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Scenario-based trajectory generation and density estimation towards
risk analysis of autonomous vehicles

Edvin Johansson1, Matilda Sönnergaard1, Selpi1, Sadegh Rahrovani2 and Parsia Basimfar2

Abstract— A large amount of testing is needed to determine
when autonomous vehicles are sufficiently safe. To achieve this
goal, test cases should be representative of real-world driving
but also designed to provide sufficient coverage of both frequent
and rare events. This is a crucial step in finding potential high-
consequence events, failure borders of the Autonomous Driving
(AD) function and accurate estimation of the corresponding
residual risks.

In this paper, we propose a new method to adapt generative
models to generate vehicle trajectories that are representative
of the ones collected from the real world. The method uses
Non-Uniform Rational B-Splines (NURBS) combined with nor-
malizing flows to build a statistical scenario model. The method
allows us to estimate a joint probability density that can be used
to evaluate the likelihood of different trajectory occurrences.

We demonstrate the method for statistical modeling on the
cut-in traffic scenario and we give an example of how the
estimated joint probability distribution can be used to assess
the risk (trajectory occurrence probability and criticality) for
different test cases. The results can be used for accelerated
testing purposes, where the aim is to sample the rare tests
more frequently, but can also be used to calculate the failure
probability of AD functions.

I. INTRODUCTION

Testing autonomous vehicles is crucial in ensuring their
safety. An autonomous vehicle that has not been sufficiently
tested could result in severe collisions. To make sure that
such collisions do not occur the vehicle has to be tested
in many situations. A prominent approach to testing au-
tonomous vehicles is to divide these situations into scenarios,
such as cut-ins, overtaking, car-following, etc. Autonomous
vehicles can then be tested on these different scenarios
individually, which is known as scenario-based testing.

Often the shape of the vehicle trajectory can be used to dis-
tinguish between different scenarios. Dividing collected data
into these different scenarios can be done in different ways,
for example by rule-based knowledge, clustering techniques
[1] or a combination of them [2]. In this work, we divide the
data into different scenarios using rule-based knowledge.

After dividing data into scenarios, different generative
models can be used to generate more data within these
scenarios, which can be used to further test the autonomous
vehicle. This has the benefit of being cheaper than collecting
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more real data. There exist many generative models, such
as Generative Adversarial Networks (GANs) [3], Variational
Autoencoders (VAEs) [4], diffusion models [5] and normal-
izing flows [6], [7]. These models are constantly evolving
and new methods are being introduced rapidly.

Some of these models have been applied to trajectory
generation. For instance, Time-GANs [8] use an embedding
and recovery function to reconstruct and learn temporal
dynamics of data. TrajVAE and TrajGAN introduced by
[9] use Long Short Term Memory (LSTM) cells and an
embedding to lower the dimensionality. Lastly, in the work
by [10], two types of GANs are adapted for trajectory
generation. In each of these papers, a different method has
been used in order to adapt generative models for trajectory
generation.

Furthermore, in [11], a normalizing flows model is used
to generate scenarios for testing autonomous vehicles. This
has the benefit of making it possible to estimate a probability
distribution of the data, which they used to estimate collision
rate in the car-following scenario. However, in [11] they
did not generate trajectories, but initial parameters for the
scenario.

Therefore, in this paper, we describe a method of using
Non-Uniform Rational B-Splines (NURBS) to approximate
trajectory data into curve representations, which can be used
more easily in generative models. Then, we show how these
NURBS approximations can be used to train a normalizing
flows model on cut-in trajectory data. An example of a cut-in
trajectory can be seen in Fig. 1.

Fig. 1. An example of a cut-in trajectory. The target vehicle (red) cuts in
front of the ego-vehicle (blue). The red dotted line is the shape of a cut-in
trajectory.

We decided to use normalizing flows instead of other
generative models because it can estimate a density, a
probability distribution over multiple variables. For trajectory
generation, this distribution would describe how likely a
given trajectory is and how this likelihood varies as certain
variables are changed. Then, using the definition of risk =
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severity ∗ probability as defined in [12], it is possible to
estimate the risk associated with trajectories, given some
measure of severity. This can help decide which type of
trajectories the autonomous vehicle needs to be tested more
on, as a way to accelerate testing.

We chose to use NURBS curves to represent the tra-
jectories because of three main advantages. Firstly, it lets
us use a fixed number of parameters for each trajectory.
This means that cut-in trajectories of different lengths are
sent into the generative model with the same number of
dimensions. Secondly, it reduces the dimensionality of the
data. Thirdly, NURBS also have a smoothening effect on
trajectories, which is useful, as the trajectory data collected
from real-world driving is often noisy.

II. METHODOLOGY

An overview of the methodology used is given in Fig. 2:
The trajectories are approximated by NURBS. The NURBS
are then normalized to improve the normalizing flows model
performance. The normalized values of the NURBS together
with the total length in seconds of the trajectory t are then
used to train the normalizing flows model. After training,
the model can be used to both generate NURBS using the
generative direction and estimate the probability of NURBS
using the normalizing direction. Each of these steps will be
explained in detail in the rest of this section.

Trajectories NURBS Normalization

NURBS

Z = f (Y)

Generative 

direction

Base 

distribution

Target 

distributionNormalizing 

direction

Y = f -1(Z)

Inverse

Normalization Trajectories

Fig. 2. An overview of the method presented in this paper. Trajectory
data points are transformed into NURBS. The parameters of the NURBS
are normalized and then sent into the normalizing flows model. To generate
trajectories, the inverse normalization is needed.

A. Non-uniform rational B-splines

Before the data is sent into the normalizing flows model,
it is approximated by NURBS. In general, other methods
can also be used to fit different kinds of approximations
of the trajectory. One example is polynomials, where the

coefficients can be used to represent the trajectory. We found
however that NURBS have many benefits. For instance, in
comparison with polynomials, they have a designated start
and end point.

This section gives a brief overview of NURBS. More
details can be read from The NURBS Book [13]. Since we
are working with trajectories, when we mention NURBS we
specifically mean NURBS curves and not NURBS surfaces.

NURBS are defined by three things: a degree p, n con-
trol points Pi = (xi, yi, wi) in which (xi, yi) coordinates
are combined with weights wi, and a knot vector U =
(u1, . . . , um) in non-descending order of length m = n+p+
1. Intuitively, the curve is pulled towards the control points.
The degree determines how many control points pull a given
point on the curve and the knot vector decides the limits at
which different control points should pull the curve.

Fitting a NURBS curve of a specific degree to a set of
t trajectory points {Q1, . . . ,Qt} where Qi = (xi, yi), is a
nonlinear optimization problem if no additional conditions
are specified [13]. One algorithm described in The NURBS
Book [13, Chapter 9.4.1] makes the problem linear by first
specifying the number of control points, setting all weights to
1 and specifying the knot vector according to some heuristic.
Then, solving the x and y values of the control points can
be done using least squares approximation.

There exist different heuristics to specify the knot vector.
Here, we will only describe the heuristic used in this work.
Furthermore, we decided that our NURBS should start at the
first point and end at the last point of our trajectory. This is
done by placing the first and last control points at the first and
last points of the trajectory, and setting the first p+1 (degree
plus one) and last p+ 1 values of the knot vector to 0s and
1s respectively. The values in between these 0s and 1s are
then called the internal knot vector. To simplify notation we
specify the internal knot vector as k1, . . . kl = up+2 . . . un,
which implies that l = n − p − 1 is the number of internal
knot vector values.

The heuristic used for specifying the knot vector is then to
have the internal knot vector values spaced evenly relative to
the Euclidean distance between data points. More formally,
given the normalized cumulative sum of distances between
points

dq =

∑q
i=1|Qi+1 −Qi|∑t−1
j=1|Qj+1 −Qj |

, (1)

computed for each 1 ≤ q ≤ t − 1, the internal knot
vector values k1 . . . kl are spaced evenly by the index s =
floor(j(t− 1)/(l + 1)) such that

kj = (1− a) ds + ads+1, (2)

where a = j(t− 1)/(l + 1)− s.
The intuitive interpretation of this is that the internal knot

vector describes percentage distance to percentage time along
the trajectory. For instance, with an internal knot vector of
length l = 3 and with a value k2 = 0.6, we have reached
60% = k2 of the distance when we are at 50% = 2/(l + 1)



of the total time. If the trajectory is that of a car, it would
indicate that the car is driving slightly slower than average
at the later half of the trajectory.

B. Normalizing flows

The generative model we used to generate trajectories is
the normalizing flows model, mostly because of its potential
to estimate a probability density over trajectories. In this
section, a brief overview of normalizing flows is given and
the specific type of normalizing flows we used is explained.

Normalizing flows models use a number of flows, which
are invertible and differentiable functions f1, . . . , fn. These
transform a complicated distribution into, usually, a normal
distribution, hence the name normalizing flows. These flows
together form the transformation f = f1 ◦ . . . ◦ fn, which
is then also invertible and differentiable. Then, let Z be a
random variable with a simple density function pZ, such
as the normal distribution, and the random variable Y =
f−1(Z). The change of variables formula can be used to
calculate the density function pY [14]:

pY(y) = pZ(f(y))

∣∣∣∣det(∂f∂y
)∣∣∣∣ . (3)

A normalizing flows model then estimates the transforma-
tion f to fulfill this equation. The flows are parameterized
by parameters ϕ such that f(y;ϕ). Also, if not using the
normal distribution, pZ(z) can be parameterized by ψ such
that pZ(z;ψ). To train a normalizing flows model, the log-
likelihood is maximized with respect to the parameters θ =
{ϕ, ψ}. In other words, during training

(4)

N∑
i =1

log pY(yi; θ) =

N∑
i=1

(
log pZ(f(yi;ϕ);ψ)

+ log

∣∣∣∣det(∂f∂y (yi;ϕ)

)∣∣∣∣)
is maximized by changing the parameters θ.

A trained normalizing flows model can then be used to
both estimate the probability of samples and generate new
ones. Estimating the probability of a sample is done by
propagating the sample using (3). Generation is done by
sampling from pZ and using the inverse f−1 to get a point
y. pZ is called the base distribution and pY the target
distribution.

There has a lot of research on the different types of
flows that can be used in normalizing flows models. For
a comparison between them, please see [14]. In our work,
we used the autoregressive variant of neural spline flows
introduced by [15]. These specific flows were used because
they showed good performance on a range of different
datasets in [14].

The flows in [15] consist of multiple compositions of
linear flows and rational-quadratic neural spline flows. The
rational quadratic neural splines perform an advanced trans-
formation of the input and are mostly used to introduce
non-linearities. For a detailed description of them, see [15].
The linear flows are defined by a function g(z) = Az + b

on the input z, where A is a matrix and b is a number.
To ensure that A is invertible, we use LU decomposition,
defining A as A = LU . Here, L and U are lower and upper
triangular matrices respectively, where U has ones on the
diagonal and L has a positive diagonal. The elements of L,
U and b are trained and used to reconstruct A. It is common
to decompose A = PLU where P is a permutation matrix
with fixed values, however, we did not find that this improved
performance.

C. Preparation and training

In order to combine normalizing flows with NURBS, the
first step is to approximate all trajectories with NURBS,
which is done with the algorithm described in Sect. II-A. The
normalized values of [t, k1, . . . , kn−p−1, x1, y1, . . . , xn, yn]
are then sent into the normalizing flows model, where t is
the total time in seconds of the trajectory, k1, . . . , kn−p−1 is
the internal knot vector and x1, y1, . . . , xn, yn are the x and
y coordinates of the control points.

These values can be used to fully reconstruct NURBS.
Furthermore, because the total time t is sent into the model,
n− p− 1 time stamps can be estimated along the NURBS.
This is done by using the way that the internal knot vector
was approximated, explained in Sect. II-A. For example, with
a knot value of k2 = 0.6 and the number of internal knots
3 = n − p − 1, integration along the NURBS curve can be
done until 60% = k2 of the total distance is reached. The
timestamp at this position then becomes t2 = t×2/(n−p) =
t/2. Thus, by using NURBS we do not only get the shape
of the trajectory but also estimated temporal properties.

The normalization is done so that each input z is trans-
formed into z′ = (z − µz)/σz , where µz is the mean value
of the data and σz the standard deviation. Generation is then
done by applying the inverse transform of the normalization
(z = z′σz+µz). The normalization greatly increased training
convergence speed and somewhat the performance of the
normalizing flows model. This is likely due to the large
difference in ranges of the parameter values. For instance,
the standard deviation of the first value of the internal knot
vector is σk1

≈ 0.01, while the standard deviation for the x
coordinate of the first control point is σx1

≈ 30.

D. Metrics for evaluation

Evaluating a normalizing flows model is often done by
comparing the test log-likelihood, as done in [14], [16].
While this compares between models well, it does not give
a concrete value of how well the models perform. Because
of this, we used two metrics, matching and coverage, which
were introduced in [10]. Matching measures how “realistic”,
in terms of how similar the generated trajectories are to the
real data. Coverage measures the model’s ability to generate
trajectories similar to all different types of trajectories in the
real data.

Formally, matching is defined as

matching =

∑m
i minj(dist(Gi, Rj))

m
(5)



where Gm is the set of m generated trajectories, Rn the set
of n real trajectories, and dist is some function defining the
distance between two trajectories. In our case, as in [10], we
used Dynamic Time Warping (DTW) [17].

Note that multiple generated trajectories can be matched
to the same trajectory in the real data. This means that if
many generated trajectories are closely matched to the same
real trajectory, we can get a low matching score, even if
the model is giving an inaccurate representation of the data.
Hence we also use coverage, which is a measure of how
many real trajectories are “covered” by a set of generated
trajectories. Mathematically, it is defined as follows:

coverage =
|argminj(dist(Gi, Rj)),∀i = 1,m|

n
. (6)

Similarly to matching, it is not enough to simply have
a good (high) coverage score, as this can sometimes be
achieved by generating trajectories with high diversity, even
if they have a low resemblance to the real trajectories.
Conversely, if the trajectories in the real data are very
similar, many generated trajectories may cover the same real
trajectory. This leads to low coverage, even if the generated
trajectories are similar to all of the real trajectories.

In general, however, finding a model with low matching
and high coverage should correspond to a model that is able
to capture a majority of the trajectories in the real data.
The exact values are however dependent on the data, and
as such, it is useful to measure the matching and coverage
between two distinct sets of non-generated data as a baseline.
We should then be able to consider a model that gets both
matching and coverage close to this baseline as accurate.

E. Risk estimation

With normalizing flows models, it is possible to estimate
the likelihood of both generated and real trajectories. This
has multiple uses for risk estimation and can be used with
the definition: risk = severity ∗ likelihood. As a primitive
example, we have defined the severity of a trajectory as

severity = exp

(
−
mini

(
x2i + y2i

)
α

)
(7)

for some parameter α and where the minimum is taken
over all points in the trajectory. This is based on the Distance
of Closest Encounter [18] and ensures that the severity
reaches a maximum value of 1 only in the case of a collision.
The parameter α affects the distribution of the severity; a
smaller value concentrates the severity such that only the
closest trajectories get a high severity, whereas a greater
value gives a more even distribution. This definition of
severity was used as an example in this paper, but can
easily be changed to other severity measures such as those
suggested in [18], [19].

III. EXPERIMENTS

In this section, we first show an example of a distri-
bution deduced from the normalizing flows model adapted

for trajectory generation. The example is shown in Fig. 3
which shows the estimated distribution of the initial abso-
lute relative velocity and the initial longitudinal distance.
Then, we evaluate the adapted normalizing flows model by
performing two experiments. Firstly, we compare the result
from changing the standard deviation when sampling from
the base distribution. Secondly, we show how the probability
distribution estimated by the model can be used to estimate
the risk of trajectories.
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Fig. 3. An example of distributions that can be estimated with the normal-
izing flows model. Here, the distribution of initial relative absolute velocity
between the vehicles against the initial longitudinal distance between them
is shown, together with the values for the original data.

The normalizing flows model was trained on a set of
roughly 15000 cut-in trajectories. After 200 iterations, the
model showed signs of overfitting, indicating that more data
was required or that the model had already learned the overall
shape of the distribution. After roughly 1000 iterations,
training was stopped because the log test-loss converged to
around −21 nats.

After training, the model was evaluated by sampling
from the base distribution with different standard deviations,
essentially generating trajectories with varying likelihood.
Fig. 4 shows some examples of generated trajectories sam-
pled from the base distribution using different standard
deviations. The lower the standard deviation, the higher the
likelihood of the generated trajectories. The more likely
trajectories look more like what we might think of as ideal
trajectories, because of their smooth and simple shape. This
is especially clear with a standard deviation σ = 0.1 in Fig. 4,
where all of the trajectories have a very smooth shape.

To evaluate the model, matching and coverage were also
calculated for samples generated with different standard
deviations. Matching and coverage were calculated with a
generated dataset of 400 trajectories and a real dataset of 100
trajectories so that the results could be compared with those
of [10]. To estimate the accuracy of the result, the calculation
of matching and coverage was done 50 times for different
samples in the generated and real dataset. The results can
be seen in Fig. 5. To compare the matching and coverage
values to a baseline, they were also calculated between two
distinct real datasets.

It can be seen from Fig. 5 that, as we decrease the standard
deviation, the matching decreases since the generated trajec-
tories become more ideal and similar to the real ones. At
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Fig. 4. Generated trajectories from the normalizing flows model sampled
with different standard deviations σ.

the same time, the coverage decreases because the generated
trajectories become very similar to each other and do not
cover many of the less likely real trajectories.

To further evaluate and demonstrate our method, the risk =
severity ∗ likelihood was calculated by using the severity
defined in (7) and the likelihood from the normalizing flows
model. Fig. 6 shows a set of generated trajectories color-
coded by this risk computed using different values of α. This
demonstrates how risk can be calculated by using different
severity measures together with our normalizing flows model.
As α increases, the trajectories are weighted more by how
likely they are, rather than how severe they are.

IV. DISCUSSION

The work in this paper shows how NURBS can be used to
represent and approximate trajectories for generative models.
NURBS are well suited for representing trajectories, as they
can be fitted quickly and accurately to complex trajectories
and are able to embed time (and hence velocity). However,
they are not without issues. NURBS are good at representing
smooth curves, but this also means that it is difficult to fit
them to sharp corners. As we have mainly worked with
trajectories of cut-ins, there are often such corners at the
beginning or end of the trajectories.

Furthermore, because the linear fitting algorithm described
in Sect. II-A assumes all control point weights to be equal,
certain shapes are impossible to represent exactly, such as
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and coverage (crosses) values for different sampling standard deviations σ.
The tests were computed 50 times each and the dashed and dashed-dotted
lines represent the standard deviation in those tests.
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Fig. 6. Generated trajectories, color coded by estimated risk, calculated
for different values of α (top: α = 20, bottom: α = 200). A deeper color
indicates a higher risk. Note that the colors are normalized for each plot
and are therefore not directly comparable between the plots.

circles. While being unable to represent certain shapes is
not likely to affect trajectory approximation significantly, it
may be worth investigating how using the weights can affect
the fitting accuracy, especially as we have a fixed number of
control points for all trajectories. With that said, the goal is
not necessarily to minimize the fitting error, as the trajectory
data can contain noise that we do not want to overfit.

For generation, the normalizing flows model seems to gen-
erate realistic trajectories. However, unrestricted sampling
from the normal distribution can generate unrealistic and
physically insensible trajectories. For instance, as time is
decided by a single parameter, trajectories are occasionally
generated with negative total time t. Thus it is important
to consider the probability of the generated trajectories. By
sampling from a narrower base distribution, as shown in
Fig. 4, many unrealistic trajectories can be avoided.

The normalizing flows model we trained estimates the



probability of trajectories. Combining the probability with
some measure of severity, criticality or importance helps
decide which type of trajectories the autonomous vehicle
needs to be further tested on. In this paper, we showed an
example of how the probability can be combined with a
severity measure. However, there exist many other methods
of deciding which trajectories are severe or important. For
instance, in [11], importance sampling is used together with
normalizing flows to generate more collision scenarios. Also,
in [20], trajectories are perturbed to make collisions more
likely. Both of these methods and others could make use of
knowing the probability of the trajectories. Because then we
would not only generate interesting scenarios but also know
how likely they are to appear in normal traffic.

V. CONCLUSION

We have presented a new method that uses NURBS to
approximate trajectories and then uses normalizing flows for
trajectory generation. The method seems to perform well,
based on visualizations and the use of matching and coverage
scores. It is however challenging to assess the performance
of a generative model concretely.

We have also shown how the new method can be used to
estimate a probability distribution of trajectories, which in
turn can be used together with a severity measure to estimate
the risk associated with the trajectories. The latter helps in
assessing which trajectories autonomous vehicles need to be
tested on.

The new method has only been applied on cut-in scenarios.
Future work could look at how the method performs for other
traffic scenarios.
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