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Abstract
Deformable Object Manipulation (DOM) is a challenging problem in robotics.
Until recently, there has been limited research on the subject, with most
robotic manipulation methods being developed with rigid objects in mind.
Part of the challenge in DOM is that non-rigid objects require algorithms
capable of generalizing to changes in shape as well as different mechanical
properties. Machine Learning (ML) has been shown successful in fields, such
as computer vision and natural language processing, where generalization is
important thus encouraging the application of ML to robotic manipulation.

This thesis tackles DOM problems using ML techniques for tasks with De-
formable Linear Objects (DLOs), e.g. ropes and cables, found in a variety of
industrial applications. DLOs encapsulate a lot of the general challenges in
DOM, making them good case studies on the effectiveness of ML for other
types of deformable objects. Typically, ML algorithms require large amounts
of data that are better satisfied in simulation. Therefore, the ReForm sim-
ulation sandbox is introduced, which includes six DLO manipulation tasks.
ReForm aims to facilitate comparison and reproducibility of robot learning
research on tasks where the goal is to control the shape of a DLO. Such shape
control tasks are categorized as: explicit, if a precise shape is to be achieved;
or implicit, if its deformation is dictated by a more abstract goal.

Two representative DLO manipulation tasks are addressed: (i) shape-
servoing (explicit) and (ii) cable-routing (implicit). For shape-servoing,
special emphasis is given to Reinforcement Learning (RL) methods. Initial
work tackles shape-servoing of an elastoplastic DLO towards a unique goal,
using online RL with ReForm. Subsequent work moves towards a multi-goal
task in a real-world experimental setup, using offline RL methods to learn
directly from real data. In the cable-routing works, the aim is to lay the
groundwork for solving this type of task through motion primitives, with lim-
ited use of ML. First, a vision-based approach is presented, which is able to
route a cable through randomly placed fixtures. Then, a force-based approach
is introduced for a similar problem, in which the state and stiffness of a DLO
can be estimated through contact with fixtures.

Keywords: Robotics, Machine Learning, Reinforcement Learning, Robot
Learning, Deformable Object Manipulation, Deformable Linear Objects.
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CHAPTER 1

Introduction

At present, most robots are confined to industrial settings where their envi-
ronment is highly controlled and the objects they manipulate are mostly rigid.
Humans are not even allowed near these robots, since they are programmed
to operate in a predefined manner and will not perceive anyone in their path,
leading to injuries. Over the past couple of decades1, the field of collaborative
robotics has started to gain momentum, striving for closer interaction between
humans and robots. As this cooperation becomes more common, robots are
beginning to spread into other sectors, such as healthcare, agriculture and the
service industry. Each sector adds to the variability in tasks and the objects
being manipulated, thus leading to new challenges. This thesis addresses a
subset of these challenges, namely: Deformable Object Manipulation (DOM).

The ability to handle non-rigid objects is particularly important since so
many human tasks require skilled manipulation of deformable materials. This
includes tasks like suturing in healthcare; harvesting of crops in agriculture;
and cooking in the service industry. Note that in each of these examples,

1 The first collaborative robot (or cobot) can be traced back to 1996, and was developed
by a couple of professors at Northwestern University. The ABB YuMi robot depicted in
the cover was the first dual-arm cobot, and was released in 2015.
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Chapter 1 Introduction

there is a considerable amount of variation both in the objects being handled
and in the techniques for executing a certain type of task. Looking closer
at the example of surgical suturing, there are differences in tissue properties
between individuals, as well as within a single individual, e.g. suturing vessels
is significantly different from suturing skin.

Often, when faced with the job of automating a DOM task, engineers design
specialized tools or machines. In agriculture, automated harvesting systems
are examples of such machines. Even though this leads to efficient results, it
requires a unique apparatus for each task. In contrast, humans can learn to
execute a large set of tasks with their own hands. One goal of robotics research
is therefore to create general purpose collaborative robots which are capable
of dexterous manipulation akin to that of humans. Contrary to industrial
robots which are intended for repetitive production at superhuman speed,
strength and precision, collaborative robots have to operate in a safe, gentle
and adaptive manner.

Robotic manipulation tasks are often solved by first deriving a model of
the object and environment, to then use these for the design of a controller.
However, deformable objects have complex nonlinear dynamics, which make
modeling more challenging. Furthermore, due to the wide range of both me-
chanical and geometrical properties, these objects constitute a large and het-
erogeneous class. Taking the example of cooking, one would need to derive a
model of each food item being manipulated. Alternatively, Machine Learning
(ML) methods can be used to obtain modeling parameters or even to learn a
control policy without the need for an explicit model. Furthermore, ML can
be employed either to imitate human manipulation or to go beyond that by
learning directly through experience. These methods fall under the umbrella
of Robot Learning (RoL), and this thesis aims to explore how they can be
used to solve DOM problems.

In summary, DOM is the application area of interest and RoL is the family
of methods which are applied to address it. A more detailed description
of the research objective of this thesis is given in Section 1.3. Before that,
this chapter introduces the wider research context, where Section 1.1 presents
an overview of the field of Deformable Object Manipulation and Section 1.2
continues with the Robot Learning landscape. This chapter concludes with
the thesis outline, in Section 1.4.
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1.1 Deformable Object Manipulation

1.1 Deformable Object Manipulation
DOM is a rapidly growing field of robotics. It encompasses robot manipulation
problems in which the object being manipulated undergoes deformation. To
date, the majority of robotics research has been limited to rigid object manip-
ulation, thus requiring the assumption that objects would not change shape.
Naturally, this has narrowed the scope of robotic applications, leaving many
industrial tasks involving deformable objects still to be performed by humans.
One of the most compelling evidence to this fact is an example from the au-
tomotive industry. Even though this industry started to become automated
already in the early 1970s, until recently nearly 100% of the installations of
car wiring systems was done manually [2].

Besides benefiting a variety of industrial applications, there are other sectors
which stand to gain from advances in DOM, as highlighted in the previous
section. However, DOM is characterized by several technical challenges, which
according to Zhu et al. [3] can be summarized as:

• deformation is complex to model

• deformation is difficult to sense

• deformation gives rise to infinite degrees of freedom

Though these challenges are shared by all deformable objects, depending on
the type of object they can have varying degrees of impact on the manipulation
problem. For example, sensing deformation of a rope is particularly difficult
because of its low compression strength, i.e. low resistance when two opposing
points are pushed together. While grasping one end of the rope, very little
information can be deduced about the rest of its shape through force-torque
measurements alone. The same is not true for a metal wire with high strain,
i.e. high resistance when it starts to deform. Since the material opposes
deformation, there will be high forces which can be measured through force-
torque sensors. This difference led Sanchez et al. [4] to categorize deformable
objects according to these two physical properties2, as shown in Figure 1.1.

Objects were also grouped by their approximate geometry [4]. The rope and
wire mentioned above are examples of Deformable Linear Objects (DLOs)3,

2 In [4], low compression strength is referred to as no compression strength, and high strain
is referred to as large strain.

3 Sometimes referred to as Deformable One-dimensional Objects (DOOs).
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Chapter 1 Introduction

which are characterized by having one dimension considerably larger than the
other two. More types of linear objects include cables and threads. Objects
can also be considered planar, when one dimension is considerably smaller
than the other two, e.g. metal sheets, clothes and paper. Finally, volumetric
objects have no dimension significantly larger/smaller than the others, much
like the sponge in Figure 1.1.

Geometric Properties

M
ec
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al
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ro

p
er

ti
es

High Strain

Low Compression Strength

Linear Planar Volumetric

Figure 1.1: Classification of deformable objects proposed by Sanchez [4]. Based on
mechanical properties, objects may have high strain or low compression
strength. Based on an approximate geometry, these may be linear,
planar or volumetric4.

Attempting to find a manipulation strategy which generalizes to all classes
presented in Figure 1.1, would require nothing short of human level intelligence
and dexterity. Most research has therefore been focused on specific classes
and even more often, on a particular task [4]. This thesis will focus on DLO
manipulation, which will be covered in Chapter 2, through the lens of two
representative tasks, introduced in Section 2.6.

4 Though a Hoberman sphere is given as the volumetric example, it is technically not a
deformable object but rather an articulated structure, with low compression strength.
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1.2 Robot Learning

1.2 Robot Learning
RoL can be defined as the application of ML to robotic tasks. However,
this is a very broad definition since robotics is an interdisciplinary field, and
ML can be applied to many different sub-problems. To name a few: i. for
human-robot interaction through speech, one can use advances from Natural
Language Processing (NLP); ii. to endow robots with visual comprehension,
there are methods from Computer Vision (CV); iii. to find model parameters
based on sampled data, there is model learning; iv. to be able to copy a
human skill, Learning from Demonstrations (LfD) can be implemented; and
v. in order to have robots learn directly by interacting with the environment,
there is Reinforcement Learning (RL). Note that while examples i-ii are sep-
arate research areas that are relevant to robotics, iii-v are the three methods
described by Peters et al. [5] as the core of RoL. Figure 1.2 illustrates the
RoL landscape, while a short description of the methods is provided below.

Model Learning When ML is used for system identification, this is referred
to as model learning. While classical approaches use statistical methods to
learn specific classes of mathematical models, ML algorithms aim to learn
more general mappings from inputs to outputs. There are two main types
of models which can be learned: forward and inverse. The former aim at
predicting the evolution of the system based on the current observation or a
history of past observations. These predictions can then be used for control,
which is what the latter type of model does directly. That is, inverse models
attempt to predict the input required to achieve a desired output [5].

Learning from Demonstrations LfD includes two main strategies, namely
Imitation Learning (IL) and Apprenticeship Learning (AL) [5]. In IL, which
is also sometimes referred to as Behavior Cloning (BC), the robot estimates a
policy from a teacher’s demonstration in order to reproduce it. In AL, on the
other hand, a reward function is used to assign scores to the demonstrations,
with the intent to encode the true objective and go beyond pure imitation.
This reward function needs to be chosen such that a perfect score is attributed
to an optimal demonstration. Based on this reward function, it is then possible
to find the optimal policy through RL. Consequently, this approach is also
known as inverse reinforcement learning [5].
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Vestibulum congue Vestibulum congue 

Model Learning

Reinforcement 

Learning

Learning from 

Demonstrations

Robot 

Learning

Machine Learning

Figure 1.2: Overview of the RoL landscape, with three main research areas: learn-
ing from demonstrations, model learning and reinforcement learning.
ML has also found many useful applications in robotics, from other
research fields such as CV and NLP.

Reinforcement Learning Model learning and IL approaches mainly use al-
gorithms from the Supervised Learning (SL) branch of ML, i.e. they learn
a mapping function based on ground truth data. RL, on the other hand, is
considered to be a separate branch which aims to learn by trial-and-error.
Contrary to SL, RL is centered around an agent which interacts with the
environment and makes decisions that influence what data it receives from
future experience. Moreover, while in SL there are ground truth labels, in RL
there is only a scalar reward signal which the agent attempts to maximize.
This reward is also what sets it apart from unsupervised learning methods,
where no signal of correctness is given. Although all RoL techniques can be
applied to DOM problems, this thesis will focus on reinforcement learning in
particular. Hence, Chapter 3 will introduce RL theory in greater detail.
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1.2 Robot Learning

After this overview of the three central RoL approaches, it is important to
ask the question: why should one use any of them? According to Connell and
Mahadevan [6], RoL is particularly important for problems in which:

• the environment is nonstationary

• it may be prohibitively hard to program a robot

• not all situations, as well as goals, may be foreseeable

Let us consider a DOM task we are all familiar with: folding laundry.
Programming a robot to fold our clothes is extremely challenging. Since these
are low compression strength materials, sensing has to rely mostly on vision
data. This, coupled with the fact that the clothes we own change over time,
make it a nonstationary environment. Furthermore, there is high variability in
the geometrical and fabric properties of garments, which potentially requires
a unique robot program for each individual item, i.e. the steps to fold a cotton
t-shirt are not the same as to fold a pair of leather pants. Therefore, hard-
coded approaches may quickly become impractical. Finally, the state of our
laundry when taken straight out of the dryer is truly unforeseeable.

Unsurprisingly, the first complete pipeline for autonomous folding of clothes
using a dual-armed robot proposed by Doumanoglou et al. [7] made use
of several ML techniques to achieve a 79% success rate, for a small subset
of garments. It should be noted that the grippers used in this work were
specialized for handling clothes [8]. Besides RoL software, it is believed that
another major bottleneck in DOM is the hardware [3]. This includes not
only the robot, but also the grippers and sensors chosen for a particular task.
Learning itself may become much simpler depending on the type of sensing
and actuation used while interacting with the environment.

The work by Doumanoglou et al. [7] is evidence that ML plays an im-
portant role in DOM. Nevertheless, their approach applied mostly CV algo-
rithms to solve sub-problems of the task, leaving the aforementioned RoL
techniques still to be explored. Generally, robotic manipulation approaches
fall in-between two extremes: either a single RoL method is applied in an
end-to-end approach, or a modular framework is implemented using different
algorithms to solve each individual sub-problem. This thesis aims to apply
RL to learn robot-agnostic policies in task space, assuming a modular imple-
mentation with CV and haptic techniques for tracking the DLO and inverse
kinematics algorithms for controlling the manipulator.
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Chapter 1 Introduction

1.3 Research Objective
This Doctoral thesis presents the work carried out towards the development
of Artificial Intelligence (AI) for robotic manipulation of deformable
objects, as part of a research project within the Wallenberg AI, Autonomous
Systems and Software Program (WASP). The project can be divided into two
key components, one which refers to the core technology of AI, and the other to
the DOM application. More specifically, this was to be achieved by combining:

• data-driven modeling of robot-object interaction, based on Deep Neural
Networks (DNNs) and vision/force data.

• design of control policies based on reinforcement learning principles and
testing them in real-world and simulated robotic setups.

This helped narrow the focus for the core technology of this project to RL,
although other ML methods were also explored to a lesser extent. Indeed
this means that a greater focus has been placed on the second item, with
little work done on explicit model learning. As highlighted in Section 1.1,
DOM is a large and heterogeneous problem which would be difficult to tackle
all at once. Therefore, the DOM application was narrowed to Deformable
Linear Object manipulation tasks. As will be made clear in Chapter 2, DLOs
encapsulate a lot of the general challenges in DOM, making them good case
studies on the effectiveness of RL for other types of deformable objects.

The research objective was tackled in stages. First, a simulation sandbox
with several DLO manipulation tasks was developed in Paper A, which pro-
vided a flexible environment to test online RL algorithms. Then, this sandbox
was used to tackle a DLO manipulation task with more challenging mechani-
cal properties, leading to Paper B. In the final stage of this project, there was
a shift towards offline RL algorithms to address a real-world task using an
ABB Dual-Arm YuMi robot, resulting in Paper C. Instead of attempting to
learn a DNN model of the robot-object interaction, Papers D and E both make
use of more classical control techniques based on robot kinematics, which do
not require a dynamical model. In both works, state estimation of the DLO
was implemented, using vision in Paper D and force in Paper E. Furthermore,
both papers employ ML algorithms to solve different sub-problems, however
applying RoL methods is left as future work.
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1.4 Thesis Outline
The goal of Part I is to provide an overview of DOM and RoL, needed to
understand the research context of the papers compiled in Part II. Therefore,
the theoretical concepts introduced here are meant to be a complement to
the papers, not a repetition. The rest of Part I is organized into two main
chapters: Chapter 2 introduces relevant related work on DLO manipulation
and defines the two representative tasks that are addressed in this thesis, while
Chapter 3 presents a brief but comprehensive coverage of RL theory. Finally,
Chapter 4 provides a summary of the research contributions of the appended
papers, followed by some concluding remarks, provided in Chapter 5.
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CHAPTER 2

Deformable Linear Object Manipulation

DLOs were one of the first classes of deformable objects to be studied within
robotic manipulation. This is due in part to their comparatively simple ge-
ometry, with respect to planar and volumetric objects [4]. More importantly,
DLOs are crucial components in numerous industrial, healthcare and service
applications. Consider the countless electrical cables which are installed in
electronic devices, and the variety of hoses and tubes found across so many
industrial machines. Previous work on robotic DLO manipulation has tackled
specific tasks, such as USB cable insertion [9], hot-wire cutting [10], knot tying
[11] as well as untangling [12], wire harness assembly [13], surgical suturing
[14], etc. Other works have focused on important subproblems such as state
estimation [15], modeling [16] and shape/deformation control [17].

In this chapter, five key subproblems of robotic manipulation are intro-
duced: i. modeling, ii. simulation, iii. sensing, iv. planning and v. control.
Section 2.1 gives an overview of modeling techniques used for DLO manipula-
tion. Section 2.2 covers simulation with an emphasis on software. In Section
2.3, three major sensing modalities are summarized. Planning and control are
addressed in Sections 2.4 and 2.5, respectively. Finally, the two representative
tasks addressed in this thesis are presented in Section 2.6.
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Chapter 2 Deformable Linear Object Manipulation

2.1 Modeling
In DOM problems, modeling can be applied to describe either the geometry
or the dynamics of a deformable object. The former is useful for defining a
shape representation, while keeping dimensionality low. Dynamical models
on the other hand, attempt to describe the behavior of the object when ex-
ternal forces are applied and are mostly used for prediction and control. Note
that both geometric and physics-based models may be analytical or learned
via ML methods. This section begins by presenting the problem of shape
representation in Section 2.1, followed with an overview of modeling tech-
niques for deformation physics in Section 2.1. For a more extensive tutorial
on deformable object modeling, refer to the review by Arriola-Rios et al. [18].

ℝ𝑁×3

𝑁 = 5

ℝ6

Figure 2.1: Comparison of state representations for a rigid object and a DLO.
While the rigid cube can be represented by its pose, the DLO is ap-
proximated as a point cloud with N points.

Geometric Modeling
In robotic manipulation, it is often sufficient to define the state of a rigid
object by its pose vector in R6, i.e. position and orientation, as illustrated
in Figure 2.1. If the geometry, mass and surface characteristics of the object
are also known, that provides a complete description. Conversely, there is no
obvious choice of representation for a DLO since the state must also include
information about its shape [19]. One straightforward option is to discretize
the continuous object as a set of points in RN×3. Despite simple, this has a
couple of drawbacks: firstly, it is an approximation which will be increasingly
accurate as N → ∞, also leading to a larger state space; secondly, it cannot
describe torsion unless the orientation of each point is also included in the
state, which would further increase the state space to RN×6.
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2.1 Modeling

Geometric representations are intimately related to state estimation and
tracking. For example, Tang et al. [11] developed a framework for DLO
manipulation using Coherent Point Drift (CPD) for tracking the object. Since
CPD is a point set registration method i.e. it aligns a point cloud with another,
they discretized the DLO as a set of uniformly spaced points, i.e. a point
cloud. Paper D uses the Structure Preserved Registration (SPR) [13] tracking
method which improves on the CPD principle through a local regularization
term, proposed by the same authors. Zea et al. [20] on the other hand,
chose Bézier curves to represent the DLO for a Bayesian state estimation
method. Yet another approach was used by Wnuk et al. [21] who represented
the DLO’s state by its skeleton line, from which a kinematic multi-body
model was derived for control. These three geometric models are shown in
Table 2.1, though there are many more summarized by Yin et al. [22].

All aforementioned methods rely on vision data and therefore require sev-
eral preprocessing steps of RGB and/or depth measurements. Segmentation,
i.e. separating objects from the background, is particularly important for the
success of DLO tracking. CPD and SPR only require this image process-
ing phase to obtain the point cloud representation. However, the other two
methods employ continuous shape representations, further requiring a curve
fitting algorithm. Zea et al. [20] constructed a rectangle chain approximation
of the Bézier curves, to simplify the fitting process. Much like many other
algorithms, their work also relied on a dynamical model to better predict the
object state. Furthermore, Wnuk et al. [21] modeled the skeleton curve as
a weighted sum of Radial Basis Functions (RBFs), for which they computed
weights minimizing the error between the point cloud and the RBF.

Besides analytical modeling approaches, there have also been attempts to
learn shape representations through black box models, e.g. Artificial Neu-
ral Networks (ANNs). Yan et al. [15] proposed a self-supervised learning
approach for estimating the DLO as an ordered sequence of points. Alter-
natively, Sundaresan et al. [23] learned Dense Depth Object Descriptors
(DDODs). Once a shape representation is obtained, it can be used either
as i. a feedback signal or as ii. state variables. In the first case, the repre-
sentation should be robust to noise. In the second case, the goal is to find a
good trade-off between lower dimensionality and higher accuracy [3]. Finally,
in end-to-end approaches a latent shape representation is implicitly learned
directly from sensory data. Sensing modalities are discussed in Section 2.3.
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Chapter 2 Deformable Linear Object Manipulation

Table 2.1: Examples of DLO state representations used in related work. This table
presents the formal definition on the left and an illustrative plot on the
right, where the DLO is drawn in blue and the representations in yellow.
The cubic Bézier curve (n = 3), includes the set of n + 1 control points
pi and the respective Bézier polygon as the dashed line, in black.

A point cloud [11] represents the DLO
as a discrete set of N points:

X = {x1, x2, . . . , xN} ∈ RN×3

where xn ∈ R3 is the n-th point’s posi-
tion in Cartesian space.
A Bézier curve [20] of order n is defined
as a weighted sum of Bernstein polyno-
mials, Bn

i (u), with a set of n + 1 control
points, pi:

B(u) =
n∑

i=0
piB

n
i (u)

where,

Bn
i (u) =

(
n

i

)
(1− u)n−iui

with u ∈ [0, 1].

n = 3

A skeleton line [21] is modeled as a
continuous spatial curve in Euclidean
space,

f(s) : R 7→ R3

where s ∈ [0], [1] are local coordinates
running along the DLO’s length, L. The
curve in turn is described by the Frenet-
Ferret frame:

R(s) = [f ′(s) f ′′(s) f ′(s)× f ′′(s)]
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2.1 Modeling

As-Rigid-As-Possible Deformation A particularly important method in the
context of this thesis is the As-Rigid-As-Possible (ARAP) [24], [25] deforma-
tion model. While in Paper B the point cloud of the DLO can be obtained
directly from the ReForm simulation, for the real-world experiments of Paper
C, there needed to be a tracking method from which to extract the point
cloud of the object. To that end, the ARAP-based algorithm developed by
Shetab-Bushehri et al. [26] was used.

The ARAP model, originated in the field of computer graphics, to provide a
way to deform geometric shapes while still preserving local rigidity. Although
there are several formulations of the ARAP deformation problem, Sorkine and
Alexa [25] present a simple energy formulation for surface modeling of meshes,
which is described here in more detail.

Figure 2.2: Illustration of ARAP model with two consecutive deformations. The
selected handle points are the 8 extreme vertices of the bar. For the
twist deformation both top and bottom vertices are rotated by 45◦ in
opposing directions. For the bend deformation, only the top vertices
were controlled to create a 90◦ angle.

Consider a triangle mesh S, with n vertices and m triangles, where N (i)
denotes the one-ring neighbors of a vertex i, i.e. the set of vertices connected to
i. The geometric embedding of S is defined by the vertex positions pi ∈ R3.
The reference mesh S is deformed into S ′ with the same connectivity but
different geometric embedding, p′

i. In order to describe the energy function
for local rigidity, they define a cell Ci as the set of triangles incident upon a
vertex i, and its deformed version C′

i. If the transformation Ci → C′
i is rigid,

there exists a rotation matrix Ri, such that:

p′
i − p′

j = Ri (pi − pj) , ∀j ∈ N (i) (2.1)
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Chapter 2 Deformable Linear Object Manipulation

For non-rigid transformations we can find the least-squares approximation
of Ri, by minimizing the energy:

E(Ci, C′
i) =

∑
j∈N (i)

wij ||
(
p′

i − p′
j

)
−Ri (pi − pj) ||2 (2.2)

where wij is a per-edge weight which aims to make the energy function as
mesh-independent as possible. Choosing wij = 0.5 (cot αij + cot βij), where
αij and βij are the two angles opposite of the edge (i, j), compensates for
non-uniformly shaped cells [25].

Finally, the measure of deformation rigidity of the whole mesh can be de-
fined as the sum over all the rigidity deviations per cell, resulting in:

E(S ′) =
n∑

i=1
E(Ci, C′

i) (2.3)

which only depends on the vertex positions p′, since the reference mesh ge-
ometry, determined by p, is constant and R is a well defined function of p′.

In the proposed modeling framework, they then solve for the positions p′

of S ′ that minimize E(S ′), under some user-defined constraints. To that end,
the gradient of E(S ′) is computed with respect to positions p′ and the result
set to zero, leading to the following linear system of equations:∑

j∈N (i)

wij

(
p′

i − p′
j

)
=

∑
j∈N (i)

wij

2 (Ri −Rj) (pi − pj) (2.4)

Constraints are incorporated into the above system of equations, by setting
fixed positions for the desired vertices, i.e. p′

j = ck for k ∈ F , where F is the
set of indices of the constrained points. These may be either static or handle
vertices, depending on if they are controlled by the user or not.

The authors propose an iterative minimization strategy, that starts with an
initial guess for positions p′

i(0), which can be used to estimate the local rota-
tions Ri(0), using equation (2.2). These estimates are then used to compute
new positions p′

i(1), by solving equation (2.4). These two steps are interleaved
until the local energy minimum is reached. Figure 2.2 shows an illustration
of the ARAP method in action over several iterations, for two consecutive
deformations, first by twisting and then by bending a bar.
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Physical Modeling
Deformation occurs when an object changes shape due to the application
of external forces. In addition, there are internal forces that neighboring
particles of a continuous material exert on each other, which are expressed
as the stress, σ. When a force F is applied, this results in a dimensional
change along the force direction, namely the strain ε. There is a wide range
of deformation behavior depending on the material properties of an object.
Stress tests are typically performed to analyze such properties, by applying
tensile, compressive, bending, torsion or shear forces. Stress and strain are
computed differently depending on the type of force and geometry of the
object. For a tensile force, the stress and strain of a rod are given by:

σ = F

A0
and ε = L− L0

L0

where A0 and L0 are the original cross-sectional area and length, respectively
and L is the measured length. Note that as the rod extends, its cross-sectional
area will shrink since the volume of the object remains constant. The rela-
tionship between such axial and lateral strains is given by Poisson’s ratio, ν

[4]. Figure 2.3 shows an illustration of tensile stress tests applied to three rods
with different material properties and the corresponding stress-strain curves.

Figure 2.3: Illustration of different types of deformation. The stress-strain curves
on the right show the behavior up to a certain strain, followed by the
removal of the force. The resulting deformations are shown on the left.
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When an object undergoes elastic deformation it returns to its original shape
once the force is removed. An isotropic material, i.e. uniform in all orienta-
tions, with Young’s modulus E, is said to be linearly elastic if the strain
is proportional to the stress, σ = Eε. In contrast, when an object undergoes
plastic deformation it will become permanently deformed. An intermediate
behavior is exhibited by elastoplastic materials which become permanently
deformed after a certain threshold but are able to partially recover once the
force is removed [4], as shown in Figure 2.3. These may act elastic within a
certain range of stresses and plastic when a yield point is crossed. Once this
happens, the resulting shape becomes strongly history-dependent. The effect
of these properties are studied in Paper B. Finally, while for the aforemen-
tioned types of deformation the stress rate is of no importance, the same is
not true for viscous materials. When the material is viscoelastic, the strain is
a function of the stress rate. If this time dependent behavior is accompanied
by permanent deformation, then the material is viscoplastic [27].

Due to this large variability, it becomes necessary to choose a modeling
technique which can adequately describe an object’s behavior. While the
properties defined above relate to mechanics of materials, physical models
appear in other contexts as well. Given their simplicity and computational
efficiency, discrete models have been used extensively, of which mass-spring
systems are the most common formulation. Lv et al. [28] modeled a DLO
as a series of masses connected by linear, bending and torsion springs. How-
ever, discrete models are not as physically accurate as continuum ones, which
are more complex and therefore also more computationally heavy. As a conse-
quence, these tend to be used outside of robotics for detailed material analysis
e.g. finite element modeling of Warrington-Seale rope [29]. Finite Element
Methods (FEM) are numerical techniques commonly used to solve partial dif-
ferential equations of continuum-based models, by splitting the object into
discrete elements that approximate its geometry [4].

Other works have used simpler energy-based models [16], [30]–[32], for sim-
ulating and controlling DLOs. Despite being physically inspired and compu-
tationally efficient, they do not explicitly model material properties. Recently,
high-fidelity physics engines which support real-time execution have become
readily available. That has enabled the use of more advanced models of DLOs
which can be easily utilized out of the box. An overview of simulation using
physics engines is presented in Section 2.2.
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Catenary In the context of this thesis, specifically in Paper E, the catenary
curve is an important model. Since this work consisted of a blind implemen-
tation for cable-routing, the state of the DLO needed to be estimated through
endpoint FT measurements, assuming a catenary model.

Catenaries are used to describe flexible cables, within the statics branch of
classical mechanics. A uniform and inextensible DLO, suspended from its end-
points A and B while hanging under its own weight assumes the shape with
least potential energy, namely a catenary curve. Figure 2.4 shows an illus-
tration of such a curve, along with the free-body diagram of a DLO segment.

Figure 2.4: DLO modeled as a catenary curve. The free-body diagram on the right
shows relevant forces such as the minimum tension T0, found at the
lowest point of the DLO, a tension along the curve T and the resultant
force R, which depends on the weight per unit length µ. Catenary
expressions need to be evaluated for each side, A and B.

Assuming that the DLO has a weight µ per unit length, the resultant force
of the load is given by R = µs, with incremental vertical load µ ds, leading
to the following differential equation:

d2y

dx2 = µ

T0

ds

dx
= µ

T0

√
1 +

(
dy

dx

)2
(2.5)

where the arc length s is a function of the coordinates, s = f(x, y). Equation
(2.5) can be solved by integration to obtain a hyperbolic function representing
the shape of the curve in Cartesian space, expressed as:
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y = T0

µ

(
cosh µx

T0
− 1

)
(2.6)

From the free-body diagram, it can be observed that the change in slope is
given by dy/dx = µs/T0, leading to the following expression for the arc length:

s = T0

µ
sinh µx

T0
(2.7)

Furthermore, from the equilibrium triangle of the free-body diagram, the fol-
lowing relationship for the tension T can be determined:

T 2 = µ2s2 + T 2
0 (2.8)

Finally, the expression for the tension along the curve is obtained by combining
equation (2.7) and (2.8): T = T0 cosh (µx/T0) = T0+µy. These relations make
it possible to determine the shape of a DLO with known length and weight,
through its endpoint position and tension, as shown in Figure 2.5.

Figure 2.5: Example of catenary with weight per unit length µ = 0.1 N/m and arc
length s = 0.5 m from its lowest point until its endpoint. The left plot
shows the shape of the DLO computed through equation (2.6), based
on three different endpoint positions (l, h). The right plot shows the
corresponding tension T along each curve, starting with T0.

Finally, if the sag-to-span ratio of a catenary is small, i.e. h/l ≪ 1, which
means that the DLO is taut, approximations can be made [33, Chapter 5].
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2.2 Simulation
The models described in the previous section can be used to simulate the
object. However, developing specialized simulators can be time-consuming
and the result will be quite limited, since modeling the object is only the first
step. Indeed the object’s interaction with the robot and the environment also
play an important role, and lead to complex dynamic behaviors. Therefore,
in this thesis, a greater focus was placed into finding an appropriate physics
simulation software which could be harnessed for our purpose.

In the field of robotics, there are several simulators which are commonly
used such as Gazebo [34], CoppeliaSim (f.k.a. V-REP) [35], PyBullet [36], and
MuJoCo [37]. It is important to distinguish between a simulation software and
the underlying physics engine. For example, both Gazebo and CoppeliaSim
support Open Dynamics Engine (ODE) or Bullet as the physics engine, among
others. On the other hand, MuJoCo and (Py)Bullet are standalone physics
engines. Since they all offer rigid body kinematics and dynamics it is possible
to approximate a DLO as a series of rigid links connected by ball-joints, which
can be viewed as an underactuated robot. Unfortunately, simulating more
complex deformation is still limited [3].

Bullet supports soft body dynamics for cloth, rope and deformable volumes,
using btSoftBody objects. To create a DLO, Bullet offers the CreateRope
function in btSoftBodyHelpers, but more complex DLOs require a specialized
implementation [38]. For both of these engines, the mechanical properties of
a DLO need to be set through constraint parameters connecting rigid bodies.
Even though such parameters can be tuned to approximate the behavior of a
real DLO, they are not based on deformation properties and are better suited
to represent low compression strength materials.

MuJoCo 2.0 supported simulation of composite objects like particle sys-
tems, ropes, cloth and other soft bodies [37]. With the recent MuJoCo 3.01

release, a new low-level model element called flex was added which can model
stretchable lines, triangles and tetrahedra. A DLO that was modeled as a rope
object in version 2.0, should be modified to and cable object in version 3.0,
since the former was removed [39].

1 MuJoCo was purchased by Google DeepMind in October 2021, and made Open Source.
In October 2023, the 3.0 release shows the company’s efforts to provide better support
for deformable objects, with a new flex element. However, this is still in an early stage,
as they write: “This feature is still under development and subject to change”.
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Alternative simulators allow to set actual material properties, with param-
eters such as Young Modulus and Poisson’s Ratio. This is true for the Simula-
tion Open Framework Architecture (SOFA) [40] which was initially developed
for medical applications and supports both mass-spring and FEM deformable
models. SOFA has also been used for soft robotics, e.g. to control elastic
soft robots [41]. AGX Dynamics, the simulator used in Paper A and B, of-
fers similar possibilities. There are two main DLO classes provided with this
software: Cable and Wire. The former is aimed for fixed-length DLOs, which
may exhibit elastoplastic behavior, while the latter is better fitted for DLOs
where torsion is not relevant and length may vary [42]. In ReForm only Cable
objects were used, and Figure 2.6 shows how they are modeled.

Although the aforementioned simulators are the most prominent in robotics
research, there are many others. For example, Blender is a 3D animation soft-
ware that also supports Bullet for more advanced physics simulation. Sundare-
san et al. [23] used Blender to generate synthetic depth data for rope manip-
ulation through DDODs. Physics engines, such as NVIDIA PhysX and FleX,
have also been applied to robotic contexts with simulated environments like
SoftGym [43], SAPIEN [44] and ThreeDWorld [45]. More recently, NVIDIA
has released Isaac Gym [46], which uses these two physics engines as backend,
and provides more utilities that are useful for RL research. Section 3.6 covers
simulation environments for RoL research in further detail.

Finally, there are also many other smaller scale simulators for specific appli-
cations, such as the Elastica [47] library based on Cosserat rod theory, which
has been used with RL but is not intended for robotics.

Figure 2.6: Illustration of a Cable object in AGX Dynamics, modeled as a set
of rigid capsules connected by constraints. Consecutive capsules are
exempted from contact generation. Global material properties set on
the Cable, are translated into local constraint properties.
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2.3 Sensing
Sensing is considered as one of the most important areas of research when it
comes to DOM [3]. There are several sensing modalities which may be used
for robotic manipulation, e.g. vision, tactile, olfactory, thermal and force.
According to Yin et al. [22], vision seems to be the predominant sensing
modality in DOM applications. However, the choice of modality depends on
the task, as well as the state representation which needs to be estimated. For
example, with low compression strength DLOs which incur large deformations,
vision is preferable to force-torque sensing since the latter only provides local
information about the object [3]. Conversely, for contact rich tasks where
there may be occlusion by the gripper, perhaps tactile sensing is a better
choice [48]. There are three main sensing modalities which have been used for
DLO manipulation: vision, force-torque, and tactile. These will be presented
below together with relevant related work.

Vision Naturally, when it comes to DOM applications, vision is an almost
indispensable sensing modality. However, since RGB data is high dimensional
and contains information about the whole scene, it is often fed into track-
ing algorithms to obtain much smaller state representations of the object of
interest. Deformation increases the difficulty of object tracking considerably,
but some algorithms have shown promising results for DLO manipulation [11],
[13]. Alternatively, RGB and Depth maps (RGB-D) have been used directly in
end-to-end implementations [49]. A unique challenge for DLO manipulation
in particular is the need to perceive topological information, such as knots and
loops which lead to self-occlusion [12], [50], [51]. Papers C and D are both
real-world implementations relying on RGB-D sensing to track the DLO.

Force-torque One of the most commonly used sensing modalities in rigid
object manipulation problems is force-torque (FT) sensing. Tough it does
not provide much usable information for low compression strength objects, it
may be useful for high strain DLOs [52]. Force-torque measurements can be
obtained directly using sensors, or estimated based on proprioceptive signals,
i.e. the joint torques of the robot. Sanchez et al. [53] used FT sensing
to estimate the location and magnitude of the contact forces applied to a
deformable bar [54]. In Paper E, only FT measurements are used to track the
state of the DLO, without any visual information.
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Tactile The third and least mature modality is tactile sensing [55]. Even
though there are many types of tactile inputs, in general they encode local
information on the contact surface, such as forces, pressure or texture. There is
a large variability in the sensing technology used, and consequently also in the
capabilities of the sensors. The most common approaches are based on optical
e.g. GelSight sensors [48], capacitive e.g. tactile sensors installed on the PR2
[56], or resistive technologies, e.g. the specialized sensors developed by Drimus
et al. [57]. Sensors using GelSight technology have been successfully applied
to DLO manipulation by She et al. [9], and shown to improve dexterity. There
are also some examples of capacitive [58] and resistive [59] technologies being
used for cable manipulation tasks. Alternatively, the BioTac sensor [60] is a
biologically inspired sensing modality which makes use of vibrations to extract
tactile information and was used by Sanchez et al. [53] in a similar setting to
the aforementioned FT implementation, by the same author.

Finally, multiple sensing modalities may be combined for state estimation
or identification of model parameters, through sensor fusion techniques [61].

2.4 Planning
Planning is a very broad term, extending well beyond the field of robotics. It
is also closely related to control, which is shortly addressed below. Although
it is difficult to draw a line separating the two concepts, planning can be seen
as a higher level process than control [62]. In DOM problems, it is often the
case that both intelligent high-level planning and low-level control are needed.
Generally speaking, a complete strategy for robotic automation has to include
both manipulation and grasping operations. Determining the sequence of such
discrete tasks that leads to successfully reaching an objective, is considered a
task planning problem. Moreover, the continuous motion of each task to be
executed by the robot needs to be determined, i.e. how to move the arm and
the gripper. This problem is refers to motion planning, which LaValle [62,
Part II] defines as “determining what motions are appropriate for the robot
so that it reaches a goal state without colliding into obstacles”. While this
definition is generally complete for reaching motions, when thinking of DOM
tasks many more constraints need to be considered, such as not overstretching
a DLO. Both types of planning problems need to be solved for the cable-
routing task, which will be introduced in Section 2.6.
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2.5 Control
Similarly to planning, control theory also extends to many fields. However, in
the context of robotics it refers to designing feedback policies that determine
the execution of lower level robot actuation. Robotic manipulators generally
consist of a mechanical structure with a set of rigid links connected by a set
of joints, e.g. revolute, prismatic, etc. There are many configurations used for
manipulators, e.g. Cartesian, anthropomorphic, etc. Typically a manipulator
is also fitted with an end-effector specific for the task, e.g. gripper, suction
plate, etc. [63]. Therefore, a control strategy is highly dependent on the
combination of manipulator and end-effector. Also, depending on the desired
task, one may define the control inputs in task space, i.e. in terms of end-
effector trajectories, or in joint space, i.e. in terms of joint trajectories. In
the end, control policies defined in task space still need to be translated into
joint space, via Inverse Kinematics (IK) algorithms. Papers C-E make use of
the Hierarchical Quadratic Programming (HQP) [64] algorithm to solve such
a problem, subject to a hierarchy of constraints.

There are some DOM tasks that can be solved as a pure control problem
(without planning), when grasping is not considered. Indeed, all DLO tasks in
Paper A are formulated in terms of low-level control policies. In both Paper
A and Paper B, the dynamics of a robot manipulator are not modeled in
the simulation, since points on the DLOs can either be directly controlled in
Cartesian space, or pushed by a separate rigid object. Furthermore, the shape-
servoing task introduced in Section 2.6, is formulated as a control problem.

RL for Planning and Control This thesis places a big emphasis on Reinforce-
ment Learning, as explained in Section 1.3. RL principles are generalizable
across a wide range of domains, being able to capture low-level controllers,
higher level planners and everything in between. There is a great deal of
freedom when it comes to formulating an RL problem, as will be made clear
in Chapter 3. Broadly speaking, RL assumes there is an environment with
which an agent interacts by observing a state and performing an action.
Crucially, the agent also receives a reward indicating a measure of how good
a certain action is when in a certain state. By trial-and-error learning, a policy
can be gradually improved to maximize the expected future reward. While
this versatility is one of the greatest appeals of RL theory, it simultaneously
can be seen as one of its biggest drawbacks.
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2.6 Representative Tasks
Each DLO manipulation task comes with unique challenges. Since it is not
feasible to cover every task in one thesis, two representative tasks have been
selected to be addressed in more detail, namely shape-servoing and cable-
routing. These tasks are prevalent in DLO manipulation literature, and share
many of the common challenges of DOM, highlighted in Section 1.1. In partic-
ular, both can be classified as a form of shape control problems, as opposed
to DOM tasks where controlling the deformation of the object is not the pri-
mary objective. For example, in robotic food cutting [65], a knife may cause
an undesired compression of the object while the goal is to be able to slice
through it. In such tasks, deformation acts more like a disturbance.

Paper A classifies shape control problems as either implicit or explicit.
The former class describes tasks where the goal is to deform a DLO into a
specific shape, while the latter class describes tasks where the shape of the
DLO must be controlled so that a more general condition is satisfied, e.g.
wrapping a DLO around a cylinder. This distinction is particularly relevant
in the context of RL, since adequately defining the goal through a reward
function is key to its success. The simulation sandbox proposed in Paper A
includes three tasks of each class, shown in Figure 2.7.

Figure 2.7: Shape control tasks available in ReForm simulation sandbox.
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Shape-Servoing
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Figure 2.8: Illustration of a DLO shape-servoing task. As an explicit shape control
problem, the goal is to deform the DLO into a desired shape. The image
shows a task space control approach, with (i) a Cartesian end-effector,
moving independently in SE(3); and (ii) an anthropomorphic arm
with gripper vvve and joint q̇1, q̇2 velocities. Both are rigidly attached to
a controlled point ϕϕϕ1 of the DLO with feature points ϕϕϕi, ∀i ∈ [1, 8].

Shape-servoing describes tasks in which the goal is to drive a deformable
object into a specified shape. The term servoing usually refers to a real-time
closed-loop control policy for the robot motion, based on a sensor input, e.g.
visual. Typically, servoing problems are formulated in terms of the desired
velocity of the manipulator, driving an instantaneous error to zero. However,
the same DLO shape control task can be formulated as a sequence of pick and
place motions [15], [66], making it more of an online planning problem.

Given the ubiquity of IK control in robotics, several DLO shape-servoing
strategies have followed a similar approach, by modeling the object with a
deformation Jacobian JDLO(ϕϕϕ), where ϕϕϕ is some representation of the DLO’s
shape [67]–[69]. One of the key obstacles for such model-based approaches
is the modeling complexity of deformable objects, as highlighted in Section
2.1. Since this Jacobian matrix characterizes how the feature points ϕϕϕi move
given a certain end-effector velocity vvve, it depends on the physical properties
of the DLO. Therefore, this type of approach can require some calibration
procedure to obtain modeling parameters, i.e. system identification [70]. As a
consequence, such methods have mostly been applied to objects with simpler
dynamics, e.g. fairly stiff objects, and are likely to fail in cases with more com-
plex dynamics, such as elastoplastic DLOs. Alternatively, the Jacobian can be
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learned directly by function approximation, however this requires sufficiently
varied training data, otherwise overfitting may lead to poor generalization. Yu
et al. [71] proposed a DL method to learn JDLO(ϕϕϕ), and applied an adaptive
control strategy for shape-servoing a DLO. For reference, Almaghout et al.
[72] provide a comprehensive review on related methods.

Berenson [17] proposed a shape-servoing method which approximates the
deformation Jacobian, using a diminishing rigidity heuristic, i.e. the farther
the end-effector is from a feature point, the less displacement it induces on
that point. This approach does not require a physical model, but in principle
it still relies on a geometric model. A simplified instance2 is presented here in
terms of a single controlled point ϕϕϕ1 ∈ R3 rigidly attached to the end-effector,
as depicted in Figure 2.8, which is assumed to be able to move independently
in SE(3). The DLO velocities are given by ϕ̇ϕϕ = J̃(q)q̇, where q ∈ Q is the
end-effector configuration and J̃ ∈ R3P ×6 is the approximated Jacobian:

J̃i(q) =

rigidity︷ ︸︸ ︷
e−k·di

[
I3×3︸︷︷︸

translation

, R1 × r, R2 × r, R3 × r︸ ︷︷ ︸
rotation

]
(2.9)

where k is the rigidity parameter and di = d(ϕϕϕi,ϕϕϕ1), ∀i ∈ [1, P ] is the geodesic
distance between each feature and the controlled point; r = ϕϕϕ1−p, is the dis-
placement vector relative to the controlled point; finally, the rotation matrix
R ∈ SO(3) and position p ∈ R3 encode the end-effector configuration, in the
world frame. Jacobian J̃(q) =

[
J̃⊺

1(q), . . . , J̃⊺
P (q)

]⊺ is then used to compute
the end-effector velocity:

q̇ = J̃+(q)∆ϕϕϕ (2.10)

where ∆ϕϕϕ encodes the objective as the desired DLO displacement3.
Yet another approach is to learn a control policy directly, without learn-

ing an explicit model or deriving a deformation Jacobian [66]. This thesis
explores such model-free methods to solve shape-servoing tasks with multiple
problem formulations. Paper B explores online RL on a shape-servoing task
with an elastoplastic DLO, using the ReForm simulation sandbox. Paper C
applies an offline RL method to a real-world shape-servoing task with, in which
Berenson’s approach is used as a baseline for comparison.

2 The original formulation is valid for an arbitrary number of grippers and included two
additional mechanisms to prevent overstretching and allow obstacle avoidance [17].

3 Notation: Rj indicates column j and + denotes the Moore-Penrose pseudo-inverse.
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Cable-Routing

Figure 2.9: Illustration of cable-routing task. It can be considered as a planning
problem which alternates between grasping tasks and implicit shape
control tasks, for which the objective is to deform the DLO so that
it passes through a fixture. In this example, the ultimate goal is to
have the DLO passing through all four fixtures in the correct order, as
defined by the routing plan.

Cable-routing describes tasks in which a cable is to be manipulated through
a series of desired positions, without caring about an explicit DLO shape.
While shape-servoing is a general task with no particular industrial application
in mind, routing a DLO is most often researched due to its potential for cable
and wire harness production applications. To date, wires and cables
are mostly produced by assemblers who manually execute a lot of the tasks
required to manufacture wiring systems, e.g. cutting, crimping, etc. However,
one of the most challenging tasks to automate in this pipeline is the routing
of several cable assemblies to produce a single harness.

Cable harness production is typically organized in a similar arrangement
as the one illustrated in Figure 2.9. To facilitate the assembly process, there
is often a board with fixtures through which the cables need to be routed.
Workers either know the path each cable has to go through, or there are
markings on the board, showing the desired routing configuration. The final
task in harness production is to hold the cables together using zip ties or cable
sleeves. Most related work has focused on the DLO routing task, using fairly
simple cables, wires or even ropes. Moreover, while cable harnesses involve
routing multiple DLOs, many works consider only one.
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Besides the fact that most cable-routing methods rely on planning sequences
of motion primitives (i.e. low-level skills that serve as building blocks for
higher-level tasks), there is very little overlap between related works. Cable-
routing implementations proposed in the literature vary in terms of planning
algorithm, robot manipulators, end-effectors, sensing modality, control ap-
proach, etc. Table 2.2 provides a summary of some of the variations found
in the literature. Zhu et al. [73] proposed a vision-based approach, assuming
circular contact points instead of fixtures. To that end, a manipulator was
fitted with a custom-made end-effector capable of both holding the DLO in
place and allowing it to slide when pulled. This was vital, since in their imple-
mentation the DLO was never released by the end-effector. Galassi et al. [74]
used a similar approach, using tactile sensing instead to control how tightly
the DLO was grasped. Monguzzi et al. [58] also explored using tactile sensing
for a cable-routing application, with some additional robot skills. Conversely,
both Jin et al. [75] and Keipour et al. [50] proposed vision-based spacial rep-
resentations for cable-routing. Most recently, Luo et al. [76] proposed the first
RoL approach, using hierarchical IL to develop a multi-stage implementation.

The two final papers in this thesis dive into cable-routing tasks with a dual-
arm robot. They follow similar trends as the work in Table 2.2, with Paper D
proposing a complete planning framework using visual information and Paper
E focusing on more robust motion primitives using FT sensing.

Table 2.2: Reference table for related works on cable-routing.

[X] X-Arm Grasping Sensing Motion primitives
[73] Single No Visual Rotate; Pull.
[74] Single No Tactile Fix; Corner Fix; Corner Round-

ing.
[50] Single Yes Visual Pick; Place.
[75] Dual Yes Visual Stretch; Cross; Insert.
[13] Dual Yes Visual Not specified.
[58] Single Yes Tactile Axial alignment; Planar align-

ment; Contour following; Cable
routing.

[76] Single Yes Visual Route; Perturb; Pick up; Go
next.
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CHAPTER 3

Reinforcement Learning

RL was briefly introduced in Section 1.2, within the context of robot learning.
However, reinforcement learning can be applied to a wide range of sequential
decision making problems. Indeed one of the most mediatic successes of RL
has been the achievement of superhuman performance in the game of Go. First
in 2016 when DeepMind’s AlphaGo [77] algorithm defeated grandmaster Lee
Sedol, and replicated one year later when it came out victorious over Ke Jie,
the highest ranked player at the time. RL has been exceptionally efficient at
learning to play a variety of board games like chess [78] and backgammon [79]
as well as video games like Atari [80] and StarCraft II [81].

But why did these methods suddenly become so effective? RL had been
around for decades, and using ANNs as the main function approximation
technique was common practice. The answer lies partially within advances
in DL, which enabled more powerful Deep Reinforcement Learning (DRL)
algorithms. A key turning point can be traced to 2012, when the Convo-
lutional Neural Network (CNN) architecture later named AlexNet [82] far
outperformed past results of the annual ImageNet Large-Scale Visual Recog-
nition Challenge. Besides algorithmic improvements, the increase of available
compute power made possible by GPU acceleration was also a catalyst.
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Nevertheless, there are other important factors that contributed to the suc-
cess of DRL in games which unfortunately do not hold true for robotic ma-
nipulation. Firstly, these environments are mostly fully observable and de-
terministic1, with often discrete and fairly low-dimensional state and action
spaces. Secondly, they enable the possibility of self-play, effectively learning to
improve on past policies by competing against them. Thirdly, winning a game
consists of a simple goal definition which provides an obvious reward signal.
Finally, it is important to note that AlphaGo combined RL with planning by
Monte Carlo Tree Search (MCTS) methods [77].

In contrast, the state and action spaces in robotic manipulation problems
are typically continuous and high-dimensional. Furthermore, due to limita-
tions in perception they are mostly partially observable. Indeed the majority
of the obstacles to applying RL in robotics is due to interaction with the real
world, where there are numerous sources of stochasticity and noise. While
game agents can remain in a virtual world and therefore play through thou-
sands of matches in seconds, robotic agents have to control physical systems
which are limited to real-time execution. This problem is only exacerbated
by conservative velocity constraints meant to prevent damage on such expen-
sive pieces of equipment. There have been attempts to use multiple robots in
parallel to collect more data [83], however the costs are prohibitive for most
academic research institutions. Even the simplest task of resetting the envi-
ronment is a challenge, given that it either requires some automated approach
capable of handling unpredictable states or a human tediously standing by to
do it [84]. Three main approaches have been used to overcome this issue: i.
use LfD to initialize the RL algorithm with a good starting control policy and
try to improve from there, ii. learn in simulation first and then transfer the
learned policy to the real robot, and iii. use collected robot interaction data
to learn a policy through offline RL, as is explored in Paper C.

In addition, for many robotic tasks there is no clear reward function which
fully describes the goal. Though sparse rewards, similar to the ones used
in games, can be applied to simpler robotic problems such as a peg-in-hole
insertion, e.g. assign positive reward once the task is completed, more complex
tasks tend to require reward shaping to lead the agent to the goal [84]. This
problem is addressed in Paper B, for an explicit DLO shape control task.

1 Backgammon is not fully deterministic since it includes dice rolls and Starcraft II is only
partially observable with some randomness.
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To summarize, the key challenges to applying RL in robotic applications
have been succinctly described by Kober et al. [84] as four curses:

• Curse of dimension

• Curse of real-world samples

• Curse of goal specification

• Curse of under-modeling and model uncertainty

The last curse specifically referred to modeling accuracy in simulators. Given
that these consist of simplifications of the real world, policies learned in such a
setting may not work on the real robot. Consequently, addressing simulation-
to-reality transfer is an open research topic, also termed sim-to-real. Despite
these curses, the authors compiled a comprehensive list of robotic tasks to
which RL was successfully applied. Since the survey’s publication in 2013,
there has been a growing interest in this field, fueled by the achievements of
DRL. For a more recent overview, Hai and Lung [85] published a short review
on the state of DRL for robotic manipulation problems, up until 2019.

RL has also been tested on a few DOM applications such as the ball-paddling
example in Kober et al. [84], where an elastic string connects the two objects.
More recently, low compression strength materials such as cloth and rope have
been successfully manipulated without the use of demonstrations [86]. This is
in contrast with previous work on cloth folding and hanging which combined
RL and LfD [49]. Reinforcement learning has also been used to solve modified
classical robotics tasks, such as a peg-in-hole task where the insertion is made
of foam [87], and its converse where a soft cable is inserted into a rigid hole
[88]. There have even been examples from robotic surgery applications, such
as pattern cutting in gauze with DRL policies for tensioning [89].

For the rest of the chapter, the goal will be to introduce RL theory, starting
from basic concepts and culminating in the methods relevant for Part II. At
its core, RL is a computational approach for an agent to learn how to achieve
a goal by interacting with the environment, through trial-and-error. This
agent-environment interaction, illustrated in Figure 3.1, can be modeled as a
Markov Decision Process (MDP). Notably, RL is intimately related to optimal
control theory and Dynamic Programming (DP). However, these methods
typically rely on an explicit model of the environment dynamics.
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3.1 MDP Formulation
Markov decision processes provide a useful formalism to describe sequential
decision making problems. For this reason, it is common practice to frame RL
problems as MDPs. Major textbooks on RL mainly focus on MDPs with finite
state and action spaces [90]–[92], however robotic control is better character-
ized by continuous spaces. Since both cases will be considered throughout
this chapter, Definition 1 provides a general description of an MDP.
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Figure 3.1: Illustration of agent-environment interaction. The agent is in state st

and takes action at, leading to a reward rt and new state st+1.

Definition 1: Markov Decision Process An MDP is defined as a tuple
M = (S,A, p, r, γ), where: Sets S and A represent the state and action spaces,
respectively, which can be discrete or continuous. The action space may in
some cases also be a function of the state, A(s) with s ∈ S. For continuous
spaces, it is assumed that S ⊆ RDs and A ⊆ RDa , where Ds, Da ∈ N are
the dimensions. The aforementioned spaces characterize the MDP as finite
or infinite, e.g. if both spaces are finite the MDP is finite. When the state
space is continuous the dynamics of the environment are represented by the
probability density function p(st+1|st, at), which describes the probability of
transitioning to state st+1, when in state st the agent takes action at. For a
discrete state space, this is given by a probability mass function. The objective
of the task is encoded by a scalar reward function, which may depend on the
current state r(st), both state and action r(st, at), and even the successive
state r(st, at, st+1). Finally, γ ∈ [0, 1] is the discount factor which defines
how much weight is placed on future rewards in the objective, where γ = 0
implies none, and γ = 1 implies equal weighting for all future rewards.
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For simplicity, discrete-time MDPs are considered here, though much of
the theory which will be introduced can be extended to continuous-time [93].
Therefore, the agent-environment interaction leads to a discrete trajectory:

h1:T = {s1, a1, r1, . . . , st, at, rt, st+1, . . . , sT , rT }

where T is the time of termination2. An MDP is said to be finite-horizon
if T < ∞, otherwise the MDP is said to be infinite-horizon. Sutton and
Barto [91] further classify tasks as episodic if they can be broken down into
a sequence of episodes, such as finite-horizon cases, or continuing for infinite-
horizon MDPs. It is possible to unify these classes if termination is assumed
to be equivalent to reaching an absorbing state sT , for which any action leads
to a transition to itself, without any reward, i.e. st = sT , rt = 0, ∀t > T [91].

The objective in MDP problems is defined in terms of the return, Rt:

Rt
.=

T∑
k=t

γk−trk = rt + γrt+1 + γ2rt+2 + . . . + γT −1rT = rt + γRt+1 (3.1)

where rk is the immediate reward at time k and T ∈ [0,∞]3. The return Rt

expresses the sum of future rewards at time step t, and can be related to the
successive return Rt+1, leading to a recursive property which is exploited in
DP algorithms. For a problem to be modeled as an MDP, the Markov prop-
erty must hold, i.e. the state needs to be a sufficient statistic for predicting
the future, independently from past observations. Furthermore, MDPs are
assumed to be stationary, i.e. functions r and p are not time-dependent.

MDPs were initially used to formulate dynamic programming algorithms,
which work by recursively finding solutions to sub-problems and eventually
converging to an optimal policy for the global problem. In essence, a policy
defines how the agent interacts with the environment. Therefore, a stochastic
policy π(a|s) = P(at = a|st = s) describes the probability of taking action a

in state s, at time step t. Policies can also be deterministic, i.e. π(s) = a,
in which case they simply map states to actions, π : S → A. An important
construct in RL, which originated in DP, is the concept of a value function.

2 While the convention throughout this thesis is that a reward at time t is the result of
taking action at when in state st, this differs from the convention used in [91].

3 With the caveat that when T = ∞ the discount factor must satisfy γ < 1, otherwise the
sum becomes undefined.
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The state-value function, vπ(s), expresses the expected return conditioned
on starting in a state s, and following policy π thereafter. Similarly, the action-
value function, qπ(s, a), expresses the expected return further conditioned on
taking a specific action a. Both functions are defined below:

vπ(s) .= Eπ [Rt|st = s] (3.2)
qπ(s, a) .= Eπ [Rt|st = s, at = a] (3.3)

Value functions aim to guide the search for an optimal policy π∗, i.e. the
policy which maximizes the expected return. These also lead to variants of
the Bellman equation. Indeed, the two main DP algorithms, Policy and Value
Iteration, are built on iterative updates using Bellman equations, and provide
the theoretical basis for many RL algorithms. For instance, the Bellman
optimality equation for the action-value function is given by:

q∗(s, a) = E
[
rt + γ max

a′
q∗(st+1, a′)|st = s, at = a

]
(3.4)

Since DP is model-based, it can only be applied when the environment dy-
namics p(st+1|st, at) are known and the state and action spaces are relatively
small. Alternatively, model-free RL can be explored through methods where
the value function is approximated, as in Section 3.2, or a policy is directly
optimized, as in Section 3.3. While both alternatives are less sample efficient
than model-based algorithms, learning a model is also a challenging task [94].

Goal-Conditioned RL A particularly relevant MDP formulation which is not
represented in Definition 1 is the one used for Goal-Conditioned Reinforcement
Learning (GCRL). While the standard MDP formulation assumes a single goal
is to be achieved by the agent, e.g. win a game of Go, there are many robotic
problems that are better characterized as multi-goal, e.g. a simple reaching
task will be dependent on what location or object is to be reached.

GCRL differs from standard RL since it involves augmenting the state with
an additional goal g ∈ G, where G denotes the goal space. This leads to a
goal-augmented MDP formulation defined by a tuple M = (S,A,G, p, r, γ),
which has a goal-dependent reward function, r(·, g). Moreover, the learned
policy also depends on the goal, for instance in the deterministic case π(s, g)
is a mapping π : S ×G → A. Liu et al. [95] provide a survey which covers the
challenges of GCRL and some of the algorithms proposed to address them.
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3.2 Value Function Approximation

Monte Carlo (MC) methods provide a simple strategy to approximate value
functions by sampling complete trajectories from the agent-environment in-
teraction, which can be real or simulated. MC algorithms work by estimating
the average return, based on the rewards observed throughout an episode un-
til termination. Therefore, they can only be applied to episodic tasks, for
which the return can be explicitly computed by moving backwards in time,
i.e. Rt = rt + γ(rt+1 + γ(. . . (rT −1 + γRT )), with t < T − 2.

Temporal Difference (TD) learning, is an alternative approach which
does not require sampling full episodes. While MC methods use the episode
return Rt to update the value estimate, TD(n) methods bootstrap using
current value estimates as the target, e.g. R

(1)
t = rt + γq(st+1, at+1) or

R
(2)
t = rt + γrt+1 + γ2q(st+2, at+2), where the (n) denotes the bootstrap-

ping depth. Note that a one-step bootstrap update is also referred to as
TD(0). The Sarsa algorithm uses such an update to approximate the action-
value function. This method is presented below (in red) together with the
Q-learning algorithm (in blue) proposed by Watkins [96].

Algorithm 1 TD Control (Sarsa & Q-learning)

Randomly initialize QQQ(s, a),∀s ∈ S,∀a ∈ A(s), except QQQ(sT , ·) = 000
for episode = 1 : M do

Obtain initial state s1

Choose a1 from current state s1 using policy derived from QQQ S
for t = 1 : T do

Choose at from current state st using policy derived from QQQ Q

Execute action at, observe reward rt and new state st+1

QQQ(st, at)←QQQ(st, at) + α [rt + γ maxa′ QQQ(st+1, a′)−QQQ(st, at)] Q

Choose at+1 from next state st+1 using policy derived from QQQ S

QQQ(st, at)←QQQ(st, at) + α [rt + γQQQ(st+1, at+1)−QQQ(st, at)] S

at ← at+1 S

st ← st+1
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Algorithm 1 facilitates the comparison of TD control methods based on
action-values. Sarsa uses soft updates QQQ(st, at) ← QQQ(st, at) + αδt, where
δt = R

(1)
t − QQQ(st, at) is the TD error and α is the step-size. While Sarsa

has R
(1)
t as the bootstrapping target, Q-learning has the return of the optimal

policy rt +γ maxa′ QQQ(st+1, a′). Q-learning is an off-policy algorithm because it
uses action-value estimates from π∗ while following another policy π, whereas
Sarsa is an on-policy method which uses estimates from the same policy π.

Contrary to DP updates that consider the whole distribution of possible
states, MC and TD methods only update values of visited states. Therefore,
they must guarantee sufficient exploration of the state space. Consequently,
the greedy policies from DP methods, which exploit value estimates, need to
be modified to include exploratory actions. This introduces a trade-off referred
to as the exploration-exploitation dilemma. A simple approach is given by the
ε-greedy policy, with ε ∈ (0, 1):

π(s) =
{

a∗ = argmaxa∈A QQQ(s, a), with probability 1− ε

a ∈ A, with probability ε
(3.5)

which means the total probability of choosing an optimal action is π(a∗|s) =
ε

|A| + (1− ε) and any suboptimal action is π(a|s) = ε
|A| , with a ̸= a∗.

This type of approach effectively embeds exploration into the algorithm and
on-policy methods, e.g. Sarsa, rely on it for exploration. Conversely, off-policy
algorithms have a behavior policy µ, which selects actions and a separate target
policy π, which is actually updated. This allows the use of deterministic target
policies, e.g. greedy, since the behavior policy will continue to sample random
actions. For example, in the Q-learning algorithm, actions may be selected
based on a separate behavior policy like ε-greedy.

It is possible to unify TD learning with MC methods given that as n→ T ,
the TD updates become equivalent to Monte Carlo updates. However, the
optimal value of n is not known a priori because it is problem and algorithm
dependent. The TD(λ) approach addresses this issue by averaging over several
n-step returns to compute an update, where λ ∈ [0, 1] refers to the eligibility
trace-decay parameter [91, Chapter 12]. The target of this type of update is
the λ-return, defined as the geometrically weighted average of all n:

Rλ
t

.= (1− λ)
∞∑

n=1
λn−1R

(n)
t = (1− λ)

T −t∑
n=1

λn−1R
(n)
t + λT −tRt (3.6)
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For the methods presented so far, the state- and action-value functions
have been estimated as a vector vvv ∈ R|S| and a matrix QQQ ∈ R|S|×|A|, respec-
tively. Nevertheless, this is only possible if the state and action spaces are
bounded and discrete. Otherwise, they must either be quantized or function
approximation needs to be employed. There are many alternative function
approximation techniques however, this work focuses on DNNs that will be
briefly introduced in Section 3.4. To apply these methods, the state-value
function denoted v(s|v), is parameterized with v ∈ RDv , where Dv ∈ N is the
dimension of the parameter vector. For action-values, the parameterized func-
tion may be action-in, denoted q(s, a|w) which outputs a scalar, or action-out,
denoted q(s, ·|w) which instead outputs a vector. Choosing between these two
formulations depends on whether the RL algorithm requires the q value for
a particular action a or for all possible actions in a given state s. Note that
the action-out formulation implies a finite action space. Action-value function
parameters are denoted w ∈ RDw with dimension Dw ∈ N.

3.3 Policy Approximation
The previous two sections covered value-based methods, in which policies are
only implicitly defined through the value function, i.e. the critic, requir-
ing maximization over actions to either select an action or update the value
estimates. Consequently, the algorithms presented so far are not directly ap-
plicable to problems with continuous action spaces. An alternative approach
is found in policy-based methods, which search for an explicit policy i.e. an
actor, and do not suffer from the same limitation. This section will introduce
the key idea behind policy search, with a focus on gradient methods. These
will also be combined with value-based strategies in what is referred to as
actor-critic methods, which improve efficiency by reducing variance.

Policy-based methods are a natural choice for robotic applications, not only
due to their applicability to continuous MDPs but also because learning in
policy space often requires fewer parameters than in value space. Further-
more, they offer a direct approach to incorporate prior knowledge through the
choice and initialization of the policy representation, as well as the inclusion
of constraints. Moreover, in value-based methods a small change in the value
function may result in large discontinuous changes to the policy which might
lead to dangerous actions [97].

41



Chapter 3 Reinforcement Learning

To approximate an optimal policy, one needs to define a parameterized
policy πθθθ, with parameters θθθ ∈ RDθθθ of dimension Dθθθ. This section will focus
on Policy Gradient (PG) methods, which further require the policy to be
differentiable with respect to its parameters. However, there are also gradient-
free optimization methods such as evolutionary algorithms, which may be used
otherwise. Depending on the algorithm, this policy can be stochastic π(a|s,θθθ)
or deterministic π(s|θθθ). Once a policy parameterization has been defined, it is
possible to treat this as an optimization problem, by defining a performance
measure J(πθθθ). This measure is defined differently for episodic tasks where
the starting-state formulation is used and for continuing tasks which require
the average-reward formulation.

Starting-state formulation The goal is to maximize the total reward over
an episode, from a non-random starting-state s1 to a terminal state sT :

Js0(πθθθ) = Eπθθθ
[R1] = Eπθθθ

[
T∑

k=1
γkrk

∣∣∣∣s1

]
(3.7)

which corresponds to the state-value function vπθθθ
(s1).

Average-reward formulation The goal is to maximize the expected average
reward per time step:

Jr̄(πθθθ) = 1
T
Eπθθθ

[
T∑

k=1
rk

]
(3.8)

which for infinite horizon MDPs can be evaluated as a limit:

Jr̄(πθθθ) = lim
T →∞

1
T
Eπθθθ

[
T∑

k=1
rk

]
(3.9)

For simplicity, this section considers the starting-state formulation for con-
tinuous state and action spaces. In either case, the goal is to improve the
parameterized policy πθθθ by updating its parameters θθθ through (stochastic)
gradient ascent:

θθθ ← θθθ + αa∇θθθJ(πθθθ)

where αa is the step-size parameter and the subscript a stands for actor.

42



3.3 Policy Approximation

The problem with such PG objectives is that the policy πθθθ affects not only
the actions taken in each state, but it also indirectly affects the state distri-
bution ρπθθθ

(s), through interaction with the unknown environment dynamics
p (s′|s, a). This makes gradient computation problematic since the effect of
policy parameters on the state distribution is not known.

A simple numerical approach to compute the gradient ∇θθθJ(θθθ) is by finite-
difference methods. These approximate derivatives with finite differences
by perturbing each parameter θk with a small amount ϵ, in each step:

∂J(θθθ)
∂θk

≈ J(θθθ + ϵ1k)− J(θθθ)
ϵ

(3.10)

where 1k is a unit vector with 1 in the k-th component and 0 elsewhere [97].
A more powerful strategy is used by likelihood ratio methods, which

allow for an analytical computation of the gradient using Theorem 1.

Theorem 1: Policy Gradient For the objective function J(πθθθ) and any
differentiable stochastic policy, the gradient is given by

∇θJ(πθθθ) ∝
∫

S
ρπθθθ

(s)
∫

A
∇θθθπ(a|s,θθθ)qπθθθ

(s, a)dads

= Eπθθθ
[∇θθθ log π(a|s,θθθ)qπθθθ

(s, a)]

where ρπθθθ
(s) is the on-policy distribution under πθθθ. The proportionality sign

∝ becomes an equality for the continuing case, while in the episodic case the
proportionality factor is the average episode length.

The theorem was extended to deterministic policies by Silver et. al. [98],
assuming the underlying MDP satisfies some regularity conditions:

∇θJ(πθθθ) ∝
∫

S
ρπθθθ

(s)∇θθθπ(s|θθθ)∇aqπθθθ
(s, a)|a=πθθθ(s)ds

= Eπθθθ
[∇θθθπ(s|θθθ)∇aqπθθθ

(s, a)|a=πθθθ(s)]

which was shown to be a special (limiting) case of the stochastic policy gradient.

The key feature of the PG theorem is that ∇θθθJ(θθθ) does not include the
gradient of the on-policy state distribution ρπθθθ

(s), despite the fact that this
depends on the policy parameters θθθ.
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Therefore, PG methods based on the likelihood ratio only need to find an
estimate of the action-value qπθθθ

(s, a). One of the first PG algorithms used the
sample return Rt for that purpose, making it an MC implementation. This
algorithm, appropriately named REINFORCE, was proposed by Williams [99]
and is presented in Algorithm 2.

Algorithm 2 REINFORCE (with baseline)
Randomly initialize policy π(a|s,θθθ), with parameters θθθ

Randomly initialize differentiable value function v(s|v), with parameters v
for episode = 1 : M do

Generate an episode h following π(a|s,θθθ)
for t = 1 : T do

Rt ←
∑T

k=t+1 γk−t−1rk

A← Rt − v(st|v)
v← v + αb∇vv(st|v)A
Rt ← A ▷ i.e. use advantage function in place of return
θθθ ← θθθ + αa∇θθθ log π(at|st, θθθ)Rt ▷ PG update

Since REINFORCE is an MC method, it suffers from high variance and is
slow to learn. To help reduce variance, Williams proposed a variant of the
algorithm with a baseline function, b(s). This can be any function which does
not depend on the actions a. The baseline is subtracted from the state-action
value in the policy gradient theorem, so that the expectation remains intact:

∇θθθJ(πθθθ) = Eπθθθ
[∇θθθ log π(a|s,θθθ) (qπθθθ

(s, a)− b(s))] (3.11)

This difference is called an advantage function, Aπθθθ
(s, a), typically denoted

by uppercase letter A to differentiate it from actions a and action space A. A
good baseline is the state-value function b(s) = vπθθθ

(s) which results in:

Aπθθθ
(s, a) = qπθθθ

(s, a)− vπθθθ
(s) (3.12)

In essence, Aπθθθ
is a measure of how much better πθθθ can become. If for some

state-action pair Aπθθθ
(s, a) > 0, this means that the policy would improve if

action a was to be selected in state s. For an optimal policy, π∗, all state-action
pairs have Aπθθθ

(s, a) < 0, except the optimal ones for which Aπθθθ
(s, a) = 0.
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Algorithm 2 shows REINFORCE with baseline in blue. Note that the step-
size of the value function has subscript b for baseline and not c for critic. This
is because the value function is only considered a critic when it is used for
bootstrapping from estimated values of successive states [91, Chapter 13.5].

Instead of the MC return Rt, it is possible to choose a different estimate of
qπθθθ

(s, a), using a TD learning critic to reduce variance, i.e. qπθθθ
(s, a|w). This

leads to the final group of algorithms which will be presented in this chapter,
namely actor-critic methods. A baseline may still be used to further improve
stability, leading to advantage actor-critic methods. However, replacing the
true q(s, a) by an approximation does not guarantee that it will represent the
true gradient, unless Theorem 2 holds.

Theorem 2: Compatible Function Approximation If the following two
conditions are satisfied:

1. The value function approximator q(s, a|w) is compatible with policy πθθθ:

∇wq(s, a|w) = ∇θθθ log π(a|s,θθθ)⊺w stochastic policy
∇aq(s, a|w)|a=πθθθ(s) = ∇θθθπ(s|θθθ)⊺w deterministic policy

2. The value function parameters w minimize the mean-squared error:

MSEsto = Eπθθθ

[
(qπθθθ

(s, a)− q(s, a|w))2
]

MSEdet = Eπθθθ

[(
∇aqπθθθ

(s, a)|a=πθθθ(s) −∇aq(s, a|w)|a=πθθθ(s)
)2

]
then the policy gradient is unbiased:

∇θθθJ(πθθθ) = Eπθθθ
[∇θ log π(a|s,θθθ)q(s, a|w)] stochastic policy

∇θθθJ(πθθθ) = Eπθθθ
[∇θπ(s|θθθ)∇aq(s, a|w)|a=πθθθ(s)] deterministic policy

What this theorem expresses is that function approximators have to be
linear in the policy features: ∇θθθπ(s|θθθ) or ∇θθθ log π(a|s,θθθ). Furthermore, the
parameters should be the solution to the linear regression problem minimiz-
ing the MSE. However, in practice this second condition is relaxed to include
value estimation methods such as TD learning [98]. Until Silver et al. [98]
introduced the possibility of PG for deterministic policies, with the Com-
patible Off-Policy Deterministic Actor-Critic (COPDAC-Q) algorithm, it was
believed that such a formulation could only be obtained using a model [100].

45



Chapter 3 Reinforcement Learning

Since COPDAC-Q is an off-policy method with behavior policy µ(a|s) ̸=
π(s|θθθ), the gradient becomes slightly different:

∇Jµ(πθθθ) ≈
∫

S
ρµ(s)∇θθθπ(s|θθθ)qπθθθ

(s, a)ds (3.13)

= Eµ

[
∇θθθπ(s|θθθ)∇aqπθθθ

(s, a)|a=πθθθ(s)
]

where ρµ(s) is the state distribution under policy µ. Moreover, the Q in
the name refers to the critic implementation which uses the action-value
TD(0) update, as presented in Algorithm 3. Hence, condition 2 of Theo-
rem 2 is technically not satisfied, since the critic parameters w are updated
by TD learning. In practice, they implement the critic as a linear function
approximator q(s, a|w) = ϕ(s, a)⊺w, from state-action features defined as
ϕ(s, a) = a⊺∇θθθπ(s|θθθ) to satisfy condition 1.

Algorithm 3 COPDAC-Q (Deterministic PG)
Randomly initialize policy π(s|θθθ), with parameters θθθ

Randomly initialize value function q(s, a|w), with parameters w
for episode = 1 : M do

Obtain initial observation state s1
for t = 1 : T do

at ← µ(a|st)
Execute action at, observe reward rt and new state st+1
δt ← rt + γq

(
st+1, π(st+1|θθθ)

∣∣w)
− q(st, at|w) ▷ TD-error

θθθ ← θθθ + αa∇θθθπ(st|θθθ) (∇θθθπ(st|θθθ)⊺w) ▷ PG update
w← w + αcδt ϕ(st, at)

For the PG update, the gradient of the action-value with respect to a is
given by: ∇aq(s, a|w) = ∇θθθπ(st|θθθ)⊺w. Furthermore, for the critic update, the
gradient of q(s, a|w) is just the feature vector ϕ(s, a). Unlike the REINFORCE
algorithm, the PG update is based on the current value of the critic, and
then the critic is updated in the direction minimizing the TD-error, δt. The
COPDAC-Q algorithm was also tested with function approximation using
Multilayer Perceptrons4 (MLPs) for both actor and critic [98].

4 Tested on a goal-reaching task with a simulated 6-segment octopus arm, where Ds = 50
and Da = 20. The MLPs had one hidden layer with Dθθθ = 8, Dw = 40, and an output
layer with sigmoidal and linear activation functions for the actor and critic, respectively.
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3.4 Deep Reinforcement Learning
Deep reinforcement learning refers to RL methods where DNNs are used to
represent a value function, the policy or even the model of the dynamics.

Deep Neural Networks DNNs are artificial neural networks with a multi-
layer architecture where each layer contains a set of neurons. Much like their
biological counterparts, neurons are the functional units of an ANN. The per-
ceptron [101] is an artificial neuron model which learns a mapping from input
vectors x to binary outputs y ∈ {0, 1}, as a composition of two functions
H(f(x)), where f(x) = www · xi + b with weight vector www and bias b, and H is
the activation function. For the perceptron algorithm, H is a Heaviside step,
but other activation functions include the sigmoid or hyperbolic tangent, and
more recently the Rectified Linear Unit (ReLU). In a SL context, the percep-
tron algorithm updates the parameters www, b in the direction which minimizes
the error between the desired output and the current one yi −H(www · xi + b),
using a set of sampled input-output pairs {(xi, yi)}.

MLPs are networks made up of layers of perceptrons, typically with nonlin-
ear activation functions. They are also referred to as fully connected, because
each neuron in one layer is connected to all neurons in the following layer,
as shown in Figure 3.2. CNNs are another type of feedforward architecture,
which applies parameterized convolutional filters by strides along the input
data, thus reducing each local region into a scalar value. For data with a
sequential nature, Recurrent Neural Networks (RNNs) have been the pre-
dominant architecture. These are not considered feedforward, since they have
an internal state that is used as input to the following layers. More recently,
Transformer networks [102] have outperformed previous RNN architectures in
numerous applications, thanks to their attention mechanism.

Architectures may vary, but their training procedure is relatively similar.
Data is used to iteratively update the weights through backpropagation, to
minimize an error encoding the objective. In SL, the error is defined for ei-
ther regression or classification objectives. Updates may be done for each data
point or in batches, i.e. stochastic or minibatch gradient descent, respectively.
The stochasticity is determined by a pseudorandom number generator, initial-
ized by a random seed. Many algorithmic improvements have also contributed
to more efficient ANN training, such as the Adam algorithm for optimization
[103] or batch normalization [104] and dropout [105] for regularization.
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Input Layer

Output Layer

Hidden Layers

Figure 3.2: Illustration of MLP, i.e. feedforward fully connected neural network.

Despite being powerful function approximators, DNNs can lead to instabil-
ities and even divergence of RL algorithms. This is because convergence of
learned parameters to a fixed point is not guaranteed when a nonlinear func-
tion approximator is used for value-based algorithms, presented in Section 3.2.
Even with simpler linear function approximators, off-policy algorithms such
as Q-learning, are no longer guaranteed to converge. This is a consequence
of the deadly triad, which refers to the combination of function approxima-
tion, bootstrapping and off-policy training. Whenever these three conditions
are present, even DP algorithms become unstable. For more details on this
subject, consult Sutton and Barto [91, Chapter 11.3].

One of the earlier successes of deep reinforcement learning was the pro-
posal of the Deep Q-Network (DQN) algorithm [80]. As the name indicates,
it consists of a modification of Algorithm 1, where the QQQ value is represented
by a DNN. A key challenge in training neural networks using sampled RL
data, is that optimization algorithms commonly require that samples are in-
dependently and identically distributed (iid). Naturally, this assumption does
not hold for an RL trajectory, since the state and action distributions are
correlated by the interaction between the policy and the dynamics of the en-
vironment. To address this issue and make use of the increased efficiency of
minibatch gradient methods, Mnih et al. [80] proposed that sampled experi-
ence tuples (st, at, rt, st+1) be stored in a replay buffer D. For each step, a
minibatch B of uniformly sampled tuples is then used to update the Q-network.
The buffer was designed as a first-in, first-out system, with a fixed memory.
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Another challenge that needed to be addressed, is that implementing the
Q-learning critic as an ANN was unstable. This is due to the bootstrapping
nature of the algorithm which means that the network being updated q(s, a|w)
by gradient descent w← w +αc∇wL is also used to calculate the target value
of the MSE loss:

L← 1
|B|

|B|∑
i=1

(yi − q(si, ai|w))2

where yi ← ri + maxa′ q(st, a′|w) is the target. To overcome this problem,
Mnih et al. [80] proposed using a target Q network, with separate parameters
w′, so that yi ← ri + maxa′ q(st, a′|w′). The target network can then be
updated at a slower rate, by setting w′ ← w only every C steps. Furthermore,
the authors also found that clipping the MSE term from the update to be
between -1 and 1, helped improve stability. However, this was fairly specific
to the test domain, as discussed by van Hasselt et al. [106].

Based on the algorithmic changes described above, DQN was shown to
reach human-level performance in 49 of the Atari 2600 games. The critic
network was modeled as an action-out CNN architecture, which was trained
using pixels and games scores as inputs. However, if DQN is an off-policy TD
method which uses function approximation, how does the deadly triad affect
its performance? Van Hasselt et al. attempt to answer that question in [107].

Deep Deterministic Policy Gradient
As a value-based method, DQN is only suitable for discrete action spaces.
Building on the COPDAC-Q algorithm and the observations from the DQN
training strategy, Lillicrap et al. [108] proposed the Deep Deterministic Policy
Gradient (DDPG) algorithm, for continuous action spaces. DDPG also makes
use of the replay buffer and target network ideas. They found that in order
to avoid divergence, target networks were required both for the critic and the
actor. While this slows down the learning, it is highly compensated by its
stability. Unlike the DQN strategy, the target networks are updated through
soft updates controlled by parameter τ , in order to have them slowly track
the learned networks, as shown in item 3 of Algorithm 4. In the original
implementation, the exploratory behavior policy µ was obtained by adding
noise ωt ∼ W to the current policy π(st|θθθ). For their experiments, W was an
Ornstein-Uhlenbeck process which enables temporally correlated exploration.
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Algorithm 4 Deep Deterministic PG (DDPG)
Initialize actor network π(s|θθθ), with weights θθθ

Initialize critic network q(s, a|w), with weights w
Initialize target networks q′ and π′, with weights w′ ← w, θθθ′ ← θθθ

Initialize replay buffer D ← ∅
for episode = 1 : M do

Initialize a random process W for action exploration
for t = 1 : T do

at ← π(st|θθθ) + ωt, where ωt ∼ W
Execute action at, observe reward rt and new state st+1
Store transition in replay buffer, D ← D ∪ {(st, at, rt, st+1)}

if it is time for network updates then
Sample minibatch of transitions B = {(s, a, r, s′)} from D
1. Update critic networks using target networks:

y ← r + γq′(s′, π′(s′|θ′θ′θ′)|w′) ▷ compute targets

L = 1
|B|

∑
(s,a,r,s′)∈B

(y − q(s, a|w))2
▷ MSE

w← w− αc∇wL ▷ gradient descent step

2. Update actor network using critic network:

J = 1
|B|

∑
s∈B

q
(
s, π(s|θθθ)

∣∣w)
▷ mean action-value

θθθ ← θθθ + αa∇θθθJ ▷ PG step

3. Update target networks, with τ ≪ 1:
θθθ′ ← τθθθ + (1− τ)θθθ′

w′ ← τw + (1− τ)w′

In addition, batch normalization [104] was used during network updates.
This DL strategy normalizes a minibatch so that each dimension across sam-
ples has zero mean and unit variance5.

5 This was needed due to the test domain variability. While DQN was tested on the Atari
suite with the same input type, DDPG was tested on the continuous control suite with
varied inputs of different magnitudes.
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Twin-Delayed DDPG
A common issue in value-based RL is that function approximation errors lead
to value overestimation and consequently suboptimal policies. Fujimoto et al.
[109] showed that the problem persists in actor-critic settings and proposed
the Twin-Delayed DDPG (TD3) algorithm to mitigate it. TD3 is a variant
of DDPG with three essential modifications: i. two twin critic networks are
used to stabilize the learning, by taking the smaller of two q values to form the
targets (i.e. Clipped Double Q-learning); ii. the policy updates are delayed,
by being applied less frequently than the q function updates (every N -th
iteration); iii. noise is added to the target actions, as a regularization strategy
for the action-value function. This third modification serves to reduce the
impact of actions whose value becomes overestimated. Such actions create
sharp peaks in value space, which DDPG policies exploit, often leading to
undesired behavior. In essence, adding noise helps smooth the value space
around similar actions. All three modifications are indicated in Algorithm 5.

Choosing RL Algorithm DDPG (Algorithm 4) was used in Papers A-B.
However, more recent PG methods such as TD3, have been shown to lead
to comparatively better performance. Thus, a variant of TD3 (Algorithm 5)
was used in Paper C. Choosing these methods over other algorithms listed
in Table 3.1 was in part motivated by their relative simplicity, but also
guided by the observations made by Henderson et al. [110]. In particular,
they highlight the difficulties in comparing DRL algorithms across different
publications. Specifically, they attempt to address the following questions:

• How much do hyperparameter settings influence the reported algorithm
performance?

• How does the network architecture of the policy and value functions
affect the performance?

• How does reward scaling affect results and why is it used?

• How do random seeds affect the reported performance? Can results be
distorted by averaging an improper number of trials?

• How do the environment properties affect variability in performance?

• Are commonly used codebase implementations comparable?
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Table 3.1: Reference table for state-of-the-art policy gradient methods, all with an
actor-critic formulation. DDPG has been considered one of the more
efficient off-policy DRL methods [111]. Since then, several algorithms
have been proposed which are listed in this table, together with the
policy learning approach and actor type.

[X] Algorithm X-Policy X Actor
[108] Deep Deterministic Policy Gradient (DDPG) Off Deterministic
[109] Twin-Delayed DDPG (TD3) Off Deterministic
[112] TD3 + 4 additions (TD7) Off Deterministic
[113] Actor Critic with Experience Replay (ACER) Off Stochastic
[114] Soft Actor-Critic (SAC) Off Stochastic
[115] Advantage Actor Critic (A2C) On Stochastic
[116] Trust Region Policy Optimization (TRPO) On Stochastic
[117] Proximal Policy Optimization (PPO) On Stochastic

It is a well-known fact that hyperparameter settings and network architecture
have significant effects on performance of any deep learning algorithm.
Henderson et al. [110] further show that reward scaling can have a large
impact, and recommend a more principled approach, e.g. Pop-Art [106].
They also demonstrate that the variance between trials with different random
seeds is enough to create statistically different performance distributions.
Moreover, algorithm performance can vary across environments and it is not
clear which is the universally best performing method.

Most DRL papers present results in the form of learning curves, as some
function of the return. However, without understanding what the returns ac-
tually indicate, these curves can be misleading since the algorithm may con-
verge to local optima without ever reaching the desired goal. This is observed
in Paper B, where some reward definitions lead to suboptimal solutions, as
demonstrated in the qualitative plots. Consequently, the authors recommend
the inclusion of a qualitative analysis of the results. Finally, they find that
implementation differences between codebases of the same algorithm can have
drastic effects on training performance. Thus, it is important to use standard-
ized codebases or make new implementations public, with all hyperparameter
details [110]. Therefore, Papers A-B used the rlpyt [118] codebase and Paper
C, used the d3rlpy [119] library.
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The difficulty in choosing RL algorithm is compounded by the various al-
gorithmic improvements which can be combined with these methods. Indeed,
several works have proposed such improvements, namely Prioritized (PER)
[120] and Hindsight Experience Replay (HER) [121], Generalized Advantage
Estimation (GAE) [122], TD-regularization [123] and Phasic Policy Gradient
(PPG) [124]. As every algorithmic improvement often comes with additional
hyperparameters to tune, it makes the search space even larger.

3.5 Offline RL
All of the algorithms presented so far are formulated for online learning, re-
quiring agent interaction with the environment while iterating through dif-
ferent policies. Due to the challenges of applying RL in robotics, highlighted
at the start of this chapter, there has been a push towards offline learning
algorithms. The key idea is to use previously collected interaction data, and
train a policy without any additional online interaction, similarly to behav-
ior cloning. While the idea of offline RL is appealing, it also raises several
challenges. The tutorial by Levine et al. [125] covers the subject in greater
depth. Theoretically, any off-policy algorithm can be used for offline RL,
however that alone is not sufficient to achieve good performance, and online
fine-tuning is often required. In general, offline RL methods include algorith-
mic changes that keep the policy close to the data distribution, by preventing
value overestimation of state-action pairs not represented in the dataset. Sev-
eral algorithms have been proposed for that purpose, such as Conservative
Q-Learning (CQL) [126] and Implicit Q-Learning (IQL) [127].

Fujimoto and Gu [128] propose the TD3+BC algorithm, which is a variant
of Algorithm 5, with two minimal modifications. The main modification con-
sists on regularizing the learned policy with a behavior cloning term, whose
strength is controlled via a parameter λ. Striking balance between the RL (i.e.
maximizing q) and the imitation (i.e. minimizing the BC term) objectives is
dependent on the scale of the action-value, therefore λ is normalized:

λ = α
1

|B|
∑

(s,a)∈B |q(s, a)|
(3.14)

where α is a hyperparameter and the mean action-value is computed over
minibatches during training.
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The secondary but impactful modification was to normalize the states over
the offline dataset, to have zero mean and unit variance. Note that this
normalization step is not shown in Algorithm 5. Although CQL and IQL
were also tested, ultimately TD3+BC was used in Paper C.

Algorithm 5 Twin Delayed DDPG plus BC (TD3+BC) online
Initialize actor network π(s|θθθ), with weights θθθ
Initialize twin critic networks qk(s, a|wk), with weights wk for k = {1, 2} i.
Initialize target networks q′

k and π′, with weights w′
k ← wk, θθθ′ ← θθθ

Initialize replay buffer D ← ∅
for episode = 1 : M do

for t = 1 : T do
at ← π(st|θθθ) + ϵ, where ϵ ∼ N (0, σ)
Execute action at, observe reward rt and new state st+1

Store transition in replay buffer, D ← D ∪ {(st, at, rt, st+1)}
if it is time for network updates then

Sample minibatch of transitions B = {(s, a, r, s′)} from D
1. Update critic networks using target networks:

ã← π′(s′|θθθ′) + ϵ, where ϵ ∼ clip
(
N (0, σ̃), amin, amax)

iii.

y ← r + γ min
k=1,2

q′
k(s′, ã|w′

k) ▷ compute minimal targets

Lk = 1
|B|

∑
(s,a,r,s′)∈B

(y − qk(s, a|wk))2

wk ← wk − αc∇wk
Lk ▷ gradient descent step

if t mod N then ii.
2. Update actor network using critic network:

J = 1
|B|

∑
s∈B

λ q1
(
s, π(s|θθθ)

∣∣w1
)
− (π(s|θθθ)− a)2

θθθ ← θθθ + αa∇θθθJ ▷ PG step

3. Update target networks, with τ ≪ 1:
θθθ′ ← τθθθ + (1− τ)θθθ′

w′
k ← τwk + (1− τ)w′

k
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3.6 RL Simulation Environments
Much like the ImageNet challenge for CV methods, several simulation envi-
ronments were created in order to compare RL algorithms. To facilitate this
comparison, OpenAI released the Gym [129] toolkit for developing RL sim-
ulation environments following the same formalism6. This standardization
makes testing RL algorithms in different applications much easier, as all tasks
have the same Python interface. Notably, the environments used for bench-
marking DRL in continuous control tasks by Duan et al. [111], were made
available as part of Gym [129]. These included classic control problems from
RL literature, as well as more complex locomotion tasks. Though the agents
in these environments can be viewed as simplified robots, they do not actually
correspond to any real-world hardware. It was with the publication of HER
[121] that environments including real robotic systems like Fetch [131] and the
Shadow Hand [132] were added to Gym.

Many other third-party environments were created using the same stan-
dard. That is the case for the work introduced in Paper A which presents
ReForm, a robot learning sandbox for DLO manipulation. Also included in
the paper is an overview of environments for robotic manipulation, although
some related work was missed such as robo-gym, which simulates multiple
commercially available industrial robots using Gazebo [133]. A particularly
important omission in the context of deformable object manipulation is the
concurrent work by Huang et al. [134] which published the PlasticineLab en-
vironments after the final version deadline for Paper A. These, together with
ReForm and SoftGym [43], consist of the only RL benchmarking environments
currently available which address the challenges of DOM.

SoftGym, was released while the work on ReForm was underway. This li-
brary uses NVIDIA FleX as the physics engine, which can simulate soft objects
such as clothes and ropes, as well as liquids. However, elastoplasticity is not
available in any of the environments. Conversely, PlasticineLab does include
an elastoplastic material model implemented using Taichi [135]. Nevertheless,
all deformable objects in the provided environments behave like Plasticine.
That includes the DLO manipulation task, where a rope is modeled as a long
Plasticine piece. This is in contrast with the AGX Dynamics engine used for
ReForm, which supports DLO models with a range of material properties.

6 In 2022, maintenance of the Gym library was transferred to the Farama Foundation, in
what is now Gymnasium [130].
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CHAPTER 4

Research Contributions

While the full manuscripts of the appended publications are found in Part II,
this chapter provides a brief summary of their respective research contribu-
tions. Before that, a detailed description of the author’s individual contribu-
tions for each paper is given in Table 4.1.

Table 4.1: Overview of author contributions for each paper appended in Part II.
Work is divided into three main areas, from the technical conceptual-
ization, to the practical implementation and finally to the writing of
the publication. Legend: - nearly no contribution; - minor con-
tribution; - contribution; - major contribution; - nearly sole
contribution.

Paper Concept Implementation Publication
A
B
C
D
E
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This thesis is a continuation of the work included in the previously published
Licentiate thesis [1], which was built on simulation results from Papers A-
B. Since then, there has been an effort to move to real-world experiments
with Papers C-E. As a consequence, the literature study in Part I has been
enhanced and expanded to incorporate the additional papers in Part II. Figure
4.1 shows a diagram indicating how the contributed papers fit within DOM
research and reflecting the type of experiments carried out. Next, a summary
of each publication is presented, together with its contribution towards the
research objective introduced in Section 1.3.

4.1 Summary of Publications
Paper A presents ReForm, a new RoL sandbox to facilitate research on DLO
manipulation in simulation. Paper B addresses a shape-servoing task from
ReForm with elastoplastic properties, to achieve a single goal, through online
RL. Paper C tackles a similar but more complex multi-goal problem on a real-
world robotic setup using offline RL. Finally, Paper D robustly solves a cable-
routing task with randomly placed fixtures based on vision information, while
Paper E shows how a similar task can be solved using only force information
for state estimation. While the author was the major contributor to the
shape-servoing papers, in the cable-routing papers the author assumed a more
supervisory role. The primary contribution was made towards formalizing the
research concepts for publication, whereas the main development work was
carried out by Master’s students.

DLO Shape Control

Shape-Servoing Cable-Routing

simulation real-world

Paper A Paper B Paper C Paper D Paper E

Figure 4.1: Diagram of contributions within DOM research.
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Paper A

ReForm: A Robot Learning Sandbox for Deformable Linear Object
Manipulation
Rita Laezza, Robert Gieselmann, Florian T. Pokorny, Yiannis Karayiannidis
Published in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4717–4723.
© 2021 IEEE DOI: 10.1109/ICRA48506.2021.9561766

This paper presents ReForm, a novel robot learning sandbox for deformable
linear object manipulation. It is meant as a tool for testing and benchmarking
DLO manipulation strategies, particularly through RoL. It consists of six
environments representing important characteristics of deformable objects,
with material properties ranging from pure elasticity to elastoplasticity. Three
explicit and three implicit shape control tasks are included. Notably, the
explicit shape control tasks can easily be used for multi-goal RL. The sandbox
also includes problems such as self-occlusions and -collisions. ReForm is built
as a modular framework which allows for the choice of parameters such as
end-effector DoFs, reward function and type of observation. Since vision data
is supported, CV methods can also be tested, for example to address self-
occlusion in DLO tracking. For each DLO manipulation task in ReForm,
initial benchmarking experiments were carried out using the DDPG algorithm
to obtain a baseline for online RL performance.

The initial concept of ReForm was led by the author, with the development
of the base Gym interface with AGX Dynamics and all three explicit shape
control environments. As this work demanded more resources, it evolved into a
joint effort with our partners at KTH, within the WASP collaboration project.
Robert Gieselmann developed the implicit shape control environments and
contributed to the final publication, resulting in a shared first authorship.

Research Objective While ReForm has been tested using an RL algorithm,
it can easily be used to develop DNN models of robot-object interactions
based on vision and force data, since both sensing modalities are available in
the simulation sandbox.
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Paper B

Learning Shape Control of Elastoplastic Deformable Linear Objects
Rita Laezza, Yiannis Karayiannidis
Published in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4438–4444.
© 2021 IEEE DOI: 110.1109/ICRA48506.2021.9561984

This paper introduces an explicit shape control task for DLOs with elasto-
plastic properties. The goal is to deform a DLO into a desired shape, with the
added difficulty that a permanent deformation may occur. In such a case, it
becomes challenging to define a distance measure which uniquely guides the
manipulation objective. RL offers a data-driven approach to tackle this prob-
lem without needing a model. However, it still requires a reward definition
that adequately describes the goal. The key contribution in this work, is the
proposal of a reward function based on a shape representation using discrete
curvature and torsion. The impact of this reward definition on the RL problem
is studied using the DDPG algorithm. Notably, simulation experiments show
that to converge to the correct shape, the reward must include the proposed
representation.

Research Objective This work made use of ReForm to design an RL con-
trol policy in simulation. It mainly addressed the DLO shape representation
problem and proposed a related reward shaping approach.
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Paper C

Offline Goal-Conditioned Reinforcement Learning for Shape
Control of Deformable Linear Objects
Rita Laezza, Mohammadreza Shetab-Bushehri, Gabriel A. Waltersson,
Erol Özgür, Youcef Mezouar, Yiannis Karayiannidis
Submitted to IEEE Robotics and Automation Letters (RA-L).
Available as a preprint on arXiv:2403.10290.

This paper focuses on a real-world DLO shape control task using offline
GCRL techniques. More specifically, dual-arm shape-servoing of a DLO on
a plane is addressed. Two types of material properties a evaluated, with an
elastic cord and a soft rope. A modular implementation is proposed, using an
ARAP-based method for visual state tracking of the DLO and an IK controller
to execute the action from an RL policy on the robot (ABB dual-arm YuMi).
The key contribution of this work is the ability to leverage limited real data to
successfully train ANN policies. This is achieved through a data augmentation
approach, inspired by the HER principle. By randomly sampling intermediate
shapes, and setting them as goals, the learned policies are shown to achieve
better results. Furthermore, the proposed method is compared with a well
established shape-servoing algorithm, indicating its relative improvement for
both DLOs. The TD3+BC offline RL method is used, which incorporates a
BC regularization term that is also investigated in this work.

Research Objective This work also addressed the design of RL policies, but
in a real-world robotic setup. Compared to Paper B, it moved from online to
offline RL algorithms, and from a single- to a multi-goal MDP formulation.
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Paper D

Planning and Control for Cable-Routing with Dual-Arm Robot
Gabriel A. Waltersson, Rita Laezza, Yiannis Karayiannidis
Published in 2022 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1046–1052.
© 2022 IEEE DOI: 10.1109/ICRA46639.2022.9811765

This paper presents a vision-based approach for a cable-routing task, with
arbitrarily placed fixtures. The key contribution of the paper is a task-space
planner that generates instructions, using a heuristic algorithm, and employs
a replanning strategy, based on a Genetic Algorithm (GA), if problems oc-
cur. More specifically, the planner builds a roadmap from predefined motion
primitives and generates trajectory parameters for the controller. If the tra-
jectory parameters are unfeasible, a replanning module uses the GA to find
a new feasible solution. As a dual-arm implementation is considered, both
coordinated and individual control strategies are used to define the necessary
motion primitives. The paper relies on a CV system for estimating the poses
of the fixtures and tracking the DLO. The proposed framework is tested in
real-world experiments with an ABB dual-arm YuMi robot, demonstrating a
90% success rate for three-fixture problems.

Research Objective As the first cable-routing paper in this thesis, the goal
was to lay some groundwork towards future data-driven research. While no
RL policy or DNN model were explored in this work, the GA is an alternative
ML approach to solve the challenging replanning problem. Future work could
replace the GA with an RL policy. This work was carried out using visual in-
formation on a real-world robotic setup. Importantly, the control architecture
developed for this work was leveraged in both Paper C and Paper E.
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Paper E

Feel the Tension: Manipulation of Deformable Linear Objects in
Environments with Fixtures using Force Information
Finn Süberkrüb, Rita Laezza, Yiannis Karayiannidis
Published in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 11216–11222.
© 2022 IEEE DOI: 10.1109/IROS47612.2022.9982065

This paper presents a purely force-based approach for a cable-routing task.
Its first contribution is the proposed DLO graph model which enables blind
manipulation when the object is kept under tension. The second contribution
is the online model estimation procedure which keeps the model updated,
based on the perceived DLO elasticity and contacts with the fixture envi-
ronment. This paper further introduces a set of elementary sliding and clip-
ping manipulation primitives, which can be defined based on the proposed
model. The individual manipulation primitives as well as the model estima-
tion method are tested in a real-world cable-routing experiment, using an
ABB dual-arm YuMi robot.

Research Objective This was the only work to make use of force information
on a real-world robotic setup. While the proposed model was not encoded as
a DNN, its parameters were estimated using a data-driven method. Similarly
to Paper C, the motion primitives proposed in this work could be used as
building blocks for an RL-based planner.
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CHAPTER 5

Concluding Remarks

To recapitulate, Part I provides an overview of the research context of the
contributed papers, found in Part II. Chapter 1 started with a birds-eye view
of deformable object manipulation and robot learning. This was followed by
a more in-depth treatment of DLO manipulation in Chapter 2 and RL theory
in Chapter 3. After reading these three chapters, readers should be better
equipped to understand both the research context and the contributions of
the papers, summarized in Chapter 4.

For concluding remarks on the research contributions of this thesis, refer
to Section 4.1. Instead, Section 5.1 provides more general reflections on RoL
for DOM applications, aimed at researchers in the field that may stumble
across this thesis. Much like RL, research requires a lot of trial-and-error
learning. Indeed, a lot of efforts made towards this thesis are not visible in
the appended papers. One could say that several exploratory “actions” were
taken to investigate if a particular research direction could be fruitful, which
led to important insights but not “rewarded” with a publication. Therefore,
some of the lessons learned in this process are discussed in more detail. Finally,
we look towards the future with Section 5.2, which covers upcoming research
in DOM applications, as well as healthcare applications.
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5.1 Reflection

In the final chapter of the Licentiate thesis [1], there was already a moment of
reflection regarding the goal of this research project, presented in Section 1.3.
Specifically, a few relevant questions were posed regarding how we humans
approach DOM problems in our daily lives:

“Is trial-and-error learning such as RL, responsible for all human dex-
terity? Or are many manipulation skills learned by imitation? How are the
goals for each task defined? When folding laundry, does the exact position of
each fold matter, or is the purpose to flatten clothes while reducing storage
area? • How many tasks would humans be able to solve if instead of having
compliant five-fingered hands, they had rigid two-fingered parallel grippers?
Would tying shoelaces be easy or even possible? Which tasks are strictly
dependent on vision or tactile feedback?”

The first few questions related to human motor learning in general.
There is evidence that some form of RL is behind human motor skills, at
least by regulating an underlying motor learning process [136]. There has
also been significant research on mirror neurons, which have been shown to
contribute towards imitation behavior, having a key role in sensorimotor
learning [137]. What is more unclear is how our reward system impacts
our learning of motor skills and how goals are set. Extrinsic rewards have
been shown to improve motor skill learning. Interestingly, monetary rewards
have a higher impact on motor skill performance than performance-based
feedback [138]. Indeed money is considered to be a secondary reward since
it is directly associated with primary rewards e.g. food, that are related
to survival and reproduction. While actions taken towards some primary
or secondary reward may not feel rewarding, e.g. going to work, there are
activities that feel rewarding in and of themselves, which is believed to be a
result of an intrinsic reward system [139]. Perhaps as we learn more about
ourselves, new ideas may lead to better RoL algorithms.

The final questions related to how much the human body has evolved to
make dexterous motor control possible, including DOM. Perhaps more impor-
tantly, how much does the human anatomy and physiology facilitate motor
learning as compared to a robot. There is still a hardware bottleneck in
robotics, due both to the lack of dexterous end-effectors and robust sensing
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technologies, as mentioned in Chapter 1. Even the way manipulators are
constructed is far from the biological arms they aim to emulate. While bio-
logically inspired robotics is a growing field, the aim is often to understand
the underlying principles and adapt them to simpler mechanical structures
[140]. In the context of DOM, human-like robotic hands are likely not going
to become the most practical solution, at least in the near future. This is
supported by recent work from OpenAI towards solving a Rubik’s cube with
a Shadow hand [132] through RL [141]1. Instead, soft grippers are a more
practical approach, since they can adapt to the shape of deformable objects
without needing overly complex software, e.g. for pick and place tasks [142].
Thus, solutions with soft robotics are more likely to become commonplace for
many DOM problems, e.g. in food processing and agriculture.

Indeed, more robust solutions with simpler mechanics, such as suction grip-
pers, are likely to continue to be chosen over AI-based dexterous robot hands
for a few years to come. This is in line with Moravec’s paradox [143], which
postulates that, reasoning requires very little computation when compared
to sensorimotor skills, contrary to human intuition. In other words, abili-
ties that we classify as complex, such as language, are actually simpler than
those that we take for granted, like dexterous manipulation. Recent successes
in Large Language Models (LLMs)2 while robots are still struggling to even
walk reliably on two feet3, seem to support this idea.

DOM is truly an example of Moravec’s paradox, since so many tasks that
we do without even thinking, are extremely difficult to be executed by a robot.
While there are some industrial tasks which can perhaps be solved using cur-
rent technology, many will require general manipulation abilities. Therefore,
when it comes to DOM research, the argument by Demis Hassabis4 likely ap-
plies: “solve intelligence, and then use that to solve everything else”. In the
context of DOM, it makes more sense to solve general robotic manipulation,
and then use that to solve DOM. For the most part, looking for general solu-

1 In 2021, OpenAI disbanded its robotics team. Co-founder, Wojciech Zaremba, points to
the lack of training data as the main motivation behind decision.

2 For example, ChatGPT by OpenAI which was released in November, 2022.
3 While Honda’s ASIMO (Advanced Step in Innovative Mobility), introduced already in

2000, was the first commercially available bipedal robot, it was meant for showcasing
purposes and not of any practical utility. Since then, not many other legged robots
have been released. For example, Spot, the four-legged robot by Boston Dynamics, only
became commercially available in September, 2019.

4 Co-founder and CEO of DeepMind.
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tions to DOM is impractical. Until robotic manipulation is solved, it is best
to look for specific solutions to particular tasks, such as cable-routing.

RL is still a promising approach for achieving general robotic manipulation
abilities. While the MDP formulations used in this thesis were specific to
DLO manipulation, the learning mechanism is truly general. As discussed in
Chapter 3, many recent algorithms attempt to improve the performance of
RL. However, there is a big divide between researchers working on novel ML
methods and those applying them to real-world robotic applications. Indeed,
most algorithms are tested in benchmarks which are far from representing the
complexities of a robotic system, making translational research a challenge.

There are many fundamental RoL questions that still do not have a good
answer. Considering the structure of an MDP, there are several design choices
that influence the learning problem: i. what should the state representation
be? (e.g. RGB-D data or task-specific representations, how should other
sensor information be combined?); ii. what should the action representation
be? (e.g. instantaneous inputs or full trajectories, joint or task space, position
or velocity control); iii. how can we define the reward? (e.g. sparse or dense,
learned or engineered, how are multiple goals addressed?); iv. how should
we sample the environment? (e.g. simulation or real-world, offline or online);
and v. how should we model the policy? (e.g. value-based or policy-based,
what ANN architecture should be used?). Finally, is it possible that even the
currently available RL algorithms such as DDPG and PPO are able to solve
complex robotic manipulation tasks, if we find the answers to all of the above?

As the aim was to tackle DOM problems, it was not feasible to attempt to
answer all of the previous questions. Several state and reward formulations
were investigated, which are specific to DLO tasks. Rewards based on Signed
Distance Functions (SDFs) were also investigated, but is not included in this
thesis. After the release of ReForm, there was an effort to make the explicit
shape control tasks multi-goal, by randomly generating physically plausible
target shapes. Furthermore, our collaboration project was awarded additional
funding through the WASP Bridge initiative, that aimed at including the
YuMi robot in the simulation environments for joint space control. While
these efforts were initially planned as a continuation of the work in simulation,
there was a decision to move toward real-world applications. While this was a
great learning experience, working with real robots in a data driven approach
was a time-consuming endeavor, which made progress quite slow.
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Plans often change in research, as new knowledge is acquired and collab-
orations are formed. The future work section in the Licentiate thesis [1], is
great evidence of that:

“Based on observations made during the initial phase of this graduate
project, the aim of upcoming work will be twofold: i. transfer policies learned
in simulation to the real world and ii. attempt to reduce sample inefficiency
by exploring model-based methods.”

While sim-to-real was explored, offline RL was the main research direc-
tion chosen in the end. Furthermore, no work was carried out on model-based
methods as on several occasions it has been made clear that they are excep-
tionally difficult to make work. This knowledge did not come from a specific
publication, but rather expert lectures during RL Summer Schools organized
by Inria and CIFAR. The general idea seems to be that model-based RL is
nice in theory but not yet in practice. In the following section, we look to the
future again, with full conscience that it may never come to be.

5.2 Future Work
Using currently available hardware solutions, there are several DOM tasks
that could be automated with the help of AI methods. An important job for
future research would be to identify such tasks and attempt to solve them in
all their complexities, not just in a simplified version. The cable-routing task
presented in Section 2.6 is a great example of this. While most research has
focused on stripped-down versions of this problem, it would be interesting to
progressively move towards a complete cable harness production solution, e.g.
the task boards for the assembly performance tests proposed by NIST, as part
an effort to standardize Robotic Hand Performance Testing [144].

While this thesis lays some of the groundwork to accomplish fully au-
tonomous cable-routing, the next steps are to combine the principles of Papers
D and E with RoL methods. Recently, Luo et al. [76] applied RoL for cable-
routing to learn both a high-level planner and low-level vision-based motion
primitives, through an end-to-end hierarchical IL approach. In contrast, we
aim to use both the vision- and FT-based motion primitives proposed in this
thesis, which would be executed following a heuristic rule-based plan. No-
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tably, Luo et al. [76] modeled the low-level primitives as MLPs, mapping raw
camera feeds to a 4D Cartesian twist. Instead, our vision is to keep predefined
primitives, but replace the GA replanning strategy in Paper D with an RL
approach. Furthermore, in Paper E the observed failures in tensioning primi-
tives were caused by poor estimation of the DLO elasticity parameter, while
in Paper D the main source of failure was the DLO tracking algorithm, which
caused unsuccessful grasps. Thus, replacing or enhancing these methods with
SL could further help mitigate the DLO state estimation problem.

Healthcare Robotics Although this thesis has focused on domain-agnostic
tasks, like shape-servoing and cable-routing, a key motivation to dive into the
field of DOM was its potential for healthcare robotics. A recent review by
Wang and Zhu [145] highlights many such applications in caregiving scenar-
ios. Moreover, the RoL knowledge acquired during this doctoral project can
be applied to many other problems from Biomedical Engineering. Some of
the work not included in this thesis has been carried out exactly in such a
biomedical context, namely bionic limb control via myoelectric signals. Fu-
ture research directions will likely continue moving towards healthcare areas,
like robotic rehabilitation.
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