on the Si face of SiC
substrate after the growth of epigraphene. (c)
The AFM phase map of the same area as in (b).
The light blue shaded patches at the bottom
of the image indicate the BL graphene patches.
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confirm that epigraphene is intrinsically n-doped, with Dirac point
located at about Vg ¼�0.55V, and reveal that the maximum device
noise (SV=V2 ¼ 7 � 10�13 1/Hz) occurs when electrostatic doping is in
the vicinity of the Dirac point (for details of noise measurement setup
see Fig. S1). This so-called “K” shape20 of the noise spectrum can be
attributed to the fact that, at 300K, the epigraphene sample displays
an uneven distribution of charge carriers around the charge
neutrality point, forming electron–hole puddles resulting in potential
(i.e., carrier density) fluctuations. To support this claim, the procedure to
calculate disorder potential s is shown in Fig. S2 from the supplementary
material. From this, the minimum attainable carrier density of epigra-
phene at room temperature is nsj j < 3� 1011 cm�2, which yields an
estimated disorder potential s ¼ 16 meV. Thus, when the electrostatic
gate is tuned to further reduce the carrier density in the material, the for-
mation of electron–hole puddles manifests as a non-linear Hall (two-
band model) coefficient.2 Altogether, chemical and electrostatic doping
of epigraphene reveals the low potential fluctuations in epigraphene
(s ¼ 16 meV), and that the lowest well-defined carrier density attainable
in the material at room temperature is of the order of nj j � 3� 1011

cm�2. Higher carrier density levels result in decreased 1/f noise.
Having established the carrier density dependence of 1/f noise in

epigraphene, we compare the noise performance of the different

doping and passivation approaches. Figure 3(b) shows a comparison
of noise power spectral density per unit area for epigraphene doped
using the three different schemes, PMMA, F4TCNQ, and CF3SO3Li.
The comparison shows that the solid electrolyte (n¼ 0.4� 1012 cm�2)
used for gating the epigraphene displays the highest levels of noise,
while molecular doping (n¼ 0.42 � 1012 cm�2) and the PMMA-
encapsulated device (n¼ 7 � 1012 cm�2) show noise power amplitude
about three orders of magnitude lower. While the high noise in chemi-
cally/electrostatically doped graphene could be attributed to mobile
lithium ions causing carrier density fluctuations in epigraphene, the
low noise in PMMA and F4TCNQ samples deserves more attention.
This is because, with epigraphene exhibiting K shape in its PSD, the
1/f noise is expected to follow the empirical Hooge’s law SV

V2 ¼ SI
I2 ¼ SR

R2

¼ aH
Nf , where SV ; SI ; and SR are the power spectral density (PSD) of the

fluctuations in the values of voltage V , current I, and resistance R, N is
the charge carrier number, f is the frequency, and aH is the empirical
Hooge parameter. With PMMA passivation resulting in heavily
n-doped epigraphene, an order of magnitude higher than molecularly
(F4TCNQ) doped epigraphene (see also tabulated data in supplemen-
tary material Table I), the small difference in noise amplitude results
in different Hooge parameters for the different epigraphene doping.
For PMMA samples at high doping, we obtain aH-PMMA � 5 � 10�4

FIG. 2. Transmission mode optical image
of 1lm and 1mm wide Hall sensor geom-
etry fabricated using epitaxially grown gra-
phene over the SiC substrate. Contacts
are fabricated using edge contact fabrica-
tion process with 5 nm Ti and 100 nm Au.

FIG. 3. (a) Comparison of two-point resistance (R2P) and noise power spectral density amplitude (at f¼ 10Hz) measured for electrolytically gated epigraphene. Negative charge
carrier density corresponds to the p type of carrier. (b) Comparison of noise power spectral density (PSD) of PMMA (n¼ 7 � 1012 cm�2), F4TCNQ (n¼ 0.42 � 1012 cm�2), and
CF3SO3Li (n¼ 0.4 � 1012 cm�2). PSD is normalized with respect to device geometry. For CF3SO3Li, the values correspond to the gate voltage fixed at the Dirac point.
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(see the supplementary material, Fig. S3), while for F4TCNQ, it can be
as low as aH-F4TCNQ� 10�5.2

We verify the geometrical scaling of noise anticipated by Hooge’s
law in devices of different sizes, spanning an area range from A ¼ 1 to
106 lm2. The total number of electrons N in a sample is related to the
device size by the relation N ¼ l2=ðqlRÞ, where l is the length of the
sample, q is the elementary charge, l is the mobility, and R is the sam-
ple resistance. Together with Hooge’s law, the dependence of noise
PSD over device geometry SV / 1=l2. Figure 4(a) illustrates the noise
PSD measurements conducted on different PMMA-passivated epigra-
phene devices with varying l ¼ w ranging from 1 to 1000lm (see sup-
plementary material Table II for tabulated values of resistance, carrier
density, and carrier mobility). As shown in Fig. 4(b), the variation in
noise PSD / a� l�2 (where l is in units of lm) with the fitting coeffi-
cient a ranging from 3 to 5� 10�10 (lm2=Hz). Figure 4(c) shows a
comparison of the PSD observed in large epigraphene devices, with
noise reported for other types of graphene including exfoliated
graphene, CVD-grown graphene, as well as graphene encapsulated by
materials such as hBN, Ta2O5, and Al2O3 (for the area normalized

comparison of PSDs see the supplementary material, Fig. S4).
Remarkably, the noise PSD observed in our epigraphene devices is sig-
nificantly lower compared to previously reported values in various
graphene-based devices obtained from different sources.

Additionally, we demonstrate the implications of low noise in
increasing the magnetic field sensitivity of Hall sensors, for which we
arranged a parallel combination of sensors as shown in Fig. 5(a). At 20
kHz, the noise voltage measured in the parallel configuration of
Hall sensors is about 1/

ffiffiffi

2
p

that of the single device, resulting in a
remarkable sensitivity of Bmin ¼ VN=ðIBRHÞ (T/�Hz)¼ 9.5 nT/�Hz,
setting a record for low sensitivity for graphene-based Hall sensors
operating at room temperature.

In summary, the efforts here demonstrated for epigraphene opti-
mization in terms of material and devices open the route for truly scal-
able graphene electronics. The unprecedented low levels of noise
measured in our devices result from a combination of optimized epitax-
ial growth at very high temperature T> 1800 �C, the formation of low
resistance ohmic contacts to epigraphene, and the uniform doping and
passivation of devices. The scalability of epigraphene technology enables

FIG. 4. (a) Noise PSD measured for device width varying from 1 to 1000 lm, within 2 to 100 kHz bandwidth. (b) Noise PSD measured at 10 Hz shows area dependency of
noise PSD. (c) Comparison of noise PSD of epitaxial graphene (Epi-G) to historical data over wide variety of graphene devices. Observed noise in epitaxial graphene is an
order lower than previously reported values.11,16,17,30,36–38

FIG. 5. (a) Parallel configuration of the two Hall sensors. (b) Comparison of noise voltage spectral density between single 1 mm Hall sensor and parallel configuration of two
1mm Hall sensor devices as shown in (a). The voltage spectral density measured at I ¼ 400lA for both single and parallel configurations. Both the devices are doped with
molecular dopant F4TCNQ, to tune the Fermi level near to the Dirac point. (c) Hall measurement of the parallel setup. Slope here represents the Hall coefficient RH � 791X/T.
The data points are corrected for the thermal offset value.
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us to design, fabricate, and test large area devices, a key requisite for
increasing the complexity of future epigraphene electronics. Specifically,
for Hall sensor devices, our results show that future array sensors could
be a path toward decreasing the minimum detectable magnetic field
that limits the Hall magnetometers. As a proof of concept, a simple par-
allel combination of sensors [Figs. 5(a)–5(c)] leads to a record low
Bmin ¼ VN=ðIBRHÞ¼ 9.5 nT/�Hz for graphene Hall magnetometers
operating at room temperature. We foresee that fabrication of arrays is
a feasible route to push down the limits of Bmin, scaling down as�1/�k,
with k the number of interconnected Hall sensors. Our finding is instru-
mental in guiding the design of sensors utilizing scalable material
growth and fabrication techniques, with the aim of minimizing the
impact of noise and enhancing the sensitivity of the devices.

See the supplementary material for information on cross corre-
lated noise measurement setup, calculation of disorder potential,
Hooge parameter, and area normalized comparison of noise PSDs.
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