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A B S T R A C T

Spatial analyses of traffic crashes have drawn much interest due to the nature of the spatial dependence and
spatial heterogeneity in the crash data. This study makes the best of Geographically Weighted Random Forest
(GW-RF) model to explore the local associations between crash frequency and various influencing factors in
the US, including road network attributes, socio-economic characteristics, and land use factors collected from
multiple data sources. Special emphasis is put on modeling the spatial heterogeneity in the effects of a factor on
crash frequency in different geographical areas in a data-driven way. The GW-RF model outperforms global
models (e.g. Random Forest) and conventional geographically weighted regression, demonstrating superior
predictive accuracy and elucidating spatial variations. The GW-RF model reveals spatial distinctions in the
effects of certain factors on crash frequency. For example, the importance of intersection density varies
significantly across regions, with high significance in the southern and northeastern areas. Low-grade road
density emerges as influential in specific cities. The findings highlight the significance of different factors in
influencing crash frequency across zones. Road network factors, particularly intersection density, exhibit high
importance universally, while socioeconomic variables demonstrate moderate effects. Interestingly, land use
variables show relatively lower importance. The outcomes could help to allocate resources and implement
tailored interventions to reduce the likelihood of crashes.
1. Introduction

Road traffic accidents annually cause a substantial toll on human
lives and well-being, resulting in considerable societal costs (Ziakopou-
los and Yannis, 2020). The United States (US) witnesses a sobering
statistic of over 30,000 fatalities attributable to traffic crashes, re-
flecting a mortality rate of 23 per 1 million individuals (Abdel-Aty
et al., 2013). Despite a noticeable decrease in the incidence of traffic
crashes in the US, the substantial number of casualties underscores
the imperative for continuous efforts in comprehensively analyzing the
underlying factors or determinants of these incidents. This is aimed to
formulate and implement effective countermeasures for mitigating the
deleterious consequences associated with traffic crashes.

Traffic crash frequency varies substantially between and within
states in the US. Existing spatial analyses of traffic crashes predomi-
nantly involve the investigation of crash counts or frequencies across
spatial units (Lord and Mannering, 2010). Existing research acknowl-
edges the spatial dependence and heterogeneity in crash occurrences
(Huang and Abdel-Aty, 2010). Spatial dependence, in this context,
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denotes the phenomenon that crashes at a location are highly influ-
enced by events at neighboring locations, often quantified through
spatial auto-correlation metrics. Some existing studies analyzed spatial
dependence of traffic crash frequencies, effectively representing local
conditions (Lord and Mannering, 2010; Mannering and Bhat, 2014).
However, as far as we are concerned, few studies have not revealed
the spatial heterogeneity in the effects of influence factors (e.g. road
environment and land use) on the traffic crash frequencies. Herein,
the spatial heterogeneity in the effects of a factor denotes that the
effect of the same factor on traffic crashes varies in different areas (or
spatially). Modelling and analyzing the potential spatial heterogeneity
in the associations between crash frequency and various factors could
help to capture unobserved trends and particularities of each area
spatially. The results would allow for a more precise crash frequency
analysis and help policy-makers for implementing tailored safety mea-
sures effectively to reduce the likelihood of crashes in different spatial
areas.

There is research on spatial modeling of traffic crashes to demon-
strate associations between spatial-level crash frequency and
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influencing factors such as land use factors (Cai et al., 2016), road
environment factors (Bao et al., 2018; Wang et al., 2016), and de-
mographics and socioeconomic factors (Pervaz et al., 2022). Some
studies have suggested various statistical regression models, such as
generalized linear models (GLMs) (Chiou and Fu, 2013) and random-
parameter models (Amoh-Gyimah et al., 2017; Zeng et al., 2017). These
models address spatial heterogeneity by introducing random effects
or allowing the parameters to vary across different spatial zones or
groups. To consider spatial autocorrelation issues, some studies have
employed autoregressive (AR) models, e.g., conditional autoregressive
(CAR) models and spatial autoregressive (SAR) models, to consider
the correlation of crash data in different spatial units to introduce
the spatial structure random effect and spatial lag effect into the
traditional statistical model, respectively (Chiou et al., 2014; Jonathan
et al., 2016; Wen et al., 2019; Luo et al., 2023). Recently, the pro-
cess of Bayesian inference has been employed for modeling spatially
aggregated crash data. Bayesian spatial models can simultaneously
account for the spatial correlation and heterogeneity in crash data by
integrating spatial random effects and spatial covariance functions (Ma
et al., 2017; Wang et al., 2022). However, Bayesian spatial models
require prior knowledge to select appropriate prior distributions for
random parameters; otherwise, it may lead to inaccurate modeling
results.

Another widely used method is the geographically weighted re-
gression (GWR) model, which extends traditional statistical regression
methods to incorporate spatial effects of factors in their structure. The
method that accounts for spatial variation is the simultaneous develop-
ment of several localized regression models considering spatial distance
weights (Liu et al., 2017). These GWR models have good theoretical
interpretability, allowing for a direct and clear understanding of the
relationship between crash frequency and the analyzed influencing
factors for different areas. However, their main disadvantage is that the
linear models are susceptible to outliers and require strong assumptions
about the linear relationship between exploratory variables and the
dependent variable, as well as the multicollinearity among exploratory
variables. Nowadays, the prevalence of machine learning technologies
have enabled the combination of geographically weighted structures
and machine learning models (Quiñones et al., 2021; Santos et al.,
2019). The geographically weighted Random Forest (GW-RF) model
has the potential to address the limitations of the GWR model, as it
allows for modeling nonlinear relationships between crash frequency
and influencing factors and exhibits robustness to outliers in the crash
data (Wu et al., 2024). Meanwhile, the GW-RF endeavors to improve
predictive performance over a non-geographically weighted RF model
by accounting for spatial heterogeneity in the effects of influencing
factors.

To the best of our knowledge, extant literature lacks endeavors
utilizing the Geographically Weighted Random Forest (GW-RF) model
to investigate non-stationarity in the relationships between zone-level
crash frequency and diverse influencing factors. This study addresses
this gap by deploying a GW-RF model, designed to account for spatial
correlation and heterogeneity within crash data. The objective is to
meticulously examine the local associations between zone-level crash
frequency and a spectrum of influencing factors, discerning spatial vari-
ations in these associations. This study draws upon multiple datasets
from open data platforms in the United States, encompassing crash
data and influencing factors including road network attributes, socio-
demographic characteristics, and land use variables, aggregated at
the granularity of ZIP Code Tabulation Areas (ZCTAs). Firstly, the
calculation of Moran’s I statistic index is undertaken to scrutinize local
relationships between crash frequency and safety influencing factors.
Subsequently, the investigation of associations between influencing
factors and zone-level crash frequency is conducted through both local
geographically weighted models (GW-RF and GWR) and global models
(RF and Ordinary Least Squares regression). The comparative assess-
2

ment aims to compare the predictive performance of GW-RF relative
to conventional local and global models. Lastly, the GW-RF model is
employed to elucidate variations in the local effects of influencing
factors on crash frequency, employing interpretive techniques. The
culmination of these analyses yields nuanced insights into the under-
lying determinants of crash frequency in different geographical areas.
The outcomes hold promise for effectively mitigating the likelihood
of crashes and enhancing road safety within specific spatial domains
through tailored prevention and interventions.

The remainder of this paper is structured as follows. Section 2
overviews relevant studies about safety influencing factors and spatial
modeling approaches on traffic crash frequency. Section 3 introduces
the study area, multiple data sources used, and candidate influencing
factors. The analysis and model specifications of RF, GWR, and GW-RF
are introduced in Section 4. The results and conclusions are presented
in Section 5 and Section 6, respectively.

2. Literature review

2.1. Safety influencing factors

Traffic crashes result from a multifaceted process influenced by var-
ious factors such as road network attributes and driver characteristics.
From a spatial perspective, a thorough analysis of the influencing fac-
tors on zonal traffic crashes becomes imperative, aiding researchers in
identifying factors impacting traffic crashes in diverse areas and subse-
quently enabling the targeted implementation of improvements specific
to each location. Previous studies have investigated the contributory
factors to crashes at spatially aggregated levels. The safety influencing
factors can be broadly categorized into four general categories: road
network attributes, traffic states, socio-demographic characteristics,
and land use characteristics. Notably, road network attributes stand
out as pivotal factors in the spatial modeling of traffic crashes (Xu
et al., 2017). In the traffic crash frequency models, road network
attributes are often characterized by variables such as the length, den-
sity, and proportion of different road segment types. Extant literature
suggested that factors such as freeway-segment length and intersection
density exert a significant positive influence on the occurrence of
traffic crashes (Wang et al., 2022). Moreover, various traffic states are
relevant to the modeling of traffic crashes, including average hourly
traffic volume (AHTV), annual average daily traffic (AADT), average
speed, speed variance, and speed limit (Abdel-Aty et al., 2013). While
the relationship between traffic volume and crash frequency is widely
acknowledged, the influence of average speed and speed limits remains
a point of contention. Elevated traffic volumes are observed to correlate
with an increased frequency of crashes increase crash frequency, but
the impact of average speed and speed limits remains inconclusive
(Bao et al., 2017). Moreover, spatial modeling has explored various
socio-demographic characteristic (Bao et al., 2017; Lee and Abdel-Aty,
2018), such as population density, age, gender, education attainment,
unemployment rate, income condition, etc. Other noteworthy findings
include a positive correlation between employment density and crash
frequency, while other studies have reported associations indicating
that higher levels of education and favorable income conditions are
related to a reduction in crash occurrences (Cai et al., 2017).

Concerning land use factors, some studies have revealed that areas
characterized by intensified commercial activities exhibit higher traffic
crash frequencies (Gomes et al., 2017). Due to the difficulty in data
collection for the areas of diverse land use categories, the traditional
method directly utilizes the number of Points of Interests (POIs) in
distinct categories to represent the land use ratios of these categories.
However, it is crucial to note that this method lacks precision, as
the accurate determination of land use ratios is defined as the area
allocated to a specific land use divided by the total space in the study
area (Gao et al., 2021). The amount of POIs in different categories
provided by the online map is often highly imbalanced, which may

lead to biases in calculating land use ratios. To address the imbalanced
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nature of online map POI data, it is necessary to propose a more
accurate method for computing the ratios of diverse land use categories
within each study area.

However, numerous existing studies have primarily concentrated
on the effect of influencing factors on the dependent variable (crash
frequency) without fully accounting for the nonlinear and interactive
effects of these factors on crash frequency. Therefore, there is a critical
need to introduce an innovative method to comprehensively address
these intricate relationships of influencing factors on crash frequency
to gain a more precise understanding of how influencing factors affect
traffic crashes and, consequently, develop more effective strategies for
addressing traffic crash issues.

2.2. Spatial modeling approaches

Various methods have been developed to account for spatial de-
pendence and heterogeneity, incorporating these spatial characteristics
when modeling spatially aggregated crash data. Spatial autocorrelation
of crashes is often initially assessed in spatial analyses by selecting
the appropriate scale of spatial units for analysis. To accurately ex-
amine autocorrelation phenomena, researchers have employed vari-
ous geographic spatial statistical methods, such as Moran’s I, Local
Moran’s I, and Getis–Ord-Gi* statistics (Wen et al., 2019). Moreover,
to incorporate spatial characteristics, numerous spatial models have
been proposed, primarily falling into five categories, including general-
ized linear models (GLMs), autoregressive models, random parameter
models, Bayesian spatial models, GWR models, and Machine learning.

Some early studies sought to explain the unobserved spatial hetero-
geneity in crash data using GLMs (Chiou and Fu, 2013), such as random
effects Poisson or negative binomial model. These models introduced
random effects into traditional statistical models to represent random
variations between different observed spatial units, often denoted as
random intercepts. Random effects allow the model to accommodate
heterogeneity between different spatial units, thus providing a bet-
ter explanation for spatial heterogeneity in crash data. However, it
is crucial to acknowledge that these models rest on the assumption
that crashes are independent, random events. This assumption poses
a potential challenge, especially in the case of spatially correlated
crash data, thereby raising concerns about the suitability of these
models in accurately capturing the complex spatial relationships among
crash events. To address spatial autocorrelation issues, researchers
have turned to conditional autoregressive (CAR) models, incorporating
spatial structure random effects to enhance the random effects defined
to follow a normal distribution in the basic Poisson model (Chiou
et al., 2014; Jonathan et al., 2016). In the CAR model, the spatial
structure random effect of each spatial unit follows a CAR prior distri-
bution, which is computed based on the adjacency matrix and globally
smoothed over the space. CAR models have demonstrated superior
performance compared to Poisson models, particularly in processing
the discrete nature of spatially aggregated crash data (El-Basyouny and
Sayed, 2009). On the other hand, some studies have employed spatial
autoregressive (SAR) models, considering that the crash frequency
(dependent variable) of a spatial unit exhibits an interactive effect not
only with the explanatory variable of the same spatial unit but also with
the crash frequency of adjacent spatial units (spatial lag), which aims
to account for the spatial autocorrelation inherent in crash data (Wen
et al., 2019). Nevertheless, when dealing with a substantial number
of geographic zones, both CAR and SAR models require estimating a
significant number of spatial autocorrelation parameters, which can
lead to an escalation in the complexity of the model. Differing from the
aforementioned the fixed-parameter models, random-parameter models
tackle heterogeneities from unobserved factors by allowing the param-
eters to vary across distinct spatial zones or groups (Amoh-Gyimah
et al., 2017). Numerous studies indicated that random-parameter mod-
els outperform traditional fixed-parameter models in both goodness
3

of fit and practical guidance (Zeng et al., 2017). The estimation of
parameters in random-parameter models typically involves estimating
them independently for each observational unit, which may demand
considerable data and computational resources.

In recent years, Bayesian spatial models have been employed for
modeling spatially aggregated crash data. Relevant studies have indi-
cated that models with Bayesian approaches consistently outperform
their non-Bayesian counterparts due to their advantages in handling
complex spatial structures of spatial data, particularly when consid-
ering random effects and spatial autocorrelation (Wang and Huang,
2016). Some works developed CAR models within a Bayesian frame-
work, which have been proven to be effective in simultaneously ac-
counting for spatial correlation and unobserved heterogeneity in ag-
gregated crash data. This capability enables a thorough investigation
of influential factors associated with crash frequency (Quddus, 2008).
Furthermore, some studies have integrated spatial random effects and
spatial covariance functions into Bayesian spatial models, which can
achieve a better understanding and modeling of the correlation and
heterogeneity in spatially aggregated crash data (Ma et al., 2017). In
such models, spatial covariance functions are employed to quantify
the correlation between different spatial units. However, both random-
parameter models and Bayesian spatial models are relatively intricate
and require the specification of the prior distribution for the random
parameters.

Another commonly used method is the geographically weighted
regression (GWR) model, which extends traditional statistical regres-
sion methods to incorporate spatial effects of influencing factors in
their structure. Several localized regression models utilizing GWR have
been developed to account for spatial variation, such as geographi-
cally weighted ordinary least squares regression (GW-OLS) (Pirdavani
et al., 2014) and geographically weighted negative binomial regression
(GWNBR) (Gomes et al., 2017; Li et al., 2010). To enhance the spatial
transferability of the GWR model, researchers have endeavored to
extend GWR to semiparametric GWR (SGWR) (Xu and Huang, 2015),
which combines geographically varying parameters with geographi-
cally constant parameters. These GWR models, appreciated for their
strong theoretical interpretability, offer a direct and clear understand-
ing of the relationship between crash frequency and analyzed safety
influencing factors. However, a main drawback lies in their assump-
tion of a linear relationship between influencing factors and crash
frequency, which may not accurately reflect the complexity of real-
world scenarios. There is a urgent need for further exploration to model
the complex nonlinear relationships of influencing factors with crash
frequency, considering the spatial heterogeneity in the effects of these
factors.

Machine learning (ML) methods, recognized for their potency and
popularity as data-driven prediction tools, have been increasingly uti-
lized in crash analysis. ML methods exhibit greater flexibility and
robustness in handling data, unburdened by the assumptions and con-
straints of traditional statistical methods (Qu et al., 2023; Gao et al.,
2023). The prevalence of machine learning technologies has facilitated
the combination of geographically weighted structures and machine
learning models, presenting a promising direction for advancing the
field of crash analysis. Indeed, a noteworthy advancement in the field
is the recent development of geographically weighted random forest
(GW-RF), specifically applied to explore and visualize relationships
between exploratory variables and target variables at the spatial level
(Quiñones et al., 2021; Wu et al., 2024). The pioneering work of
Wu et al. (2024) utilized the GW-RF model to predict crash number
from London, showing that the GW-RF model has good predictive
performance when selecting the appropriate bandwidth. The GW-RF
model, a tree-based non-parametric ensemble model, offers a valuable
solution to the limitations associated with linear GWR models. The
GW-RF model not only improves modeling and predictive performance
but also enables a comprehensive investigation of spatial heterogeneity
in the effects of exploratory variables on target variables. This dual
capability makes the GW-RF model a potential tool for advancing our
understanding of how various factors contribute to crash frequencies

across different spatial zones.
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Fig. 1. Spatial distribution of crashes across different ZCTAs in US in 2021.
3. Study areas and data description

The study area encompasses the entire US, and the study period
spans from January 1st to December 31st, 2021. In this study, the ZIP
Code Tabulation Area (ZCTA) serves as the basic zone unit of analysis,
which has been widely adopted in previous studies and is recommended
as a reasonable zoning scale for spatial analysis involving crashes and
human activities (Qian and Ukkusuri, 2015; Bao et al., 2021). ZCTAs
are built by the Census Bureau through the aggregation of census
blocks with common postal addresses assigned to streets. The average
coverage area of ZCTA is 451 m2, which is generally larger than a
Census Tract yet smaller than a Census County Division. This size
provides a stable and moderately sized geographic unit for spatial
modeling of traffic crashes. The study area excludes Alaska and Hawaii
due to the limited number of crash observations in these regions. The
final dataset included 18,411 ZCTAs across the US.

The following four types of data are utilized: traffic crash data,
road network attributes, social-demographic information, and land use
features. The crash data were collected from the Kaggle platform using
two APIs (MapQuest and Bing) with traffic data captured by various
entities, including the US and state departments of transportation, law
enforcement agencies, traffic cameras, and traffic sensors within the
road networks. Each crash record in the data consists of a unique
crash ID, the starting and ending time, crash severity, and location
coordinates. To facilitate analysis and modeling at the ZCTA level,
a reverse geocoding method (Nominatim) is employed to obtain the
ZIP code of the crash occurrence location based on its coordinates.
Subsequently, the crash data can be aggregated into the respective
ZCTAs for further analysis. The used dataset comprises a total of
1,144,4991 crashes during the selected period in the study area (18,411
ZCTAs). Fig. 1 illustrates the distribution of total crashes across various
ZCTAs. It is observed that the number of crashes in a zone is strongly
correlated with the area of the zone; larger areas tend to exhibit higher
crash counts. However, the study units (ZCTAs) do not have a fixed
area. To address this variability, an area-adjusted crash frequency is
proposed as the dependent variable, defined as the number of crashes
per 100 m2 within each ZCTA. Consequently, the dependent variable in
the analysis is comparable among zones with different areas, making it
more suitable for investigating the effects of influencing factors.

To explore the effects of zone-level factors on traffic crash fre-
quency, various road network attributes, demographics and socioeco-
nomic factors, and land use factors are collected from multiple data
sources. The adopted factors are determined based on our available
datasets and cover most factors that may influence crash frequency,
4

as reported in the literature (Ziakopoulos and Yannis, 2020). The
definitions of candidate factors are summarized in Table 1.

The road network data and the land use data are collected from
the Open Street Map (OSM). The road network data are obtained
from the ArcGIS shape files depicting the road network attributes. The
information provided by OSM includes the length and road type of
each road segment, with a total of 28 road types defined by OSM. For
analysis, each road segment is categorized into six road types based
on the road classification standard in the US. The utilized road types
consist of motorways, primary roads, secondary roads, tertiary roads,
residential roads, and service roads. The matchups between road types
in this study and road types from OSM are detailed in Table A.1. To
calculate road network characteristics within each ZIP Code Tabulation
Area (ZCTA), different types of road segments are delineated by the
boundaries of the selected ZCTAs using tools provided by ArcGIS (Bi
et al., 2022).

As for the land use data, we utilize the point of interest (POI)
data from OSM. The information of each POI consists of the element
name, element type, and location coordinates (longitude and latitude).
There are 147 categories of POI defined by OSM to represent differ-
ent utilization purposes, such as residence, commerce, entertainment,
education, and industry. Further, we categorize each POI into four land-
use categories for analysis, referring to the classification standards of
the major land-use classification system in the United States Geological
Survey (USGS). The investigated land-use types comprise residential,
industrial, communication and utility, and commercial and service
land use. The matching between the land use categories and the POI
categories from OSM is presented in Table A.2. By mapping the POIs
into the respective ZCTAs, the number of POIs of different categories
in each ZCTA can be extracted and utilized to represent the land use
characteristics in each ZCTA. Specifically, the ratios of different land
use categories are calculated using the term frequency-inverse docu-
ment frequency (TFIDF) method, as proposed by Gao et al. (2021). This
method draws inspiration from numerical statistical models commonly
used to reflect the importance of a word in a set of documents or a
corpus. In the context of this study, each ZCTA is treated as a document,
and each POI category is regarded as a word within that document.
Thus, the TFIDF method allows for the determination of the significance
of a certain category of POI, analogous to the importance of a specific
word in a document, thereby addressing the imbalanced nature of POI
data. The degree of a category of POI in a ZCTA can be obtained by:

𝑡𝑑𝑖𝑑𝑓𝑘𝑖 = 𝑡𝑑𝑘𝑖 × 𝑖𝑑𝑓𝑘 (1a)

𝑡𝑑𝑘𝑖 =
𝑁𝑘𝑖

∑𝐾 (1b)

𝑘=1 𝑁𝑘𝑖
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Table 1
The candidate dependent variables and influencing factors and their definitions.
𝑖𝑑𝑓𝑘 = 𝑙𝑜𝑔
∑𝐷

𝑖=1 𝑁𝑘𝑖
∑𝐷

𝑖=1
∑𝐾

𝑘=1 𝑁𝑘𝑖
(1c)

where 𝑡𝑑𝑘𝑖 and 𝑖𝑑𝑓𝑘 is the occurrence frequency and weight of POI
category 𝑘, respectively; 𝑁𝑘𝑖 is the number of POIs belonging to POI
category 𝑘 in ZCTA 𝑖, 𝐾 is the amount of POI categories in ZCTA 𝑖, 𝐷
is the number of ZCTAs in the study area. The ratio of the land use
category 𝑘 can be calculated by:

𝑅𝑘𝑖 =
𝑡𝑑𝑖𝑑𝑓𝑘𝑖

∑𝐾
𝑘=1 𝑡𝑑𝑖𝑑𝑓𝑘𝑖

(2)

where 𝑅𝑘𝑖 is the ratio of land use category 𝑘 in ZCTA 𝑖. Based on this
method, the ratios of the four land use categories studied are obtained,
as shown in Table 1. Furthermore, the social-demographic data are ac-
quired from the U.S. Census Bureau. The used information encompasses
the number of people segregated by age, education attainment, labor
5

force participation, poverty level, unemployment population, median
household income, and the average travel time to work. The social-
demographic data are aggregated into the corresponding ZCTAs for
analysis.

The variance inflation factors (VIF) are calculated for all factors
to execute a multicollinearity check. As depicted in Fig. 2(b), the VIF
values for total population, white proportion and commuting propor-
tion are larger than 10, indicating multicollinearity with other variables
(Bao et al., 2018; Azimian et al., 2021). Considering that only the VIF
value of white proportion is slightly greater than 10 in this study, we
relax the threshold constraint and retain the variable. Consequently,
two variables are excluded from the analysis. Besides, variables ex-
hibiting a high correlation (Pearson correlation values exceeding 0.7)
are also removed. The results of the correlation test, as shown in
Fig. 2(a), reveal a strong negative correlation between the poverty rate
and median household income. Despite this correlation, the poverty
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Fig. 2. Correlation and collinearity test results of variables.
rate is retained for analysis as it is a variable of interest in many related
studies. After addressing multicollinearity and high correlations, a set
of 27 variables remains for further analysis.

4. Methodology

We applied two local spatial models (GW-RF and GWR) and two
global models (Random Forest and OLS). The predictive performance
of GW-RF is evaluated by comparing it with traditional local and global
models. Moreover, for both the RF and GW-RF models, the importance
ranking of each variable is calculated to explore the association be-
tween crash frequency and influencing factors and discern how this
association varies across ZCTAs.

4.1. Moran’s I statistic

To explore the intrinsic spatial autocorrelation of factors, Moran’s I
statistic is employed, including global Moran’s I (Wang et al., 2019; Bao
et al., 2017) and local Moran’s I (Yuan et al., 2018). The global Moran’s
I index is adopted to determine whether the explanatory variables in
the ZCTA-level traffic crash frequency model are spatially correlated.
Global Moran’s I index can be calculated as

𝐼 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑤𝑖,𝑗 (𝑧𝑖 − �̄�)(𝑧𝑗 − �̄�)

𝜎2𝑆0
(3a)

𝜎2 = 1
𝑛

𝑛
∑

𝑖=1
(𝑧𝑖 − �̄�)2 (3b)

𝑆0 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖,𝑗 (3c)

where 𝑛 denotes the total number of ZCTAs, 𝑧𝑖 represents the observed
value of a variable at ZCTA 𝑖, �̄� means the global average value of
the variable at all ZCTAs, 𝜎2 denotes the variance of 𝑧, 𝑤𝑖,𝑗 is the
spatial proximity weight between ZCTA 𝑖 and 𝑗. Herein, we used the
most prevalent structure, 0–1 first-order neighbor, to obtain the spatial
proximity weight. Specifically, if ZCTA 𝑖 and 𝑗 are connected to each
6

other directly, 𝑤𝑖,𝑗 = 1; otherwise, 𝑤𝑖,𝑗 = 0. 𝑆0 means the aggregation
of all spatial weights.

The score of the statistic 𝑧𝐼 is calculated as

𝑧𝐼 = 𝐼 − 𝐸[𝐼]
√

𝑉 [𝐼]
(4)

where

𝐸[𝐼] = −1∕𝑛 − 1 (5a)

𝑉 [𝐼] = 𝐸[𝐼2] − 𝐸[𝐼]2 (5b)

The value of Moran’s I ranges from −1 to 1. A positive Moran’s I
indicates positive spatial correlation, and the larger the value, the more
pronounced the spatial correlation, while a negative Moran’s I indicates
negative spatial correlation.

Moreover, we calculate bivariate local Moran’s I (BLMI) (Yuan et al.,
2018) to explore the degree of spatial correlation (positive or negative)
between crash frequency in a given ZCTA and independent variables
in its neighboring ZCTAs. The results of BLMI are categorized into four
categories: low-low (LL), low-high (LH), high-low (HL) and high-high
(HH). For example, ZCTAs with HH refer to significant clusters of high
crash frequency that also have high values of the independent variable
in neighboring ZCTAs. BLMI is expressed as:

𝐼 =
(𝑧𝑖 − �̄�)

𝜎2

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑤𝑖,𝑗 (𝑥𝑖 − �̄�) (6)

where 𝑥𝑗 represents the observed value of an independent variable at
ZCTA j, �̄� means the global average value of the independent variable
at all ZCTAs.

4.2. Random forest (global model)

Herein, a global model refers to a model that treats data points
in different spatial areas uniformly and does not consider the spatial
heterogeneity in the effects of a factor on the dependent variable, when
learning and making predictions. Among various types of supervised
machine learning, we employ Random Forest (RF), a widely applied
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𝑦

non-parametric machine-learning method for regression analysis (Luo
et al., 2021). The RF is an ensemble of decision trees constructed
through random feature selection and random sample sampling, im-
proving the robustness and generalization ability of the model. Since
each decision tree is built on random samples and only selects a
subset of features for splitting, RF can efficiently manage the challenges
posed by large datasets and mitigate the impact of feature correlations
and noise in high-dimensional data. Additionally, RF operates without
assuming specific statistical distributions of the data or predefined
relationships between the dependent variable and explanatory vari-
ables, making the method well-suited for modeling nonlinear effects
of factors.

Specifically, each decision tree in RF is generated and trained
independently based on a subset from a given training dataset. First,
this subset is formed by randomly selecting samples with replacement
from the original training dataset, typically constituting around 2/3
of the training dataset. Meanwhile, the remaining data (usually the
other 1/3) comprise the out-of-bag (OOB) set, which is excluded from
training and reserved for testing purposes. Subsequently, a subset of
variables (denoted as ‘‘m’’) is created by randomly selecting from each
sample with k variables. Each decision tree grows with the selected
subset of variables to its maximum extent without pruning until it
cannot be split. In addition, the prediction error for each tree is
calculated. The same process is iterated for hundreds or thousands of
trees, resulting in the creation of a forest of random trees. Finally, the
principle of averaging is utilized (for regression) to make predictions
and create the final output. Particularly, the OOB set is also employed
to assess the feature importance of each independent variable. The
Permutation Feature Importance (PFI) approach is applied to estimate
the importance of each variable, whose core thought is to investigate
how much the accuracy of the model decreases when a particular
variable is randomly permuted. A higher decrease in accuracy indicates
that the feature is more crucial for predicting the dependent variable.
This technique provides valuable insights into the relative importance
of each variable in contributing to the model’s predictive performance
(Li et al., 2024). Beyond modeling, an interpretation approach known
as the Partial Dependency Profile (PDP) is utilized to interpret the
effects of exploratory variables on the dependent variable in a data-
driven manner, based on trained global model. PDP relies on a trained
global model and allows for a nuanced understanding of how individual
variables influence the predicted outcomes.

4.3. Geographically weighted models

Global models may not have good performances in geographical
analysis as they fail to account for spatial dependence or heterogeneity
in the effects of factors. The principal idea of geographically weighted
models is to take into account spatial non-stationarity by establishing a
local equation at each ZCTA within the study area, namely considering
the spatial heterogeneity in the effects of a factor on the dependent
variable. In this study, two geographically weighted models, i.e., GWR
and GW-RF, are employed to explore spatial heterogeneity in the
relationships between traffic crash frequency and various factors across
different ZCTAs.

4.3.1. Geographically weighted regression (GWR)
Geographically weighted regression (GWR) is a local linear regres-

sion method that considers spatial heterogeneity by allowing regression
coefficients to vary across different locations. To this end, GWR fits
a regression equation for each ZCTA using neighboring observations
specific to that location. The general expression for GWR models is
given by:

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +
𝑛
∑

𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑘𝑖 + 𝜀𝑖 (7)
7

𝑘=1
where 𝑦𝑖 denotes the dependent variable for ZCTA 𝑖, 𝑢𝑖 and 𝑣𝑖 stands
for the coordinates for each ZCTA 𝑖, 𝜀𝑖 means the residual, and the
parameter 𝛽𝑘(𝑢𝑖, 𝑣𝑖) represents the local coefficient estimate for the
independent variable 𝑥𝑘 at ZCTA 𝑖, which can be different between
ZCTAs to address the spatial heterogeneity.

The spatially varying coefficients 𝛽𝑘(𝑢𝑖, 𝑣𝑖) are estimated by employ-
ing the ordinary least squares (OLS) method based on neighboring
observations within the selected bandwidth for each ZCTA. The mech-
anism of this approach is that the model at ZCTA 𝑖 is influenced
more by nearby observations compared to those observations that are
farther away. To minimize the sum of squared residuals, the coefficients
estimated using the OLS method can be calculated in matrix form as
follows:

𝛽𝑒(𝑢𝑖, 𝑣𝑖) = (𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗)−1𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲 (8)

where 𝛽𝑒(𝑢𝑖, 𝑣𝑖) denotes the estimate of the location-specific parameter,
𝑇 means the matrix transpose operation, 𝐗 and 𝐲 are matrixes of inde-
pendent variables and dependent variable for neighboring study area
determined by the kernel bandwidth, respectively, 𝐖(𝑢𝑖, 𝑣𝑖) represents
the spatial weight matrix.

Besides, selecting an appropriate kernel bandwidth is crucial in
GWR, as the model’s performance is highly sensitive to it. A large kernel
bandwidth includes more neighboring observations in the regression
model, which may lead to overlooking local features and heterogene-
ity. Conversely, a smaller kernel bandwidth potentially hinder the
model’s ability to capture spatial smoothing effects (Li et al., 2010).
The bandwidth’s size usually depends on the kernel type, bandwidth
method, distance, and the number of neighbors. In this study, the
optimum bandwidth (the best neighbor size) is determined with the
lowest Akaike Information Criterion (AIC) values by applying ‘‘bi-
square kernels’’ with adaptive distance. The weight between ZCTAs is
calculated using a bi-square kernel function, expressed as follows:

𝑊𝑖𝑗 =
{

[1 − (𝑑𝑖𝑗∕ℎ)2]2, 𝑑𝑖𝑗 < ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

where 𝑊𝑖𝑗 represents the geographical weights between the observed
data at ZCTA 𝑖 and 𝑗, ℎ denotes the bandwidth or the distance threshold
beyond which observations are not considered in the weighting.

4.3.2. Geographically weighted random forest (GW-RF)
The GW-RF, which combines the concepts of GWR and traditional

RF, is employed for analysis due to its potential to address the limi-
tations of the GWR model and improve predictive performance over a
non-geographically weighted RF model. Similar to the local regression
analysis framework of GWR, GW-RF consists of multiple sub-models
calibrated locally using RF instead of linear regression (Quiñones et al.,
2021). The mechanism of GW-RF could simultaneously account for spa-
tial heterogeneity and spatial correlation since a local model for each
ZCTA 𝑖 is calibrated locally using RF, which could address the issue
of spatial heterogeneity. On the other hand, a local RF is constructed
using only neighboring observations within the defined bandwidth of
the target location to consider the spatial correlation with adjacent
areas. The appropriate kernel bandwidth in the GW-RF is selected using
the same method as the GWR model. The local RF at ZCTA 𝑖 in GW-RF
s

𝑖 = 𝑅𝐹𝑖(𝐗) (10)

where 𝑅𝐹𝑖(𝐗) represents the trained sub-model using RF for ZCTA 𝑖.
In the training process of the GW-RF model, the optimal hyper-

parameters are fine-tuned using the K-fold cross-validation method.
The hyper-parameters of the GW-RF (‘‘ntree’’: the number of trees, and
‘‘mtry’’: the number of variables randomly sampled) are determined
using Random Grid Search (RGS). Then, these hyper-parameters are
kept fixed to train the local GW-RF model. The bandwidth is also deter-

mined using the ten-fold cross-validation method. During the parameter
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Fig. 3. Spatial distribution maps of ZCTA-level area-adjusted crash frequency in 2021.
tuning process, both the global RF and local GW-RF models are trained
with the aforementioned US traffic crash data.

To assess the predictive performance of the GW-RF model and other
models, several evaluation metrics are used, including Mean Square
Error (MSE), Akaike Information Criterion (AIC) and goodness of fit
(𝑅2):

𝑀𝑆𝐸 =
𝑛
∑

𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑛
(11)

𝐴𝐼𝐶 = 2𝐾 − 2 ln (𝐿) (12)

𝑅2 = 1 −
(𝑦𝑖 − 𝑦𝑖)2

(𝑦𝑖 − 𝑦𝑖)2
(13)

where 𝑦𝑖 is the true value for observation 𝑖, 𝑦𝑖 denotes the predicted
value of observation 𝑖, 𝑦𝑖 means the average value of the dependent
variable, 𝑛 is the total sample size, 𝑘 is the number of factors, 𝐿 means
the maximum likelihood estimate of the model.

The GW-RF model facilitates the assessment of feature importance
for explanatory variables at each location, which aids in exploring the
spatial heterogeneity in the effects of a factor across different zones.
Local permutation feature importance is calculated for each zone based
on the local RF, providing feature importance values for a factor in
different zones.

5. Results

5.1. Descriptive analysis

Figs. 1 and 3 show the spatial distribution of ZCTA-level crash
frequency and area-adjusted crash frequency based on the used data.
The spatial distribution in Fig. 3 indicates that ZCTAs with higher crash
frequencies are concentrated on the east and west coasts of the US,
while crashes exhibit a clustered point distribution around major cities
in the mid-western areas of the US. Regarding the area-adjusted crash
frequency, they are primarily concentrated in major cities located in
the southern and northeastern regions of the US.

The results of the global Moran’s I index reveal that the Moran’s
indexes for most variables exceed 0.3, indicating that most factors at
the ZCTA level are spatially correlated. Furthermore, variables such
as intersection density, residential road density, the proportions of
White people, the proportion of Black and African-American people,
and the proportion of Asian people exhibit high spatial correlation,
with Moran’s indexes larger than 0.6. This implies the feasibility and
8

necessity of the spatial analysis of crash frequency at the ZCTA level in
this study.

From a local perspective, LMI is employed to test the correlation
between area-adjusted crash frequency and influencing factors, explor-
ing a significant correlation exists. Four representative LMI results
depicting crash frequency and influencing factors are presented in
Fig. 4. As shown in Fig. 4(a), the red-colored areas (HH) primar-
ily concentrated in the southern and northeastern regions correspond
to significant clusters of high crash frequency that also have high
density of motorway in neighboring ZCTAs. Conversely, the orange-
colored areas (HL) represent significant clusters of high crash frequency
with low motorway density. Additionally, the majority of the areas
in Fig. 4(a) are deep blue (LL), indicating significant clusters of low
crash frequency with low motorway density. This suggests that the
correlation between crash frequency and motorway density changes
spatially (i.e. in different areas), which may be positive or negative.
Moreover, spatial variations in the correlation also exist between crash
frequency and other influencing factors. In Fig. 4(b), the red-colored
areas (HH), representing significant clusters of high crash frequency
with high intersection density, are mainly distributed near large cities.
While the orange-colored areas (HL), representing significant clusters
of high crash frequency with low intersection density, are concentrated
in the southern and northeastern regions. For the proportions of White
people, the red-colored areas (HH) are distributed in the western, mid-
western, and northeastern regions, while the orange-colored areas (HL)
predominantly concentrate in the southern regions (Fig. 4(c)). Fig. 4(d)
illustrates spatial clusters of crash frequency and poverty rate, where
the red-colored areas (HH) concentrate in the southern regions, while
the orange-colored areas (HL) are mainly present in the northeastern
regions. These spatial variations in the correlation between a factor and
crash frequency underscore the necessity of considering geographical
modeling and local estimation of effects of influencing factors on crash
frequency.

5.2. Comparisons of predictive performance

5.2.1. Linear models
The performance of GW-RF and other benchmarks (OLS, GWR, RF)

in modeling the relationship between influencing factors and crash
frequency is evaluated using five-fold cross-validation. MSE, AIC, and
R2 are used as metrics to assess the predictive performance of the
models. As shown in Table 3, from an overall perspective, models using
area-adjusted crash frequency as the dependent variable perform better

in their predictions compared to models using total crash frequency as



Accident Analysis and Prevention 199 (2024) 107528S. Wang et al.
Fig. 4. BLMI cluster of area-adjusted crash frequency and four influencing factors. Figures are generated by the GeoDaSpace package for geodata analysis. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
The results of the predictive performance of the models.

Model Total crash frequency Area-adjusted crash frequency

AIC MSE R2 OBB R2 AIC MSE R2 OBB R2

OLS 48 121 0.8933 0.2021 NAa 47 716 0.7793 0.2206 NAa

GWR
Min

17 327
0.0 0.0085 NAa

16 714
0.0 0.0095 NAa

Max 14.0509 0.7761 NAa 12.2934 0.8584 NAa

Meanb 0.6923 0.3095 NAa 0.5509 0.3285 NAa

RF / 0.6251 0.3748 0.3664 / 0.6085 0.3914 0.3835

GW-RF
Min

/
0.0 0.0091 0.0118

/
0.0 0.0101 0.0118

Max 12.3115 0.7964 0.7784 10.8891 0.8673 0.8574
Meanb 0.6792 0.3468 / 0.6259 0.3704 /

a Not applicable.
b The mean value of R2 for GWR and GW-RF is the arithmetic mean.
the dependent variable. Therefore, we exclusively discuss the results of
models in predicting area-adjusted crash frequency.

The R2 of the global OLS model is 0.22, which serves as a baseline
for comparison. The GWR model exhibits a higher average adjusted R2

values (0.3285) and a lower AIC value (see Table 2), indicating superior
predictive performance over the global OLS model. In comparison to
conventional models, the RF model shows a significant improvement,
reflected by a higher R2 value (see Table 2). The GW-RF model shows
a lower MSE value than that of the global RF model. What is more, the
GW-RF model shows a slight improvement in the overall performances
compared to the GWR model with a higher average R2 value (see
Table 2).

We further evaluate the local R2 values for both the GWR model and
GW-RF model pertaining to area-adjusted crash frequency, as shown in
Fig. 5. In the GWR model, the local R2 ranges from 0 to 0.858, with a
mean value of 0.328. Notably, the local R2 values are relatively high in
the majority of ZCTAs in the southern regions and some ZCTAs in the
western and northeast regions. Additionally, the local R2 values for the
GW-RF model range from 0.01 to 0.867, exhibiting an average value
of 0.370, which is 12.8% higher than the corresponding mean R2 value
for the GWR model (0.328). The distribution of local R2 values for the
GW-RF model is similar to that of the GWR model, yet it demonstrates
an improvement in model performances, as indicated by the circled
areas in Fig. 5. The local GW-RF models exhibit strong robustness (R2 >
0.6) in 10% of ZCTAs, whereas the local GWR models demonstrate
satisfactory predictive performance (R2 > 0.6) in only 8.6% of ZCTAs.
9

A plausible explanation for these observed patterns lies in the flexibility
and strength of the GW-RF model, which avoids assuming a linear
relationship between crash frequency and influencing factors, and has
the advantage of dealing with the complex nonlinear and interactive
effects among the predictors. The local R2 values are relatively high in
most ZCTAs within the southern regions and some ZCTAs in the western
and northeast regions. Conversely, the local R2 values for most regions
in the western and mid-western parts of the US are relatively low. One
potential reason for this phenomenon is that the data in these regions
are relatively sparse and have smaller sample size under the specified
bandwidth, leading to a deficiency of explanatory power for the RF.
Upon comparisons, the GW-RF model emerges as the optimal model to
investigate the associations between crash frequency and influencing
factors with consideration of spatial variations in the effects of a factor.
Therefore, the subsequent local effect analysis of influencing factors is
mainly based on the results of the GW-RF model.

5.3. Spatial variations in the local effect of influencing factors

The above results indicate the potential correlations of factors and
the crash frequency. In this section, we utilize the results of OLS and
RF global models to understand the relationship between influencing
factors and crash frequency from a global perspective. More impor-
tantly, we further employ the GWR and GW-RF models to analyze the
local relationships between crash frequency and influencing factors,
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Fig. 5. Local R2 for the GWR and GW-RF models of area-adjusted crash frequency. The improvement of GW-RF is shown in the circled areas.
providing an understanding concerning spatial variations in the local
effects of influencing factors on crash frequency.

5.3.1. GWR model
As indicated in Table 3, the global OLS model reveals that the

majority of influencing factors are positively correlated with crash
frequency (𝑝 < 0.05), except for the residential land use ratio, industry
land use ratio, labor force proportion, poverty rate, and average travel
time to work. However, the residential land use ratio and poverty rate,
despite showing no statistically significant correlation in the global
OLS model, have been acknowledged as impactful in some existing
studies (Xie et al., 2019; Wang and Kockelman, 2013). These studies
have mainly concentrated on a specific city or state, while the scope
of this study encompasses the whole US. Different study scopes may
affect the influence of a specific factor on crash frequency from a
global perspective. The expansion of the study area tends to average
the effects of influencing factors across the entire study area, potentially
diminishing the significance of these effects.
10
Further, we analyze the local effects of the influencing factors
using the GWR model. The results of GWR are summarized in Ta-
ble 3, presenting descriptive statistics of the estimated coefficients
for influencing factors across various ZCTAs. These statistics provide
general views on the variances in the effects of influencing factors.
Across all variables, local coefficients exhibit both positive and negative
values. For example, the local coefficients for intersection density range
from −0.897 to 5.005, with a median value of 0.004. Notably, the
coefficients for intersection density are significant and positive in more
than 50% of ZCTAs in the US, which is significantly different from the
results of the global model (0.002). The coefficients for tertiary road
density range from −1.111 to 1.877, which are narrower. Besides, we
found that the median coefficients for residential land use ratio and
commercial and services land use ratio are zero, indicating a positive
impact on crash frequency in 50% of ZCTAs and a negative impact
in the remaining half. Similar patterns can be found from the results
of other factors. The results indicate the existence of notable spatial
variation in the effects of a factor on crash frequency, which cannot be
appropriately captured by global methods without considering spatial
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Table 3
Summary results of OLS and GWR models.
heterogeneity in the effects of the factors. Therefore, global models may
result in biases in estimating the effects of a factor within a specific
geographical area, which highlights the necessity and superiority of
geographically weighted modeling. Herein, we do not elaborate the
effects of each factor from OLS and GWR, as more detailed discussions
will be provided in the following section, combining the results from
RF and GW-RF that have the best predictive performances.

5.3.2. RF and GW-RF model
According to the PFI values from the trained RF model in Fig. 6,

the factor ‘‘white proportion’’ has the highest importance, followed by
motorway density, primary road density, secondary road density, and
utilities land use ratio. From an overall perspective, this ranking is
significantly different from the coefficient ranking of the OLS model
(Please note that the values of factors are normalized, so the coeffi-
cients of factors are comparable in OLS model). In the RF model, the
motorway density, population density, and white proportion rank as
11
the top three important features, whereas in the OLS model, the tertiary
road density, population density, and white proportion are the top three
factors contributing most significantly to the prediction of crash fre-
quency. This disparity could be attributed to the data-driven modeling
mechanism of machine learning such as RF to depict complex nonlinear
and interactive effects of several factors, which cannot be modeled by
OLS. Noting that the feature importance value of the ‘‘Industry land use
ratio’’ is negative. This may be due to this variable originally having a
low importance value and the presence of data noise, because when
some variables do not provide valuable information for predicting the
dependent variable, a small perturbation in the training sample may
completely change the importance ranking of the variables (Louppe
et al., 2013; Li et al., 2020). More importantly, it indicates that the
‘‘Industry land use ratio’’ is not relevant for predicting crash frequency
based on our datasets.

Moreover, the partial dependency analysis is used to further in-
terpret how a factor will affect the area-adjusted crash frequency in
a more quantitative manner. The interesting results of six important
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Fig. 6. Feature importance from global RF. (a) Permutation-based feature importance; (b–g) partial dependency profiles of the six important variables of the global random forest
model.
variables are demonstrated in Fig. 6 for discussions. When controlling
for the influence of other factors, the motorway density (Fig. 6(b)),
population density (Fig. 6(c)), tertiary road density (Fig. 6(e)), and high
school proportion (Fig. 6(f)) are all positively related to area-adjusted
crash frequency. More interestingly, the effect of a factor presents
nonlinear and threshold patterns. Taking Fig. 6(b) as an example,
the area-adjusted crash frequency increases pretty significantly when
12
‘‘motorway density’’ is less than 0.2, but its effect on crash frequency is
trivial when ‘‘motorway density’’ is larger than 0.2. The effect of ‘‘high
school proportion’’ is negligible when its value is below 0.65, but its
effect exhibits a pronounced increase when ‘‘high school proportion’’ is
larger than 0.65. It is worth noting that such nonlinear and threshold
effects cannot be modeled by conventional models with prior assump-
tions (e.g. linear relations). For the effect of ‘‘white proportion’’ and
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Fig. 7. Spatial heterogeneity distribution of local effects of first ten influencing factors on crash frequency. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
‘‘poverty rate’’, the results also show nonlinear and threshold patterns.
As for the effects of white proportion in Fig. 6(d), it decreases as
‘‘white proportion’’ increases when ‘‘white proportion’’ is less than
0.95, but the it sharply increases when ‘‘white proportion’’ is larger
than 0.95. Additionally, as shown in Fig. 6(g), the area-adjusted crash
frequency decreases rapidly when ‘‘poverty rate’’ is less than 0.2, and
its effect slightly increases when ‘‘poverty rate’’ is larger than 0.6.
13
Partial dependency profiles of the remaining variables are summarized
in Fig. B.2 in the Appendix in case of redundancies.

To clearly illustrate the spatial heterogeneity in the effects of a
factor on area-adjust traffic crashes, the results of GW-RF are projected
into the ZCTAs for detailed discussions. This mainly demonstrate and
discuss factors with high importance from GW-RF, the results of re-
maining factors are provided in Fig. B.3 in the Appendix to avoid
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Fig. 7. (continued).
redundancy. For the road network factors, Fig. 7(a) shows that impor-
tance of intersection density on crash frequency varies significantly in
different zones. The high PFI values (>0.6) of ‘‘intersection density’’ are
mainly concentrated in some ZCTAs in the southern and northeastern
regions, indicating the intersection density has higher impacts on crash
frequency in these areas than other areas. These ZCTAs are mainly in or
around major cities with high intersection density. Meanwhile, Table 4
14
summarizes that the importance of intersection density ranks within
the top three and top five factors in 58.6% and 74% of the ZCTAs,
respectively. Combined with the spatial clustering results of BLMI in
Fig. 4, the ‘‘intersection density’’ is found to be positively associated
with crash frequency in some areas but negatively associated in others.
This finding is consistent with that of Azimian et al. (2021). Two
potential reasons may explain the distinct effects of intersection density
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Fig. 7. (continued).
in different areas. First, the types of intersections and the portion of
traffic control policy may differ from state to state. Second, driver
behaviors can vary from region to region. For instance, drivers need to
drive carefully and at a lower speed near intersections because several
states have strict penalties for reckless drivers, such as West Virginia.
More importantly, the results reveal the spatial variation in the effects
of intersection density on crash frequency, which would be covered up
15
by methods ignoring geographical or spatial differences (e.g. the global
models aforementioned).

Fig. 7(b–c) demonstrate that the importance of service road density
and secondary road density is high in some cities in the southern
and northeastern regions such as Houston, New Orleans, and Boston.
Service road density is the top three influential factors in 47% of the
ZCTAs (Table 4). One possible reason is that service roads primarily
include cycleways and sidewalks, which are more likely to have traffic
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Fig. 7. (continued).
crashes due to the randomness of pedestrian and cyclist behavior.
Similarly, the importance of secondary road density is noteworthy,
given that these roads serve as vital connectors between main roads and
residential or recreational zones. Consequently, they play a principal
role in accommodating commuter traffic, experiencing large traffic
volumes during peak commuting periods, thereby heightening the risk
of traffic accidents. Moreover, primary road density within the top
three in about 30% of the ZCTAs, and ranks within the top five in 45%
of the ZCTAs, respectively (Table 4). The ZCTAs with high importance
value of primary road density are distributed in the southern regions,
and in some areas of the western and northeastern regions (Fig. 7(d)),
which are consistent with the red-colored areas (HH) in the BLMI
cluster results (Fig. 4(a)). This implies primary road density is positively
correlated with crash frequency, consistently with previous studies’
findings, which potentially because of their higher traffic speed and
speed limits in primary roadways (Bao et al., 2018). More importantly,
the importance or effects of all the three factors show obvious differ-
ences in different zones, unraveling the spatial variation in the effects
and highlighting the superiority and necessity of using geographical
modeling such as GW-RF.

As for the results regarding the socioeconomic factors explored, the
importance of the ‘‘young proportion’’ in Fig. 7(e) is not notable in the
majority of ZCTAs, and ranks as the top three and top five important
factors only in 9.4% and 18.9% of the ZCTAs. The importance of
‘‘young proportion’’ in a ZCTA is low, with an average of 0.15, and
has no significant spatial clustering characteristics. Thus, in general,
the proportion of young people has no significant correlation with crash
frequency in most regions, but locally, it is positively correlated with
crash frequency in some regions where the proportion of young people
is particularly high as shown in Fig. 7(e). This is consistent with the
results of previous studies, which have suggested that younger people
tend to drive at higher speeds and are more likely to be engaged
in traffic crashes, but studies did not taking into account the spatial
variation in the effects of young people (Bao et al., 2018; Zhang et al.,
2023). By contrast, the importance of the proportion of the elder is not
notable in the whole study area. Interestingly, the ‘‘Black and African-
American proportion’’ is positive associated with crash frequency and
has pretty high importance in ZCTAs in the southern regions (Fig. 7(h)).
This may be because the road infrastructure in these black communities
in the southern regions is in disrepair and prone to traffic crashes.
Conversely, the importance of ‘‘White proportion’’ is not significant in
the vast majority of regions, which ranks the top three, and top five
highest value of local variable importance only in 3.1% and 8.6% of
the ZCTAs, respectively.
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Table 4
The proportion of ZCTAs where a factor has the top three or top five highest local
importance on the area-adjusted crash frequency.

Top 12 important factors Proportion of ZCTAs

Top three Top five

Intersection density 58.6 74.0
Service road density 47.1 65.7
Secondary road density 35.5 54.6
Primary road density 29.6 44.7
Tertiary road density 27.3 47.0
Residential road density 24.7 43.0
Bachelor proportion 13.6 25.4
Young proportion 9.4 18.9
Black and African-American proportion 3.6 7.5
White proportion 3.1 8.6

Note: ‘‘Top three’’ and ‘‘Top five’’ mean that the importance of a factor is among top
three and five highest importance among all factors in a ZCTA, respectively.

The local feature importance distribution of the remaining variables
does not exhibit significant spatial heterogeneity. Among them, the
‘‘average Travel Time to Work’’, ‘‘bachelor proportion’’, and ‘‘popula-
tion density’’ have pretty high importance for crash frequency in the
whole study area, but do not show spatial heterogeneity. Literature
have reported that the population with a bachelor’s degree in a ZCTA
is negatively correlated with traffic crashes, and average travel time
to work and population density are positively correlated with traffic
crashes (Bao et al., 2018). The importance of all investigated land-
use factors does not show significant spatial heterogeneity. Compared
with the other three land use factors explored, the importance of
‘‘commercial and services land use ratio’’ is relatively high (Fig. 7(i)).
We find that the ratio of the area allocated for commercial purpose
is positively correlated with crash frequency. The finding is intuitive
and consistent with the results of previous studies (Rhee et al., 2016)
that areas allocated for commercial purpose tend to have dense traffic
networks and large traffic volumes, which are prone to traffic crashes.
In addition, the importance of ‘‘residential land use ratio’’ is lower
than 0.01 from the perspective of the whole study area (Fig. 7(j)).
This finding implies that the residential land use has noticeable effect
on traffic crashes, which is consistent with previous study (Ouyang
and Bejleri, 2014). An interesting finding reported by Ouyang and
Bejleri (2014) is that the distance between the residential land use
and commercial land use is negatively related to traffic crashes, and
the explanation is that long distance may limit the frequency of resi-
dents traveling to commercial areas, thereby reducing the interaction
between transport participants. Therefore, the distance between areas
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Table 5
Local importance results of the GW-RF model.
Variables GW-RF

Min Median Max Mean Std

Road network variables

Motorway density −0.0712 0.0004 0.9106 0.0351 0.0987
Primary road density −0.0567 0.0010 0.9190 0.0515 0.1415
Secondary road density −0.0727 0.0017 0.9478 0.0677 0.1856
Tertiary road density −0.0825 0.0010 0.9609 0.0493 0.1630
Residential road density −0.0728 0.0013 0.9123 0.0387 0.0873
Service road density −0.0765 0.0033 0.9242 0.0513 0.1278
Intersection density −0.0594 0.0038 0.9511 0.0909 0.2282
Signal intersection rate −0.0912 8e−5 0.5896 0.0082 0.0447

Demographics and socioeconomic variables

Population density −0.0756 0.0005 0.8746 0.0583 0.0662
Bachelor proportion −0.0518 0.0001 0.8437 0.0492 0.1025
High school proportion −0.0456 4e−5 0.5943 0.0192 0.0549
Labor force proportion −0.0721 4e−5 0.8213 0.0088 0.0367
Poverty rate −0.0681 3e−5 0.8175 0.0113 0.0649
Unemployment rate −0.0858 0.0001 0.8470 0.0060 0.0501
Average Travel Time to Work −0.0888 0.0003 0.8885 0.0357 0.0832
White proportion −0.0879 0.0001 0.9179 0.0310 0.0934
Black and African-American proportion −0.0614 6e−5 0.3639 0.0248 0.0544
American Indian proportion −0.0860 0.0000 0.1803 0.0006 0.0124
Asian proportion −0.0661 6e−5 0.6907 0.0065 0.0409
Young proportion −0.0764 0.0002 0.8668 0.0387 0.0652
Prime adult proportion −0.0803 0.0000 0.2398 0.0025 0.0181
Middle-aged adult proportion −0.0811 1e−5 0.2349 0.0095 0.0261
Elder proportion −0.0478 2e−5 0.1926 0.0126 0.0329

Land use variables

Residential land use ratio −0.0494 0.0000 0.6160 0.0091 0.0387
Commercial and services land use ratio −0.0671 2e−5 0.9030 0.0103 0.0518
Industry land use ratio −0.0434 0.0000 0.1960 0.0061 0.0262
Transportation, communications, and utilities land use ratio −0.0779 0.0000 0.3233 0.0068 0.0316
with different land use purposes should be considered to explore its
effect on crash frequency in subsequent studies (see Table 5).

6. Conclusions

This study leverages a geographically weighted machine learning
model, the GW-RF model, as both a predictive and exploratory meth-
ods, to explore spatial heterogeneity of local associations between
zone-level crash frequency and selected influencing factors. This tar-
gets to provide insights about how different factors affect the crash
frequency in different urban contexts. Considering potential influencing
factors such as road network attributes, socio-demographic character-
istics, and land use factors, the GW-RF model outperforms global (OLS
and RF) and conventional geographically weighted regression models
in predicting crash frequency and explains spatial heterogeneity in the
associations between crash frequency and exploratory variables. The
results offer insight into the underlying reasons for crash frequency
in various areas, which would help crash-prone areas for tailored
prevention and interventions to reduce the likelihood of crashes. The
main contributions and findings of this study can be summarized as
follows.

The predictive efficacy of the GW-RF model surpasses that of GWR
model. In contrast to the widely adopted GWR model, which assumes
linear effects of explanatory variables, the GW-RF model employs the
Random Forest (RF) model to scrutinize local associations. This is
particularly pertinent when nonlinear and interactive effects of fac-
tors on crash frequency are considered. Moreover, the GW-RF model
exhibits superior predictive accuracy when compared to the global
RF model. Capitalizing on the merits of local modeling, the GW-RF
model accommodates spatial heterogeneity in the effects of a factor by
training sub-models based on neighboring observations. This approach
enhances the model’s predictive performance by capturing and incorpo-
rating localized nuances in the relationship between factors and crash
frequency.
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The GW-RF is further applied to explore the spatial variations in
the effects of exploratory factors on crash frequency. First, the results of
the GW-RF model demonstrate that all road network factors (except the
variable ‘‘Signal intersection rate’’) are of pretty high importance in all
zones, especially intersection density, which are positively correlated
with crash frequency. As for demographics and socioeconomic vari-
ables, population density, bachelor proportion, high school proportion,
poverty rate, average travel time to work, White proportion, Black and
African-American proportion, young proportion and elder proportion
have moderate effects on crash frequency (average value of feature
importance > 0.01). The results also illustrate that the importance of
land use variables is relatively low, only the importance of commercial
and services land use ratio is larger than 0.01, which has a significantly
positive correlation with crash frequency. Our findings are practically
instructive for the planning of road networks and intersection, the
arrangement of distance between residential areas and companies, and
the improvement of road infrastructures at zonal level.

The GW-RF model shows that the effects of some factors on crash
frequency are significantly distinct in different areas. The importance
of intersection density has significant spatial heterogeneity. The im-
portance intersection density ranks within the top three in 58.6% of
the ZCTAs, which are distributed in the southern and northeastern
(high-high cluster) regions and some areas in the western regions.
The importance of low-grade road density (service roads, secondary
roads, and tertiary roads) is high in some cities in the southern and
northeastern regions. The importance of young people (15–24 years
old) proportion is weaker than that of low-grade road density. It ranks
as the top three most important variables only in a few ZCTAs (9.4%).
These results provide an understanding of spatial distinctions of the
effects of a factor on zone-level crash frequency.

While this study considers a selection of widely recognized in-
fluencing factors and one year of crash data to explore the spatial
heterogeneity of crash frequency, the primary focus of this study is to
demonstrate that the GW-RF model can serve as a powerful method
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Table A.1
Road types from OSM and corresponding road types.

Road types Code Road type
from OSM

Road types Code Road type
from OSM

Motorway

5111 motorway

Service

5124 pedestrian
5131 motorway_link 5141 service
5112 trunk 5142 track
5132 trunk_link 5143 track_grade1

Primary 5113 primary 5144 track_grade2
5133 primary_link 5145 track_grade3

Secondary 5114 secondary 5146 track_grade4
5134 secondary_link 5147 track_grade5

Tertiary 5115 tertiary 5151 bridleway
5135 tertiary_link 5152 cycleway

Residential

5121 unclassified 5153 footway
5122 residential 5154 path
5123 living_street 5155 steps
5125 busway 5199 unknown
Table A.2
POI category from OSM and corresponding land use categories.

Land use categories Code POI category from OSM

Residential land use 1–6 House, clothes, apartments, farmyard, alpine_hut, chalet, shelter
Industrial land use 7–8 Industrial, quarry

Communication and utility land use 9–38 Police, fire_station, post_box, post_office, telephone, library, town_hall, courthouse, prison, embassy,
community_centre, nursing_home, arts_centre, graveyard, market_place, university, school,
kindergarten, college, public_building, pharmacy, hospital, clinic, doctors, dentist, veterinary, toilet,
bench, drinking_water, fountain

Commercial and services 39–129 Clothes, florist, chemist, bookshop, butcher, shoe_shop, beverages, optician, jeweller, gift_shop,
sports_shop, stationery, outdoor_shop, mobile_phone_shop, toy_shop, newsagent, greengrocer,
beauty_shop, video_shop, car_dealership, bicycle_shop, doityourself, furniture_shop, computer_shop,
garden_centre, hairdresser, car_rental, car_wash, car_sharing, bicycle_rental, travel_agent, laundry,
vending_machine, vending_cigarette, vending_parking, vending_any, bank, atm, tourist_info, attraction,
museum, monument, memorial, artwork, castle, ruins, archaeological, wayside_cross, wayside_shrine,
battlefield, fort, picnic_site, viewpoint, zoo, theme_park

Other 130–147 Ecycling, recycling_glass, recycling_paper, recycling_clothes, recycling_metal, hunting_stand,
waste_basket, camera_surveillance, tower, comms_tower, water_tower, observation_tower, windmill,
lighthouse, wastewater_plant, water_well, water_mill, water_works
for investigating the spatial heterogeneity of crash frequency and ad-
dressing spatial variations in the effects of influencing factors on crash
frequency in a data-driven way. The GW-RF model is applicable in
spatial modeling problems for traffic safety analysis at various ge-
ographical locations. Nonetheless, several aspects of this study can
be further improved. Firstly, due to the challenges in data acquisi-
tion, this study did not take into account traffic volumes. Existing
studies have concluded that high traffic volumes appear to increase
crash frequency. Therefore, it needs to be considered to explore local
associations between crash frequency and traffic volumes. Secondly,
although the GWR and GW-RF models exhibit more robustness in many
ZCTAs, their accuracy becomes somewhat compromised in the western
and mid-western regions due to limited crash samples. This suggests
that additional crash data should be included to further enhance the
performance of the GW model in these regions. Last but not least, the
severity level of crashes could be further considered to explore the
spatial heterogeneity of crash frequency across different severity levels.
By conducting joint investigations into crash occurrences and severity,
more effective and informative results can be attained to provide
countermeasures of reducing crashes for researchers and policy-makers.
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Appendix A

The matchup between road types in this study and road types from
OSM is shown in Table A.1 and the matching between the land use
categories and the POI categories from OSM is presented in Table A.2.
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Fig. B.1. ZCTA-level values of all influencing factors investigated.
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Fig. B.1. (continued).
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Fig. B.1. (continued).
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Fig. B.2. Partial dependency profiles of the remaining variables of the global random forest model. Noting that the y-coordinate is the average prediction.
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Fig. B.2. (continued).
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Fig. B.2. (continued).
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Fig. B.3. Spatial heterogeneity distribution of local effects of the remaining factors on crash frequency.
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Fig. B.3. (continued).
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Fig. B.3. (continued).
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Fig. B.3. (continued).
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Fig. B.3. (continued).
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Fig. B.3. (continued).
Appendix B

The spatial distributions of influencing factors of crash frequency at
the ZCTA-level are checked and depicted in Fig. B.1. Besides, partial
dependency profiles of the remaining variables of the global random
forest model are shown in Fig. B.2 (see Fig. B.3).
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